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Abstract

Passive damping of structural dynamics using piezoceramic electromechanical energy
conversion and passive electrical networks is a relatively recent concept with little
implementation experience base. This report describes an implementation case study,
starting from conceptual design and technique selection, throu gh detailed component design
and testing to simulation on the structrure to be damped. About 0.5kg. of piezoelectric
material was employed to damp the ASTREX testbed, a 5000kg structure. Emphasis was
placed upon designing the damping to enable high bandwidth robust feedback control.
Resistive piezoelectric shunting provided the necessary broadband damping. The
piezoelectric element was incorporated into a mechanically-tuned vibration absorber in
order to concentrate damping into the 30 to 40Hz frequency modes at the rolloff region of
the proposed compensator. A prototype of a steel flex-tensional motion amplification
device was built and tested. The effective stiffness and damping of the flex-tensional device
was experimentally verified. When six of these effective springs are placed in an
orthogonal configuration, strain energy is absorbed from all six degrees of freedom of a
90kg. mass.

A NASTRAN finite element model of the testbed was modified to include the six-
spring damping system. An analytical model was developed for the spring in order to see
how the flex-tensional device and piezoelectric dimensions effect the critical stress and
strain energy distribution throughout the component. Simulation of the testbed
demonstrated the damping levels achievable in the completed system.
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Nomenclature

diagonal matrix of cross-sectional areas of piezoelectric bar
magnetic field

generic capacitance, farads

piezoelectric material constant relating voltage in ith direction to strain in the
Jth direction

vector of electrical displacements (charge/area)

Young's Modulus, elastic field

vector of electric fields (volts/meter)

= W/ wy, real non-dimensional frequency ratio

shear modulus

vector of external applied currents

torsional constant

modal stiffness

material electromechanical coupling coefficient

generalized electromechanical coupling coefficient

diagonal matrix of lengths of piezoelectric bar

generic inductor, Henry's

modal mass

dissipation tuning parameter

generic resistance, ohms

Laplace parameter

piezoelectric material compliance matrix at constant electric field
vector of material engineering strains

vector of material stresses

strain energy in element i

voltage

semi-rigid beam stiffness ration, p 95

damping coefficient

= s/w, , complex non-dimensional frequency

= w,/w, , resonant shunted piezoelectric frequency tuning parameter

loss factor

=RCuw, non-dimensional resistance (or frequency)
natural frequency of a one-degree of freedom system

resonant shunted piezoelectric electrical resonant frequency
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T shear stress (Pascals)

o normal stress (Pascals)

f freqnency, force

A diagonal matrix of the squares of the natural frequency
¢ real or normal mode of the system, electric potential

6 flex-tensional component lever angle

Subscripts:

oc open circuit

sc short circuit

f flexure

piezo piezoelectric material

eff effective properties

t transpose of a vector or matrix

Superscripts:

E value taken at constant field (short circuit)

D value taken at constant electrical displacement (open circuit)
\) value taken at constant strain (clamped)

T value taken at constant stress (free)
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Relevant Key Words

ASTREX: Air Force Phillip's Laboratory Advanced Space Structure Research Experiment
facility at Edwards Air Force Base

Collocation: 1. collocated actuators and sensors are located at same point on the structure.
2. collocated transfer functions have their input and output at the same point on the
model.

Complex mode: modeshape associated to a single pole, complex modes come in complex
conjugate pairs.

Component: the essential part or mechanism of the damper. (i.e. the flex-tensional)

Damper: any damping implementation (i.e. washer or six-axis vibration absorber ) or
any damping component (i.e. flex-tensional or washer)

Device: any damping implementation with a distinctive mechanism and damping material.
(i.e. the piezoelectric-based flex-tensional or the six-axis vibration absorber)

Flex-tensional: steel part that uses preloaded flexured lever arms to amplify the stroke of
the piezoelectric

Non-proportional damping: damping implementation that influences collocated and
adjacent degrees of freedom. i.e. off-diagonal damping terms in damping matrix and
coupled equations of motion

Orthogonal: 1. matrices whose product is zero are mutually orthogonal. (decoupling the
equations of motion). 2. truss struts that are orthogonal are perpendicular to each other
(decoupling their control authority).

Proof mass damper: synonym for six-axis vibration absorber.

Proportional damping: damping implementation that influences collocated degrees of
freedom only. Mass-proportional damping is excluded in this definition. i.e. diagonal
damping matrix and decoupled equations of motion

Real or normal mode: modeshape associated to a pair of complex conjugate poles. The
definition of such modes implies the assumption of proportional damping.

Six-axis vibration absorber: three pairs of orthogonal flex-tensional dampers whose
purpose is to absorb the energy of a 90kg proof mass via shunted piezoelectics

Six-axis vibration isolator: three pairs of orthogonal flex-terisional actuators whose
purpose is to isolate the 90kg proof mass from ASTREX dynamics via actuated
piezoelectrics

Smart Joint: rotary damper/actuator combination that absorbs or commands tripod-end
rotations via shunted/actuated piezoelectrics (i.e. washer, sleeve or equivalent strut)

ix






CHAPTER 1

INTRODUCTION

Most modern spacecraft, including the proposed Space Station, need a means to isolate
precision-pointing instruments or microgravity experiments from the unpleasant dynamics
that are inherent to large flexible space trusses. Various disturbances can excite the
spacecraft's structural dynamics: a thrusting maneuver, a shuttle docking, an astronaut's
movement, onboard machinery or solar dust impacting to name a few. In order to prevent
any of these disturbances from propagating through the truss to the sensitive equipment, a
device must be designed to damp and/or isolate the performance-sensitive vibrations that
are excited by predicted disturbances. The implementation usually requires passive and
active stages, consisting of a passive structural damping implementation, and an isolation

control system, respectively.

1.1 MOTIVATION

There are many other applications where the addition of passive vibration damping to a
structural system can greatly increase the system’s performance or stability. For example,
bridges and buildings need to damp the destructive dynamics from earthquakes.
Automobiles need to be isolated from rough road surfaces. In any case, the addition of
passive damping can decrease peak vibration amplitudes in structural systems and add
robustness to marginally stable active control systems Refs.[1, 2, 3]. Since the actual
system modes are rarely in complete agreement with the model, even the modeled modes
pose some threat to the stability of the closed loop system. In addition, lightly damped



modes can exist in the rollotf region of the control system. Although these modes may not
be included in the model, they are still subject to control authority that has not yet rolled
off. These rolloff modes pose another threat of instability to the control designer.

There are several sources of passive damping in space structures. The most common is
material damping by which structural strain energy is dissipated. Damping is also provided
by the friction and impacting that occur in the structural joints. The inherent damping in a
truss can be increased by using damping enhancement schemes Refs.[3, 4, 25, 26, 27,
28]. Several damping techniques are applicable to space structures. Some viscoelastic
techniques have been developed for trusses in Ref. [5]. Proof-mass dampers (PMD’s)
have been applied previously to space structure damping in Ref. [14] and conceptually in
Ref. [23]. Viscous damping struts were implemented in Ref. [7]. An active thermal
damping scheme was used in Ref. [8]. Impact dampers were used in Ref. [9]. Truss
structures with active piezoelectric members for vibration suppression are presented in
Refs. [10, 14, 24].

With the advent of smart materials, like piezoelectrics, it is possible to sense, control
and passively damp structural vibrations with the same device, simultaneously. Using
passive electrical networks, such as resistor-capacitor (RC) and inductor-resistor-capacitor
(LRC) circuits, the device can absorb vibrations with minimal mass penalty.

In recent years, piezoelectric elements have been used as embedded sensors and
actuators in smart structures by Forward[11], Crawley and De Luis[13], and Hagood and
Crawley[14], and as elements of active structural vibration systems by Fanson and
Caughey[6], Hanagud et al. [15], and Bailey and Hubbard[16]. They have also been used
as actuation components in wave control experiments by Pines and von Flotow [17].
Within active control systems, the piezoelectrics require complex amplifiers and associated
sensing electronics. These can be eliminated in passive shunting applications where the
only external element is a simple passive electrical circuit. Modelling of passive
piezoelectric damping is described in Ref. [4]. Experimental verification of passive
piezoelectric damping in a laboratory structure is described in Ref. [4, 14]. The shunted
piezoelectric itself could also be used as a damped structural actuator in a control system, as
will be discussed later in this paper.

This report will present a passive piezoelectric damping implementation on Air Force
Phillip's Laboratory Advanced Space Structure Research Experiment (ASTREX) facility at
Edwards Air Force Base, figures 1 and 2. The motivation behind this research is to
provide as much passive damping as possible to facilitate Line-Of-Sight control roll-off.
Passively-shunted piezoelectrics were the chosen damping scheme because of their small
implementation experience base relative to the viscoelastic or viscous damping schemes.



Piezoceramic’s high stiffness and temperature stability make it useful for structural
damping applications.

In chapter 1, the modeling and passive damping issues of shunted piezoelectrics are
defined. In chapter 2, potential damping implementations, and control objectives are
introduced for ASTREX. In chapter 3, the design, manufacturing and assembly details of
the better device from the previous section is explained. This chapter also describes
analytical and finite element modeling techniques of the component. Chapter 4 gives the
experimental verification of the component. Chapter 5 simulates the damping performance
of the six-axis proof mass dynamic absorber in the ASTREX testbed. Conclusions are

summarized in Chapter 6.

Figure 1. ASTREX space structure with scaled six-foot figure. Support pedestal that
elevates the center of the truss from the lab floor is not shown.

1.2 OBJECTIVE

The objective of this study was to develop optimal damping/actuation mechanisms that
demonstrate the virtues of passive damping for spacecraft performance and control. Before
the passive damping implementation ideas can be generated, the characteristics and
performance criteria of the undamped structure, ASTREX, must be considered. After all,
the development of piezoelectric dampers, actuators and sensors must be guided by the
performance-sensitive dynamics and control architectures of the specific class of structures
to be damped.

ASTREX consists of two major parts, a vertical pedestal upon which the test-article
pivots through an air-bearing system. The mass center is positioned such that the test-
article points downward from the horizontal position by about 30 degrees. The ASTREX
test article includes a tripod that supports a mirror known as the secondary (figure 2). The
primary consists of over a hundred 1 meter back plane struts that form a hexagonal-shaped



lattice truss. The tertiary, located a couple of meters behind the primary, houses the
electronics. Thrusters, located on opposite sides of the primary, are available to perform
rapid slewing maneuvers. Two control moment gyros are placed on the primary, as are
two reaction wheels on the secondary.
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Figure 2. ASTREX space structure overview.

ASTREX’s original control-structures interaction performance-metric, involved
minimizing the line-of-sight error from step input slewing maneuvers. For purposes of this
project, we have assumed use of the two reaction wheels on the secondary as control
actuators for line of sight. The frequency response of this transfer function (from torque
applied to line-of-sight) for the undamped structure is reproduced in chapter five. From
considerations of practical bandwidth limits of the reaction-wheel actuators, together with
knowledge of the capability of fast steering mirrors (which might be used in a fast, but
small-angle inner loop), the 30 to 40Hz frequency range was selected as a target closed-
loop bandwidth for this control loop. Eigenfrcquencicé below this bandwidth would be
actively controlled. Eigenfrequencies near the 30 to 40Hz cross-over would present robust
stability problems. Eigenfrequencies far above this bandwidth will need enough passive
damping for gain stabilization as depicted in figure 3.



These heuristic considerations, codified in [18], lead us to emphasize passive damping .
treatments that target the decade centered about 30 to 40Hz, and target modes which
contribute strongly to rotational motion of the secondary.
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Figure 3. Phase and Gain Stabilization issues. (a) Figurative depiction of testbed for band-
width to include many poorly modeled, lightly damped, closely spaced modes. (b)
Required level of passive damping to meet problem specification. Reference [1].

1.3. BACKGROUND: PASSIVE DAMPING MECHANISMS

The are many passive damping implementations which can be applied to large space
structures. For example, lossy materials can be applied to critical surfaces of the structure
to absorb strain energy. Structural members can be replaced with smart struts or actuators
to provide passive damping and active control. Vibrational energy in the host structure can
be dumped into active/passive tuned mass dampers, that are attached to the existing
structure to absorb vibrational energy. Regardless of the damping implementation
employed, the type of energy dissipation must be selected from conventional techniques or
a growing number of new options being developed in smart materials technology.

In the following seven paragraphs, viscoelastic, viscous, frictional, impact, thermal,
electromechanical, and magnetomechanical energy dissipation techniques that are applicable
to large spacecraft structures are presented.

Viscoelastic damping dissipates structural strain energy that is virtually proportional to
the velocity of relative movement. Since viscoelastic materials cannot be depended on for
their structural integrity, viscoelastics are generally shear strained only as in the composite
strut application seen in figure 4.
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Figure 4. Composite strut with viscoelastic/sleeve damping application.

As the strut undergoes an axial deformation the viscoelastic provides a resistive force
proportional to the relative velocity between the composite strut and the sleeve.

Viscous dampers, like the Honeywell D-Strut, depend on the fluid flow through a small
internal orifice to obtain passive damping performance. Analogous to the viscoelastic, the
viscous damper has insignificant internal stiffness in its dashpot. Parallel stiffnesses, such
as a preload spring, or the stiff housing in figure 5, must be created to give the device
structural integrity while allowing enough deformation for forced fluid flow through the
bellows. As the strut in figure 5, undergoes an axial displacement, the annulus is
compressed near the arch flexures, and fluid is forced into the bellows proportional to the
velocity of oscillation.
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Figure 5. (a) Simplified schematic for the viscous damper. (b) D-strut.

When the fluid elastic actuator in figure 6 is used actively, a commanded force controls the
fluid pressure, which in turn elongates the strut. The pressurized composite cylinder
supports structural loads. Like other viscous dampers, the P-strut also uses viscous fluid
flow through an orifice to provide passive damping.
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Figure 6. P-Strut: Fluid Elastic Actuator

Frictional or Coulomb damping is another form of damping that resuits from the sliding
of two dry surfaces. The damping force is equal to the product of the normal force and the
coefficient of friction, p, and is assumed to be independent of the velocity, once motion is
inidated. Since large space structures have large beam stiffnesses with small displacements
compared to civil structures, it is difficult to build a frictional damper that is not burdened
by overcoming static friction.

Impact dampers, also known as acceleration dampers, operate by allowing a series of
collisions between the primary vibrating system and a secondary mass carried in or on the
primary mass (figure 7). Since conservation of momentum is needed to model the
damping, velocity proportional damping cannot be assumed in the equations of motion.
However, it has been determined in reference [9] that the device is most efficient if two
impacts per cycle occur with impacts equally spaced in time.

S M

F(v)

LSS s

Figure 7. Simple impact damper.

Adaptive damping for spacecraft by temperature control was investigated in reference
[8]. The objective of this type of damping is to use the damping material’s temperature
dependence as a control parameter to adjust the damping value. Controlling the damping of
various modes of vibration in a structural system can be accomplished by varying the
temperature of the appropriate damping elements through the use of individual heating
elements. Since the heating elements and the damping materials are embedded directly



within a composite material of low thermal conductivity, the temperature within each
control point can be easily controlled with a minimum of heat input and very little cross
coupling between the control points.

Electromechanical energy dissipation techniques, such as resistively-shunted
piezoelectrics used in reference [4], convert mechanical strain energy into electrical energy
that 1s then dissipated across a resistor. A piezoelectric truss strut is depicted in figure 8.
Truss structures with active piezoelectric members for vibration suppression are presented
in Refs. [10, 14]. Magnetostrictives dissipate energy in a similar manner, by converting
mechanical strain energy into a magnetically-induced current, that flows through a spiral
coil, and is dissipated across a resistor. Since passive piezoelectric damping technique was
used exclusively in this thesis, the next section presents a more thorough discussion of
passive piezoelectric damping from a modelling point of view.

Endpiece Side View Internal Electroded Surface

5.04 cm Electrode Bus

—

Kapton Coated Leads

Figure 8. Piezoelectric truss member used in the space structure of reference [14].

1.4. APPROACH: PASSIVE PIEZOELECTRIC DAMPING

In this thesis, an attempt has been made to increase the system damping using passive
piezoelectric techniques, because the project sponsor wished to emphasize this technique.
Passive piezoelectric damping was also the chosen approach by consensus, because of its
relatively small implementation experience base compared to the viscoelastic or viscous
damping techniques. Piezoelectric damping is also justified by its relative temperature
insensitivity compared to other damping schemes, such as the viscoelastic. This exercise
was intended to test the suitability of passive piezoelectric damping for damping large scale
structures.



1.4.1. MODELING OF SHUNTED PIEZOELECTRICS

Piezoelectric material can be used simultaneously as a passive damper, actuator and
sensor. This report focuses on its development as a passive damper. This function,
however, is best understood in the context of its other two roles. The model in figure 9
shows that the passive damping shunting current, the actuation current and the applied
stress can all be used to strain the piezoelectric. See equation (1). Once the piezoelectric is
strained, mechanical energy is converted into electrical energy which is dissipated across a
shunting circuit. Thus, the piezoelectric is depicted as an transformer in the network analog
in Figure 9(b). This electromechanical coupling gives the piezoelectric its third role as a

sensor.

It is possible to choose the shunting parallel circuit impedance, Z?Y (s), to maximize
the effective material loss factor, 7. If an appropriate Z°Y (s) is selected, the cyclic voltage
buildup is appropriately phased with the applied stress to yield piezoelectric passive
damping. A complete treatment of this concept is given in reference [4]. Once the shunting
and electrical impedances are defined by passive damping performance considerations, the
current-strain and stress-strain frequency dependent relationships are constrained by

equation (1).
S =[s* -d,L'Z%sAd]T +[d L"Z% 1 (1)
This equation gives the strain, S, for a given applied stress, T, and forcing current, I.

Notice that shunting the piezoelectric does not preclude use of the shunted element as an
actuator in an active control system but rather modifies the passive characteristics of the

actuator.
I
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Figure 9. Simple physical model of a uniaxial shunted piezoelectric (a) and its network
analog (b).



1.4.2. RESISTIVE VERSUS RESONANT SHUNTED PIEZOELECTRICS

In many applications, it is possible to model the piezoelectric element as loaded in oniy
one of the following three directions: longitudinal case, force and field in the “3”
direction; transverse case, force in “1” or “2” direction, field in “3” direction: shear
case, force in “4” or “5” direction (shear), field in *“2” or “1” direction, respectively (figure
10). If the designer desires broadband damping for the structure, the shunting circuit is a
resistor. If the designer desires narrowband damping, both an inductor and a resistor must
be shunted across the piezoelectric to form a resonant shunted LRC circuit.

? Gacluatjon Gacumion Tacmuion
............... / P S,
NS SRR R LR R - + — o , ) - o +
_ \ V| Polin \Y
+ Poling ) ' + Poling: + <-—g -

(@) ' V4R ©

Figure 10. Poling: (a)Longitudinal case. (b)Transverse Case. (c)Shear Case.

In resistively shunted piezoelectric damping, the resistor is varied until the RC circuit
time constant, p, is in the vicinity of modes to be damped. In resonant shunting, both the
inductor and the resistor must be tuned. Such a scheme should only be considered for
damping well-modeled structural modes that require excessive damping. This is one
reason why resonant circuit shunting was not investigated in this paper. Another option is
to tune several inductor and resistor pairs to damp discrete modes as in reference [4].

1.4.3. RESISTIVE SHUNTED PIEZOELECTRIC MATERIAL PROPERTIES

The resistor shunts the electrodes of a piezoelectric element as seen in figure 11.

Figure 11. Resistor shunted piezoelectric assumed geometry with forcing in the jth
direction and electric field in the ith direction. Ref. [4].



Deriving the effective material properties from impedance yields the loss factor, 1 and
relative modulus, E. Ref. [4]:

pk;
(W)= ———— Q
ny ( ) 1 + pu (1 kz) )
- k2
E*(w)=1- ! >
4 2
1+p}(1-k2) 3)
Where p; is the dimensionless frequency:
w
=RC w=—, 4
px i p wd ( )

The loss factor and relative modulus equations have been plotted versus p, the
dimensionless frequency (or the dimensionless resistance) in Figure 12 for a typical value
of the longitudinal coupling coefficient. These curves are similar to the equivalent material
curves for a standard linear solid. As illustrated by the graphs, for a given resistance the
stiffness of the piezoelectric changes from its short circuit value at low frequencies to its
open circuit value at high frequencies. The frequency of this transition is determined by the
shunting resistance. The material also exhibits a maximum loss factor at this transition
point.

As seen in figure 12, the material loss factor peaks at 42.5% in the longitudinal and
shear cases (k33=k;3=0.75). The transverse case has an 8% peak loss factor (k;5=0.3).

Resistive Shunted Plezoelectric Malerial Properties
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Figure 12. Effective material properties of a resistively shunted piezoelectric in the
longitudinal case (k33=0.75) showing material loss factor (solid) and relative
modulus (dash). Reference [4].
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1.4.4. RESONANT SHUNTED PIEZOELECTRIC MATERIAL PROPERTIES

An inductor and resistor shunt the electrodes of the piezoelectric as seen in figure 13.

Figure 13. Resonant shunted piezoelectric assumed geometry with forcing in the jth
direction and electric field in the ith direction. Ref. [4].

Deriving the effective material properties from impedance yields the loss factor, 17 and
relative modulus, E. Ref. [4]:

n.t(w) _ k;sz(azrg) (5)
T T g (o) -k (- )
_ 62(52 _gZ)
E-(w)=1-k 6
y (@) 9[(62_82)2+(52rg)2J (6)
where
g = w/w, = dimensionless frequency
é = w,/w, = tuning ratio
w, = I/ JLC;, = electrical resonant frequency. N

The loss factor and relative modulus equations have been plotted versus g, the
dimensionless frequency in Figure 5 for a typical value of the coupling coefficient. As
illustrated by figure 14, peak loss factors close to 100% are possible. It should also be
noted that the stiffness of the piezoelectric changes drastically from its short circuit value at
low frequencies to its open circuit value at high frequencies. This stiffness jump at g = 1,
does not lend itself to the simple optimization techniques used in resistive shunting.
Transfer function techniques described completely in reference 4, must be used instead.
Sizing the LRC circuit for the smart joint and six-axis damping designs described in the
next chapter, yielded 15kH, and 0.4kH inductors, respectively. Inductors as large as these
must be simulated with the active inductor techniques described in reference [4]. Despite
the feasibility of this design, resonant circuit damping of discrete modes was not

12



investigated any further. Instead, this research focuses on using broadband damping to
facilitate the control of these discrete modes.

E - e %0 -

:

. { 3

! <

5 = — 125 §
3 O'¢ 1 N
2 : 1032
2 N N U b T RS 100 3
: r - -
» ! W
= (=TT - -
2 90 "
4078 3

- w

w

[

[ Jow &

2 001 Lilos0 &

Non-gimensionat frequency, ¢

Figure 14. Effective material properties of piezoceramic shunted by a resonant LRC circuit
(r = 0.20) in the transverse mode of operation (k33=0.38) showing material loss
factor (solid) and relative modulus (dash). Reference [4].

1.4.5. COUPLING SHUNTED PIEZOELECTRICS TO STRUCTURES

The peak loss factor of a vibration will decrease from that of the piezoelectric, when it
is coupled to its host structure, according to the fraction of the total strain energy that is
actually in the piezoelectric, reference [4]

=Y nu, /U, ®)
=/ i=]
where U, is the strain energy in the ith element of the structure. The challenge is thus to
employ the damping piezoelectric material in areas of high strain energy to take advantage
of this weighting. Of course, the high strain energy locations must also be ranked by their
influence on system performance objectives.

The strain energy sharing concept is first considered when designing the damper to be
applied to the structure. Note that the word, damper, refers to the piezoelectric damping
material and any necessary series or parallel stiffnesses that give the device structural
integrity. All damping devices can be simplified to follow one of two different design
procedures:

Case(1) If the damper is made up of 100% piezoelectric that is loaded in one direction
the material properties in figure 12 apply. An example of this is a shear washer to be
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Case(2) If the damper consists of a piezoelectric with series and/or parallel stiffnesses,
the peak loss factor location can no longer be guided by equation (9). In this case, equation
(9) is a good first iteration approximation if series stiffnesses are high and parallel
stiffnesses are low compared to the piezoelectric. The short circuit stiffness, K, and the
open circuit stiffness, (K, + K,) must be computed from an analytical or finite element
model of the complete device. Assuming the component’s effective material properties are
analogous to the piezoelectric, a first order estimate of the effective coupling coefficient,

K
K} = ——{“ : (10)
i
K"C component

is then used in (9) in place of kj to size the resistor. An example of this is the flex-
tensional device described in section 2.2.

Regardless of the design case, the short and open circuit stiffnesses of the damper
determine two of the minimum three points necessary to describe the first-order stiffness

curve of the damper (figure 15(a)). The third parameter, conveniently given by the
transition frequency, p, is determined by the value of the shunting resistor.

1.4.6. FINITE ELEMENT MODELING OF PIEZOELECTRIC-BASED DAMPERS

In order to determine the performance of a given piezoelectric damping scheme in its
host structure, the damper’s stiffness and loss factor curves from figure 15(a) must be
modeled. This behavior is captured by the following spring and dashpot finite element
configuration (figure 15(b)).

LSS
19| E/ % K,
3 c
K, --- IS

Figure 15. (a) Effective damper properties of a resistively shunted piezoelectric damper in
the longitudinal case (k33=0.75) showing damper loss factor (solid) and the
damper’s stiffness (dash). (b) Equivalent model of the piezoelectric-based damper.
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The complex stiffness of the three element configuration is modeled with two linear
spring stiffnesses, K,, K, and one complex dashpot stiffness, Ciw as follows:

-1
b 1
Keff =K, +| —+— 11
=K (Kz Ciwj b

Given K, and K, from static structural models, C is the only unknown constant needed
to complete the dynamic model. Simple algebraic manipulations yield the appropriate
value of C such that the transition from low-frequency short-circuit stiffness to high-
frequency open-circuit stiffness occurs at the correct transition frequency, p. This is
K,

accomplished by arbitrarily selecting a third coordinate point, (@, I ), near the
transition of the stiffness curve.

Figure 15 shows an equivalent mechanical model of the resistively-shunted
piezoelectric damper (including series and parallel stiffnesses). This mechanical equivalent
model is suitable for inclusion in commercial finite element software.

The real and imaginary parts of the complex stiffness are separated in (12) to calculate

the real magnitude in (13):

(KK2+(Cw)(K,+K,)) [ Cuwk?
Keff '[ K +(Co) ) (K; +(Cw)2) (12)
|Keff = \/[Real(Keﬁ‘)]z +[Imag(Keff)]’ (13)

The results of (12 & 13) are manipulated into the quadratic equation,
C*{a,}+C*{a,}+{a,} =0 and solved for the only unknown, C.

c*{o[(&,+ K.)' - (Ikefl) ]} +
c*{w?[2K Ki(K, + K,)+ Ki - 2(Kef)' K I+

{Ki(x: - (Ixel)’)} =0 (14)

This equivalent mechanical model is used in Chapter five to generate the simulated

performance transfer functions of the piezoelectric-based component
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CHAPTER 2

POTENTIAL PIEZOELECTRIC DAMPING
IMPLEMENTATIONS FOR ASTREX

The general problem of damping a complicated space structure with piezoelectric
materials is open-ended. In trusses consisting of repetitious truss bays the problem is to
optimize strut placement, in order to maximize the percentage of strain energy in the
damping elements. In structures, like ASTREX, which consists of tripod legs and a
hexagonal-planar truss, the options are more numerous for placing various damping
elements in various locations. There is freedom to use any device that has considerable
influence in damping the modes that facilitate control rolloff.

The most obvious damping scheme, building struts for ASTREX, was not considered
for the following two reasons: 1. It was determined in reference 2 that replacing
ASTREX’s primary composite struts with piezoelectric struts offers insignificant damping
with only a few struts being switched. Obviously, if too many struts are replaced, the
structure becomes too heavy. 2. Laminated piezoelectric/composite active struts made by
TRW, which replaced the three tripod legs, have already been installed in the testbed. Prior
to their installation, full-length piezoelectric-composite tripod struts of figure 16, would
have been considered for manufacture. This implementation would replace a fraction of the
tripod composite tubing with three equally spaced piezoelectric stacks (nine meters long,
one inch diameter), such that the axial and bending stiffnesses were unaltered.

Two alternative damping schemes were considered. The “smart-node”, active-joint or

piezoelectric washer is addressed in section 2.1. The six-axis proof mass damper with
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piezoelectric actuators is addressed in section 2.2. These devices are ranked in section 2.3
according to their loss factor potential.

Piezoelectric Stacks
Y ) ) ) 4 A YD) Y Y Y)Y Y

0
li))')7)))\\)7))))))/)/
N Composite Tubing S

Figure 16. Proposed Piezoelectric-composite tripod strut with three equally spaced
piezoelectric stacks (three meter version). Tripod length is nine meters.

2.1. POTENTIAL DAMPING DEVICE: SMART JOINT

An inexpensive and lightweight alternative to building full-length piezoelectric tripod
struts is the tripod rotational damper, or *‘smart joint”. The objective of this device is to
damp the first two or three bending modes of the tripod fixture. Previous analysis in
reference (18], has determined that the low-frequency tripod bending modes are critical to
the line-of-sight performance. Therefore, the design issues of having a rotational damping
mechanism at each of the three tripod-to-backplane mounts was investigated.

Damping rotational motion can be accomplished with piezoelectric washers, sleeves or
equivalent struts. Each of these designs will be assessed later. First, it is necessary to
determine the rotational stiffness, Krot in figure 17, that leads to maximum strain energy in
the rotary spring, for the first and second bending modes (that occur at roughly 20 and
60Hz). Recall that a peak damping target frequency near 40Hz was selected to best enable
feedback control.

The quickest way to find the optimal stiffness of the rotational damper, is to use the
assumed modes method on a simple model of the essential deformation in ASTREX at low
frequencies; namely the spring-mass-tripod leg model of figure 17.

"Smart
Koot Joint” EL L

W

4

Figure 17. Tripod bending: The essental low frequency ASTREX dynamics.
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Calculating the piezoelectric strain energy fraction with an assumed first-bending mode-
shape for the tripod leg, @(x) = sin(mx/L), yields:

17 . dw(x) I (ﬂ)‘
Upan == | El ——=—dx==El}— | L. 15
peam 2! ox’ 4 \L (1)
u. =1k _(60) =Lk (5)2 (16)

rot 2 rot 2 rot L
2 -1
Vo [ E2 17
total ZLKrot

The variables, U ,, U, and U, are the strain energies of the rotary damper, the tripod

leg and their sum, respectively. For example, when the strain-energy fraction is ten percent
(typical value from other ASTREX analyses), an initial estimate for the rotational stiffness
is: K, =0.5EI/L.

A less quick, but more accurate method is to use the dynamic finite element model
shown in figure 18. The goal is to maximize the piezoelectric strain energy in the first or
second bending modes. This can be evaluated using the ratio:

Upiew _ ((DiT )picw Kpiuo ( (Di )P“lo
U ®7[K],

total i i

(18)

Since the piezoelectric’s rotary stiffness is in series with its deformable channel interface
with the backplane truss (see figure 2), the modal displacements of the rotary damper must
be scaled by the ratio of piezoelectric flexibility to total rotary flexibility, a.

K
@) =) ; a=|_—smd
( ‘)pi-w a(®, )rol & [ K ramnet T K o )

-1
where, Km=( ! + ! J . (19)
K, .

Krot Mode 2 0.5 Mapex

S odel /////

Figure 18. Finite element modeling of tripod bending
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The optimal stiffness value of 400kNm agrees with the optimal value obtained by
iteraung the stiffness in the full-scale ASTREX finite element model until the piezoelectric
strain energy peaks near 40Hz (the mean frequency between the first two bending modes).
This indicates that it is safe to assume that most of the total strain energy at low frequencies
is in the tripod legs, not the backplane truss. NASTRAN also indicates that the
piezoelectric absorbs 10% of the total strain energy (4.2% modeled loss factor) for a typical
tripod bending mode at 29Hz. The optimal stiffness can now be used to design and assess
three different rotational dampers: the washer, the sleeve, and the equivalent strut.

2.1.1. PIEZOELECTRIC WASHER DESIGN

The washer design consists of piezoelectric material that is strained in shear under
dynamic loading. As the tripod leg bends it exerts a reaction torque at the tripod mount,
which behaves as a fixed boundary condition. Inserting piezoelectric washers between the
ears of the tripod strut and the clamps of the mount, transforms the rigid boundary

)€,

Insert PZT washers
here

condition into a rotary spring as seen in figure 19.

Figure 19. Piezoelectric “washer” design for tripod strut joints. Two washers per strut are
each loaded in the shear mode.

Using the optimal stiffness in the shear stiffness equation (6), a washer with a one inch
outer diameter with a half-inch hole and one-eighth inch thickness is calculated.

K, = 400kNm = Gl Q(E(d;, - d;)), (20)
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where J is the polar moment of inertia of a disk and the shear modulus is, G = 26GPa for
Ch-5400 piezoelectric material (short-circuit).

After the washer’s size was determined acceptable, the feasibility of shunting circuits
for the piezoelectric dimensions must also be determined. Sizing the inductor, L, and
resistor, R, for resonant circuit shunting according tc the formulations described in chapter
1, yields: L = 15kH and R = 1000kQ. For resistive shunting, a resistor, R = 1490k, is
ideal. Both of these resistors are accessible. The inductors, however, would be heavier
and larger than the actual testbed itself, unless an active inductor scheme described in
chapter one was used. Despite the feasibility of the resonant circuit, the broadband
damping of resistive shunting was used for the sake of controller gain stabilizauon.

2.1.2. PIEZOELECTRIC WASHER MANUFACTURING ISSUES

Once the washer’s dimensions and shunting network has been sized and determined
feasible, the piezoelectric poling issues must be addressed. Manufacturing the washers
would involve inventing a feasible means to accomplish circumferencial poling of a disk.
Two methods were investigated: magnetic field poling and continuous sweep poling.

Figure 20. Circumferencial poling technique using a rapid change in magnetic field to
produce a circumferencial electric field, E. The magnetic field, B, is denoted by
"x's" and oriented out of the plane of the page.

The feasibility of magnetic field poling, shown schematicdlly in figure 20, was evaluated
with the electromagnetic relation in equation (21). Equation (20) states that the line integral
of the electric field is equal to the change in magnetic flux within that integral path,
&, = Bnr’.

oD,

21
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§E-d£=—

20



Forr <R, and a required polarization voltage of 38kV/cm, the required magnetic field rate
of 3000 gigagauss/s is too high to create even with an instantaneous step input.

0B _ 2 = 3000 gigagauss (22)
3t req'd "q §

An alternative poling scheme is a continuous circumferencial poling scheme adapted
from reference [12]. This poling technique rotates the washers slowly through two flexible
surface electrode pairs maintained at the required potential difference (figure 21). As the
electrodes sweep the sides of the washer, the piezoelectric gets poled a full revolution in
one hour: a rate sufficient to pole the piezoelectric material. This rate, w= 6deg/minute
was adapted from the experimental recommendations in reference [12). The flux field
described by equation (23) reference [12], decreases in intensity as the distance into the
piezoelectric, r, is increased.

1/3"——>~L—

L _;q ________ »

Electrodes L]

Figure 21. Continuous circumferencial poling of the washer.
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E(x)=E
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From equation 23, the poling voltage across the electrodes must be applied to both sides of
the piezoelectric in order to generate the same voltage in the center of the one-eighth inch
thick washer. The applied poling voltage of 40kV/cm can be increased with electrode
separation until the electrodes are separated by a 4mm gap. If the gap is increased still
further, the required applied voltage can no longer be generated with a 10kV power supply
(reference [12]). Figure 22 shows that the total electric field remains relatively constant if
the electrode pairs are placed symmetric about the piezoelectric. This poling procedure
would require the development of a circumferential poling machine. Such a task is out of
the scope for this project.
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Cross-sectional Electric Field Distribution
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Figure 22. Continuous washer poling electric field distribution.

2.1.3. PIEZOELECTRIC WASHER STRESS ANALYSIS

Static and dynamic stresses were computed from NASTRAN finite element program
and then used to evaluate the washer’s load capability. Static stresses were computed from
a NASTRAN model of ASTREX in its 30 degree position. Static stresses of 5.9MPa were
calculated. This stress was conservatively assumed to be taken by the washers, not the
tripod bolt that actually takes the load of the attached tripod structure. Torquer input to
piezoelectric displacement transfer function output over the first 100Hz was calculated and
scaled by the reaction wheel’s maximum apex torque of 37Nm, to find the maximum

dynamic stresses. The maximum dynamic stress in the piezoelectric washer is:
_ GOy
4

T

max

=104MPa, (24)

where the shear modulus is, G =26GPa, the maximum rotary displacement is,
8., = 1000uradians, the outer radius is, r =1/ 2inch, and the thickness is, t =1/ 8inch.

In order to maintain a factor of safety near three times brittle fracture, and avoid
permanent depolarization in the piezoelectric, the piezoelectric design stress limit of SOMPa
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was enforced. The S0MPa limit also ensures that the loss factor does not taper off at high _

stresses as seen in figure 23.
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Figure 23. Percent depolarization versus applied stress in MPa for PZT Ch-5400. Note
the permanent depolarization hysterisis loop.

For the washer, unlike the six-axis tuned-mass damper in section 2.2, there is no
practical way to provide a mechanical stop to prevent excessive rotary motion directly.
Instead a rigid mechanical stop would be required to impact with the tripod’s 0.3mm
displacement at a 1foot distance from the pivot point. In short, the mass penalty of the
mechanical stop would be larger than the damping mechanism itself. When modes skew to
the plane of the washer are considered, the non-planar tensile stresses in the piezoelectric
must also be constrained. This would demand even more bulk from the prospective
mechanical stop in order to constrain the tripod in three dimensions.

In conclusion, the inelegance of the mechanical stop and the overwhelming labor

involved in circumferential poling, discontinued the piezoelectric washer design.

2.1.4. ALTERNATIVE “SMART JOINT” DESIGNS

This section will briefly assess two alternative “smart joint” designs that have
equivalent dynamic properties as the piezoelectric washer, but different manufacturing
problems. The preliminary assessment has indicated that the piezoelectric sleeve of figure

24 and the equivalent piezoelectric strut of figure 25 are difficult to manufacture.
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The sleeve design in figure 24 is similar to the washer in that both designs use
circumferentially poled cylinders or disks as the damping element. The sleeve, however. is
sheared against the tripod’s axel and through the radius of the cylinder, whereas the washer
is sheared through the thickness of the disk. Also, the sleeve’s electrodes are placed on the
inside and outside cylindrical surfaces, as opposed to both sides of the disk.

Sizing the component according to elasticity equation for a thick-walled cylinder
derived in reference [19],

Ea.
Ky =400kNm = 47rGL[—°—“i—'-"—z-], (25)

2
roul - rm

yields the following sleeve dimensions: r,, =0.25", r,,=0.5",and L=0.9".

11xque |

TripodlStmt

————— Tinner f:;;;;;éiij B

\ olt
_____ -4— Piezo ﬁwﬂ Bearing
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Figure 24. The sleeve is poled in the radial direction to exploit the shear mode of
piezoelectric damping.

Poling

In addition to circumferential piezoelectric poling, the sleeve damper would also require
a new tripod strut mount to accommodate the larger piezoelectric’s length (L = 0.9"). With
the washer design, the fixed boundary condition on both sides of the disk is ensured by
preloading or tightening the bolt. The sleeve, however, has no preloading mechanism.
Glue layers, that bond the inner surface to the tripod bolt and the outer surface to a
modified tripod-end piece, would unfortunately absorb strain energy that could be used to
actuate the piezoelectric. Shearing electrode surfaces could also present more difficuity
over the easily accessible piezoelectric washers. Thus, the device was discontinued.

For a given washer or sleeve there exists an equivalent piezoelectric strut, orthogonal to
the tripod strut, and separated from the tripod bolt by distance r. The strut’s dimensions, A
and L, and moment arm, r, are sized with the equivalent stiffness equation (26).
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Figure 25. The equivalent piezoelectric strut.
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When the 400kNm stiffness is substituted into Equation (26) the optimal strut
dimensions are: diameter = 0.5” and L = 5.2 for a moment amm r =3". Poling the device
in the 3-3 direction is simplified by gluing wafers in series to form a stack with minimal
electric field flux loss. The buckling loads on such a slender strut would require the design
of high bending stiffness reinforcement with negligible axial contribution.

2.2. POTENTIAL DAMPING DEVICE: SIX-AXIS VIBRATION ABSORBER

The six-axis proof mass vibration absorber with six piezoelectric dampers was born out

of the need to create an energy sink for the heavy (90kg) apex mass undergoing large
displacements. Displacements over 4 times those found in the back plane, have been
determined from ASTREX’s eigenvectors. Preliminary finite element analysis of the six-
axis stewart platform configuration indicated that an effective damper stiffness of 1.5N/um
would channel over 50% of the total strain energy in the piezoelectric material for several
modes under S0Hz. Theoretically, this means that modal loss factors as high as 20% are
attainable. Mode shapes and loss factors that are representative of their corresponding
frequency region, are shown in figure 27 in the next section.
The six-axis proof mass damper design in figure 26 consists of an already existing 90kg.
balancing mass suspended from the interior of the 24”’x24”x24” triangular apex housing by
six flex-tensional damping devices. It should be noted that the 90kg. mass primary
purpose is to balance the ASTREX testbed on its air bearing ball joint. The ball joint is
connected to the center of the hexagonal primary truss which is elevated above the floor by
a twenty foot supporting post.
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The Stewart bridge configuration yields the maximum stroke capability available to the
six axis damper design. This optimal stroke/actuation configuration was slightly modified
to accommodate the geometrical constraints of the congested apex interior. (see figure 26)
If the distance, d, between adjacent struts in each of the three orthogonal strut pairs is
decreased, the rotational eigenvalues of the proof mass decrease due to the decrease in the
system'’s effective moment arm. This yields a more effective damper for the low frequency
rotary movements. The tradeoff is the increase in static stresses of the dampers due to
gravity loads. The distance versus stress optimization for the modified Stewart bridge was
not investigated, since the dimensions of the damping device prevented the aforementioned
distance reduction.

e
t.\l

Figure 26. (a) Apex. (b) Six-axis vibration absorber with 90kg. proof mass attached to
apex housing interior by 6 piezoelectric-based damper/actuators.

The applied static and dynamic component forces need to be determined before the
actual piezoelectric and component properties can be determined. The total force will be
used in chapter 3 to calculate component stresses. The static forces applied to each
component are each dependent on the orientation of ASTREX. For this application 1t is
important to design each component for the maximum force induced by static gravity loads
and dynamic operating loads. In order to accomplish this and keep the piezoelectric in
compression under dynamic loads, preload stresses in excess of the 50MPa design limit are
required. In the laboratory, however, each of six actuators can be preloaded separately
according to the total static and dynamic applied force. If too much preload is used the
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piezoelectric may depole. If too little preload is used, the piezoelectric may fail as soon as

the device flexes in tension as in equation 27.

O<o =50MPa 27

<
piezo — Gdepolarizauou

Multiplying the peak strut displacement on the torquer to strut transfer function by the
maximum operating torque of 37.5Nm, yields the dynamic force in the six components of
275N. When ASTREX is in its 30 degree laboratory configuration, the six axis has the
following static strut forces: The top two struts are in 900N tension, the lower strut pairs
are in 600N compression. Maintaining an approximate 10% factor of safety for the
loading, the top struts need to be designed with 1300N of tension (piezoelectric
compression), and the lower strut pairs need to be designed with 1000N of compression
(ptezoelectric tension). The best device, as designed in chapter 3, will have adjustable
tensile and compressive preload capability. For instance, the lower strut pairs will need
compressed preload springs to avoid piezoelectric tension, while the top struts will need a
preload spring in tension to avoid piezoelectric depolarization.

After the preliminary device design and piezoelectric size was determined acceptable,
the feasibility of shunting circuits for the piezoelectric dimensions must also be determined.
Sizing the inductor, L, and resistor, R, for resonant circuit shunting according to the
formulations described in chapter 1, yields: L = 0.4kH, R = 700k€2 and C = 6.8pF
(inherent piezoelectric capacitance). For resistive shunting, a resistor, R = 917k, is ideal.
Although the resistors are accessible, the inductors would weigh 300g, unless an active
inductor scheme described in chapter one was used. Despite the feasibility of the resonant
circuit, the broadband damping of resistive shunting was used for the sake of controller

gain stabilization.

2.3. DAMPING PERFORMANCE: SMART JOINT VERSUS SIX-AXIS ABSORBER

In order to decide which damping scheme to attempt to build, the two designs were
evaluated according to their ability to absorb strain energy from performance-sensitive
modes. Recall equation (5), that states that the system loss factor is proportional to the
fraction of the total strain energy in the piezoelectric for a given mode. Although only three
modes are listed in figure 27, the trend of six-axis vibration absorber dominance is present
in all modes. The potential merit of the six-axis absorber obviously exceeds that of the
washer design. In the next chapter the design of the six-axis absorber and component is

presented.
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Figure 27. The washer and the six-axis vibration absorber design are compared.
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CHAPTER 3

DESIGN AND ANALYSIS OF THE FLEX-
TENSIONAL COMPONENT

The most critical part of six-axis proof mass damper design, described in chapter 2, is
the component design of the six damping devices. The device design is complicated by the
fact that piezoelectric material alone is too stiff and brittle to be used as a low-frequency
damper. It is desirable to tune the vibration absorber to 30Hz. A 30Hz tuned vibration
absorber will sag about 250micrometers in a one-gee field. This deflection implies a
material strain for greater than the ceramic will allow. Thus, a properly designed stroke
amplification device is essential in reducing the device’s stiffness and increasing its travel.

Figure 28. Illustration of the prototype flex-tensional piezoelectric stroke amplification
device. Parts include: 1. One 16-layer piezoelectric stack with two steel shims. 2.
One steel flex-tensional stroke amplifier. 3. Twa preload springs. 4. Two
threaded steel rods with adjustable mechanical stops. §. Axial stinger.
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3.1. DESIGN DETAILS OF THE FLEX-TENSIONAL DEVICE

The role of each of the five parts described in figure 28 and their associated design,
manufacturing and assembly considerations will be assessed in the following five
paragraphs:

Design Feature #1: The role of the piezoelectric stack is to provide resistively-shunted
passive damping. The design uses mechanical amplification to reduce the stiffness of the
stack in order to meet the 30Hz target eigen-frequency of the six-axis tuned mass damper.
This, in turn, creates large critical stresses in the piezoelectric. Reducing the stack’s
stiffness may also be achieved by increasing its length and decreasing its cross-sectional
area. This design is limited by a requirement that the material stresses are no greater than
50 MegaPascals (MPa). This requirement ensures minimal performance loss due to
hysteretic depolarization. Buckling and shear failure must also be considered for slender
stacks.

Another design consideration for the piezoelectric material is to have the appropriate
number of capacitors (stacks) to balance the trade-off between glue-layer strain energy loss
and large capacitor thickness fringing field loss. The glue layers between the 16 wafers act
as springs in series with piezoelectric. A 16-wafer piezoelectric stack was the engineering
Judgment. The glue-layers gave the piezoelectric stack a longitudinal coupling-coefficient,
ky;, of 0.59 as opposed to the nominal material value of 0.71. This reduces the available
piezoelectric peak loss factor from 35% to 21% as given by equation (5), chapter 1.

Design Feature #2: The role of the steel flex-tensional stroke amplifier is to provide the
necessary amplification to give the piezoelectric structural integrity and low stiffness.
Stroke amplification in the device equates to a strain reduction in the piezoelectric. The
ideal stroke amplifier would consist of beams with infinite axial stiffness connected by
perfect hinges so that all the component’s strain energy would be concentrated in the
piezoelectric stack. This maximizes the peak component loss factor. A realistic
component, however, has the following design criteria: 1. The lever angle is selected
according to the analytical model, equation (49), so that the desired effective stiffness is
realized. 2. The sum of the axial stiffness of the flexures is much greater than that of the
stack. 3. The bending stiffness of the flexures is much less than that of the component. 4.
The flexure stresses are less than their respective yield stresses. To meet these
requirements, the stroke amplification device consists of a monolithic piece of steel, which
is carved out of quenched and tempered 40 Rockwell steel by a machining process called:
wire Electron Discharge Machining (wire-EDM).

Design Feature #3: The role of the two preload springs is to ensure that the
piezoelectric stack remains in compression under normal loading conditions. This also
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keeps the flexures in tension. The optimal design for the spring is a mile high spring with |
negligible stiffness. When such a combination is squeezed into the device. the preload

requirement is met with negligible device stiffness contribution. Such a spring is limited by

practical assembly procedures which require pronged pliers insertion to shorten the spring

temporarily for insertion into the EDM’ed part. Spring coil spacing must be large enough

to allow for a wrench adjustment of the mechanical stops.

Design Feature #4: The two mechanical stops are adjusted to prevent accidental
overloading of the device. The maximum disturbance excitation of 28 ft.Ibs. plus gravity
load yields the component’s maximum axial displacement of 0.3mm. Motion in excess of
this number is inhibited. The mechanical stops are adjusted by wrench and locked in place
with adjacent locknuts.

Design Feature #5: The role of the axial stinger is to suspend the 90kg. mass according
to the modified Stewart bridge configuration. High axial stiffness and low bending
stiffness of the stinger minimizes strain energy sharing. Low bending stiffnesses can be
obtained by using a pinned flexure at each end of the stinger.

3.2. DEVICE ANALYSIS: ANALYTICAL TRUSS MODEL

Three different methods were investigated in designing the component. In this section,
a simple truss analytical model is useful for preliminary design purposes. A NASTRAN
finite element model, presented in 3.3.1, accounts for all stiffnesses. This model is
upgraded in Section 3.3.2 to include the unmodeled flexibilities. In Section 3.3.3, the

finite element model is used to optimize the component design.

3.2.1. KINEMATIC DERIVATION OF EFFECTIVE STIFFNESS

If it is assumed that the bending effects contribute negligible stiffness, the effective
stiffness of the mount is easily determined through simple kinematics employing
linearization for small displacements. Referring to figure 30, the vertical and horizontal

displacements of each element are related as

8, =2L sin(8) - 2(L, - 8,)sin(8 ~ 66) (28)

L, +6, =(L, —8,)cos(6 —30), (29)

where the kinematic constraint ensures that the elements remain connected during

displacement.
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Figure 30. Schematic diagram showing mount in deflected and undeflected conditions.

Expanding the sinusoidal terms in (28) and (29) yields:
8, =2L,sin(6) - 2(L, - 8,)(sin@cos 58 —cosBsin 00) 30)

L, +6, =(L, -98,)cos Bcos 56 + sin Bsin 66). 3D

Linearizing (30) and (31), assuming sind = 6 and cosd =1, and neglecting terms in &,
yields
8, =2L,sin@—-2L,sin6 +2L,cos 056 +24,sin6 (32)

L,+6, =L,cos@+L,sin050 —J,cosb (33)

Canceling terms and substituting L, = L, cos#, yields

8, =2L,cos686 +28,sinb (34)

8, =L,sin686 -5, cos 6 (35)

Dividing (35) by 0.5tan @ yields:

26, | 28, cos’ 6

36
tan @ sin @ (36)

2L, cos666 =

which is then substituted into equation (34) and simplified with sin’ 6 + cos’ @ = I to yield:

6,=2( 0, +ﬁ-) (37)

tan@ sin@

For a force F applied at the top of the device, the load transmitted in each lever arm is
F/2sin 8, and that borne by the piezoelectric stack is F/tan@. The respective stiffnesses

of the piezoelectric stack and the lever arms being

K k = .nack/a.nack = F/tan es.uack (38)

Stac
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K, =F/2sin 06, (39)
Substituting §, = 0.56,,,., into (38), and substituting (38) and (39) into (37) yields the

effective stiffness of the device

-1

1 ]
fo = * 40
o {(Kﬂa(:k tanz 0) (Ka Sinz 9)} 40

The relation in equation (40) allows for the desired effective stiffness to be determined by
the appropriate choice of lever angle, and piezoelectric and lever arm stiffnesses.

3.2.2. TRUSS MODEL DESIGN OF THE COMPONENT

Before equation (40) can be used to design the component, the stack and lever arm
stiffnesses must be defined in terms of their material properties as opposed to the relations
in equation (47) and (48). An expression for the bending stiffness of the flexures must
also be defined, in order to ensure that the axial to bending stiffness ratio of the lever arms
is large enough to channel strain energy into the piezoelectric. Additionally, this stiffness
ratio must be sufficiently large in order for the negligible bending stiffness assumption of
equation (40) to be valid. The previously mentioned stiffnesses needed in the design are
given as follows:

1. Piezoelectric Stack Stiffness: The piezoelectric stack is made up of 16 piezoelectric
elements glued together. The result is that the effective stiffness of the stack is reduced by
the glue layers, thus

-/
K,m={,i+ ! } (41)
KP KW

with K, determined through knowledge of the electromechanical coupling coefficient of
the stack, and the piezoelectric stiffness. For the stack used, the measured short circuit
=65MN/m and the calculated stiffness is K7 =9IMN/m. The
difference between these values is the attributed to the glue layer flexibility found in
equation (13). The glue layer stiffness is determined as K, = 203MN/m (15 glue layers
in a 16 wafer piezoelectric stack).

2. Lever Arm Stiffness: The device is modeled with four arms, each of which
comprises four “dogbone” flexure elements. The effective arm stiffness is written as

Eb

BRI

stiffness is K

stack

(42)
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where L,, L, t,, andz,, are the flexure and semirigid beam lengths and thicknesses,
respectively. The lever arm width is constant: b=b, =b,,.

3. Bending Stiffness. Bending in the device is taken up in the flexures of each arm.
In order to determine the total bending flexibility of the component, it is convenient to first
determine the stiffness of one of the 32 flexure/half beam elements illustrated in figure 31.
If the beam is assumed rigid, the non-negligible flexibility of the beam is due to its rigid

body rotation seen in the component’s deformed shape.

&

S/ s

A125P)C A25P)L
5,=(—‘—‘L, 6 =(____)4, 5,=0.5L,(6,)
3EI * 2EI ¥

I !

Figure 31. Flexure and half rigid beam deflections.

The stiffness of a single flexure/half beam can be determined from K, =.125P / (3, +6,).
The K, bending stiffness is half the single lever arm stiffness (two flexures and one rigid
beam). Since their are eight lever arms in series with eight adjacent lever arms, the lever
arm is four times as flexible as the component bending stiffness. Thus, the effective
bending stiffness of the component:

K =2K P Ebt

band 1132 = = L 2 (43
46,+6,) (2L, _+15L,L ) :

The bending stiffness acts in parallel with the effective truss model stiffness as follows:

K = LT 1.k (44)
Y |(K_tan’8) (K sin’6)

However, the truss model assumption in equation (53) is violated if K, is nonzero. This

is not possible. Therefore, the design approach is to enforce the component’s effective
stiffness, K4, to be “n” times as stiff as the effective bending stiffness K., -

K
Kposi = c/n’ (45)

where “n” is a large number (n = 9 for the original design).
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The fraction of strain energy in the piezoelectric is derived by substituting 6,, 0, and
K, into the strain_energy equation:

U K (6 K K
e e B [ S —. (46)
u. K,\é, K, tan’ 6 K cos' 6
P
where, 0 = and §, = —. (47)
" K, tanb K,

Equation (55) means that it is ideal to have the axial stiffness of the lever arm, K, to be
much larger than the axial stiffness of the piezoelectric stack, K,: Therefore, the design
approach is to enforce K, = RK,, where “R” is a large number (R = 3.5 for the original
design).

The applied force is magnified in the piezoelectric by the lever ratio: tan” 8. The force
in the flexures is magnified by a similar sin” @ factor. Thus, the stresses in the
piezoelectric and flexures are, respectively:

P P

o, = 0= (48)
’ A,tanB 8A,sm9

The design approach is to enforce some of the parameters which are suited to the
physical requirements of the implementation, and to determine the remaining parameters to
give the desired stiffness properties. The following parameters are selected to satisfy the
physical constraints of the congested apex interior (see section 3.5 for constraint details).

L,=40mm, b =b_,=10mm, E=200GPa, t =4mm 49)

Using design curves similar to those illustrated in section 3.4, the initial flexure dimensions
were sized (L, = 5mm, t =0.8mm) to channel strain energy into the piezoelectric with
negligible component bending stiffness (n=9).

This design predicts the following short and open-circuit component stiffnesses:

K; =8.IN/um; K =11.26N/um (50)

Through the procedures described in chapter 4, the following measured values were
obtained:

K. =9.57N/um; K =10.66 N/um (51)

The discrepancy between the truss model and the data is attributed to the unmodeled
flexibilities and other factors that are discussed in chapter 4.
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3.3. DEVICE ANALYSIS: NASTRAN FINITE ELEMENT MODEL

A finite element model of the component was constructed to generate insight into the
important and negligible stiffness terms of the global stiffness matrix of the component. In
this section and section 3.5 the finite element program, NASTRAN, is used for outputting
bending and axial stresses and strain energies in the flexures to aid in an iterative design
optimization of the flexures. In addition, the finite element method will be used as a basis
for deriving a reduced order closed form analytical expression for the device properties
which incorporate bending terms (see Appendix I).

If you can imagine the three orthogonal planes, x=0, y=0, and z=0, sharing a common
origin at the device’s centroid, the device becomes separated into eight equivalent quadrants
The following is true for any of the eight identical quadrants: 1. The stinger is one-fourth
the area and thus the component receives only one-fourth the total load. 2. The
piezoelectric length is halved, and area is one-fourth the original. 3. Only one lever arm
pair is needed for analysis.

By taking advantage of the component’s three axes of symmetry, the analysis can be
reduced to the solution of the one-eighth component model seen in figure 32. Unlike the
truss model in the previous section, this model includes all bending stiffnesses and
constrains 6 at the two ends of the beam. This model also assumes that the large

rectangular blocks at the foot of the flexures have negligible flexibility.

0.25P, v
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7P (b,t,L, A Iy
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Figure 32. NASTRAN finite element component model includes all axial and bending
stiffness associated with six-degree of freedom slender beam-elements.
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Since the two parallel lever arms have identical displacement patterns under loading, an
equivalent beam with doubled matenal properties is shown in figure 33. The spring’s half
area (two springs per component) and half length cancel to give the original spring
stiffness. The piezoelectric’s quarter area and half length equates to half the piezoelectric
stiffness.

The model in figure 33 is now ready to build with two simple axial springs and three
six-degree of freedom beam elements (one for the semirigid beam and two for the
flexures), available from the NASTRAN finite element code. The boundary conditions ure
applied, and the assembled beams and spring model is constrained to move in the
remaining u and v displacements depicted in figure 33. A quarter load is applied to the
eighth model to generate deflection, stress and strain energy output for nodes and elements

of interest.

0.25P, v

n
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Figure 33. The one-eighth model with combined lever arm properties.

Multiple finite element analyses with minor parameter variations can be used to generate
design curve data to replace the trial and error approach used with the simple truss model.
The lever angle, 6, piezoelectric stiffness, K,, and general lever arm dimensions are
important to fulfilling the desired stiffness and physical constraints dictated by the structure
to be damped. These properties are initially approximated with the truss model as a first
design iteration. The influence of small flexure length and thickness variations on
component performance, however, requires design curves derived from finite element
software. The overall performance of the device is a measure of its ability to channel strain
energy in the piezoelectric, maximize its flexure stress safety factar, and minimize the cyclic

depolarization stress in the piezoelectric, while maintaining the desired component
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stiffness. Representative component dimensions were selected to illustrate how the flexure
dimensions are fine-tuned with the aid of design graphs. The selected component

dimensions and properties are:

0=10";, b=2cm.; 1, =Ilcm.; L, =4cm.; K =9IN/um (52)

The four graphs in figures 34 through 37, plot the stiffness, K, the piezoelectric
strain energy fraction, U, /U,

0wl ?

the piezoelectric stress, g,, and the flexure stress, o,,
respectively, for various typical flexure dimensions.

All of the graphs are divided into two spaces by a vertical line at 1, =0.06cm. This
vertical line separates the manufacturable space from the non-manufacturable space. The
machining required to cut the steel part, Electron Discharge Machining (EDM), is a
numerically controlled process with cutting tolerances of +0.005inches (+0.0125cm.).
Which means that a flexure thickness of 0.06cm (subjected to two cutting surfaces) could
potentially be as small as 0.045cm or as large as 0.085cm for any of the component’s 32
flexures. The machinist claims that these tolerances are conservative by an order of
magnitude. Our experience with the finished product led to the engineering judgment of the
minimum 0.06cm flexure thickness requirement.

The component stiffness graph in figure 34, is also divided into two more spaces by a
horizontal line. This line separates unacceptable high-stiffness, high-frequency dampers
from acceptable, low-frequency dampers by the K, = 3N / um stiffness line. Although
stiffnesses as high as this value generate significant damping in the 40 to 50Hz range,
stiffnesses as low as K, = I.5N / um are optimal for providing significant damping near
30Hz. Thus, the design space for figure 34 is the lower-right quadrant. The graph depicts
several trends. For a given flexure thickness, the longer flexure provides more of the
desired flexibility. As the flexure thickness decreases from 0.06cm. to zero, the
component stiffness decreases rapidly due to inefficient axial stiffness. As the flexure
thickness increases from 0.06cm to 0.16cm and beyond, the stiffness increases
exponentially due to excessive bending stiffness. The point of counterflexure in the
stiffness curves is approximately where the peak strain energy occurs in figure 35.

Figure 35 illustrates that short flexures can channel more strain energy into the
piezoelectric, than long flexures. For example, a flexure length of L =0.2cm. can push
92% of the strain energy into the piezoelectric, while a flexure length of L, =0.6cm. can
push 87% of the strain energy into the piezoelectric. The shorter flexure length
unfortunately requires a flexure thickness too thin to manufacture. Another trend is that the
larger flexure lengths have a broader range of flexure thicknesses to choose from that still
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generate significant piezoelectric strain energy. The shorter flexure length plot L, = 0.2cm.
is more narrow and less robust to flexure thickness perturbations and modelling errors.

For thin flexure thicknesses in Figure 36, all the applied force is channeled directly to
the piezoelectric as expected for a component with negligible bending stiffness. As the
flexure thickness approaches zero, the piezoelectric stress approaches the truss model
prediction of 50.7MPa. As the flexure thickness increases, the bending stiffness of the
shorter flexures increases rapidly, thereby preventing more of the applied force from
reaching the piezoelectric stack. The horizontal line at SOMPa represents the upper limit of
acceptable cyclic depolarization stresses for the piezoelectric. This stress also represents
the beginning of partially non-reversible hysteretic depolarizations as described earlier in
chapter 2. Thus, the design space of figure 36 is the lower-right quadrant.

The flexure stress graph in figure 37, indicates that low flexure thicknesses have
unacceptably high axial stresses. As the flexure thickness increases, the flexure’s cross-
sectional area increases, and its axial stress decreases. As the flexure thickness approaches
its optimal strain energy absorbing value, the flexure’s moment of inertia and bending
stresses become noticeable as the total stress increases. The more noticeable stress increase
of the shorter flexure length (L, =0.2cm.0.04 <t <0.Icm.) is reason why the strain
energy performance in figure 35 decreases at such a fast rate for that case. A careful look at
the acceptable design space in the last three graphs, indicates that the L = 0.2cm. design
curve still has the highest strain energy performance with acceptably low effective stiffness
and piezoelectric stress values. If a safety factor of 3 is applied to the yield stress of
600MPa for annealed and quenched steel, a design stress limit of 200MPa confines the
design space in figure 37 to the lower right quadrant. Thus, figure 37 also illustrates the
L, = 0.2cm. design option is still acceptable. However, if cyclic loading were considered,
typical S/N plots for steel (reference [20]) indicate that all of these designs would
potentially become at least partially plastic after /0°cycles. The lifespan of the design and
the advantages and disadvantages of elastic-plastic flexures were unaddressed in this
research. Instead a 150MPa design stress is enforced as a compromise between the risky
and conservative safety factors of the yield stress and fatigue design criteria, respectively.

Given the previously described design considerations, two design alternatives can be
extracted from the graphs. The high performance, decent robustness L, =0.4cm. and
t, =0.06 design option or the decent performance, high robustness L, = 0.6¢cm. and
0.06 <t, <0.08cm. design option are obvious design choices.
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Component Sliffness v.s. Flexure Dimensions
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Figure 34. Component stiffness versus flexure dimensions, where 8 = 10", b= 2cm.,
t,=1Iem., L =4cm.,and K =9IN/pum (Lf, is in cm.).
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Figure 35. Piezoelectric strain energy versus flexure dimensions, where 6 = 10",
b=2cm., t, =1Icm., L =4cm.,and K, =9IN [um (Lf, is in cm.).
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Piezo Stress v.s. Flexure Dimensions
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Figure 36. Piezoelectric stress versus flexure dimensions, where @ = 10", b= 2cm.,
t,=Iem., L =4cm.,and K =9IN/pum (Lf, is in cm.).
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Figure 37. Flexure stress versus flexure dimensions, where 8 = 10", b=2cm.,
t,=Icm., L =4cm., and K =9IN [um (Lf, is in cm.).
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3.4. COMPARISON OF ANALYTICAL TRUSS AND NASTRAN MODELS

In this section the analytical truss component model is compared with the NASTRAN
finite element model in order to gain insight into the errors associated with the flexure’s
negligible flexure bending stiffness assumption, and the rigid beam assumption of the truss
model. The four graphs in figures 38 through 41, plot the stiffness, K, the piezoelectric
strain energy fraction, U, /U, the piezoelectric stress, o,, and the flexure stress, o,
respectively, versus the flexure thickness. Each plot compares the analytical and finite
element solution for flexure length, L, = 0.4cm. Otherwise, the piezoelectric and lever arm
dimensions are identical to those selected in the previous section.

The finite element plot in figure 38 shows that the truss model is in relative agreement
with the finite element model as the flexure thickness approaches zero and at mid-range
thicknesses 0.07 <t <0.09cm. only. The effective stiffness and flexure stiffness
simultaneously approaching zero is trivial. However, their similar high magnitude slopes
both indicate that majority of the components stiffness is realized when a sufficient level of
axial strength is reached. At low flexure thicknesses beyond this strength threshold, the
finite element model is appropriately more flexible than the truss model, since the finite
element model, unlike a truss, accounts for the bending flexibility of the “‘rigid beams”.
The finite element model is also appropriately more stiff at high flexure stiffnesses, since
the bending stiffness of the relatively thick flexures (not included in the truss) contribute
significantly to the component stiffness.

The percentage of piezoelectric strain energy is highly overestimated in figure 39, since
the truss’s deformed shape directs most of the component’s deformation into piezoelectric
deformation, instead of the flexibilities that are unmodeled by the rigid beam assumption.

As the flexure stiffness increases beyond ¢, = 0.08, the truss model piezoelectric strain
energy becomes increasingly overestimated since the piezoelectric deflection used in the
formula for this plot is increasingly overestimated as flexure thickness increases. This
piezoelectric deflection overestimation can be deduced from figure 40. Figure 40 shows
that the truss model assumes 100% of the applied load to be transmitted into the
piezoelectric via the lever angle. The corresponding finite element curve clearly indicates
that the truss deformation assumption is less valid as the increasing bending stiffness
inhibits load transfer to the piezoelectric.

The von Mises flexure stress is predominately an axial stress as modeled by the
relatively close correspondence between the analytical and finite element curves of figure
41. This is less true for ¢, > 0.04cm., because bending stresses contribute significantly
more as the flexure thickness increases. For extremely large flexures, ¢, > 0.14cm., the
bending stress tapers off due to the excessive rigidity of the device in this range.
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Component Stiffness v.s. Flexure Thickness
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Figure 38. Component stiffness versus flexure dimensions, where 8 = 10", b=2cm.,
t,=1Iem., L ,=4cm., L =0.4cm., and K, =9IN / pum. Comparison of
analytical and finite element solutions.
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Figure 39. Piezoelectric strain energy versus flexure dimensions, where 6 =10,
b=2m., t, =1lcm., L, =4cm., L =0.4cm.,and K, =9IN /[ pm. Comparison
of analytical and finite element solutions.
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Piezo Stress v.s. Flexure Thickness
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Figure 40. Piezoelectric stress versus flexure dimensions, where 8 = 10", b= 2cm.,
t,=Iem., L, =4cm., L, =0.4cm., and K, = 9IN / um. Comparison of
analytical and finite element solutions.
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3.5. THE NEW COMPONENT DESIGN

The original component that was designed with the analytical model, needs refinement.
The experimental results motivated a second component design as well. Unpredictably
high measured stiffnesses indicated that the truss model stiffness derivation was in error by
a factor of two. The corrected model was presented earlier in this chapter. The
experimental results are discussed in the next chapter.

The remainder of this chapter discusses improvements to the analysis and design of the
component. Section 3.5.1 discusses the undesirable flexibilities that were not accounted
for in the truss model design. The elimination of these undesirable flexibilities is also
discussed. Section 3.5.2 presents the design constraints and solution procedure using the
NASTRAN component model, that were previously discussed in section 3.3. This section
attempts to show how the original design’s stiffness is reduced and performance fine-tuned

through an iterative design procedure accounted for in table 1.

3.5.1. LOCAL ELASTICITY ANALYSIS AND MODEL REFINEMENT

There are two undesired flexibilities in the above models that need to be addressed.
The relatively high tensile stress in the smaller flexure, modeled as a single beam element,
decays into the larger semi-rigid beam with low tensile stress. The depth of the decay,
defined as the footprint length, plus the original flexure’s length yields the effective
length of the flexure to be used in the truss and finite element models discussed in earlier
sections. The second undesired flexibility is caused by the smaller flexure’s eccentricity
with respect to the center of the larger semi-rigid beam. When the flexure is pulled in
tension, the off-center axial force induces an undesirable bending moment and compressive
bending stresses about the lever arm’s neutral axis. The beam’s curvature from the
bending stresses reduces the overall axial stiffness of the lever arm.

In either case, the unmodeled flexibility, 1/K?, can be found by comparing the
overapproximated two-beam junction with two-dimensional stress elements cn any
commercial finite element program. The total stiffness is calculated from the applied force
and total displacement quotient, K, =(F/v).,,. The stiffnesses, K, = EA,/L, and
K,=EA_,/L,, are the nominal axial stiffnesses of the flexure and the semi-rigid beam,

respectively. The mystery stiffness, K?, is backed out of the following equation:

-1

K =| o+ o+ 2 (53
K, K, K,
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The footprint length, L, = EA, /K, , is added to the nominal flexure length, L,, to
determine the effective length of the flexure.
)
of i
Ky
This mystery stiffness was added to the component finite element model. It is
essentially an unwanted flexibility in series with the piezoceramic stack. The finite element
model in figure 42(a) shows the bending tensile stress that makes the outer beam matenal

useless for transmitting strain energy into the piezoelectric.

SIS,

Figure 42(a). Finite element modeling of flexure/semi-rigid beam interaction. This old
design included beam eccentricities. The effective length, Leff = 11.88mm, is 2.29
times as long as its nominal length, Lf = Smm. (tf=0.8mm; tsrb= 4.0mm; Lsrb=

40mm). The footprint length is 8.6 times the flexure thickness.

The deflected shape of the finite element mesh in figure 42(a), depicts the undesirable
effects from eccentric loading. The eccentric load induces both an axial load and a bending
moment throughout the semirigid beam. As the beam bends, the bending stress increases
the elongation at the top of the semirigid beam (flexure/semirigid-beam interface). This
undesirable elongation increases the overall flexibility of the lever arm, as well as the non-

piezoelectric strain energy throughout the component.

4
/|

A

LSS

Figure 42(b). Finite element modeling of flexure/semirigid beam interaction. Since,
this design is symmetric, undesirable compressive stresses are eliminated. The effective
length, Lefr = 5.88mm, is 1.18 times as long as its nominal length, Lf = Smm. (1f =
0.8mm; tsrb= 7.2mm; Lsib= 40mm). The footprint length is 1.1 times the flexure
thickness.
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A close look at the deflected shape of the finite element mesh near the flexure/semirigid-
beam interface in figure 42(b), indicates that the flexure’s relatively large axial strain does
not drop inst-aﬁtaﬁeously to the lower strain level in the semirigid beam. The larger strain
level of the flexure decays gradually into the semirigid beam, thereby causing an increase in
the flexure’s effective length. The new design doubles the flexure’s potential to channel
strain energy into the piezoelectric, since the flexure’s effective length is decreased by
about 50%.

3.5.2. SECOND ITERATION DEVICE OPTIMIZATION WITH NASTRAN

The NASTRAN finite element model of the component is a fast and most accurate
method in finding the optimal design of the component. The only drawback of the
NASTRAN model is that an iterative design procedure is necessary to optimize the
solution. Specifically, each program output directs subsequent input by trial and error, not
by design curves.

For a given piezoelectric stack, the finite element analytical model of the component
consists of four output variables (K, ,U 0,), that are dependent on 10-input

variables(6,8;,,b,,,,8,,.0: 8/ L, rt
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unconstrained, there would conceivably be four 10-dimensional design curves to be drawn

). If the design problem were left
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from the analytical finite element model. Unfortunately, graphing these curves is obviously
limited to three dimensions. For a three-dimension graphing package this means one
output variable can be optimized for any given two input variables. Therefore, the order of
the design problem must be reduced.

Dimensional constraints dictated by the congested apex interior, and imposed design
constraints based on engineering judgment were used to simplify the component design.
The intersection of the eight inch hexagonal plate in the apex interior (see chapter 2, figure
26) with each of three apex walls, creates a rigid corner base mount for the six
components. Mounting the components to the plate or the apex walls subjects the six-axis
design to plate bending flexibility. Since two components must fit side-by-side along the
eight inch base with adequate margins, the length of the component is limited to a
maximum of 5.5inches. This, in turn, constrains the piezoelectric length, L ., to 8 to 10
cm, depending on the shim design. Since wide “index finger” width shims can be
manually aligned easier than thin shims, during the component assembly process, L,.,,
was constrained to 8cm.

The piezoelectric beam thickness, ¢ was limited to 8mm. If the thickness exceeds

piezo

8mm, undesired flexibility is introduced across the preload spring bridge, which acts like a
simply supported beam with center point load. In addition, this would necessitate replacing
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the two-dimensional analytical model with a three-dimensional finite element model. Of
course, smaller diameter springs would release this constraint. Unfortunately, the only
way to put a high loading, negligible stiffness spring, within the height constraint, is to use
a relatively wide spring base of 20mm. The height constraint was dictated by:

e =2(L,, sin(0)+d (54)

ver torsion ) ’

where d the dual parallel lever arms separation distance, is 10mm. This gives

torsion *
torsional stability about the device’s centroid. If single lever arms were used, the torsional
strength would depend almost entirely on the shear mode strength of the piezoelectric
beam.

The 14mm piezoelectric beam width, b

piezo?

was sized to give the correct stitfness,
from the analytical model’s lever ratio to effective stiffness correlation, as well as for
providing additional buckling stability for the device in its weaker torsional axis. It should

be noted that setting the thickness equal the width, ¢, =b ., = 8mm, would be very

piezo = Opiezo
effective in reducing the component’s stiffness at a less critical lever ratio. This option was
not investigated on the basis of enforcing reasonable torsional rigidity in the weak axis of
the component. The 14:8 ratio is a back-of-the-envelope correlation between the torsional
strengths in their respective axes.

The semi-rigid beam dimensions can also be prescribed to eliminate more variables
from the design optimization. Once the variable flexure length, L., the variable lever
angle, 8 , the constrained preload spring footprint (L., =20mm), and the total length of
the component (L, = 5.Sinches), are selected, the semi-rigid beam length,L, ,, can be

determined by:

Ly = Ly, + 2(L,, + 2(L,))cos(8) (55)

Since the ideal component has infinitely stiff beams connected by perfect hinges, the
thickness of the semi-rigid beam, ¢,,,, should be in excess of 10 flexure thicknesses, ¢,.
If the semi-arbitrary dual lever-arm separation distance of 10mm were increased to 15 or
20mm, not only would the torsional stability increase via an increase in the system’s
effective torsional moment arm, but the semi-rigid beam’s thickness, £,,,, would be
unconstrained. This option was not investigated in order to avoid creating an excessively
bulky product for difficult assembly onto the congested apex interior of the ASTREX
testbed. In addition, excessive stress gradients were also avoided, and an aesthetically

pleasing part was created by constraining the semi-rigid beam length by the following ratio:
t
fn L _0.16 (56)
Llf'b L,-

48



Thus, t,, = 7.2mm. was selected. Maximizing the beam widths to equal the full
width of the spring base, b, =b,,=20mm, is justified by considering the component design
in figure 43.

o
Kaxial >> Keff
Kett ; =
Kpiezo Kbending << Kpiezo << Kaxial
o

Figure 43. Conceptual component stiffness diagram.

In order to channel as much strain energy into the piezoelectric as possible, the axial
stiffness of the flexures must be as stiff as possible.” However, the more the piezoelectric is
strained, the more the flexures absorb bending strain energy. In order to reduce this affect,
the bending stiffnesses must be minimized. Thus, the flexures must be designed with
maximum cross-sectional area and minimum moment of inertia to cross-sectional area ratio

(A),,, = max(br) (57)

3 2
(L') = min| 2~ | = min[ £ |. (58)
A 12bt 12

The unconstrained finite element based design problem consisted of optimizing ten
input variables, (8,b,,b,,,b L,L,,,L,,,), toobtain the desired output

piezo? tf ' “srh puzo’ srb * ““piezo
variables (K, ,U i0z0» O piezo» O ) After constraining the design problem, only three input

variables are independent: (8.t L)

Values of these three input variables are iterated in table 1 until the original design’s
stiffness, stresses, and strain energy errors are corrected with the optimal values.
Optimization convergence is efficient if high-range performance-sensitive variables are
realized, first. Then the design can be fine-tuned with the low-range performance-
insensitive variables with minimal to negligible high-range variable updating required. To
this end, design mistakes are adjusted first, lever angles are corrected second, and flexure

lengths and thicknesses are adjusted last.
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Changed 9 Lf tf Keﬂ’ Gpiezo O',- Upiew
Variable  (degrees)  (cm.) (cm.) (MN/m)  (MPa) (MPa) (%)

STEP ONE: Correcting Design Mistakes

1 - 21.8 0.50 0.08 10.52 22.16 61.08 71.3
2 b 21.8 0.50 0.08 12.13 22.04 37.79 81.2
3t 21.8 0.50 0.08 12.43 22.05 37.54 83.3
STEP TWO: Decrease Lever Angle and Effective Stiffness

4 0 20.0 0.50 0.08 10.35 24.17 42.74 83.35
s 8 18.0 0.50 0.08 8.31 26.97 50.16 83.32
6 6 16.0 0.50 0.08 6.53 30.40 60.10 83.11
7 8 14.0 0.50 0.08 4.98 36.22 79.76 82.51
8 6 12.0 0.50 0.08 3.67 42.12 10132 81.69
) 10.0 0.50 0.08 2.58 47.55 12510 80.47
STEP THREE: Decrease Flexture Length

10 L 10.0 0.45 0.08 2.61 47.32 131.10  80.53
n L 10.0 0.40 0.08 2.64 47.04 13859  80.49
2 L 10.0 0.35 0.08 2.68 46.67 148.17 8031
13 L 10.0 0.30 0.08 2.73 46.10 163.16  79.77
4 L 10.0 0.25 0.08 2.77 45.52 178.14 _ 79.22
STEP FOUR: Decrease Flexure Thickness

15 I 10.0 0.25 0.07 2.67 47.07 17307 81.56
16 I 10.0 0.25 0.06 2.59 4831 168.18  83.21
17 & 10.0 0.25 0.05 2.52 49.25 165.10  84.12
18 I 10.0 025 0.04 2.45 49.91 166.74  84.17
19 I 10.0 025 0.03 2.44 50.32 179.40  83.13
STEP FIVE: Design Check

20 i 10.0 0.50 0.07 2.51 48.51 1239 8136
21 10.0 0.50 0.06 2.44 49.26 12406  81.65
n ¥k 10.0 0.50 0.05 2.38 49.82 12708 8125

Table 1. Iterative component design data from NASTRAN finite element code with local
elasticity analysis included.

It is educational and physically insightful to describe the twenty-two iterations listed in

table 1. First, an introduction to the structure of table 1 is needed. It should be noted that
the value of only one input variable is changed with each new line. The design iterations of
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table 1 can be divided into the following 5 major design steps: 1. The original design on~
line 1 was corrected with the doubled lever arm width on line. The semi-rigid beam
thickness on line 3 was corrected with a new flexure thickness. 2. Component stiffness is
reduced by decreasing the high-range variable, theta, on lines 4 through 9. 3. The
manufacturable optimal solution on line 10, is found from the iteration in lines 10 through
14 (flexure machining is limited to 0.8mm thicknesses). 4. The optimal solution, line 18,
is found from the iteration in lines 15 through 19. 5. The iterations on lines 20 through 22
in path 2 serve as a check to see if the optimal solution is within the space spanned by the
semi-arbitrary iteration scheme. These six items are discussed in the following six
paragraphs, respectively.

Step 1: When the original design listed on line 1, doubles its lever-arm width to 2cm
and increases its semirigid beam thickness, ¢,,,, from 4 to 7.2mm, the piezoelectric strain
energy, and the component stiffness increase, while the stress in the flexures decreases as
expected by the decrease in bending curvature from the stiffer flexures.

Step 2: Lines 4 through 9 show the effect of reducing the high-range variable, €, to
reduce the component’s stiffness to the desired 2 to 3MN/m range. The lever angle needed
to attain this stiffness, was fortunately not less than the 10 degree minimum. The minimum

lever angle was determined by

L,ncos8(8,,)20.51,,,, (59)

which prevents the steel device from contacting the middle of the piezoceramic beam. The
lever angle reduction from lines 5 through 6 shows some interesting trends. Here the lever
angle drops 2 degrees, the stiffness drops 1.78MN/m, the lever ratio (equation 1) increases
from 3.49 to 3.95, the stress in the piezoelectric and flexure increase, and the strain energy
in the shims stays steady at 3.11% of the total. As the lever ratio (L.R.) increases, the
fraction of strain energy in the flexures increases due to the larger stroke.

L.R.= Ydevice (60)
Uu

piezo

Step 3: Lines 10 through 14 shows a design iteration that decreases the flexure’s length
while its thickness is kept constant. For example, in lines 9, 10 and 11, the flexure length
decreases from 0.50mm to 0.45mm to 0.40mm, the component stiffness and flexure stress
increase, the lever-ratio and piezoelectric stresses decrease, the piezoelectric strain energy
reaches a maximum of 80.53% for the middle iteration. This local maximum is considered
the optimal “manufacturable” device, since the flexure thickness is not too small for wire
electron-discharge machining. In addition to the data on line 10, this design has a lever
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ratio of 6.34 and 11.84%, 4.62% and 3.01% of the strain energy in the flexures, the semi-
rigid beams and the shims, respectively. Notice how the piezoelectric strain energy
decreases from the “manufacturable” optimal, as the flexure length is reduced to 0.5mm
and the total von Mises stress is built up to a maximum of 178MPa; 77% of this stress is
undesired bending stresses.

Step 4: Beginning with this iteration, the flexure thickness is decreased in order to
release the build up of unwanted bending strain energy. This increases the piezoelectric
strain energy to its optimal value of 84.17%, with a flexure thickness of 0.04mm. In
addition to the data on line 18, this design has a lever ratio of 6.40 and 7.60%, 5.06% and
3.15% of the strain energy in the flexures, the semi-rigid beams and the shims,
respectively. From the two optimums mentioned thus far, the trend suggests that for each
reduction in the flexure length there is a proportional reduction in the flexure thickness that
will yield even more strain energy than before. This investigation was unnecessary since
maximum design stresses for the piezoelectric and the steel flexures were realized. A
piezoelectric stress of S0MPa was enforced to prevent non-linear depolarization stresses
depicted in figure 1. Forty Rockwell quenched and tempered steel that yields at
approximately 600MPa was factored down to a maximum design stress of 200MPa to give
the flexures a factor of safety of about 3.0.

Step 5: The best design considered in this iteration set, line 21, has less strain energy
than the previously mentioned optimal value. This fact reconfirms that the optimization is
within the design space spanned by the two iteration paths, namely step 4.

The new component to be built can be reduced in size considerably, if the piezoelectric
shims are discarded. This can be done if machining tolerances are small for both the
piezoelectric as well as the flex-tensional component. Discrepancies between the
piezoelectric stack and the steel flex-tensional part can be alleviated by an appropriate
preload adjustment now available in the new design, depicted in figure 44. For a lever
angle of 10 degrees, the springs are incorporated into the rigid'block volume to keep the
bulk of the component as low as possible. The threaded spring plugs allow for easy
preload adjustment with a large flat-head screwdriver. The center hole in the top plug also
allows room for the threaded mechanical stop bolt.

The assembly procedure for the new device is as follows. 1. The threaded bolt is
screwed into the bottom of the device. 2. The lower threaded plug is screwed down until it
locks with the threaded bolt head. 3. The lower lock nut and travel stop nut is screwed
down and locked together at the desired height. The desired height is determined from the
stroke limit and the spring deformation that induces the desired piezoelectric preload. 4.
The two springs are placed in the component, on top of the lower threaded plug. 5. While
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the piezoelectric stack is held in its appropriate position, the upper threaded plug is lowered
to its desired height, and piezoelectric preload is attained. 6. The upper travel stop nut and
lock nut are screwed onto the threaded bolt, and locked together at the stoke limit.

Stinger

Lock Nuts

Travel stop nuts

L Z Threaded plug
1 Preload spring

Resistor Wire

‘\
Piezoelectric stack »

Threaded bolt / .

add Threaded
—
Threaded bolt head—"] | I I r Attachment hole

Figure 44. New EDM component design features include adjustable preload spring
plugs, tapered rigid beams, and no shims.

-

[~~~ Threaded plug
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CHAPTER 4

EXPERIMENTAL VERIFICATION OF
COMPONENT PERFORMANCE

Once the six-axis tuned-mass damper was designed, building and testing of the design
must be acceptable at three different levels before a prototype is ready to be built and
installed in the space structure to be damped. Level one: Piezoelectric material properties
manufacturing and testing by the manufacturer. Level two: Flex-tensional component level
manufacture and testing. Level three: Manufacture and testing of six redesigned
components/stingers, mounting blocks/bolts, and proof mass assembled in six-axis
configuration. The level one and two verification tests that are described in this chapter,
attempt to validate flex-tensional piezoelectric actuator technology. The level three tests are
simulated in chapter five.

The microcomponent tester in figure 45 was used to measure component stiffness and

Figure 45. Interferometric Microcomponent Tester.
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loss factor as a function of frequency and shunting resistance. The piezoelectric actuator
drives a user-input sinusoidal or bandwidth limited white noise force signal through a load
cell and into the component to be tested. A laser interferometer setup is used to measure
component deflection. Component stiffness can be measured from these force and
displacement measurements. Component loss factor can be measured from the tangent of
the phase lag between these two measurements as by equation (75) in the next section.

The component tester is bolt-mounted onto a 4 foot wide, 12 foot long, 6 inch wide
optics bench. The optics bench is isolated from the dynamics of the laboratory building
floor with six rubber air tubes (12 inch outer diameter and 4 inch tube diameter). The low-
stiffness tubes give the bench a rigid-body mode of 1.5Hz. The optics bench dynamics
begin with a first bending mode near 82Hz.

Reacting off the left-hand mass, the piezo strut drives displacements into the load cell,
as previous depicted in figure 45. The load is channeled to the component via a tri-bolt
steel cage assembly. The cage assembly is designed to accommodate target reflector
mounting directly above the component's stinger. The load then travels through the stinger

and the component to the the right-hand reaction mass.

4.1. THE COMPONENT TESTER HARDWARE

The component tester hardware consists of a piezo driver strut, a load cell, a zygo laser
and sensor, and data acquisition hardware as described in this section and in more detail in
reference [21].

A Physik Instrumente piezoelectric strut and Kepco BOP 500M bipolar amplifier is
used to drive the component with specified random or sinusoid inputs. Once the amplifier
is biased with -250 volts, a maximum input of 0 to -500 volts may be applied across the
strut's 1.5uF capacitance to yield maximum displacements of £15um. Because the
amplifier has a limit of 80 mA, the piezo strut will not achieve full displacement at high
frequencies as shown in figure 46. In order to maximize the displacement capability of the
actuator, sinusoidal inputs were limited to the 1 to 40Hz range. It should be noted that
15um is approximately one 20th of the actual displacement the component was designed to
handle in space. This was not a concern, since the component's linear range was assumed
to encompass the range of experimental and design displacements. The expression relating
frequency, voltage and current drawn by the driving actuator is:

i=2nfCV (61)

This equation was used to prevent damaging the driving actuator. If the input is sinusoidal
at frequency, f, the voltage is chosen such that i £ 80mA, to prevent the actuator from
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buzzing (signal distortion). If the input is RMS, the voltage is chosen such that i <
(80/3)mA, to prevent the actuator from clicking (overload).

Piezoelectric Driver Displacement Limits
& \\\ Voltage
213 \\ Limit
/// Current
/ A Limit

Displacement (3im)

| !
40 400

Excitation Frequency (Hz)

Figure 46. Displacement limits in the piezo strut driven with a sine wave of
(250V)sin(2rfCV).

A load cell (PCB Model 208A02, SN 3633) was used to measure the applied
component force. The load cell was calibrated at 50.5mV/lb with a minimum test
frequency of 0.2Hz. The raw data is transmitted to a load cell conditioner and then sent to
a Gateway 2000 computer-based Tektronix 2630 Fourier Analyzer which is used for data
acquisition and Fast-Fourier transforms.

An AXIOM 2/20 laser-based measurement system uses interferometry to measure the
linear displacement of the component as depicted in figure 47. This system consists of a
two-frequency laser head, beam directing and splitting optics, measuring optics, receivers,
and electronics. The light beam emitted from the laser head is directed through
measurement optics and then to an optical receiver. The receiver provides an electrical
measurement frequency that is compared to a reference frequency from the laser head.

System electronics compare the frequencies and calculate the measurement. The signal is
amplified to a sensitivity of 2.048um/V to accurately measure displacements within the

+20.48um range. Precise measurement data is updated at a 7 to 13 MHz sampling rate.
The raw data is transmitted to a Gateway 2000 computer, where a Tektronix 2630 Fourier
Analyzer transforms time-domain data into frequency domain data.

After the Tektronix box transforms data from the laser ohrput, Ch.1, and the load cell
condinoner, Ch.2, into the frequency-domain, the data can then be displayed with the user-
interface program. This program displays stiffness wansfer functions (i.e. Ch.2/Ch.1),
and loss factor transfer functions (i.e. phase(Chl.,Ch2.)). Coherence transfer functions
between the input and output, and a spectral decompositions of the input and output were
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also available from the CTEST display to help search for various causes of component data
errors. The CTEST program also commands the Tektronix box to send a signal to the
Kepco amplifier to drive the piezo strut with user-supplied amplitudes and frequency

distributions.
TaRceT (4) 7] fleall
REFLECTOR ¢ | o
N \J -
u(® INTERFEROMETER Y
(BEAM SPLITTER)
TWO FREQUENCY n&n @
LASER @ > o
l - T f114f1 ’
BEAM FOLDER

RECEIVER Y
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FIXED
REFLECTOR
Measurement signal ACCUMULATOR

(f1-(f1x A2
® —H e O
> DETECTOR

Reference signal (f2-f1)

MEASUREMENT BOARD

Figure 47. AXIOM 2/20 Block diagram: 1. The laser generates light of two different
frequencies with orthogonal pelarizations. 2. One of the two frequencies f1, is
optically separated and directed to the target reflector. 3. The second frequency, f2,
is optically separated and sent to a fixed reflector and then rejoins fl at the
interferometer to produce an interference signal. 4. As the target reflector moves,
the returning beam frequency will be Doppler-shifted up or down by Af1 depending
on the direction of motion. 5. Receiver changes £2 and (f1+ Af1) to an electrical
measurement signal (20 MHz + Af1). 6. Electrical reference signal from laser.
(20MHz) This signal is divided by 2. 7. Phase detector calculates phase difference
between reference signal and measurement signal. 8. Accumulator adds up the
phase differences and outputs u(t) measurement data in 32-bit binary words.

4.2. CALIBRATING THE COMPONENT TESTER

While calibrating the component tester, slop/stiction, hysteresis, directional stiffness
due to threads, and flexibility need to be checked. All these tests, except flexibility, can be
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conducted by the insertion of a steel rod into the test fixture and running tests at different
frequencies and amplitudes. Slop/stiction can be tested by inputting a quasi-static (0.1to
1Hz) sinusoidal voltage into the actuator and checking the displacement versus force for
slop. This was repeated with different amplitudes. Hysterisis was checked in a similar
way, except the force needed to be at a higher frequency less than 200Hz. The directional
stiffness of the test apparatus was removed by trying different preloads and comparing
measured stiffnesses. The point of zero stiffness was not easily found without a trial and
error bolt adjustment of the test fixture. Flexibility in the test fixture affected the measured
stiffness of the component as shown in figure 48.

-
1,
X Kc Kf
-
Figure 48. Fixture stiffness Kf, represents the stiffness of the threads, linkages, table,
bolts and couplers. Kc is the component stiffness. f and x are measured output.

NOANNNNN

The fixture stiffness was determined experimentally to be about Kf= 45N/um + 10%. The
error depends on the preloads from installation. The measured stiffness, K= f/x, was
substituted into equation (62) to correct for the fixture stiffness.

or, K =—21L_ (62)

The calculated value for K, has an error associated with the 10% uncertainty in fixture

stiffness K IE
dK - dk
ch:[aKc]x[ ,]= T %y (63)
K oK, K, (Kf/K».) K,

4

For example, if K, = 10 Nfum and K, =45N/umx 10% then

dK,

K

c

o5 42 5%
- (.05)( = ) = +2.3% (64)
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4.3. COMPONENT TEST DATA

In order to verify the component design, stiffness and loss factor, test data was
collected as follows. First, the effective capacitance of the piezoelectric was calculated.
The resistor was selecied from the following equation to tune the peak damping curve near
30Hz.

p=RCw (65)

where p=1, w=30Hz, C=15microfarads and R=390k€2. It should be noted that the
internal resistance of the piezoelectric capacitor was a negligible 0.245Q.

Second, forty logarithmically-distributed resistors were selected about the p=1 center
point, where R=390kQ. More specifically, the first resistor used was 3.9k{2 to obtain data
at p=0.01. Similarly, the fortieth resistor used was 3900Ck(2, to obtain data at p=100.
This approach was used to obtain data for two decades on both sides of p=1. In addition
to the short-circuit and open-circuit transfer functions, forty stiffness and phase transfer
functions were generated with each resistor using a thirty count average.

Two data points, 10Hz and and 42Hz, were semi-arbitrarily chosen to extract stiffness
and phase data directly off the respective transfer functions. These frequencies
demonstrated excellent signal to noise ratios. A seven-point discrete frequency average
was computed about these two frequencies to smooth the noise on the transfer function.
More specifically, stiffness and phase data at 9.25Hz, 9.5Hz, 9.75Hz, 10Hz, 10.25Hz,
10.5Hz and 10.75Hz were summed and then divided by 7 to eliminate the noise on the
transfer function. A similar procedure was done at 42Hz.

The stiffness magnitude and loss factor was determined from the complex stiffness,
K(w)=K(Il+in(w)), output as follows.

1K ()] = \(Re(K (@)’ + (Im(K (@)))’

Im(K(a)))j 66)

(@) = an(y (@) = (RC(K(w))

For reference, the classical definition of damping loss factor is

(a)) = L (Energy|dir.ripa¢4 )/C}’Cle
! i 2n (Energylmu stored )/C)’Cle

The damping coefficient is one-half of the loss factor, { = 0.57, for small 7.

(67)

The following plots and experimental curve fits show the results of this procedure. The
10Hz data represented by x's, and the 42Hz data represented by o's, show negligible
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differences, from the experimental curve fit. The generalized coupling coefficient can be
determined from the experimental data by equation (68).

K
Kl = (—j (68)
l K"‘ maaswred

The non-dimensional stiffness curve fit was generated by substituting the generalized
coupling coefficient into the stiffness and loss factor equations of chapter one (equation (2)
and (3)).
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Figure 49. Nondimensional stiffness and loss factor data for experimental component data.

Although the stiffness change and loss factor are overestimated by the finite element
model, the curves are clearly indicative of the predicted first-order frequency-dependent
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stiffness change and the bell-shaped loss factor distribution. The results are summarized in.
the next section 4.4.

The piezoelectric stack was tested by the Specialty Engineering Associates, Inc. to
verify material properties (reference [22]). The frequency-dependent impedance, Z(w),
was determined by driving the piezoelectric stack with V(w), and dividing by I(®). The
impedance is at 2 minimum at the first axial resonance or pole of the stack. The frequency
at which this occurs can be used to calculate the effective modulus of elasticity of the stack:

1 |EA
= — 69
Substituting (4 = pA into (69) and solving for E yields:
2
Evue = 4P(fpeL) = 63.2GPa (70)

where, f,,, =18.1kHz, L=8cm and p= 7550kg/m’ for the piezoelectric stack.
The nominal modulus for Channel Industries 5400 PZT is 65GPa. This error is well
within the standard material scatter.

The generalized coupling coefficient of the piezoelectric stack was determined from the

phase of the impedance frequency-response, Z() as follows:
K3 = () - (@)} (0r+) gy

With a first axial zero frequency, f,,, = 21.7kHz, the coupling coefficient of the piezo-
electric stack is K;; =0.59. The published coupling coefficient for 5400 PZT is
K,, =0.71. The discrepancy between the published and measured coupling coefficients is
due to strain energy sharing with the glue layers. The error can also be partially attributed

to material property variations.

4.4. COMPONENT EXPERIMENTAL RESULTS SUMMARY

This section presents a brief summary of the experimental results obtained from the
techniques described in this chapter. The experimental data and NASTRAN results in table
2, motivated the analysis refinements and new design modifications of chapter 3. The
results of these refinements are also presented in the third calumn of table 2.

Several conclusions can be made from the experimental results of table 2. The
component is much stiffer than intended. The two-dimensional finite element model’s
overestimate of the piezoelectric loss factor can be accounted for by unmodeled flexibility
throughout the three-dimensional wire-EDMed part, and/or unmodeled flexibility in the
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component tester. It should be noted that the flexibility associated with the flexure-rigid
beam interface has been included in the NASTRAN model.

DATA NASTRAN DESIGN #2
K. (N/um) 9.57 9.71 1.50
K, (N/um) 10.66 12.12 2.57
Npa (%) 21.6 21.6 21.6
Neomp (%) 5.4 11.1 13.6

Table 2. Component results summary for the experimental data, the finite element model
and the new design.

Design #2, in table 2, includes five important modifications: 1. The lever angle is
reduced from 21.8 degrees to 10 degrees to obtain the desired component stiffness of
1.5N/um. 2. Due to the extremely low bending strain energy in the flexures, the flexure
lengths are reduced to channel more strain energy in the piezoelectric. 3. The entire lever
arm width is doubled to 2cm to increase the flexure’s axial stiffness to bending stiffness
ratio. 4. The thick semi-rigid beam is also doubled in thickness. 5. The semi-rigid beam is
symmetric about the flexures in order to reduce the footprint length from 8.6 to 1.1 times
the flexure length as discussed in chapter 3.

The loss factor of the new design in table 2, increases only slightly over the
experimental results of the original design, since the damper’s potential performance
decreases with an increase in the demanded stroke amplification.

In the next chapter the component's damping performance in the testbed is simulated
with the experimental component data and the new design values.
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CHAPTER 5

SIMULATED FREQUENCY RESPONSE
PERFORMANCE FOR ASTREX

Once the piezoelectric material properties have been integrated into the equivalent
mechanical model in chapter 1, the piezoelectric-based dampers can be assembled into the
larger finite element model of ASTREX. The ASTREX finite element model consists of
approximately 900 nodes and 400 elements as seen in figure 50. The frequency response

can also be derived from the finite element method.

Figure 50. Finite element model of ASTREX.
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5.1. FINITE ELEMENT FORMULATION AND SOLUTION ALGORITHMS OF THE
DAMPED TESTBED MODEL

The tripod struts are modeled with nine beam elements to accurately capture the third
bending mode around 100Hz. The backplane composite struts are each modeled with a
single beam element, since the second bending mode at over 150Hz is of no modeling
concern. The CROD beam elements have three displacement and three rotational degrees of
freedom at each end. Half the composite tube’s mass is lumped at each node, in order to
produce a diagonal mass matrix.

The six hexagonal steel mirrors are each modeled with six triangular plate elements to
fit the shape smoothly without using highly distorted quadrilateral finite elements. The
three node triangular elements, CTRIA3 have five degrees of freedom per node. Bending,
stretching and twisting are modeled. Since shear deformations are not modeled, large thin
plates are used in the model assembly. One quarter of the steel plate’s mass is lumped at
each node, in order to produce a diagonal mass matrix. Two dimensional CQUAD plate
elements were also used to model the steel plates of the tripod apex with minimal element
distortion. These quadrilateral elements consist of four adjacent triangular elements with a
statically condensed center node.

Rotary and linear dashpots and springs were used to model the airbearing that isolates
ASTREX from the dynamics of the support pedestal. Dashpot elements were also used to
model piezoelectric implementations as discussed in the previous section. In any event, all
damping elements used in this model are one-degree of freedom displacement or rotary
dampers that have proportional damping matrices in local coordinates.

After the local stiffress, mass and damping matrices are transformed into the global
degrees of freedom of the ASTREX model, the global finite element equations of motion
can be assembled as in equation (72).

Mi+Ex+Kx=f (72)

where M, E, and K are mass, proportional damping, and stiffness matrices,
respectively. x is a vector representing generalized deflections (degrees of freedom) of
grid points or nodes. An overdot indicates time derivative. The vector f includes forces

and moments applied to the structure. The equation can be written in a state-space form as

{i} B [—N;)K -nal-‘E]{z}+{M9‘f } (73)

such that X=AX+F (74)

given by



here X =170 A 0 ! d F 0
wher = , A= = .
© i _M'K -ME| M-f

A transformation from physical degrees of freedom (n) to a modal state (m modes) can
be made by defining x = @1); the modal state vector 1 (m x 1) includes modal amplitudes,
and the column of modal matrix & is normalized with respect to the mass matrix M such
that ®"Md® =1 and ®"Kd=A; [ is an identity matrix, and A is a diagonal
eigenvalue matrix. Using the transformation, and multiplying by @7 | equation (72) is
given by

O"™MPi+ OTEPH+ dTKdn = T f
which from mass-normalization and assuming a proportional damping reduces to

I+2f 0|1+ An=@'f (75)

In the diagonal modal damping matrix [ZC,_‘w_], $aiag is a diagonal modal damping
factor matrix with m diagonal entries. The diagonal natural frequency matrix of the
structure, @_, is the square root matrix of the diagonal matrix, A. Taking the Laplace

transform of both sides of equation (75) yields
[15* +[2¢, 0. )5 + AT = @TF(5).
Muldplying both sides by the modal matrix @, yields
%(s) = B7(5) = BIs” +[20 . ]s + A] @7 F(s).

Let each eigenvector i , at the excitation degree of freedom e, be denoted @,. Let each
eigenvector i , at the response degree of freedom r, be denoted @, . Since all the matrices
are diagonal, the equations are decoupled and the total response is the sum of the responses
at each mode. Summing the contribution of each excited mode to the overall response,
yields the transfer function equation used to generate the performance plots in chapter 5,
and determine peak dynamic component stresses in chapter 2.

m o o7 -
X, ()= — 76
aae §(52+[2(Cdja‘)‘w‘]s+/\‘]f‘(S) (76)
1 1 U
where, (9 >.-s—<n>,<=‘[n.-m—""°J
“ 2 2 ' Ulaml i

The influence of passive damping, as mentioned earlier does not end with maximizing
i at atarget @ such that the spacecraft’s response is minimized. In fact, any passive
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damping implementation must be reported to the controls engineer for updating the control
equations. The modal damping factors of the manufactured damping device (See chapters
3 and 4) were carried through the following matrix manipulations to update the control
matrices for the control engineer responsible for designing a control system that rolls off at
a frequency of high passive damping.

The equation (75) can be written in a state space form as follows.

{Z} =[-€‘ -[ZCi.w.]]{g}+{¢qf} 7

In compact notation, X, =AX, +F, (78)

n 0 ! 0 .
where X_=¢ .+, A =[_ _ jland F_ = . Due 10 the fullness of the
’ {n} Tl A2l ’ {fb’"f}
modal matrix @, a force on the structure, theoretically, affects all modal states.

The participation of a force or moment, applied in certain direction on the structure, in the
modal state form can be explained as follows. Let the generalized displacement vector be
written as x = {U,V,W, I;/,G,(IJ}T, where U,V ,W are the displacement vectors along
local x, y, z coordinates, and ,8,¢ are the slope vectors about the coordinates,
respectively; each vector has dimension equal to number of nodes (numnodes x 1). The
modal matrix @ corresponds to this particular arrangement of the generalized displacement
vector x. If a force is applied at location jin the local z direction, the force vector f is
given by

r0~

-
I

£ (79)

The number of zeros in the top of equation (79) equal to 2*numnodes +/ - 1, and in the
bottom equal to 6*numnodes - {2*numnodes + j}. This can also be written as a unit
vector with all zeros except at the location of z direction at j node, multiplied by the
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magnitude f,, . Symbolically, it is written as f, =S, fo, I This representation helps-

in relating F', to applied force directly.

0
Fo={org {fu

Thus only the {wj } displacement contribution of the modal matrix & is effective. For
multiple force and moment inputs at different location or in different direction, a summation

is carried out with appropriate placement unit vector:

0
F,= {cpszzd[S% -fdl]}

where d signifies the degree of freedom at node j. Effectively, a unit column-vector matrix
is created leading to equation,

0
F,, =|:d>TS ]u=Bnu (80)

uvmct‘l

in which u is the actual control input vector (non-zero terms in f of equation (72)), uvmat
indicates that a matrix having unit vectors as columns is generated, and B, is the control

input matrix in the modal form. The force vector

0 0 0 O
F = [0 M"d"r]F" = l:o d)}Bnu = Bu (81)

In this equation, B is the influence matrix which could also be formulated from equation
(79).

The output equation is given by y =ax+bx+cxX. The a, b, c matrices provide the

combination of displacement, velocity, and acceleration output from the sensors. The

y=la b]{:}+[0 c]{’;}

y=[a b]X+[0 c][AX+F]

equation can be written as

Using the transformation relation
@ 0 @ 0
A =
2 o)lo o)
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and substituting for X, the output equation can be written in the modal form as

yz{(acb—cd)/\) (b¢—c<b§m,)}{3}+[0 c|F

y={(a®-con) (bcD-cchm,)}{Z}chcDBnu

y=CX,+Du (82)

This equation is used to obtain response of the system. In summary, control system

matrices are rewritten:

A - 0 I B - 0
ne -A —Cmal ' ne (DTSuumatd,

C,= {(ad) -cPA) (b —cd>§,m,)} , D, =c®B,. (83)
A compact form (quadruple) is generated by placing these matrices in a system matrix,
A B
| T .
Sn - [Cn Dn:l. (84)

These are the matrices used in state space control system design. Notice that the
passive damping implementation will show up as two non-negligible damping terms: one
on the A, matrix diagonal, and one term from the C, matrix. This makes the controls
engineers goal of inverting the plant a more realistic objective.

5.2. LINE-OF-SIGHT PERFORMANCE TRANSFER FUNCTIONS

The effect upon the plant transfer function (from control actuator to error sensor) of
inserting a six-axis isolation stage to support the payload at the secondary mirror, is
simulated in figure 51, using experimentally measured component characteristics. This
simulation employs a NASTRAN dynamic model of the ASTREX structure. This model
has not been tuned with a modal survey. The results are thus at best representative, and
certainly not trustworthy in detail. A control engineer, faced with these two plants, will be
happy with neither, but would certainly prefer 1o compensate the damped plant.

The solid trace in figures 51, 52 and 53 represents the predicted damping effect of the
six-axis vibration absorber with resistively-shunted piezoelectric damping (R = 360kQ).
When the vibration absorber’s proof mass is rigidly mounted to the structure, the
undamped effect is predicted by the dash trace in figures 51, 52 and 53. When the
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piezoelectric stacks are shunted with zero resistance, the short-circuit effect is predicted by

the dash-dot trace in figures 51, 52, and 53.

Apex RotagonsTorque Simulanon: Component Data
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Figure 51. ASTREX simulation using experimental stiffness and damping data of the
component. The solid trace shows the damping performance of the six-axis
vibration absorber with resistively-shunted piezoelectric damping (R = 360k<2).
The dash trace represents the undamped dynamics with the vibration absorber’s
proof mass mounted rigidly to the structure. The dash-dot trace represents the
undamped dynamics of the structure with short-circuit piezoelectrics.

The effect upon the plant transfer function (from control actuator to error sensor) of
inserting a six-axis isolation stage to support the payload at the secondary mirror, is
simulated in figure 52, using the new design component properties described in chapter 3.
The design modifications are summarized as follows: 1. The lever angle is halved to obtain
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the desired component stiffness of 1.5N/um. 2. Due to the extremely low bending strain
energy in the flexures, the flexure lengths are halved to channel more strain energy in the
piezoelectric. 3. The entire lever arm width is doubled to 2cm to increase the flexure’s axial
stiffness to bending stiffness ratio. 4. The thick semi-rigid beam is also doubled in
thickness. 5. The semi-rigid beam is symmetric about the flexures in order to reduce the
footprint length from 8.6 to 1.1 times the flexure length as discussed in chapter 3.
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Figure 52. ASTREX simulation using new design stiffness and damping values of the
component. The solid trace shows the damping performance of the six-axis
vibration absorber with resistively-shunted piezoelectric damping (R = 360kQ).
The dash trace represents the undamped dynamics with the vibration absorber’s
proof mass mounted rigidly to the structure. The dash-dot trace represents the
undamped dynamics of the structure with short-circuit piezoelectrics.
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5.3. ISOLATION SYSTEM PERFORMANCE TRANSFER FUNCTION

An alternate use of the six-axis stage is for isolation; it is possible to isolate the control
system from unpleasant structural dynamics of the ASTREX structure. This is summarized
in figure 53, in which the actuator torque is applied not to the tripod apex but to the 90kg.
suspended mass that is presumably supporting the secondary optics. In this plant, the
isolation properties of the six-axis stage lead to very clean plant dynamics above 40Hz, and

would permit robust closed-loop control.
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Figure 53. ASTREX simulation using the new design stiffness and damping values of the
component. The solid trace shows the damping performance of the six-axis
vibration absorber with resistively-shunted piezoelectric damping (R = 360kS2).
The dash trace represents the undamped dynamics with the vibration absorber’s
proof mass mounted rigidly to the structure. The dash-dot trace represents the
undamped dynamics of the structure with short-circuit piezoelectrics.
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CHAPTER 6.

CONCLUSIONS AND RECOMMENDATIONS

Passive damping is important for space structure performance and controller stability
robustness requirements. The ability of resistively-shunted piezoelectric damping to meet
these requirements was investigated. A summary of contemporary passive damping
implementations for large space structures was presented. This paper has presented the
piezoelectric passive damping modeling approach and its modifications for finite element
software implementation. The dynamic behavior and passive damping needs of the
ASTREX testbed were addressed with a comparison of two potential damping design
options: the piezoelectric joint and the tuned piezoelectric vibration absorber. The latter
design was designed, manufactured and tested at the component level.

An analytical truss model was developed for the vibration absorber components. The
model was used iteratively to optimize the lever ratio and piezoelectric strain energy of the
component with respect to dimensional requirements and desired design features. A finite
element model of the component was used to verify the design and to ensure stress limits
were not exceeded.

The finite element model was also used to generate design curves that depict the optimal
flexure dimensions that maximize the piezoelectric strain energy subject to stiffness, stress
and manufacturing limitations. Several trends were noted from these design curves. The
effective stiffness curves illustrated that longer and thinner flexures decrease the effective
stiffness and stubby flexures increase the effective stiffness. The stiffness curve is
relatively constant for the middle flexure values where the transition from axially-dominated
to bending-dominated flexure properties occurs. This transition zone is also where the
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piezoelectric strain energy is maximized. The strain-energy curve for small flexure
dimensions that approach zero is analogous to the narrowband damping provided by
resonant LRC circuit piezoelectric damping. Just as the peak damping 1s largest over the
small range of frequencies influenced by the resonant circuit, so also is the strain energy of
piezoelectric maximized over a more limited range of flexure thicknesses. The virtues of
the strain-energy curve for large flexure dimensions is analogous to those provided by the
broadband damping of resistive RC circuit piezoelectric shunting: both are insensitive to
minor parameter variations, frequency and flexure thickness, respectively. Piezoelectric
stress plots illustrated that the amount of applied load that reaches the piezoelectric
decreases with increasing flexure bending stiffness. Flexure stress curves illustrate that
stress is conveniently minimized when piezoelectric strain energy is maximized. Axial
stresses and bending stresses increase as the curve shifts to the left and the right,
respectively. One important limitation to a small-flexure, high-performance component
design, is ensuring that the stress in the flexure does not exceed the yield and fatigue stress
limits. The EDM technique also excludes small flexure designs from the manufacturable
design space of the component.

A local elasticity analysis of the beam/flexure interface was made to include the lever’s
“footprint” flexibility in the component models. The results of this study, motivated a new
design that used the original design as a starting point. A trial and error procedure was
conducted to illustrate how the new design was found from the original component
properties.

Test results indicate that it is challenging to channel a large fraction of the structural
strain energy into the piezoceramic material without sacrificing some strain energy to
residual parallel and series non-piezoelectric stiffnesses. Despite this discrepancy in
component performance, the first-order stiffness change and bell-shaped loss factor curve
were verified as predicted.

This report has addressed some of the practical considerations encountered when
attempting piezoceramic passive damping of a large flexible structure. The report presents
a first-iteration solution to these problems. Future work will use this as a starting point.

Another interesting topic that requires interesting research is developing a
magnetostrictive actuator. The actuator/damper would not require a new flex-tensional
component as the piezoelectric and magnetostrictive share similar material properties. The
potential advantage of magnetostrictive damping is its ability to absorb strain energy
without the glue-layer strain energy sharing problem inherent to piezoelectric stacks. The
potential disadvantages need investigation. For example, the number of required coils
wraped about the magnetostrictive must be numerous enough to efficiently transform the
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magnetic field into an induced current. Commanded current sources could make the stack
too bulky for practical steel flex-tensional design. Fortunately, a magnetic field source
could be supplied by magnets that would replace the shims in the piezoelectric design. The
return path of the magnetic flux could also be conveniently channeled through the effective
“arc-bridge” provided by the eight lever arm pairs.

The effectiveness of this design would also be dependent on finding or developing a
low-stiffness, high-magnetic conductivity material (ideally, identical to steel in terms of
magnetic conductivity) to fill the “dogbone” shapes cut out of the steel during lever arm
manufacturing. Without such an implementation, the returning magnetic flux path would

be forced to arc across the thin flexures.
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APPENDIX I

ANALYTICAL FINITE ELEMENT COMPONENT
MODEL

An analytical finite element model was constructed to study the effects of bending and
axial/bending coupling that are not present in the analytical truss model. This appendix
attempts to provide a more accurate, but less elegant, analytical model with all the important
bending and axial/bending terms included. This appendix begins where the NASTRAN
component model section of chapter 3 leaves off.

The finite element model of the component, shown again in figure 54 below, is now
ready to be assembled with linear springs (one for the piezoelectric and one for the preload
springs) and six-degree-of-freedom slender beam elements (one for the semirigid beam and
two for the flexures).

05Kpiero
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Figure 54. The one-eighth model with combined lever arm properties.
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The first task is to assemble three beam elements together as depicted in figure 55.

Vi v2 v3 v4
A % A A A
Aﬂ'\ ul e A\ U3 D44
9‘\/ u2 63 = }>u4

Figure 55. 12 degree-of-freedom lever arm in local coordinate system.

The slender beam element equations for the flexure on the left of figure 55 are written in

matrix form:
2EA -2EA ]
A [ 2EA 0 0 L 0 0 |
(Fl ‘f u11
24EI, -I2EI, -24EI, -12EI,
F? 3 2 0 3 2 v
' Y ph b |
M, L2 f 3 f 0 LZ / 7 / 9/
— i f ! !
—2El, 2EI,
F; 0 0 —L 0 0 U,
—24EI, 12El & 24EI.  12EI (85)
FZ, f . / 0 f f v,
3 3 2
L/ Lf Lf Lf
M, 0 —12251, 4El, ) 1212“1, 8El, g,
i L L, L L, |

This stiffness matrix is identical to the stiffness matrix of the flexure on the right.
Substituting the semirigid beam properties into the matrix above yields the center beam
element’s stiffness matrix.

In order to see how the larger global stiffness matrices are assembled and manipulated
throughout the rest of this section, dummy alphabet variables will be used to represent the
stiffness matrix elements. The stiffness matrices are now represented as

[aa ad ]
bb bc be bf
cb cc ce ¢f
K=K=l i dd (86)
eb ec ee ef
Y (- (4 fe ff]
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" AA
BB
CB

Y
EB
. FB

BC
cC

EC
FC

AD

DD

BE
CE

EE
FE

BF
CF

EF
FF

(87)

When these matrices and the corresponding semirigid beam stiffness matrix are assembled

into the global stiffness matrix in local coordinates, a 12 by 12 matrix is constructed

Ff

M,
F3
F3
M,
F3
Fi
Ms
F3
F3
M,

.

.

aa

da

bb bc
chb cc
eb ec
b fe

ad
be bf
ce cf
dd +
AA
ee+ ef +
55 B¢
fe+ +
CB (f',fC
DA
EB EC
FB FC

da

BE
CE

bb+
EE

ch+
FE

eb
ji2)

BF
CF

bc +
EF

cc+
FF

ec

fc

ad

dd

ee

fe

bf

L

U

(88)

Four boundary conditions can be applied to reduce the number of equations and
unknowns from twelve to eight. Two of them, 6, =0 and 8, =0, can be directly applied

to equation (88) to reduce the number of equations and unknowns to ten.
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F{
Fy
F3
F3
M,
F3
F3
M;
F3
F3

ad
be bf
@ w
kgt BE BF
fer 4+ CE CF
aa +
DA DD
bb+ bc+
EB EC EE EF
chb+ cc+
da
eb ec

{Fly = (K] {ul,,

ad

dd

be

ce

[

Vi

V2

L)

V3

Uy

ee |

V4J

89)

The remaining two boundary conditions must be applied after the local degrees of freedom

of node one and four are transformed to the global coordinate system as in figure 56.

Figure 56. Degree’s of freedom at nodes one and four are transformed into the global

coordinate system.

Transformation matrices are used to transform the degrees of freedom of nodes one and

four to the global coordinate system. Both the force vector and the displacement vector
need to be transformed with the transformation matrix
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[A]= o0
1
i [4]]
cos@ sinf
where [4]= l:— sin@ cos 9]'

The force vector in Equation (89) is transformed as follows:

{Fly = [K],{ul,
{Flyy =[a)F},

{Flyy =[A]K]4{ul, CI)
The displacement vector in Equation (89) is transformed as follows:

{ulyy = [Al]{u}xy

-1 T
{u}xy =[A] {ulyxy = [A] {u}xy (92)
Equation (91) and (92) are combined to find the new global stiffness

{F}XY = [Al][K]xy[Al]T{u}XY

{K}yy =[A]K],[A I 93)

The resulting global stiffness matrix has the following matrix structure, where the

constants indicate non-zero elements.
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[al a2 a3 a4 a5 TU
bl b2 b3 b4 b5 Vi
cl ¢2 c3 c6 Uy
dl d2 d4 ds d7 d8 128
el e2 e4 €5 e7 e8 8,
f3 f6 f9 10| us

g4 g5 g7 88 g9 g10 | vy

h4 hS h7 h8 h9 hl0 || 6,

i6 i7 i8 i9 10 |U,

j6 7 j8 j9 j10 V4]

(94)

Applying the remaining two boundary conditions, U; = 0 and V4 = Oyields an eight by

eight matrix

[FY
Fy
F3
M,
F3
F3

M,

X
F§ |

[b2 b3 b4 b5 TV,
c2 c3 c6 Uy
d2 d4 ds d7 d8 vy
_|e2 e4 eS el e8 0,
| of3 16 191 us
g4 g5 87 g8 g9 wy

h4 hS h7 h8 h9 || &

] i6 i7 i8 i9 | U,

Equation (95) describes the eighth model below

(2b,t, L, 2A, 2Df

beam element degrees of freedom.
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Figure 57. The one-eighth model with combined lever arm properties and eight remaining



Since UgandV, are the only degrees of freedom needed to calculate the effective
stiffness of the corﬁponent and the percent strain energy in the piezoelectric, the other
degrees of freedom can be statically condensed out of the global stiffness matrix. The first
step is to rearrange the matrix equations into a form suitable for static condensation. The
following matrix has maintained its symmetry since each row exchange is followed by a

column exchange.

P/41 [b2 |63 b4 b5 TV,
0 9| 6 7 8|u,
0 c2 c3 c6 Tt;
0] 19113 f6 Uy
0| |a2 d4 d7 d5 d8 | v, (96)
0 g9 g4 g7 g5 g8 w3
0 e2 ed e7 e5 e8| 6,
Lo | K hd4 h7 h5 h8 ) 65

Static condensation will involve inversion of the six by six submatrix, which is actually
a 2 by 2 inversion and a 4 by 4 inversion combined. Since 6; =6, as noticed in the
deflected shape and NASTRAN output, it is advantageous to add the elements of the eighth
column to the elements of the seventh column to reduce the matrix to a 7 by 7 and reduce
the maximum submatrix inversion to a 3 by 3 (Computationally, this inverse is an order of
magnitude less difficult.) Note that the new redundant eighth equation must be added to the

seventh equation in order to maintain symmetry within the matrix.

rpja] [b2 |63 b4 b5 v
0 9 i6 i7 i8 U,
0 c2 c3 ¢6 Uy
0 |= f9lf3 f6 Uy o7
0 d2 d4 di (d5+d8) vy
| 0 | _e2 h9 (ed4+ h4) (e7+h7) (?517,?)__92-

These equations have the block matrix form described in (98).

R K_|K_ U
el _ aa a || “a (98)
s-efels

where R, = P/4, and
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K33 =

2EA ]
[- + / (59)2
Ly
24E]
+2 5L (co) 0
L
f
+Kspring
K =|\ )
aa ((2EA; 5
+—=(c6)
Ly
24E] 5
0 +—L-3—f(se)
f
+0.5(K pigz5)
L \ )
2EA —24E] —~12E71
- L (56) ——L(co) —L(co)
Kk | L Ly Ly
ac —2EA, —24El, 12El,
7 (c6) T(Se) (s6)
f 1 f
K = K2x2 0
ce 0 |k
3x3
([ZEAf + 2EAser _2EAsrb
L L L z
Ky = f e S EA ”;EA = B y] (99)
SYM. L ==Corb
] L, Loy )|
[(24E1, 247 _24E] 12EI, —24£1 ., )]
! srb srb f srb
7t -3 +
[ Lf Lsrb ] Lsrb ( L% L-%’b ] r
24E1, 24kl \(-1261, 241, )| |° ¢
+ + =|q P -r
L J5 L2 %
f srb f srb r—-r s
16El
SYM. Ly 228 o
i Lf Lsrb j

Retaining the U, displacement vector and condensing the U displacement vector yields

-1
U =-K. KU,
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(Koo = KacKe Kea)Ua = R, (100)

Inversion of K, consists of two decoupled inversions:

-1 O
K, = [szz I ]

0 ]K3x3-1

1 y -z
Kyy ' =
2x2 yz_zz[_z y:|

[ ps— r? —qs — r? -r T

(pzs—Zprz—qzs—2qr2] [pzs—Zprz—qzs—quzJ [,r)s—Zr2 -qgs
ps—r2 r

(pis—Zprz—qzs—quzJ (ps—2r2—qs)

SYM. [__P.L_}
ps—=2r°—gs

-1
K33

It is now evident that if K3,4is not simplified or constrained, the inversion and subsequent

matrix multiplications will yield hundreds of stiffness terms of little analytical value. This
was verified with the MAPLE matrix manipulation software. Equations (99) and (100) are
modified with the following three changes in an attempt to bring out the important terms
while eliminating negligible ones.

1. Multiply the seven matrix equations by the semi-rigid beam bending flexibility:

-1
(24 El, )
- .
Lsrb

2. Substitute beam properties:

1 1 3
Af = bftf’ If = Ebft}’ Asrb = bsrbtsrb’ Isrb = Eb:rbtsrtv

3. Define flexure to semi-rigid beam bending stiffness ratio, 3.

24El, t 3
-3 3 7 3

ﬁ: Lf =1fL.\'rb - Lf _ af (101)
_—24[;:1 s Lplgy | tsob gy

Lsrb Lsrb

where a ‘s represents the “aspect ratios” of the beams.
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These modifications yield the following new matrices:

P
Ra=|| 8Eba’,
0

1 Kspring 2 2 2
——= + o (s8) +as(ch 0
- [a;’,b( P8+ 0y (56)" + o} (cO)
=
1 (K,
0 P2 4 o (cO)? + 92)
(;;’;’:( 4Eb f(C ) f(S ) ’
[-a o 3 L o 3 ]
—L(s8) o0 (—L] (~c6) 0 J—(—LJ (—c8)
K = asrb Qgrp 3 2 Xsrp 3
ac
o o L o
0 —L(-cH) 0 (—L] (s6) —f[—L] (s6)
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The initial motivation behind dividing by the semi-rigid beam stiffness in step one, is to
divide out the presumed insignificant flexure stiffnesses from the 7 by 7 matrix by an
“infinite” stiffness. This presumption is what was assumed as truth in the analytical model
in section 3.2. However, the flexure to semirigid beam bending ratio of the first design,
B=4.1 (equation 101), indicates that the “rigid-beam” in the analytical model is actually
more flexible than the “flexure” in pure bending. It cannot, however, be concluded that the
truss model is inadequate for use as an initial estimate, since its accuracy is derived from
modeling the kinematics of the device based on its deflected shape, regardless of the
coupled bending stiffness interaction. It can be concluded that another assumption about
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the bending stiffness ratio, 3, is mandatory for simplifying the analytical model. It should
also be noted that the pure bending ratio, B, is a practical non-dimensionalization
parameter for matrix simplification. It is not necessarily an accurate ratio for comparing the
total bending stiffness contributions of the flexure and semirigid beam to the effective
stiffness of the component. Since the internal bending moment is zero in the center of the
semirigid beam (point of counterflexure), and maximum at the ends of the flexures, the
flexibility of the semirigid beam is relatively unexercized. A more useful bending ratio
would also compare the flexibility of one flexure to one-half the semirigid beam, since
there are two flexures for every semirigid beam.

The important simplification comes from recognizing three facts about the beam aspect
ratio for the flexure and and semi-rigid beam.

Fact 1. The first design had beam aspect ratios of 16% and 10% for the flexure and
semi-rigid beam, respectively. The thickness and, in turn, aspect ratio of the semi-rigid
beam was semi-arbitrarily selected to please aesthetic requirements. Increasing the semi-
rigid beam’s thickness until both beam’s aspect ratio were equal at 16% would have
channeled more strain energy into the piezoelectric, while the effective stiffness of the
component would remain relatively insensitive to such a modification. In conclusion, it
is recommended that the aspect ratio of the semirigid beam should be greater than or equal
to that of the flexure.

Fact 2. The geometrical constraints of the device limit the upper bound of the semi-
rigid beam aspect ratio.

Fact 3. It can be argued that the technical efficacy of the device is improved as the
aspect ratios converge toward the same value.

Fact 4. Since, the Bernoulli-Euler beam theory, used here, neglects the shear
deflections important to “stubby” beams, it is important to limit the upper bound of the
semi-rigid beam aspect ratio to the 10-20% range shared by the flexure.

All these facts suggest that arbitrarily equating aspect ratios is a harmless constraint that
does not limit design alternatives, but rather, replaces arbitrary variable selection with a

sound design rule:

a=07=0Ogp (103)

Figure 58 illustrates that the imposed aspect ratio constraint does not limit design
options.
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Figure 58. Five examples of lever arms with @, = a,,, illustrate that the aspect ratio

constraint does not limit design options.

The aspect ratio constraint simplifies the matrices as follows:
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The simplicity of matrix (104) is appreciated when considering that the initial matrix
inversion involved a densely populated six by six matrix. The assembled stiffness matrix
is now a function of the lever angle, the aspect ratio, the semi-rigid beam and flexure
lengths and the piezoelectric properties. The aspect ratio is the ideal parameter for
designing the flexure and constraining the semi-rigid beams thickness. A similar
relationship between the two beam lengths is needed to eliminate impractical designs.
Obviously, cases where L, > L, are of no interest to the designer. The following

substitution will be made:

L., =nL (105)

srb n
where n> 8.

The scaling parameter, n, defines the size of the component and will later indicate when

the beam can be assumed a rigid beam.

2 -1 ~(n-1)L,

Ky = 2 (n- )L, (106)
SYM. (n*+2%5)

Substitute m=(nz +%), Z=(n—%) (107)

2 -1 -AL,
into (106) to yield: K,, = 2 AL, (108)

SYM. L

Inverting (108) yields:
; ~2mL + L, —mL, + 7L, -AL,
Ky =7— — -2mL + "L} AL, (109)
(3mL’, + 2n’L’,) SYM. 3

Assuming that &’ =7 =n’, simplifies the matrix inversion with single term matrix
elements. Without this substitution, the static condensation matrix multiplications in the
next solution step produce too many terms to be used in a simple analytical tool.

i |
-1 0 =L
"17
K, =4 I (110)
5 nL,
SYM. =3 5
L ("L/) ]
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The errors associated with substituting #° =7 = n’ into (106) are graphed in figure 59.
The errors indicate that a maximum 5% error is introduced into the matrices, if n > 20. For
n < 20, the model is less useful, due to the large matrix substitution errors. Thus, this
constraint does limit design options, unlike the unnoticable aspect ratio constraint. It
should be noted that the current design cannot be modeled with this analysis, since n = 8 to
satisfy a stress factor of safety of 4.0. The model is practical if a small flexure to

semirigid-beam size ratio is desired for the sake of performance at the expense of the
flexure’s yield stress safety factor.

Simplified Scaling Parameter Errors
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Figure 59. Simplified Scaling Parameter Errors

Now that the five by five matrix has been inverted successfully with single term
elements in the resulting matrix, static condensation of the undesired degrees of freedom is
accomplished with the following matrix multiplication,

K,=(K,-K.K]K,)

where, KU, =R, (111)

Multiplying (111) by 2Eba’ yields the 2x2 effective stiffness matrix equation:
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- 112
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’ 3

The Q and R coefficients are analogous to a finite element’s
coefficients because they are multiplied by the cubic aspect ratio, a’. Likewise, the terms

pure bending” stiffness

depending on the a’ are “shear-bending” coefficients, and the terms depending on « are
the “axial” coefficients.

0.3

Pure Bending Coefficients

5 15 25 35 45
Semi rigid beam length scaling parameter (n)

Figure 60. The discrepancy between Q and R is indicative of the 5% simplification errors
imposed during static condensation.

Since static condensation pre-and-post-multiplied a symmetric matrix by another matrix,
pure bending from node 4 should be resisted by the same stiffness as pure bending from
node 1, (with exception to the sine-squared and cosine-squared term differences at the
opposite ends of the lever arm which are responsible for transforming “pure-bending”
moments and rotations into the model’s forces and displacements, v1 and u4). Since this is
not the case, since Q does not equal R for all n. The discrepancy between Qand R, in
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figure 60, is indicative of the 5% simplification errors imposed during static condensation.

Thus, for n>20,Q=R=0.2.
Since, %3—2- <<§, for n > 20, the matrix (112) becomes,
n
 ( 2Eb(sin 6)’ )a _ 17 7
3 (ZEb(cosje)(sm 9))0‘ v,| lo.25p
+2Eb(cos 9)2(0.'2 +0.2a’) 114)
Ko [ 2Eb(cos 6)° B
+ a |y 0
SYM. 2 3 ‘
R 2 2 3
i +2Eb(sin0)'(a” +0.207) | | | ]

Due to the fact that this does not look like an ordinary stiffness matrix, it is insightful to
resubstitute the original beam properties into this matrix.

3
=t a=p, 1=25 (115)
L 12
'(sine)’(zEA) 1t -
3 \L v,| |o.2sp
N 2(cos 0)* (IZEIJ (sin @)(cos 6) (ZEA)
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2 o 3 Ly, 0
SYM. +2(sm6) (125?1)
¢ L
(sin 6)° (2451)
+ 3 L .
i 5 L -
. albTVv,]_[0.25P e
where, ble|u, || o (116)

The first term in the “a” matrix element can now be easily deciphered as the double
beam’s axial stiffness, of three-series-element lever arm, transformed through theta to v1.
The second and third terms in “a” together model the bending stiffness of the lever arm in
shear.

The effective stiffness of the component can be found by
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Keff =~ —=a-=— (117)

The percentage of the total strain energy that is in the piezoelectric is found by

2
U. K. ?
Rl =_P'_n°._.ﬂ(ﬁij ._._b__z_ (118)
Ky \ v c(ac—b)

piezo U
The aspect ratio that corresponds to the maximum strain energy in the piezoelectric can be

total

found by finding the roots to the fifth-order equation:

d

E(U' )=0. (119)

piezo
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APPENDIX II

LOW-FREQUENCY ASTREX MODE SHAPES

As depicted in the transfer functions of chapter 5, the high-amplitude dynamics below
35 Hertz are an order of magnitude larger, and thus more influencial to the performance of
the testbed. Although the passive damping implementation was targeted for a higher
frequency bandwidth to facilitate line of sight control roll-off, a careful look at the first 18
mode shapes, indicates that the low-frequency testbed dynamics are simply the larger
modal displacements of the apex. Although there is significant modal deformation in the
backplane, the largest modal displacements of the structure are primarily due to tripod
bending. The following mode shapes are also helpful in appreciating the need for a tuned-
mass damper in the apex.
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