
NASA Technical Memorandum 108819

Flight Investigation of the Use
of a Nose Gear Jump Strut to
Reduce Takeoff Ground Roll
Distance of STOL Aircraft

Joseph C. Eppel, Gordon Hardy, and James L. Martin
Ames Research Center, Moffett Field, California

September 1994

RIP_A
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000





Preface

The purpose of the jump strut research program was to

increase the general knowledge and obtain data on the

sudden extension of an aircraft nose gear to reduce the

takeoff ground roll distance. The use of stored energy

applied to the landing gear oleo strut, termed a "jump
strut," to reduce the takeoff roll of the X-29A has been

the subject of analytical studies by the Grumman Aircraft

Company under contract to the U.S. Air Force Wright
Laboratory. The conclusion of this effort in 1983 was that

the benefits were large and that the hardware mechaniza-

tion was simple. These findings fostered additional design

and experimental work that culminated in the subject

flight investigation. This experiment is a joint effort

between the U.S. Air Force Wright Laboratory and the
NASA Ames Research Center.
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Nomenclature and Terminology

ALPHA Angle of attack, degrees

C Corrected data

CNTR Data point (counter) number,
nondimensional (n.d.)

ELEV Elevator position, degrees

ENGV Jump strut control valve activation, n.d.

Initial Pv Jump strut pneumatic reservoir pressure,

psig

JS Jump strut assisted takeoff

K Correction factor for runway component

of wind to takeoff ground roll
distance (ref. 5), corrected

distance = K * (uncorrected

distance), n.d.

MAIN LG Main landing gear strut position,

0 = fully extended, inches

NJS Unassisted takeoff (no jump strut)

P1TCHR Pitch rate, degrees/second

Pa Ambient atmospheric pressure, psi

RPM AVG Engine fan speed, average of four engines

during ground roll, RPM

S Wing Area (S = 600 ft 2 for QSRA), ft 2

STRUT Nose gear strut position,

0 = fully extended, inches

T valve Duration of jump strut control valve

opening, msec

Target T/W Planned T/W for data point, n.d.

TEMPC Ambient atmospheric temperature,

degrees celsius

THETA Pitch attitude, degrees

T/W Thrust to weight ratio = (total static thrust
corrected for ambient conditions and

RPM.AVG) / (takeoff gross weight),

n.d.

U Uncorrected, measured data

VCAIRK QSRA nose boom pitot-static calibrated

airspeed, knots

Vcorr Airspeed corrected for position error,
knots

LOAD Nose gear load, lb

W

W/S

Wind

X

Delta X

Aircraft gross weight at takeoff brake
release, lb

Wing loading = W / (Wing Area), lb/ft 2

Runway component of wind,

Wind = Vcorr - ground speed
determined from laser tracker,

knots - (tail wind) + (head wind)

Distance along runway from point of
brake release, ft

Correction to measured takeoff distance

for T/W variation from target

(i.e.: Target T/W - T/W),
Corrected takeoff

distance = X - (Delta X), feet

Takeoff Distance (ft) Column Heading Code used in

Appendix C: a.b.c.d.e.f

a'.

b_

c_

d*:

e*:

f*:

Examples:

Note:

C = Corrected data

U = Uncorrected data

JS = Jump strut assisted takeoff

NJS = Unassisted takeoff (no jump strut)

Thrust to Weight ratio (Range: 0.3--0.45)

Initial reservoir pressure/1000, psig

(Range: 2-3)

2K = 2000 psig

2.5K = 2500 psig

3K = 3000 psig

Valve timer setting

5 = 80 msec valve open time

8 = 130 msec valve open time

10 = 170 msec valve open time

Wing loading, ib/ft 2 (Range: 77-88)

CJS,.4.2.5K. 5 indicates - Corrected

data, jumpstrut takeoff, 0.4 T/W,

2500 psig reservoir pressure, 80 msec

valve open time

U.NJS..3.77 indicates - Uncorrected
data, unassisted takeoff, 0.3 t/W,

77 lb/ft 2 wing loading

As illustrated in above examples,

coding may not include all notation
items indicated by "*".

vii





Flight Investigation of the Use of a Nose Gear Jump Strut to Reduce Takeoff
Ground Roll Distance of STOL Aircraft

JOSEPH C. EPPEL, GORDON HARDY, AND JAMES L. MARTIN

Ames Research Center

Summary

A series of flight tests was conducted to evaluate the

reduction of takeoff ground roll distance obtainable from

a rapid extension of the nose gear strut. The NASA Quiet

Short-haul Research Aircraft (QSRA) used for this

investigation is a transport-size short takeoff and landing

(STOL) research vehicle with a slightly swept wing that

employs the upper surface blowing (USB) concept to

attain the high lift levels required for its low speed, short-
field performance. Minor modifications to the conven-

tional nose gear assembly and the addition of a high

pressure pneumatic system and a control system provided
the extendible nose gear, or "jump strut," capability. The

limited flight test program explored the effects of thrust-

to-weight ratio, wing loading, storage tank initial pres-

sure, and control valve open time duration on the ground

roll distance. The data show that the predicted reduction
of takeoff ground roll on the order of 10% was achieved

with the use of the jump strut as predicted. Takeoff per-
formance with the jump strut within the range of the

parameters examined was also found to be essentially
independent of the pneumatic supply pressure and was

only slightly affected by control valve open time.

1. Introduction

The minimum takeoff ground roll distance of
conventional- and short-takeoff aircraft is influenced

by (among other factors) the horizontal tail's effective-

ness in rotating to a lifioff pitch attitude at the minimum

controllable airspeed. For some configurations, particu-

larly high thrust-line types, the pitch-up tail moment

commanded by the pilot is countered by the moment due

to engine thrust.

Beginning in 1982, the Flight Dynamic Laboratory of the

U.S. Air Force Wright Laboratory investigated a possible
approach for reducing the ground roll which involved the

use of a pneumatically extendible nose gear, referred to as

the jump strut. This joint industry/Department of Defense

(DoD) effort resulted in the development of a F-16 jump

strut nose gear which was ground tested at Wright

Laboratory. In 1985 a T-38 aircraft with a nose gear jump
strut was ground-run tested at the Naval Air Test Center,

Patuxent River, Maryland. This test provided a database

for a subsequent analytical simulation which predicted
that a substantial reduction of the takeoff distance of

tactical aircraft could be obtained (ref. 1). Wright

Laboratory also participated in the Advanced Transport

Technology Mission Analysis assessment studies (ref. 2)

which showed that the nose wheel jump strut, when used

as a rotational aid, produced a significant improvement in

takeoff performance for some of the transport aircraft
configurations evaluated.

In 1987 a study by Lockheed, Burbank, (ref. 3), funded

jointly by Wright Laboratory and NASA Ames Research

Center, investigated the takeoff benefits of the jump strut
applied to the NASA Quiet Short-Haul Research Aircraft

(QSRA) and concluded that, at a thrust to weight ratio of
0.4, reductions of 10--12% of takeoff distance were

possible with a two-stage pneumatic jump strut. The

QSRA (fig. 1) is a slightly swept high-wing transport-size

short takeoff and landing (STOL) research vehicle that

employs upper surface blowing (USB) to achieve

unusually high lift levels for its low speed capabilities and

short-field takeoff and landing performance (ref. 4). The

demonstrated low-speed stability of the QSRA makes it

an excellent flight test facility to explore the effect of the

jump strut on STOL aircraft takeoff performance.
Furthermore, the QSRA is an interesting choice for this

investigation because the USB presents an adverse nose-

down pitching moment due to the high thrust line which

diminishes the pitch-up rate during takeoff, thereby

increasing the minimum lifioff speed. Authorization to

proceed with the experiment was granted in 1989 upon
the issuance of a NASA/U.S. Air Force Memorandum of

Understanding (MOU) which defined the objective to

flight-demonstrate a nose jump strut system on NASA's
Quiet Short-Haul Research Aircraft.



Figure 1. QSRA in the takeoff configuration.
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2. Approach

Project management of the QSRMJump Strut investiga-

tion was assigned to Ames Research Center, Moffett
Field, California. NASA provided technical direction,

contract monitoring, the QSRA aircraft, the engineering

and technical staff, and the operations infrastructure

required for the development and test of the flight hard-

ware. The U.S. Air Force was responsible for technical

coordination with NASA, contract funding, and landing

gear assembly laboratory performance testing. The Air

Force also shared in the costs of the flight test.

Modifications to the QSRA included replacing the

original nose gear with a jump strut nose gear, and

installing a pressure reservoir, a pneumatic system, a

control system, and the required instrumentation. A
Failure Modes and Effects Analysis was performed to

ensure safe operation. A summary of the key findings is
presented in appendix A.

A nonserviceable QSRA nose gear was restored to

flightworthy condition and modified by Menasco

Industries to provide the jump strut, or pneumatic exten-

sion capability. The reworked nose gear represented a low

cost, low complexity system which operates as a normal

nose gear after its use as a jump strut. Preliminary

functional tests were performed by Menasco, and gear

validation tests were conducted at Wright Laboratory.

After installation of the jump strut system on the QSRA a

series of static tests was conducted to verify the perfor-
mance of the electrical and pneumatic systems and to

calibrate the new instrumentation. Following these static

tests, the flight program was initiated. The first phase of

flight testing performed at NAS Moffett Field, California,

focused on operational (piloting) techniques. The subse-

quent data-flight tests were conducted at NALF Crows

Landing, California.

3. Test Objectives

The primary goal of this program is to experimentally

determine the effect of using a nose gear jump strut on

takeoff ground roll distance. Associated with this overall

objective the following specific objectives were targeted:

• Determine the influence of jump strut parameters

(initial pneumatic reservoir pressure and valve-open
time) on takeoff ground roll distance.



• Determinetheinfluenceofaircraftparameters
(thrust/weightandwingloading)onjumpstrut
groundrolldistance.

• Experimentallyverifythereductionoftakeoffground
rolldistancespredictedbytheLockheedstudy
(ref.3).

• Evaluatejumpstrutsystemperformance,loads,and
serviceoperations.

• Determinetherepeatabilityofjumpstrutgroundroll
distance.

• Identifyareasforfurtherstudy.

4. Instrumentation

The instrumentation installed in the QSRA before this

project was developed specifically to document the

aircraft state, operating conditions, and control positions
and forces for flight investigations in the terminal area

flight regime. Several parameters were added to this

existing QSRA instrumentation list to satisfy the
requirements of this project.

Data from the transducers are transmitted to a remote

multiplexer/digitizer unit (RMDU) which provides
signal conditioning for the transducer, converts the

analog data to digital form and encodes the data into a

pulse code modulation (PCM) serial bit stream.

Approximately 130 QSRA parameters are sampled

at 100 samples/second and an additional 18 parameters
are acquired at 20 samples/second. The PCM bit stream is

recorded on an on-board tape recorder and telemetered to

the ground data monitoring station. The telemetered

signal is also recorded on the ground. The ground

recording includes ground-based data such as aircraft

tracking position and ambient (atmospheric) conditions.

Selected parameters are displayed in engineering units

in real time in the ground station to enable safety and

programmatic monitoring. The formats used included

time histories ("strip charts"), digital displays, and

x-y plots. Laser and radar tracking data was acquired

from the existing Crows Landing NASA test range
equipment.

5. Vehicle/System Description

5.1 Aircraft

The QSRA (fig. 2) was first flown by NASA Ames
Research Center in 1978 as a research aircraft to investi-

gate propulsive lift and to demonstrate, simultaneously,

the low noise benefit obtained by placing the engines over

the wings. These dual purposes complemented each other

in that the over-the-wing engine exhaust flow uses the

Coanda effect, thereby developing the high lift effective-

ness due to exhaust flow deflection and supercirculation
(ref. 4). This configuration is referred to as USB.

The QSRA has been performing STOL flight research at

Ames Research Center since 1978. These prior flights

provided the low speed performance and flying quality

data that supported the use of the QSRA for the jump
strut evaluation.

The QSRA consists of a deHavilland C-8A Buffalo

fuselage and empennage with a modified wing/propulsion

system designed and fabricated by Boeing. The high

T-tail on the C-8A Buffalo was modified to include fully

powered elevator operation. The four YF-102 AVCO

Lycoming fan jet engines, which are capable of producing

approximately 6,000 pounds of thrust each, are mounted

above the wing in acoustically treated nacelles. Neither

the main nor the nose landing gear is retractable.

5.2 Jump Strut System

The jump strut system can be divided into three elements,

as illustrated in figure 3:

• The jump strut nose gear,

• The pneumatic system, and

• The electronic control system.

5.2.1 Nose gear and strut- The original QSRA nose

landing gear assembly is a two-stage device which has

both high and low pressure air chambers. The gear

features both air and oil to provide shock absorbing and

rebound damping during all aircraft ground operations.

Figure 4 shows the original nose landing gear prior to
modification. The rate of the strut movement is controlled

by regulating oil flow through the oil metering device

comprising the piston head, flapper, and metering pin.

A nonserviceable QSRA nose gear/strut was recondi-

tioned and modified to provide a movable "jump piston"
(see fig. 5). The metering pin is attached to the added

jump piston instead of the trunnion. A hole was drilled

through the trunnion to enable the injection of high

pressure gas into the chamber above the jump piston.

In the jump strut mode, the application of high pressure

gas to the upper chamber extends the strut, and the

subsequent reaction forces from the runway cause the
nose of the aircraft to lift.



AERODYNAMIC DATA

AREA (TRAP). f12

WING HORIZ VERT

600.00 233.00 152.00

SPAN, ft 73.50 32.00 14.00

ASPECT RATIO 9.00 4.40 1.22

TAPER RATIO 0.30 0.75 0,60

SWEEP, C4, (:log 15.00 3.00 18.00

M.A.C. In. 107.40 U.00 137,00

CHORD ROOT, In. 150.70 100.00 168.00

CHORD TIP, In. 75.0045.20

18.54

100.00

TIC BODY SIDE, % 14.00 14.00

T/C TIP, % 15.12 12.00 14,00

INCIDENCE, deg 4.50 - -

DIHEDRAL, (leg 0.00 - -

TAIL ARM, In. - 525.0 In. 488.0 In.

VOL COEFF V - 1.098 0.1402

LANDING GEAR

I GEAR STROKE TIRE TIRE O.D. ROLLING P..
MLG, In. 21.0 14 x 15 37.0 -15.2

NLG, In. 17.5 8.90-12.50 TYPE III 27.5 12.0

DIMENSIONS IN m(ft)

9.75

(32)--_

CONTROL SURFACES

ff2/APL* BLOWN

AILERON 32.2 BLC

FLAPS INBD 105.0 USB

FLAPS OUTBD 40.2 NONE

SPOILERS 33.7 NONE

LE. FLAPS 54.3 NONE

ELEVATOR 81.6 NONE

RUDDER 60.8 NONE

'THEORETICAL RETRACTED AREA

PROPULSION

ENGINE LYCOMING YF-102

STATIC THRUST 6225"'

FAN P.R. 1.45

BY-PASS RATIO 6.00

"MEASURED THRUST

Figure 2. Quiet Short-Haul Research Aircraft configuration and dimension details (from ref. 4).
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Figure 4. Original QSRA nose gear.



Jump strut pneumatic inlet \

Trunnion _

Upper oil chamber

Pnuematic chamber
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g pin

head

Lower oil chamber

Floating piston

Low pressure
chamber

High pressure
nitrogen chamber

Charging valves

Figure 5. Jump strut nose gear.

5.2.2 Pneumatic system- Figure 6 shows the jump strut

pneumatic system. The main components are the storage

tank (pneumatic reservoir), control valve, safety valves,

and gages. Briefly, the operation is as follows.

The storage tank is charged to the desired pressure

through a service port located on the port side of the

aircraft. A separate pressure gage is provided for both the

flight and ground crews. The required equipment was

both small and light which enabled the storage tank and
control valve to be located in the nose wheel well. The

storage tank weighs 20 pounds and has a volume of
425 cubic inches and a maximum operating pressure of

3,000 psig. The relief valve, set to open at 3,500 psig,

protects against overpressurization, while the vent on the

electrically activated control valve exhausts the supply

lines to atmospheric pressure when the valve is not

supplying high-pressure gas to the upper cylinder. The

bleed valve in the system provides an escape for the high-

pressure gas so that the jump strut upper chamber is

returned to atmospheric pressure within seconds after

jump strut operation, thereby returning the nose gear to its
conventional state.

5.2.3 Jump strut control system- The electronic control

system contains the arming and timing circuits (fig. 7).
Operation of the jump strut requires the firing system to

be armed prior to triggering the control valve. The timing

circuit enables the duration of the valve opening to be set

during the flight investigation within the range of 3 to

170 milliseconds. The firing system circuit is completed

through the nose gear on-ground (squat) switch, thus the

circuit can only be energized when the nose gear is

compressed (structural limitations prohibit operating the

jump strut with the nose wheel off the ground). Dual

firing circuits are provided for safety reasons. If the first
timing circuit fails in the "valve open" mode, the second

circuit will limit the duration of the valve opening. For

these tests, the backup timing circuit was set at the

maximum firing time (170 milliseconds).

The arm/disarm circuit protects against inadvertent firing

as long as the arm switch is not engaged. Also, after the

system is triggered, the circuit is automatically disarmed

to avoid an accidental second firing. The firing button

was placed on the number-one power lever and the

arming and timing controls were placed on the starboard
side in the copilot's control area.

6
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6. Wright Laboratory Ground Qualification

Tests

The modified QSRA nose strut was functionally tested at

the manufacturer's plant. The contractor evaluations

consisted of verifying conformance with drawings and

specifications, and conducting pressure leakage and jump

piston operation tests. Functional acceptance tests were

performed at Wright Laboratory using the test setup

shown in figure 8.

The tests conducted at Wright Laboratory are described in

paragraphs 6.1 through 6.4.

6.1 Documentation of Load-Stroke Curve

The load stroke curve was generated by locking the

landing gear trunnion in place and using the stroke of the

base (movable table) to compress the strut. The first

loading provided an adiabatic compression and release of

the strut in 2 seconds. The second test compressed and
released the strut in 100 seconds, yielding an isothermal

loading.

The results in figure 9(a) duplicated the original speci-

fications of the manufacturer (Menasco) for the two stage

nose wheel strut thereby conforming to the requirement

that the performance of the modified strut match that of

the original configuration.

6.2 Drop Test

This test called for a 12 foot-per-second sink rate (the

original nose strut specification) with a nose weight of
4,788 pounds. The weight on the nose is based on a

QSRA gross weight of 48,000 pounds and a center of

gravity located at 25% of mean aerodynamic chord

(MAC). The drop test utilized the minimum available

bucket weight of 6,700 pounds and a reduced drop

test distance to produce the appropriate impact load.

Figure 9(b) shows the vertical forces as a function of the

strut compression. The simulated operational loads did

not exceed the aircraft and nose gear manufacturer's
structural limits.

6.3 Static Jump Tests

The static jumps (fig. 9(c)) simulated a stationary aircraft

with a gross weight of 55,000 pounds and a center of

gravity located at 26.5% of MAC. The jump strut was

fired at various reservoir pressures (1,000 to 3,000 psig)
and valve-open time intervals (50 to 130 milliseconds).

For these tests the pneumatic cylinders were used to
produce an effective weight on the nose wheel of

5,815 pounds. The figure shows that the vertical forces

encountered did not exceed the operational structural

limits. The compression of the strut following the full

extension shown in this figure would not be experienced
in an actual takeoff.

6.4 Dynamic Jump Tests

The dynamic jump strut firings simulated a takeoff

operation and were the same as the static jump tests

except the effect of wing and tail lift were included,

thereby reducing the weight on the nose wheel to about

4,600 pounds. As in the static jumps, the pneumatic

cylinders were used to obtain the desired nose wheel load.

The wing lift was calculated assuming a QSRA runway

speed of 60 knots indicated airspeed (the nominal velocity

at start of rotation). Figure 9(d) shows that the extension

and compression of the strut remained within operational

limits. Again, as in the static jump, the compression due
to the wheel recontacting the ground after full extension

would not occur during an actual takeoff.
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7. Ames QSRA Static Jump Strut Tests

The instrumentation and the electronic control system

were calibrated on the QSRA prior to jump strut test

operations. The nose gear vertical load was determined by

measuring the bending moment on the trunnion which

was calibrated by placing the nose wheel on scales. The
main wheels were elevated to level the aircraft. The

QSRA static calibration arrangement is shown in
figure 10. A broad range of nose gear vertical loads

was obtained by varying the thrust of the engines. The
summation of moments about the main gear provided a

means of assessing engine thrust as a function of fan

RPM. The results of this data analysis compared very

well with prior engine static thrust calibration data.

Figure 11 shows the vertical nose gear maximum load

versus the jump strut control valve open time for both the

Wright Laboratory tests and the QSRA static jump tests.
Both sets of data show that the maximum load is

essentially independent of valve open time but increases

with reservoir pressure. The maximum load obtained

from the Wright Laboratory test was found to be about

10% greater than the QSRA test data. The source of this
difference has not been identified. Figure 12 shows the

effect of valve open time on the load/stroke cycle. The

larger time maintained higher loads for nearly the full

extension of the strut, thereby approaching the structural

limits of the system. It should be noted that the difference

between the Wright Laboratory data (fig. 9(c)) and the

QSRA data (fig. 12) in the stroke/load curve shape,

during the extension of the strut after the peak load is

reached, is primarily due to the differences in the load on

the nose gear.

Typical time histories, illustrating the variation of the

load on the nose gear and the nose gear extension during

the static QSRA jump strut operation, are presented in

figure 13.

The performance of the system measured during static

tests at Wright Laboratory and Ames Research Center is

summarized in figures 14 and 15 which present the effect
of valve open time at constant pressure, and the effect of

reservoir pressure at constant valve open time. In both of

these figures, the time to reach the maximum load level,

following the firing of the jump strut, is nearly constant

and is independent of valve open time (between 80 and

170 milliseconds) and reservoir pressure. The time

increment for the nose wheel to lift off the ground after

the jump strut activation is seen to be greater at the

lowest duration of the control valve opening (from the

Wright Laboratory data), compared to higher valve

open times (fig. 14). However, within the range of valve

open times used during the QSRA flight tests (80 to
170 milliseconds) the time for the nose wheel to lift off

the ground is relatively constant although from

figure 13(c) the strut velocities (or aircraft pitch rate)

were slightly higher for the longer valve open times. In
figure 15, while the maximum load is seen to increase

with pressure (as previously noted), the time for the nose

wheel to break contact with the ground decreases slightly

and the strut velocities increase slightly as reservoir

pressure is increased.

Scale

Vertic zl load

Figure 10. Calibration configuration for thrust and nose gear load.
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8. Jump Strut Flight Test

The objective of the flight test was to evaluate takeoff

performance with and without jump strut assistance.

Thrust to weight (T/W) ratio values of 0.3, 0.35,

0.4, and 0.45; valve open duration of 80, 130, and

170 milliseconds; and pneumatic reservoir pressures

of 2,000, 2,500, and 3,000 psig were investigated. Each

point on the matrix required several takeoffs to determine

the performance as a function of airspeed. Also, to

establish baseline performance levels, takeoffs had to be

made at various thrust to weight ratios for a range of

airspeeds without the jump strut.

For consistency during the data takeoffs, a series of

preliminary flight tests was conducted to define the

nominal aircraft configuration and pilot takeoff technique.
It was decided to set the control column for an elevator

position of 5 degrees nose down prior to brake release, to

maintain a fixed column position during the takeoff roll

(allowing the elevator to float up to near zero degrees

during the acceleration), and to snap the elevator full aft

simultaneously with firing the jump strut at the target

airspeed. Full up elevator was then held until 15 degrees

of pitch attitude was attained. This pitch attitude was then

held until the aircraft was well airborne. For all operations

the double slotted flaps were set at 59 degrees and the

USB flaps were full up (0 degrees). Also, fan RPM was
selected prior to each takeoff to obtain the desired thrust

to weight ratio for the ambient conditions. Appendix B

shows the variation of fan RPM with temperature and

pressure for families of constant thrust to weight ratios at

a gross weight of 53,000 pounds. The initial nominal
wing loading of 88 pounds per square foot and nominal

c.g. were achieved by operating with full, or nearly full

wing tanks. The maximum thrust to weight ratio
attainable for this configuration, due to engine thrust

limitations, was approximately 0.4. Since the jump strut

pneumatic reservoir had to be recharged for each jump

takeoff, refueling was accomplished simultaneously to

maintain the appropriate gross weight. Additional testing

was performed at a wing loading of 77 pounds per square

foot by reducing the fuel load. At this wing loading it was

possible to achieve a thrust to weight ratio of about 0.45.

To ensure against accidental firing of the jump strut, the
jump strut circuit was not armed until after brake release

on the runway, immediately prior to takeoff. This

procedure eliminated the possibility of firing the jump

strut with a high initial static load on the nose gear due

to engine thrust, which could result in exceeding the
allowable jump strut/airframe structural load limitations.

8.1 Flight Test Data

The takeoff ground roll distance was measured using a

calibrated ground-based laser tracking system and a laser

reflector mounted on the side of the fuselage. For this
evaluation, the takeoff ground roll distance is measured

from the point of brake release to the point of full

extension of the main landing gear strut. Figure 16

illustrates the method used for determining ground roll

takeoff distance. In addition to position on the runway,
the true ground speed could be derived from the laser

tracker data. The ground roll distance was then corrected

for ambient wind using the method provided in refer-

ence 5, where the magnitude of the runway wind com-

ponent was obtained by taking the difference between

the aircraft airspeed and the derived ground speed. The

uncorrected and corrected flight test data and the ground-

based ambient and laser-tracker data are presented in

appendix C. Typical time histories of key parameters

for unassisted and jump strut assisted takeoffs, at thrust

to weight ratios of 0.3 and 0.4, are shown in figures 17(a)
and 17(b).

Because of the sensitivity of engine thrust to RPM setting

and the ambient temperature and pressure, the actual T/W

always differed slightly from the targeted value. The
takeoff distances, therefore, were also corrected to the

targeted T/W levels. To avoid possible errors induced by
large corrections to the measured data, takeoffs that

resulted in excursions from the targeted thrust to weight

ratio greater than 0.01 are not included in the plotted data.

A total of 69 takeoffs were completed. Of these takeoffs,

44 were jump strut assisted. Throughout the tests, all

forces, pressures, and accelerations remained within

monitoring limits.
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9. Discussion of Results

The vertical nose gear loads, the nose gear cylinder

rebound pressure, and the nose gear axle acceleration

were found to remain within the allowable limits through-
out the flight test evaluation of the jump strut system. A

typical load/stroke history recorded during a jump strut

takeoff is given in figure 18. The start point (1) shows the

initial high load and resulting compression of the nose

gear due to the application of thrust prior to brake release.

As the aircraft accelerates from the static, the load on the

nose gear reduces and the nose of the aircraft pitches up.
This pitch-up produces a few noticeable pitch oscillations

which damp out rapidly as the aircraft continues along the

runway. During the ground roll, load variations without

large strut movement are seen, probably due to runway

surface roughness. At the desired speed, the jump strut is

activated producing a rapid extension and an accompany-
ing increase in load. The load diminishes as the extension
continues until lift-off occurs.

9.1 Effect of Pneumatic Reservoir Pressure

Figure 19 shows the effect of pneumatic reservoir

pressure on takeoff performance for a 0.4 thrust to weight
ratio and a 170 millisecond valve-open duration. It should

be noted that the fairing of the test data shown on this and

subsequent figures represents the minimum measured

distance, since any deviation from optimum conditions

could contribute to a longer takeoff roll. The use of the

jump strut reduces the minimum ground roll distance by
about 110 feet compared to the unassisted takeoffs.

However, no clear trend with respect to the effect of the

initial reservoir pressure is detected. Although the maxi-
mum static nose gear load was earlier seen to increase

with pressure, it appears that the dominant performance

factors during the flight operations are the initial rate of

load increase and the time to achieve maximum load,

illustrated in figure 13, which shows that the initial rate of

extension, the initial rate of load increase, and the time to

achieve maximum load do not vary significantly for

reservoir pressures between 2,000 to 3,000 psig.

9.2 Effect of Valve-Open Time

The effect of valve-open duration is illustrated in

figure 20. For this comparison the thrust to weight ratio is

held at 0.4 and the initial reservoir pressure is 3,000 psig.
As noted in the discussion of the effect of reservoir

pressure, while the assisted takeoffs are approximately

110 feet shorter than the unassisted operations, no

significant difference in performance due to valve-open
time is detected.

9.3 Effect of Thrust to Weight Ratio

Figure 21 (a) depicts the influence of thrust to weight ratio

on ground roll distance for jump strut assisted and

unassisted takeoffs at a wing loading of 88 pounds per
square foot. As expected, the lower T/W levels result in

greater takeoff distances at all tested speeds as well as
higher rotation airspeeds for the minimum distances.

Figure 2103) shows the minimum ground roll distances as

a function of T/W for both the jump strut and unassisted
takeoffs. The reduction of ground roll distance obtained

with the use of the jump strut is seen to diminish at the

lower values of thrust to weight tested. At 0.4 T/W a 13%

reduction of ground roll distance (fig. 19) was established

by the flight test data. These results validate the estimated

improvements of 10-12% predicted in the reference 3
study.
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9.4 Effect of Wing Loading

The method of altering wing loading involved only the

variation of fuel quantity in the wing tanks, resulting in

a change of center of gravity position as a function of

fuel level. The two wing Ioadings tested were 88 and

77 pounds per square foot, with associated e.g. positions
of 29.5% and 31.9% MAC, respectively. Because the

flight tests were prematurely discontinued due to aircraft

mechanical problems, only the data from the unassisted

takeoffs are available, as shown in figure 22(a). A plot of

the minimum distance variation with wing loading is
presented in figure 22(b).

9.5 Jump Strut System Servicing and Operational
Considerations

The jump strut system tested was lightweight and was not

complex, thereby making it representative of possible

operational configurations. All elements operated reliably
during the flight test program, although a failure of the

magnetic-latching arm switch occurred during taxi tests

after the completion of the flight activities. Servicing the

pneumatic system required the development and

application of safety procedures due to the handling of

the high pressure gas. Servicing was conducted between

test takeoffs, often with the engines running, and proved

to be straightforward and safe and presented no special

problems. The pneumatic system was charged with

nitrogen during the initial tests and with dry air during
the later flight tests. This change was made because of

logistics problems associated with delivering the large

quantity of pressurized nitrogen to the remote test site. No

change in the operation of the jump strut system was

observed. Postflight inspections of the nose gear assembly
and associated airframe structure revealed no adverse

effects as a result of the jump strut operations.
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9.6 Repeatability of Jump Strut Ground Roll Distance

Considerable variations in the measured takeoff ground

roll distance (up to 80 feet greater than the minimum

distances) were observed when test conditions were

repeated. Variables such as wind effects and pilot

technique (e.g., the rate of the aft movement of the

control column upon activating the jump strut and the

attitude held for liftoff and climb-out) are suspected to

contribute to these variations. Adequate data, however,

were produced to determine the maximum performance

(minimum) takeoff ground roll distances for both the

jump strut assisted and unassisted takeoffs.

10. Recommendations

Preliminary testing indicated that piloting technique

prior to and during the rotation is critical in consistently

obtaining minimum ground roll distance. Because limited

test opportunities prevented a comprehensive investiga-

tion of ground roll and rotation piloting techniques, it is

recommended that this area be explored.

Design innovations that improve the effectiveness and
utilization of the jump strut (such as the use of a longer,

single stage strut and the automatic inflight recharging of

the pressure reservoir) are additional areas for further

development.

11. Conclusions

A pneumatic jump strut development program and flight

test evaluation to determine the influence of a nose gear

jump strut on takeoff ground roll distance was conducted

using the NASA Quiet Short-Haul Research Aircraft. The

operational experience with the jump strut and the test

data support the following conclusions.

The use of the jump strut reduces the takeoff ground roll
distance for all conditions examined in the flight test

investigation. The reduction of takeoff distance was found

to improve with increasing thrust to weight ratio.

At a thrust to weight ratio of 0.4 and a wing loading of

88 Ib/ft 2, the use of the jump strut reduced the takeoff

ground roll distance by 1 I0 feet, or 13% of the unassisted
takeoff distance. This reduction of takeoff distance was

found to diminish to a negligible amount when the thrust

to weight ratio is decreased to 0.3.

Thrust to weight ratio more strongly influenced the

takeoff ground roll distance for the jump strut assisted

takeoff compared to the unassisted takeoff distance.
For the nominal wing loading of 88 lb/ft 2, the assisted

takeoff ground roll distance was reduced by approxi-

mately 320 feet by increasing T/W from 0.3 to 0.4. The

unassisted takeoff distance was reduced by only 210 feet

for the same change in T/W.

Variations of reservoir pressure between 2,000 and

3,000 psig and variations of control valve opening
durations from 80 to 170 milliseconds, did not have a

significant effect on the ground roll distance for jump
strut assisted takeoffs.

For fixed valve opening times of 80 and 170 milliseconds,

at initial pressure values from 2,000 to 3,000 psig, the

maximum load produced by the jump strut increases

slightly with increasing pressure.

The variation of wing loading between 77 and 88 pounds

per square foot and associated c.g.s at 0.4 T/W for
unassisted (no jump strut) takeoffs showed, as expected,

that at the higher wing loading and more forword c.g.

condition the aircraft lifts off at a higher airspeed and

therefore requires a longer ground roll. Data were not

obtained to evaluate the effect of the jump strut on takeoff

distance for 0.4 T/W at a wing loading of 77 pounds per

square foot.

For initial pneumatic source pressure ranging from

2,000 to 3,000 psig, the maximum load and the time

required to reach that load after activating the jump strut

are essentially unaffected by the duration of the control

valve opening for values from 80 to 170 milliseconds.

The longer durations, however, maintained higher loads

for a greater portion of the strut extension.
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Appendix A - QSRA/Jump Strut Hazard Analysis Summary

NASA-AMES RESEARCH CENTER

HAZARD CLASSIFICATION, RISK ASSESSMENT, AND RESOLUTION PRIORITY

Identified hazards will be classified accordinq to HAZARD SEVERITY and HAZARD PROBABILITY, The
urgency for resolution ot a hazard is deoend-ent upon tt_e combination of the seventy and prot_a_ility of each
hazard, or the HAZARD RISK ASSESSMENT (HRA).

1, HAZARD SEVERITY

A hazardous condition whose worst case feasible effects (immediate or long term cumulative) on personnel
and/or the system (equipmentlfaczlitylaircraft) may be:

CATEGORYI (CATASTROPHIC)

CATEGORYII (CRWICAL)

CATEGORYIII(MARGtNAL)

CATEGORYIV (NEGLIGIBLE)

Death or permanent disabling injury and/or extensive damage
resulting tn loss of mission.

Severe in_uryliitness or lost time injury (> 6 months) and/or serious
damage resulting in signiticam delay of mission.

Minor injury/illness or lost time injury (> 1 day < 6 monthS) and/or
minor damage resulting in limited delay of m=sslon.

No lost time injury/illness and/or neglible system damage.

2. HAZARD PROBABILITY

LEVEL A (PROBABLE)

LEVEL B (REMOTE)

LEVEL C (IMPROBABLE)

LEVEL D (HIGHLY IMPROBABLE)

Likely to occur several times in the life of the system.

Ukeiy to occur once in the life of the system.

Not likely to occur in the life of the system.

Occurrence is considered to be extremely unlikely in the life of

the system.

3. HAZARD RISK ASSESSMENT

{lIRA) MATRI;(

Hazard Severity

Hazard I II III IV

PmbaJoility

A 1 1 2 3

B 1 1 2 3

C 2 2 3 4

D 3 3 4 4

4. HAZARD RESOLU'rlON pRIORITY

initial HRA Priority

(UNACCEPTABLE) Resolve or accept residual risk prior to any
testing or flight.

2 (UNDESIRABLE) Resolved or accept residual risk pnor to
start of reseamh.

3 (ACCEPTABLE
WITH REVIEW)

Resolution is desiraJole.

4 (ACCEPTABLE Resolution is not required.
WITHOUT REVIEW)

r

5. RESIDUAL RISK ACC_'PTANCE

Final HRA

1 (UNACCEPTABLE)

J:]¢auired Siqn-Offs

Project Mgr., User Division Une Mgrnt., User Org. Director, Center Director.

2 (UNDESIRABLE) Project Mgr., User Division Line Mgmt.

3 (ACCEPTABLE Project Mgr., User Branch Line Mgmt.
WITH REVIEW)

4 (ACCEPTABLE Project Mgr.
WITHOUT REVIEW)

i

12/4/90
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Documen_ FMEA J

HR # INITIALFINAL
ARCX-03 HRA HRA°

JS001 2 3

QSRA JUMP STRUT HAZARD SUMMARY

* Projected finaJ HRAs assuming
Safety Engineer: J. Barnes completion of PlannedActions.

Hazard ConsequenceStatus

O

JS002 3 3 O

JSO03 4 4 0

JSO04 4 4 0

JSO05 3 3 0

JSO06 3 3 0

JSO07 4 4 0

JSO08 4 4 0

JSO09 4 4 0

JS010 4 4 O

JS011 4 4 0

JS012 2 3 O

JS013 2 3 O

JS014 4 4 0

JS015 4 4 0

JS016 4 4 0

Personnel injury from exposure to invisible pin-hole sized N2 leak
during maintenance/servicing.

Personnel injury from exposure to blast or flying fragments due to
overpressure and rupture during servicing.

Minor damage to system from explosive release of N2 due to
actuation with 3,500 psi in system.

Loss of test run from inability to pressurize system due to blockage
from contamination/corrosion.

Serious system damage and delay of project from structural failure of
components due to aerodynamic forces or hard landing.

Loss of control, loss of aircraft and loss of crew from excess energy in
pneumatic system due to improperly servicing to 3,500 psi.

Loss of test run, inaccurate data, degraded system performance from
inadequate energy in the system due to imporper system servicing.

Loss of test run; system down from failure of pilot's system pressure
gage.

Loss of test run; system down from inability to service with N2 due to
defective servicing valve.

Loss of test run; degraded performance from blockage in system from
contamination/corrosion.

Loss of test run; no flow of N2 to jump strut from blockage in system
or other electrical or mechanical failure.

Loss of control (over-rotation), loss of aircraft, and loss of crew from
excess energy in the jump strut due to main valve opening but failing
to close.

Loss of control (landing on damaged or separated strut), loss of
aircraft, and loss of crew from excess energy in the jump strut due to
main valve opening but failing to close.

Loss of primary path for exhausting gas from strut after actuation;
system functions normally on back-up exhaust path but is down until
blockage is removed.

Loss of secondary path for exhausting gas from strut after actuation;
system functions normally on primary exhaust path but is down until
blockage is removed.

Loss of system integrity and possible interior corrosion from moisture
and contamination due to failure of either exhaust check valve or vent
check valve failing to close (broken spring).
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DocumenEFMEA J

HR # INITIALFINAL
ARCX-03 HRA H_"

QSRA JUMP STRUT HAZARD SUMMARY

* Projected final HRAs assuming
Safety Engineer: J. Barnes co,,mplat_onofPlannedActions.

Hazard Consequence
Status

JS017

JS018

JS019

JS020

JS021

|

JS022

JS023

JS024

JS025

JS026

JS027

JS028

JS029

JS030

JS031

3

4

4

4

4

4

4

4

3

3

3

4

4

4

4

4

4

3

3

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Serious damage to strut and delay of project from landing on strut
stuck in fully extended position due to blockage from contamina-
tion/corrosion.

i

Loss of test run; unable to Arm system due to Squat switch failed in
AIR position, Arm/Disarm switch failed in DISARM position, open
circuit, short circuit, or loss of 28 vdc power.

Loss of test run; system down due to loss of safety feature of Squat
switch (failed in GND (closed) position).

i

Loss of test run; system down when armed continuously on the
ground or system goes to ARM after landing due to Arm/Disarm
switch failed in the ARM position or sneak circuit.

Loss of test run; system down when unable to monitor system condi-
tion (Arm light will not come on when ARMED) due to burned out
bulb, other open circuit, or loss of 28 vdc power.

Loss of test run; system down when backup timers fail to operate due
to loss of initiating signal or IC malfunction.

Loss of test run; system down when backup timers run uncommand-
ed or provide continuous output due to sneak circuit or IC
malfunction.

Loss of test run; degraded performance or no actuation at all from
Lewis timer failure due to IC, diode, Engage button or relay
maffunction.

Personnel injury or death from impact by nose or tail ramp from
uncommanded actuation on preflight or ground checkout due to
Engage button or relay failing inthe on (short circuit) position.

Loss of aircraft and crew from electrical fire due to short circuit in 28

vdc power circuit.

Loss of test run and overcurrent protection; system down due to 28
vdc circuit malfunction (circuit breaker will not open).

Serious damage to strut and project delay from landing on a "flat"
strut due to loss of hydraulic fluid or N2 from low or high pressure
chambers of strut.

i

Serious damage (excess shimmy or collapse) to strut and project
delay from landing with nose wheel cocked due to upper or lower
cams failing to center strut before landing.

Serious damage to aircraft (structural) from excess upward force to
nose support structure due to normal jump strut activation.

Serious damage to aircraft from running off end of runway due to
uncommanded premature rotation due to sneak circuit.
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Appendix B - Lycoming YF-102 QSRA-Installed Engine Performance

9O

88

86

GW = 53,000 Ib, AEO

DS = 59 deg, USB = 0 deg

T/W = .40
14.3 psi

14.9
I

Barometric pressure

E = . 14.9

80

78

76 i
0 5

14.5 psi .__

•

14.9 J

10 15 20 25 30

Temperature, deg C

Figure B.1 QSRA-installed engine (YF-102) performance.
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Appendix C - Flight Data Summary
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