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DESIGN AND TESTING OF AN

ENVIRONMENTAL SENSING ROBOT

EXECUTIVE SUMMARY

The University of Central Florida's senior Aerospace Engineering design class designed and tested

a robot system for use in an enclosed environment. The conceptual design will be used to assist

the research performed by the Controlled Ecological Life Support System (CELSS) project.

Design specifications for the robot system include maximum load capacity, operation at specified

environmental conditions, low maintenance, and safety. The robot system must not be hazardous

to the sealed environment, and be capable of stowing and deploying within a minimum area of

the CELSS chamber facility.

This design consists of a telescoping robot arm that slides vertically on a shaft which is

positioned in the center of the CELSS chamber (Figure 1). The telescoping robot arm consists

of a series of links which can be fully extended to a length equal to the radius of the working

envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the

use of a combination ball screw / ball spline actuator system. The robot arm rotates cylindrically

about the vertical axis through the use of a turntable bearing attached to a central mounting

structure which is fitted to the actuator shaft. The shaft is installed in an overhead rail system

which allows the entire structure to be stowed and deployed within the CELSS chamber. The

overhead rail system is located above the chamber's upper lamps and extends to the center of the

CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire
actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft

is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom

of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot

ensures the rigidity of the shaft.
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Figure 1 CELSS Robot Design



During thesecondsemester,threeteamswerecombinedinto onegroup. The classdesigneda
model of the CELSSchamberrobot that could be built by the students. They investigated
materials,availability, and strengthin their design. Lexan waschosenas the best material to
build the links. Polycarbonatecementwasusedto gluetheLexansectionstogetherto form the
telescopicarm. Sliderbearingswereusedto facilitate thesliding motion of theLexanlinks. The
modelstandwas built from aluminumanduseda steelpipe to allow the telescopicarm to be
testedat variousheights.

After themodelarm andstandwerebuilt, the class performed pre-tests on the entire system. A

stability pre-test was used to determine whether the model robot arm would tip over on the stand

when it was fully extended. Results showed the stand tipped when 50 Newtons were applied

horizontally to the top of the vertical shaft while the arm was fully extended. This proved that

the stand was stable. Another pre-test was the actuator slip test. This was to determine if there

is an adequate coefficient of friction between the actuator drive wheels and the drive cable to

enable the actuator to fully extend and retract the arm. This pre-test revealed that the coefficient

of friction between the drive wheel and the drive cable was not large enough to prevent slippage.

Sandpaper was glued to the drive wheel and this eliminated the slippage problem.

The class performed a fit test in the CELSS chamber. This test was to ensure that the completed

robot arm is capable of reaching the entire working envelope of the CELSS chamber. The robot
was centered in the chamber. The arm was able to fully extend to the sides of the CELSS

chamber. The arm was also able to retract so it cleared the drain pipes that separated the upper

and lower plant trays.



Foreword

During tile 1993-1994 academic year Aerospace Engineering design students designed and tested a model

of an environmental sensing robot. Aerospace Design 4700 and 4710 cater to a variety of design interests of senior
aerospace and mechanical engineering students at the University of Central Florida (UCF). The output of the course

sequence includes (a) oral design reviews, (b) a working model of the design and (c) a final report containing design

information plus results of model construction and testing.

A goal of this year's work, conducted with the Robotics Laboratory in the Controlled Ecological Life

Support System (CELSS) facility at Kennedy Space Center (KSC), was to design, build and test a safe robot system
that requires low maintenance while operating in a sealed environment. Emphasis was placed on making the robot
non-hazardous to the environment and making the robot capable of stowing and deploying within the minimum area

of the CELSS chamber facility. The fall semester was spent doing a detailed design of a model robot for testing

in the CELSS laboratory. In the spri,ag semester the robot model was built at UCF, and tested at UCF and the

CELSS laboratory at Kemledy Space Center. Travel to the KSC test site was accomplished by all students in the

class to participate in the testing of the model robot arm for fit and function.

At the end of fall semester a design review was conducted at KSC. At the end of spring semester results

of testing the robot model were reviewed at KSC. Comments received from NASA and contractor engineers during

this review process have greatly influenced the co,_tent of this report and increased the engineering knowledge of
the students.

The Advanced Design Program (ADP) robot design team consisted of twenty-three engineering seniors.
Nathan Baker served as Graduate Teaching Assista,_t during both fall and spring semesters. Nathan's efforts

coordinating and guiding the interfaces of the designs were invaluable. He had the major task of integrating the
design and test reports into this final report. Mark Davis and Mike Patterson made significant contributions to the

final report and made the presentations at the summer conference. Nathan Baker is continuing as Graduate Teaching
Assistant for the coming academic year. I will be retiring after seven years of association with the fine people of

the Advanced Design Program. I will miss seeing my ADP friends and want to wish you all total success in your

design endeavors. Dr. Roger Johnson, a friend from yesteryear on the Air Force Academy faculty, will be taking

over the ADP at UCF beginning Fall Semester 1994. I am sure you will find Roger a true professional, and a great

Space enthusiast and friend, as I have over the years.

We gratefully acknowledge support from NASA, USRA, Bionetics Corporation and Rockwell International

in the NASAFUSRA Advanced Space Design Program. Gabor Tamasi of the KSC Robotics Laboratory has

generously devoted his time guiding the design of a successful robot model in UCF design classes. His

comprehensive knowledge made this work possible. Special recognition at KSC is due Sterling Walker, Mechanical

Engineering Division Chief; Bill Jones, Advanced Mechanical Systems Branch Chief: Bill Knott, Life Science

Research Manager; John Sager, CELSS Research Manager; and Bill Martin, University Relations: for their

encouragement and support. At NASA Headquarters in Washington, D.C., special recognition is due Dr. Robert J.

Hayduk, Office of Advanced Concepts and Technology; and Sherry McGee, Office of Human Resources and
Education. At USRA in Houston special recognition is due John Sevier, Director, Educational Programs; Vicki

Johnson, ADP Program Manager; and Barbara Rumbaugh, ADP Senior Project Administrator, for guidance and help.

We greatly appreciate the efforts of Dorothy Price and Dolma Atkius for guidance and help searching out technical

documentation at the KSC library. We are indebted to Greg Opresko, Jim Aliberti, Dennis Matthews, Jose Alonso,

Cathy Parker, Bruce Larsen, and Dave Springer for their technical support and encouragement throughout the

academic year. For attendance at our design reviews and valuable technical comments we thank Bionetics CELSS

engineering lead Russ Fortson, and our Rockwell industry representatives; Suzanne Hodge from the local office, and
Scott Johnson and Davoud Manouchehri from Downey, California.

Professor Loren A. Anderson July 11,1994
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Chapter

1.1

1.2

1.0 INITIAL DESIGNS

INTRODUCTION

The Controlled Ecological Life Support System (CELSS) project was established by the

Kennedy Space Center (KSC) to study the effects of atmospheric changes on plant

growth j. The project is conducted on site at Cape Canaveral Air Force Station in a

large cylindrical vacuum vessel. The cylinder is divided into two chambers, an upper

and a lower. A robot model was designed to deliver a payload to specific locations

within the upper chamber.

The robot model is capable of delivering its payload to any point in the sealed chamber,

thus preventing the necessity for human intervention while an experiment is in progress.

The robot model is capable of operation for the duration of sealed chamber experiments.

The operation of the robot model does not alter nor damage the chamber structure,

environment, or growth of the crops. The specification can be seen in Appendix A.

REQUIREMENTS

The following are the design requirements for the CELSS robot2:

°

,

°

.

.

.

.

.

While not in use, the robot shall be stowable to avoid unduly affecting

experiments and to allow personnel fi'ee access to the chamber in between growth

cycles.

The robot shall not alter the charnber environment.

Robot shall demonstrate adequate flexibility to reach any point in the chamber.

The robot shall be capable of supporting a 15 kg payload at the end effector.

Robot installation shall minimize modification to the CELSS chamber.

Robot shall conform to design standards required for KSC and military projects.

SI measurements will be used in design.

Robot shall function through all possible CELSS environmental conditions

DESIGNS

Telescoping Robot

PAGE BUtNK NOT FN.Mc.lb



1.3. I. 1 Description

The telescoping robot (Figure 1.3.1.1.1) is a ceiling mounted design which achieves

vertical motion through a telescoping body. Attached to the end of the vertical body, a

horizontal telescoping arm will be used to deploy the end effector. When stowing, the

arm and body retract to the ceiling (Figure 1.3.1.1.2).

1.3.1.2 Advantages

As the design employs only three degrees of freedom, the deployment of the payload

can be accomplished in a quick and simple manner 3'4. The linear motion of actuators

eliminates pinch points 5. The lack of complexity in the design results in a simple control

system. When stowed, both telescoping alms will be fully retracted and the robot will

fit in a small space near the roof. Installation involves mounting the robot to the
chamber roof with minimal modification to chamber.

1.3.1.3 Disadvantages

Due to long links and lack of lateral support, the robot may be susceptible to vibration 6.

As the horizontal actuator can only move radially fiom the center of the tank, access to

areas in the center of the tank would be limited by the contracted length of the

telescoping links. The same applies for access to the very top of the tank, which would

be limited by the vertical link. The telescoping an'ns must also be designed without

lubrication or hydraulic actuation that can effect chamber environment. Safety becomes

important with any design which is attached to the ceiling due to a possible failure of

a critical part which could result in darnage to the chamber.

1.3.1.4 Feasibility

The practicality of the design depends largely upon the commercial availability of

telescoping links. If the links are not available, their custom design and manufacture

may be expensive. Since lubrication may effect the closed atmosphere of the chamber,

this may present a problem in the design.

1.3.2 Scissor Link Robot

1.3.2.1 Description

The robot is mounted to the center of the chamber ceiling (Figure 1.3.2.1.1). Vertical

motion is provided by the deployment of scissor links, which retract to stow near the

ceiling (Figure 1.3.2.1.2), while angular motion is accomplished by a rotating actuator

at the end of the scissor links. A telescoping arm extends from the rotating actuator and

enables access to desired points.



Figure 1.3.1.1.1 TelescopingRobot
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Figure 1.3.1.1.1 Telescoping Robot
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Figure 1.3.1.1.2 Telescoping Robot Stowed



Figure 1.3.2.1.1 Scissor Link Robot Figure 1.3.2.1.1 Scissor Link Robot
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Figure 1.3.2.1.2 Scissor Link Robot Stowed
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1.3.2.2 Advantages

Deployment of the scissor links gives quick and flexible access to the tray area. The

design includes redundant links for added stability and safety. The retracting of the

scissor links allows the robot to fold into a compact position near the ceiling. Because

of its compact, stowed position, personnel may access the chamber without robot
interference.

1.3.2.3 Disadvantages

The system is complex due to the configuration of the moving links. When fully

extended, this design may be insufficient to provide adequate support. Due to the size

of the folded scissor links, access to areas near tile top of the chamber may be

obstructed. The design will create pinch points when folding, reducing the safety.

1.3.2.4 Feasibility

Actuation of scissor links may prove too complex for practical design. The four links

of each section must move together exactly to prevent binding. The link size required

for a stable system may be impractical.

1.3.2.5 Hybrids

The rotating actuator may be placed at tile ceiling mount to for increased stability and

simplification of wiring.

1.3.3 Track Following Robot

1.3.3.1 Description

A track will be installed horizontally around the tank in between the two shelf levels.

The radius of the track will match the inside of the trays. Deployment of the payload

will be accomplished by a two link arm which moves along the u'ack (Figure 1.3.3.1.1).

The outer link is supported by double actuation. Robot will stow at the end of the shelf

and not inhibit access to the center of the chamber (Figure 1.3.3.1.2).

1.3.3.2 Advantages

Due to the proximity to the shelves and the central location of the track, the lengths of

the links may be compact. This compacmess will provide greater stability at the payload

and require lighter links. The central location will allow quick deployment of the

payload. Tile control of the robot will be aided by the use of existing technology for the

two link arm and the location. The design of a redundant link arm will increase safety.

7



Figure 1.3.3.1.1 Track Following Robot

Figure 1.3.3.1.2 Track Following Robot
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1.3.3.3 Disadvantages

1.3.3.4

1.3.3.5

1.3.4.2

1.3.4.3

Installation of theTrack Following Robot may requireextensivemodification to the
CELSSchamberandmayalter thechamberenvironment. Exposedwiring of the track
follower may also prove undesirable. The compactnatureof the robot may prevent
accessto the upperand lower reachesof thechamber. Debris in thetrack may hinder
movement.

Feasibility

Theinstallationof theu'ackmayproveimpracticaldueto conflict with existingchamber
hardware. The customfabricationof the track may be too expensiveto bepractical.

Hybrids

A multiple level track systemwould allow for greateraccessto the extremesof the
chamber. A switching device would be required to transfer the robot between tracks.

This would result in increased difficulty of installation, complexity, and cost.

Three Link Arm

Description

The robot will be mounted to tile center of the tank roof (Figure 1.3.4.1.1) and will use

a rotating actuator at the roof for angular motion. A three link arm will then deploy the

payload to the desired location. The arms will be slotted to fold inside one another when

stowed (Figure 1.3.4.1.2). The folded arms stow along the roof.

Advantages

The Three Link Arm will provide adequate flexibility to reach any point in the chamber

and may allow movement over obstacles. Due to the slotted arms, the robot will stow
to a small volume near the roof to allow access to the chamber. As this design is

commonly used, existing technology may be incorporated to minimize cost and custom

fabrication of components. The redundant arm design will increase strength and improve

safety.

Disadvantages

The complexity of this design will increase tile difficulty of control and increase the

chance of damage to the chamber. The lack of support of the robot at full deployment

may result in additional instability and vibration during robot motion. Due to the bulk

of the system, deployment will be slow, and the movement of the robot may create pinch

points.
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Figure 1.3.4.1.1 Three Link Arm
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Figure 1.3.4.1.2 Three Link Arm Stowed
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1.3.4.4 Feasibility

Theuseof existingtechnologymakesthis designfavorablein termsof designeffort and
cost. Existing softwaremay be used to simplify control. The increasedchanceof
damagemay makethis designimpractical.

1.3.4.5 Hybrids

Slottedlinks whichallow translationof theactuatorsalongtheir length(Figure1.3.4.5.1)
will increasedeaseof deployment.Stability will be increasedwhentheactuatorsarenot
fully extendedalongthelinks.The systemwill stow neartheroof by folding theslotted
links (Figure 1.3.4.5.2).

1.3.5 SupportedTwo Link Arm

1.3.5.1 Description

The robot is mounted to the centerof the chamber ceiling (Figure 1.3.5.1.1). A
telescopingvertical shaftdeploysa stabilizing supportto the floor anda two link arm
to the centerof thechamber. An actuator at the ceiling rotates the entire vertical shaft

and the two link arm deploys to the desired position. The outer link is supported by

double actuation. When stowed, the vertical shaft is retracted fully and the arm folds

against the ceiling (Figure 1.3.5.1.2).

1.3.5.2 Advantages

The extended support will enhance the stability, strength, and safety. As the design

employs a minimal number of degrees of freedom, deployment can be accomplished in

a quick and simple manner. The simple design will make control simple. The two link

arm can make use of existing technology. The use of a redundant outer link will increase

the safety.

1.3.5.3 Disadvantages

The bulk of the telescoping shaft and support will decrease stowability. As the length

of the two link arm is limited by practical considerations, access to the upper and lower

limits of the chamber may be limited. The bulk of the design will create a potential

hazard even when stowed. The movement of the two link arm may create pinch points

which will decrease the safety.

1.3.5.4 Feasibility

The practicality of the design depends largely upon tile commercial availability of

telescoping links. If the links are not available, their custom design and manufacture

11



Figure 1.3.4.5.1 Three Link Arm Hybrid
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Figure 1.3.4.5.2 Three Link Arm Hybrid
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Figure 1.3.5.1.1 Supported Two Link Arm Figure 1.3.5.1.1 Supported Two Link Arm

11 II

Figure 1.3.5.1.2 Supported Two Link Arm
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maybeprohibitivelyexpensive.Whethersuchlinks canbeemployedwithout lubrication
is also an important issue,as lubrication may affect the closed atmosphereof the
chamber.

1.3.5.5 Hybrids

A screwshaftwith a telescopingfloor supportmay beusedto deploythe two link arm
(Figure 1.3.5.5.1). This would increaseflexibility in the upper half of the chamber
throughvertical translationof thetwo link arm. Theshaftwould fold againsttheceiling
when stowed (Figure 1.3.5.5.2).

1.3.6 OverheadBeamRobot

1.3.6.1 Description

A horizontalbeamspansthe diameterof the chamberand is mounted on a track near

the roof (Figure 1.3.6.1.1). Track following actuators rotate the beam around the

chamber. A vertical screw shaft, which reaches the floor of the chamber, translates along

the length of the overhead beana. A rigid arm, parallel to the overhead beam, is

deployed vertically along the screw shaft. Deployment is accomplished by a combination

of beam rotation, screw shaft translation and vertical translation of the arm. The system

is stowed by rotating the overhead beam to the end of the shelves and moving the screw
shaft to the wall.

1.3.6.2 Advantages

The short length of the rigid arm increases its stability by decreasing the moment arm

of the payload. The horizontal beam adds to stability by increasing the lateral support

of the system. The stowed robot is away fi'om the center of the chamber and overhead.

The lack of pinch points adds to the safety of the robot. As the robot employs only three

degrees of freedom, control will be simple.

1.3.6.3 Disadvantages

Flexibility of the robot is limited in the upper reaches of the chamber. The installation

of the system will require extensive modifications to the chamber. The length of the

horizontal beam will make angular deployment slow. The lack of redundancies will

decrease the safety.

1.3.6.4 Feasibility

The installation of the track may prove impractical due to conflict with existing chamber

hardware. The custom fabrication of the track may be too expensive to be practical.

14
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Figure 1.3.5.5.1 Supported Two Link

Arm Hybrid

U U

Figure 1.3.5.5.2 Supported Two link

Arm Hybrid Stowed

Figure 1.3.6.1.1 Overhead Robot Side View Figure 1.3.6.1.1 Overhead Robot Top View
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Chapter 2.0 FINAL DESIGN

2.1 INTRODUCTION

The final design of the robot incorporates aspects of several of the early designs. The

deployment of the robot is acco,-nplished by an overhead track which allows movement

of the robot from the wall to the center of the chamber. When locked in place at the

center of the chamber, the robot will be in the deployed mode. Vertical movement in the

chamber is accomplished by means of a ball saline shaft. Angular deployment of a

telescoping arm is accomplished by a rotating turntable bearing. By means of this

system, a payload may be placed at any point within the requirements of the project.

The absolute positioning obtained by locking the vertical shaft in place will simplify

control greatly.

The robot design group has been divided into three sub-groups, each with a sub-system

of the robot to design. This report will deal with the design of the track system and the

base assembly. It was determined that the most effective operating position of the base

would be at the center point of the ceiling. For greatest stowability, the robot must stow

along the wall of the chamber. The purpose of the track is to allow the movement of the

base assembly between the ceiling and wall. This movement should not require more

than two people. The base assembly should be capable of smoothly moving the robot

along the track, and fixing the robot in place when stowed and when deployed.

2.2 SUB-SYSTEM REQUIREMENTS

The following are the design requirements for the track and base assembly sub-system
for the CELSS robot:

. While not in use, the robot shall be stowed to avoid unduly affecting experiments

and to allow personnel access to the chamber.

2. While not in transit, the sub-system should be locked in place to prevent
movement.

3. Deployment and stowing of the robot will not require more than two people.

. The sub-system shall be capable of supporting the robot with a 15 kg payload at
the end effector.

5. Installation shall minimize modification to the CELSS chamber.

6. The robot shall function through all possible CELSS environment conditions.

7. The robot shall not alter the chamber environnlent.
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2.3

2.3.1

2.3.1.1

2.3.1.2

2.3.1.3

8. The robot shall conform to design standards for KSC and military projects.

9. SI measurements will be used in design.

SUB-SYSTEM DESCRIPTION

Hardware Description

Rail Assembly

A vendor search determined that a curved track was not feasible. The track will be

mounted in an inverted horizontal fashion to allow movement of the robot from the

center of the chamber to the wail. The rail assembly is a LinTech 1.98 m rail system 7.

The system consists of two circular 1.59 cm diameter rails mounted to a flat 11.75 cm

wide support (Figure 2.3.1.1.1). This system will be suspended in an inverted position

from the ceiling. The track support is made of black anodized aluminum with steel rods

for the rails. As recommended by tile manufacturer, the rails will be chrome plated to
avoid con'osion in the chamber environment.

Carriage Assembly

A LinTech #46 carriage assembly will be used to move the robot from the stowed to the

deployed positions. This assembly mounts a flat 17.15 cm X 30.48 cm plate on four

pillow blocks for linear translation along the rail (Figure 2.3.1.2.1). Pillow blocks have

been chosen which do not require lubrication. This carriage is rated by the manufacturer

at a maximum load capacity of 2850 N in an inverted position. This should be more

than sufficient to support the 60 kg mass of the robot and will also provide a factor of

safety of 2 over yield.

Mounting

To provide support for the track, a C5 X 9 channel will be bolted to the track along it's

length at existing fastener holes. The existing holes are located in pairs every 27.94 cm

along the length of the track. $3 X 7.5 beam supports will be used to mount the channel

to the roof. The ends of the beams will be cut at a 45 degree angle. Flat plates, 7.67

cm X 6.35 cm and .64 cm thick, will be welded to the ends of the I-beams. A pair of

I-beams will then be bolted, with two lcm bolts on each side, to the sides of the channel

through their end-plates at four points along the channel. These supports number 1-4

from the wall (Figure 2.3.1.3.1-Figure 2.3.1.3.4). The other ends of the I-beams will be

bolted,with four bolts on each beam, to the roof of the chamber. Silicone sealant will be

used ensure an airtight seal around the bolts through the roof. Four pairs of supports will

be mounted to the channel along its length (Figure 2.3.1.3.5). The use of four support

pairs will ensure that the rail does not bend beyond 0.00054 m. This gives a factor of
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2.3.1.4

2.3.1.5

2.3.1.6

2.3.1.7

safetyof two over tile maximum allowable deflection, as specified by the manufacturer

of Simplicity bearings.

Bearings

Simplicity bearings have been chosen for the pillow blocks 8. These bearings do not

require lubrication or maintenance, even in harsh environments. The Frelon liner creates

low wear and high strength, and will not peel, exu'ude, or separate. The load advantage

is four to eight times greater than linear ball bearings. The temperature ranges and

humidity levels of the chamber will not effect performance. The liner is chemically inert

and resists most chemicals. The thick liner dampens shock and absorbs vibration. The

coefficient of friction is the same under static conditions as under dynamic conditions,

eliminating sticking or slipping.

Positioning Mechanism

Positioning of the carriage in the deployed position will be maintained by a locking

mechanism. This mechanism consists of a probe (Figure 2.3.1.5.1) which is notched for

the reception of a pin and a base assembly (Figure 2.3.1.5.2) that contains a spring

loaded pin. The probe will be attached to the bottom of the interface plate with two 1

cm bolts. The bolts also serve to secure the interface plate to the carriage. When the

robot is deployed, the probe on the can'iage will insert into the base assembly which is

itself attached to the rail base. A spring loaded plunger inserts into the notch on the

probe and secures the carriage. A spring installed around the probe will absorb any

impact generated when the robot is deployed. To release the carriage when stowing the

robot, the plunger will be pulled manually from the probe notch through a cable release.

The base assembly is attached to the positioning mechanism (Figure 2.3.1.5.3) so the

deployed position of the carriage is adjustable along the length of track.

Stowed End Stop

For positioning when stowed, a simple stop block will be attached to the track base

which will stop the carriage. This block will prevent movement of the carriage beyond

the desired stowing position.

Braking Mechanism

The frictional coefficient (static and dynamic) of the Simplicity bearings is .24. This will

act as a breaking mechanism for the carriage. The braking force from the bearings is

equal to the normal force of the weight of the robot and catTiage multiplied by the

frictional coefficient, This force has been calculated (Equation 2.3.1.7.1) for an assumed

assembly mass of 120 kg to be 281 N. This force will act as a braking mechanism and

prevent excessive carriage speed during deployment.
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Equation 2.3.1.7.1 F B -- (It#,) * (W)

2.3.1.8

2.3.2

Bali Screw Interface Plate

A 17.15 X 30.48 cm aluminum alloy plate with a hollow aluminum alloy cylinder will

be used to mount the ball screw to the carriage (Figure 2.3.1.8.1). The cylinder will be

hollowed to accept the 32 mm shaft end. The plate will be fastened to the carriage at

four bolt holes located at the corners of the plate. Two stainless steel pins, each 1.27 cm

in diameter, will be used to fasten the shaft to the interface plate. The pins will be

inserted through the hollow cylinder and shaft at right angles to each other for stability.

Cotter pins will be used to hold the fasteners in place This will allow easy removal of
the shaft for maintenance.

Aluminum alloy 6061-T6 will be used for fabrication of the interface plate. This alloy

is used in heavy duty structures where corrosion resistance is needed. The alloy displays

excellent COITOSiOn resistance in all natural atmospheric environments and many artificial

ones 9. The aluminum will be black anodized to further protect against corrosion.

To provide lateral flexibility of the deployment position, the four bolt holes on the

interface plate will be slotted to 2.5 cm in length. This will permit the bolts to be

fastened at any point along the slot length, permitting exact fine tuning of the robot

position in the direction perpendicular to the rail.

Installation

Following is the procedure for installation of the track system:

.

2.

3.

4.

5.

6.

,

The C-channel is bolted to the track base.

The I-beam supports are bolted to the channel.

The interface plate is bolted to tile carriage.

The carriage is mounted to the rail.

The end stoppers are attached to the rail base.

The locations of the bolt holes through tile chamber roof are determined by

positioning the rail assembly as specified.

Tile bolt holes are drilled through tile chamber roof.
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8. The l-beam supports are bolted to the chamber roof.

9. The bolt holes throughout the chamber roof are sealed with silicone sealant.

2.3.3 Deployment

After installation, the following procedure is used to deploy the robot:

o The vertical shaft is pushed from the stowed position to the center of the chamber

until the carriage contacts the adjustable locking mechanism.

2. The support jack on the bottom of the vertical shaft is deployed.

To stow, this procedure is followed in reverse order.

2.3.4 Kinematic Analysis

When deployed, the robot must be capable of reaching points from 15.24 cm above the

chamber floor to 25.4 cm above the top light rack. A horizontal track is oriented near the

roof to allow stowage of the robot in the area between the end of the shelves and the

door. The stowed position of the robot will be at chamber wall. Fixed stops at the end

of the track prevents the robot from leaving the track. Deployment and stowing of the

robot is accomplished by manually moving the robot along the track. An adjustable

locking mechanisrn allows fine tuning of the deployed position.

2.3.5 Stress Analysis

Principle stresses during movement of the robot occur in the track system. To increase

the stability of the track, a C-channel is bolted to the track. This channel increases the

rigidity of the track and helps avoid deflection of the rods. To further decrease the

deflection of the rods, additional supports are added along the length of the track. The

distance between these supports is based upon the maximum allowable deflection of the

track specified by the manufacturer of the Simplicity bearings, this deflection value is

.00108 m. With a factor of safety of 2, the maximum allowable defection desired

becomes .00054 m. By using Equation 2.3.5.1, a length of .667 m between supports can

be interpolated _°. This equation assumes deflection due to robot weight and deflection

due to track and channel weight are cumulative. The weight of the track and channel per

meter is 234.3 N/re. The weight of the robot is 1177 N.
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Equation2.3.5.1 5qoL* WL
-- -t-

gin'* 384EI 48EJ

qo= Weight per meter

L= Length between supports

W= Weight of robot

E= Modulus of Elasticity

I= Moment of Inertia

Principle stress of the robot during operation occurs due to a moment arm created by the

weight of robot ann and payload about the shaft. The supports are angled to account for

the moment created when the robot is perpendicular to the track. The maximum value

of this moment occurs when the arm is extended to its range of 1.8 m with a load of 15

kg at the end effector, and the weight of the arm at the center of gravity. This moment,

taken around point A at the base of the ball screw, must be countered at the top of the

ball screw, 3 m, by the a force of 151 N can be calculated. This force acts in the

horizontal direction, while the 686.7 N weight of the robot acts in the vertical direction.

These values yield a force vector at 77 degrees to the horizontal axis. An angle of 45

degrees is used for the supports to account fox" future modification of the robot for

greater loads.

Sness calculations were preformed to determine proper sizing of fasteners '_. For

horizontally oriented fasteners, stress area was calculated as the diameter of the fastener

multiplied by the depth of penen'ation. For vertical fasteners, the area was calculated

using Equation 2.3.5.2. The force acting on the fasteners was determined, and a stress

was calculated by Equation 2.3.5.3. This su'ess was compared against a allowable stress

to determine feasibility. All fasteners will be stainless steel (Alloy 304), The allowable
tensile stxess for stainless steel is 579 MPa. A common fasteuer size of 1 cm will be

used to minimize the number of tools needed for installation. The fasteners used to

mount the supports to the ceiling and to mount the supports to the channel will be fine

thread. All fasteners used in aluminum will be coarse thread and use insulating vinyl tape

to protect against galvanic corrosion.

Equation 2.3.5.2 A s = 5.067 (D-,974_.___3 )3
tl

As= Sn-ess Area
D= Diameter of bolt

n= Threads per inch
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Equation 2.3.5.3
F

A
$

F= Force on fastener

As= Stress area
(I= stress

The cylinder on the interface plate is fillet welded on its entire perimeter to the base

plate. The channel support beams are welded to a fastener plate. The welds are required

to be at least 0.64 cm in width. For the parallel fillet weld used, the maximum allowable

shear stress and normal stress are 796 kPa and 873 kPa, respectively. The equations

used for the calculations are given by Equation 2.3.5.6 and Equation 2.3.5.7.

F
Equation 2.3.5.6 1: -

A

x= shear stress

F = shear force

A = area

Equation 2.3.5.7
MC

0 -

1,

2.3.6

or= normal stress

M = moment

C = Distance from axis of rotation

I, = unit second moment of area

Vibration

The type of forcing function and imbalances occurring in the system are to be

determined. This fact does not allow numeric analysis to be completed, instead some

fundamental methods of reducing vibrations in our design are presented. To minimize

residual vibrations the rail carriage is mounted on Simplicity Bearings. These solid

polymer bearings use a 0.05 cm liner to dampen shock load and absorb vibration.

Simplicity Bearings provide more effective surface area than do ball bearings. This

additional area provides increased vibration damping by better distributing the shock

load. The bearings do not stick or slip. This quality eliminates binding and vibration

of the carriage.
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A viscoelastic coating is applied to the carriage plate and to the shaft interface plate to

eliminate the transmission of vibrations, j4 A Frelon liner is used in the cup of the

interface plate to absorb shock transmitted from the screw shaft to the carriage. All

fasteners incorporate slotted and castellated nuts to avoid vibration loosening.

2.3.7 Maintenance

Cotter pins to hold the shaft fasteners in place allow easy removal of the shaft for

maintenance of the shaft and telescoping arm. The Simplicity Bearings are manufactured

to require no lubrication or maintenance, even in harsh environments. The removal of the

adjustable stopping block at the deployed end of the track allows removal and

maintenance of the carriage and interface plate. The track and carriage assembly are

environmentally resistant and do not require maintenance or inspection.

2.3.8 Safety

Due to the large friction force generated by the bearings, the carriage stops itself quickly.

This inherent braking feature prevents accidental translation of the carriage and therefore

eliminates damage to the robot during deployment. Risk of injury to personnel while

deploying the robot is minimized.

As the entire rail and carriage system is located at the roof of the chamber, catastrophic

failure of the mounting brackets poses a hazard to personnel below. Special attention

must be paid to the construction and installation of the mounting brackets to avoid such
a failure.

Other critical parts include the interface plate and the pins which secure the ball screw.

Stress analyses of these components have confirmed their theoretical strength, yet

attention must be paid to their construction and maintenance. Periodic inspection of welds

and fasteners are needed to spot corrosion or deterioration which may lead to failure.

2.4 SUMMARY

The track and ca_Tiage assembly sub-system provides a means for moving the robot

apparatus from the stow position at the wall to the deployed position at the center of the

ceiling. The movement of the robot requires no more than two people, and the carriage

assembly locks in place while not in transit.

A horizontal track provides adequate stowability and ease of deployment. An inverted

carriage translates fi'om the deployed position at the center of the chamber to the stowed

position near the chamber wall. Attached to the carriage is an interface plate with a

hollow cylinder which receives the ball screw. The ball screw is secured to the cylinder

with two removable stainless steel pins.
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A locking device secures the carriage in the deployed or operational position on the

track. The device is adjustable both along the u'ack and laterally. This allows for fine

tuning of the operational position of the robot so that the ball screw will be aligned with

the location of the floor jack receptacle on the chamber floor. During deployment, the

friction fome generated by the Simplicity Bearings acts as a braking mechanism and will

control the speed of the carriage.

The locking device is released by pulling a ring attached to a short release cable. A

hook on an extension handle is employed to perform the release operation, as the hook

may be stored outside of the chamber while the robot is in operation.

Chapter 3.0 OBSERVATIONS AND RECOMMENDATIONS

The dimensions used for design of the track supports are based on rough field

measurements. The measurements made on site did correspond to the data given on the

plans obtained from NASA. Exact measurements of the chamber confirmed positioning

of the beam supports for the track assembly.

The PVC pipe, attached along the inside shelf diameter, need to be modified to allow for

maximum stowability. This pipe appears to be a standard length pipe fitted to the shelf

and thus shortening should not be a problem.

Chapter 4.0 ACKNOWLEDGEMENTS

Our sincere appreciation to Gabor Tamasi who has provided invaluable advice and

counsel into the design of the robotic systems and has guided the robot's design

throughout. Bill Johnson of the CELSS project has generously taken time out of his

schedule to conduct tours of the chamber and give his input towards the outcome of the

design effort. For technical information and advice on bearing selection and lubrication,

we are indebted to Dr. Stephen Rice who provided insight in this area. Val Gomez of

Lintech, Inc. provided technical assistance which led us to select Lintech products for our

subsystem.

31



SECTION II

VERTICAL SHAFT SUB-SYSTEM

CONCEPTUAL DESIGN

* TRACK DRIVEN ROBOT

* POLE MOUNTED ROBOT

* CABLE ROBOT

* LEG-MOUNTED ROBOT

* LINK-MOUNTED ROBOT

* TELESCOPING LINK-MOUNTED ROBOT

* DUAL ARM WALL MOUNTED ROBOT

FINAL DESIGN

* BALL SCREW / BALL SPLINE SHAFT

* CENTRAL MOUNTING STRUCTURE

* BALL SCREW NUT

* BALL SPLINE NUT

* TURNTABLE BEARING

* LOWER SUPPORT BOOT

* CABLE REEL

* CRITICAL ANALYSIS

* OBSERVATION AND RECOMMENDATIONS



Chapter 5.0 INTRODUCTION

The CELSS chamber is used to perform research on hydroponic plant growth in a closed

environment. The CELSS chamber research is performed over the entire plant life cycle

and can be used to enhance our understanding of life science manipulation in closed test

beds and also provide a baseline for space applications (i.e. space station modules and

lunar based space labs). Current and future operations within the CELSS chamber restrict

human entrance to avoid contamination, and provide a perfect opportunity for the

implementation of an automated system that will be capable of performing expanded
tasks.

Phase I of the proposed robot design will be used to measure environmental parameters

as follows: 1) temperature, 2) light level, 3) humidity, 4) air flow, and 5) CO 2. Phase II

of this project is to use this robot to tend the plants in the CELSS chamber. Plant tending

includes planting, removal and harvesting of crops, adjusting and checking nutrient stream

flow. The proposed design must to able to reach all areas within the working envelope

of the CELSS chamber with sensor array and gripper, support a maximum load of 15

kilograms at the end effector, and be stowable within the chamber to allow for normal

operations to continue (Appendix B, Specifications). Additionally the system design

configuration should minimize stowed volume and chamber facility modifications.

The ball screw ] ball spline subsystem enables the robot arm to translate in the vertical

direction and rotate 360 ° about the vertical axis. The telescoping robot arm is mounted

on the turntable bearing which is located on the top section of the CMS. The telescoping

ann can manipulate the end effector to within 0.254 meter above the floor of the chamber

and 0.15 meter above the upper lamps to access a tool changer.

5.1 OVERVIEW OF DESIGN

This design consists of a telescoping robot arm that slides vertically on a shaft which is

positioned in the center of the CELSS chamber (Figure 5.1.1). The telescoping robot arm

consists of a series of links which can be fully extended to a length equal to the radius

of the working envelope of the CELSS chamber zS. The vertical motion of the robot arm

is achieved through the use of a combination ball screw / ball spline actuator system. The

robot arm rotates cylindrically about the vertical axis

bearing attached to a central mounting su'ucture which is

shaft is installed on an overh_3ad rail system which allows

through the use of a turntable
fitted to the actuator shaft. The

the entire structure to be stowed

and deployed within the CELSS chamber. Tile overhead rail system is located above the

chamber's upper lamps and extends to the center of the CELSS chamber. The mounting

interface of the actuator shaft and rail system allows the entire actuator shaft to be

detached and removed from the CELSS chamber. When the actuator shaft is deployed

it is held fixed at the bottom of the chamber by placing a square knob on the bottom of

the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot

ensures the rigidity of the shaft.
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Chapter 6.0 POSSIBLE DESIGN SOLUTIONS

The selection of the robotics system and specifically the manipulator arm was based on

the intended applications mentioned in Chapter 5. Consideration was placed on

repeatability, maintenance, safety, environmental conditions, availability of sensory

information for the controller, number of major components, accessibility and other

issues _6. The term repeatability t7 refers to the measure of consistency of the end effector

returning to a specified point when placed in a repetitive motion.

The following will present the advantages, disadvantages and the feasibility for each robot

design concept. There are figures depicting each design in its deployed operational and

stowed positions. We have presented several conceptual ideas with their advantages and

disadvantages based on the design specifications given. No conclusions are given in this
section.

6.1 TRACK DRIVEN ROBOT

This conceptual design consists of a fully self-contained configuration that uses a

combination of telescoping and an articulated arm 3 (Figure 6.1.1). This design has a wide

range of mobility which allows it to be easily positioned within the CELSS chamber to

perform necessary tasks. When deployed, this design will lock into position by lowering

two support arms which will provide additional stability while performing necessary tasks
within the CELSS chamber.

6.1.1 Feasibility

This design may not be feasible because it is potentially unstable. The instability is a

result of the fact that it is not permanently affixed to the CELSS chamber. The length

of the components necessary in the arm to reach all areas of the working envelope could

also be a source of instability. The weight necessary to ensure stability of the base of this

robot could apply undue stress to the floor of the CELSS chamber. This design will also

require complicated sensory and control systems to ensure no damage is done to the
CELSS chamber.

6.1.2 Advantages

This design requires minimal, if any, modification to the CELSS chamber. The robot

does not require extensive mounting installations within the CELSS chamber. Since the

robot is a free and portable unit, maintenance routines can be performed both inside and

out of the CELSS chamber. This allows maintenance to be performed in a safe and

comfortable environment while normal CELSS chamber operations continue. The robot

may also be used for other applications since it is not permanently mounted within the

CELSS chamber (Figure 6.1.2.1). Since chamber modifications are minimal, few

37



1 I

I

Figure 6.1.I Deployed Track Robot

I [

...,a

I

J
I

Figure 6.1.2.1

I

Stowed Track Robot

38



6.1.3

6.2

6.2.1

6.2.2

interruptions of normal CELSS operations result. The robot requires minimal storing

space with its telescoping design.

Disadvantages

Due to the unmounted configuration of the robot requires elaborate sensory and control

device systems. Also, the free standing nature of the robot requires additional actuators

for the support arms used in the deployed stationary position. This free unit design

requires an independent power source which involves heavy battery packs. These battery

backs require periodic recharging.

POLE MOUNTED ROBOT

This design concept consists of an articulated robot arm that slides vertically on a pole

which is positioned in the center of the CELSS chamber (Figure 6.2.1). The vertical

motion of the robot arm is facilitated by rollers within the collar attached to the pole. The

robot senses its position by bar codes placed on the pole. The pole is installed on an

overhead gantry robot which is a special type of cartesian robot manipulator. This

configuration moves the robot arm in the horizontal plane of the CELSS chamber. The

mounting system is located above the upper lamps in the CELSS chamber (Figure 6.2.2).

This horizontal motion allows the robot arm to be positioned closer to the plant trays. The

robot arm rotates in cylindrical motion around the pole. The arm consists of two short
links which can be extended. A combination of the extension and rotation of the arm

allows the robot to reach all necessary areas within the working envelope of the CELSS

chamber. The robot is stowed out of the way in the space just left of the door (Figure

6.2.3).

Feasibility

The pole robot is an accurate and stable system configuration. However its bulky

configuration and stow mechanism make it more complex. The number of components

required for this robot increase the cost of construction.

Advantages

The overhead ganu'y system uses cartesian motion which is simple and requires fewer

control systems. The pole is positioned close to the plant tray being tended thus the a

shorter robot arm with less links is required. This will increase stability of the robot and

reduce the strength requirements of materials used in construction. Maintenance is

preformed easily since the robot can be positioned at a comfortable height in the center

of the CELSS chamber. The electrical cabling is safely stored within the vertical pole.
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Figure 6.2.2 Overhead Gantry System

Figure 6.2.3 Deployed Pole Robot
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6.2.3 Disadvantages

The cartesian mounting system is large and requires some chamber modifications to the

roof area. The roof mounting requires extra motors and safety sensors. Extra safety

measures are required for personnel while the pole robot is in operation.

6.3 CABLE ROBOT

This design consists of an articulated robot suspended from the ceiling of the CELSS

chamber via steel reinforced cables. The system is manually deployed by attaching a

cable to a floor mounting (Figure 6.3.1). The robot readies itself for operation once

activated by tightening the cables to a set torque requirement. The vertical motion of the

robot is achieved through a system of motor driven pulleys located within the circular

base of the system. The articulated robot arm is mounted to a collar base capable of

rotating 360 degrees thus enabling the arm to reach all of the plant trays. In order to stow

the cable robot, the cables are relaxed, the center support cable is disconnected and the

stow mode switch is activated. The robot reels in the cables and positions itself in the

upper portion of the CELSS chamber.

6.3.1 Feasibility

This conceptual design is relatively simple and efficient, however, its structural stability

during motion may prove to be a problem due to vibrations from the internal pulley

system. This design requires only minor chamber modifications, and the cost of its

mounting system is minimal. Vertical motion control systems and maintainability are also

simple and efficient due to the robots motor and pulley system.

6.3.2 Advantages

The simple cable and hook assembly of the robot system require only minor modifications

to the CELSS chamber. Installation and cost of the robot mounting system are minimal,

and its motor and pulley system is designed for efficient maintainability. In addition the

arm is easily accessible for maintenance when in the deployed position.

6.3.3 Disadvantages

Structural stability of the robot during operation is questionable. The pulley systems used

for vertical motion requires synchronization with the actuator control system resulting in

a complicated feedback loop. The torsional stress required to support the robot may apply

increased stress to the CELSS chamber, and the robot requires human interface to deploy

and stow (Figure 6.3.3.1).
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6.4 LEG-MOUNTED ROBOT

The leg-mounted robot is an articulated robot arm suspended on a platform with

telescoping u'ipod legs attached to mounting brackets in the floor. In order to deploy, the

robot is pushed on rollers from its stowed position to the center of the chamber. On each

tripod leg is a two position control lever. In one position it is on rollers and in the other

the leg is locked down in the recessed floor attachments (Figure 6.4.1). The telescoping

link legs allow the robot to tend to both levels of plant trays. The legs have three set

positions. One for the tending of each level of plant trays and one for the stowing of the

robot (Figure 6.4.2).

6.4.1 Feasibility

This concept is feasible and lower cost due to the manual deployment and stowing of the

system. This design requh'es only minor chamber modifications, and the cost of its

mounting system is minimal. There is some potential for instability due to the tripod

design of the robot base.

6.4.2 Advantages

The Leg Mounted Robot requires only minor modifications to the CELSS chamber. The

only required modifications will be three (3) recessed mounting brackets in the floor of

the chamber for the tripod mounting system. Since there are no special mounting

requirements or intricate system of robot mobility much time and expense are saved.

Due to the non-permanent mounting design of this robot, routine and unscheduled

maintenance can be performed easily both inside and outside of the CELSS chamber. Also

because of this mounting system the robot may be used for other applications with minor

robot modifications. Also because of the un-mounted design the robot requires minimal

storing space. The telescoping legs also reduce the storage space of the robot. The robot

stores easily in the space to the right of the entrance to the chamber.

6.4.3 Disadvantages

One disadvantage to this design is that the robot is manually deployed and stowed. The

telescoping legs used in stowing and deployment require complicated mechanisms for

vertical movement. Due to the design of the legs, a redundant safety system has to be

built for the legs and robot arm in the event of system failure.

6.5 LINK-MOUNTED ROBOT

The link-mounted robot is mounted on an overhead gantry similar to the Pole Mounted

robot. This Cartesian system facilitates the horizontal motion of the robot. The robot has

four (4) main links that are used for deploying/retracting the robot. These links are
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attachedto thecross-barof thecartesianmounting. When fully deployedthe links will
extend vertically downwardenabling the robot to reach the lower plant trays in the
CELSSchamber(Figure6.5.1). For therobotto reachtheuppertraysin thechamberthe
four main links will retractinto a horizontalposition, level with the cross-barto which
they areattached.The robotarm itself consistsof three(3) short links. Whenextended
thearmcan reachboth thefront andbackof theplanttrays. To facilitate thecylindrical
motion of the robot arm the baseof the robot will rotate in the horizontal plane. The
robot arm, will stow from the retractedposition by folding the links of the arm into a
position that will not interferewith chamberoperations(Figure 6.5.2).

6.5.1 Feasibility

The conceptualdesign allows the robot arm manipulator to reach the entire work

envelope. The multiple supports ensure the load capacity and stability of the robot.

Possible problems to overcome are interaction of redundant motors and structural

components to ensure safety for this roof based design. Safety and maintenance issues

can be met with a properly designed system.

6.5.2 Advantages

The automatic deployment/stowing of the robot _educes the human robot interaction. The

link mounted design of the robot is a stable design. This design allows for heavy load

capacity. The link design is also a reliable design in that the majority of the components

used are mechanical. Cartesian movement in the ceiling mounting system allows for

closer positioning to the plant trays.

6.5.3 Disadvantages

The design requires extensive chamber modifications. A tethered wire power cable will

add design complexity for a safe design. Maintenance accessibility may be difficult

because roof mounted components will require technicians to use ladders or elevated

platforms. Another problem will be the installation of a permanent roof mounted

cartesian positioning system. The roof mounted maintenance and components will be

more complex due to the additional four (4) motion positioning links attached to the roof.

6.6 TELESCOPING LINK-MOUNTED ROBOT

This robot uses a cartesian configuration mounting structure with sliding links and an

articulated configuration arm (Figures 6.6.1). The mounting structure mechanism will

permit the robot to position itself at distances required to perform necessary tasks. The

sliding link mechanism will permit the robot to stow closer to the ceiling, and also reach

necessary areas within the CELSS chamber (Figure 6.6.2). The combination of articulated

and telescoping arm gives the robot the flexibility required to insure proper positioning

of the end effector during operations.
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Figure 6.5.2 StowedLink-MountedRobot
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Figure 6.6.1 Deployed Telescoping Link-Mounted Robot
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Figure 6.6.2 Stowed Telescoping Link-Mounted Robot
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6.6.1 Feasibility

This conceptual design has the potential of performing all required tasks within the

CELSS chamber. By combining an articulated arm with a telescoping base, this design

has access to all regions within the CELSS working environment. It also has the

advantage of minimal stowing area so it does not interfere with access to the CELSS

chamber. A possible problem is encountered in maintainability and safety. Having a

mounting structure attached to the ceiling might create some difficulty in maintenance

routines due to the height of some of the components. Also, a ceiling mounted structure

requires redundancy components to eliminate the possibility of injury to humans or the

CELSS environment caused by falling pm'ts in the case of structural failure.

6.6.2 Advantages

The robot is automatically deployed and stowed, and is stowed in an area that will not

interfere with personnel operations when they need access to the chamber. Cartesian

movement in the ceiling mounting system allows for closer positioning to the plant trays.

6.6.3 Disadvantages

Maintenance accessibility may be difficult because not all the components are accessible

for maintenance routines and a ladder or platform is required to service the mounting

structure. Extensive chamber modifications are required for installations to include

attachment of a permanent mounting structure. Maintenance routines in general, are more

complex due to the different type of motion mechanisms employed.

6.7 DUAL ARM WALL MOUNTED ROBOT

This design consists of two (2) separate two (2) link revolute (articulated) manipulator

robots that are mounted on U-shape tracks extending around the CELSS chamber just

below each of the lamp levels. The robot moves along the track via rubber rollers.Sensors

determine the position of the robot by reading bar codes on the u'ack. In the deployed

position the robot can reach both the front and back of the plant tray positioned directly

below the ta'ack (Figure 6.7.1). In the stowed position the robot links fold out of the way

of normal operations.

6.7.1 Feasibility

This conceptual design requires extensive modification to install a track system. However

once installed, the robot will perform all required tasks occupying minimum space. Two

separate robot systems are required increasing the cost of the entire project. The

repeatability of this design will be well within required specifications.
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Figure 6.7.1 Dual Arm Wall-Mounted Robot

6.7.2 Advantages

The dual arm wall mounted design is simple compared to track driven, link and pole

mounted hybrid. This is the only design which does not interfere with human attendants

even when the robot is in operation. The robot stowing mechanism is simple compared

to the previously presented design. The robot arm is shorter and thus easier to design

within stability requirements. The robot is out of the way even while in operation. The

robot is automatically deployed and stowed which reduces robot human interaction. The

robot is stable because the links are short thus less torque is applied to the arm of the

robot. The design requh'es minimum degrees of freedom.

6.7.3 Disadvantages

Two robots are required thus requiring separate end effectors for each which increases the

cost considerably. The robot operation may interfere with some plant growth depending

on the size of the plants. The working envelope of this design is limited to the area

above the plant trays and just below the lamps. A U shaped track system must be

installed in the chamber causing extensive facility modifications. Separate control systems

will be necessary in order to operate both robots.

Chapter 7.0 DETAILED COMPONENT DESCRIPTIONS

7.1 PROJECT DELINEATION

Three different groups worked independently on original conceptual designs. These

designs were then presented to Mr. Gabor Tamasi of KSC, along with several other

interested persons. Two days after the formal presemation, members of all three groups
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7.2

met and discussed the pros and cons of all of the designs presented. Mr. Tamasi offered

opinions as to the designs presented and gave suggestions regarding the areas he felt

needed improvement.

Several group members presented additional ideas for consideration. The three groups

then selected a basic configuration for the final design. The overall system was then split

into three subsystems consisting of the overhead rail, telescopic arm and the vertical and

rotational shaft actuator. The three groups then selected one subsystem each to complete.

The groups began working on their individual designs by finding methods to accomplish

the required task while remaining within the given design parameters. Upon completion

of an initial subsystem design each group presented their designs to Mr. Tamasi in another

formal presentation. Mr. Tamasi then gave his observations and recommendations to each

group.

The groups then began to refine their final designs. The following report details the

Vertical and Rotational Shaft Actuator Subsystem design recommended by NASA/USRA

group #1.

BASIC DESCRIPTION

This design incorporates the use of a combination ball screw / ball spline actuator to

control the vertical motion of the CELSS chamber robot arm (Figure 7.2.1). A central

mounting structure is mounted to the ball nut and ball spline race. A turntable bearing

is used as an interface between the mounting structure and the ball screw nut. This central

mounting structure contains a system of motors and pulleys which are used as control

systems. One motor is used to rotate the ball nut, while the second motor is used to

control the turntable bearing used for rotation of the robot arm. The rotation of the ball

nut provides the necessary vertical motion to position the mounting structure along the

shaft. The ball spline race adds to the stability of the system and is used to prevent

angular rotation of the mounting structure while still allowing for vertical motion.

Rotational motion of the robot arm is achieved through the use of a turntable bearing

which is actuated by the second motor located within the mounting structure. The robot

arm is bolted to the top of the turntable bearing. The upper end of the ball screw / ball

spline shaft is attached to a plate which is attached to the overhead rail mounting of the

CELSS chamber (Figure 7.2.2).

DETAILED COMPONENT DESCRIPTIONS

Combination Ball Screw / Ball Spline Shaft

The shaft provides a support with two-dimensional motion capability. Linear and angular

motion about its axis is made possible by the use of a combination ball screw / ball spline

assembly. This combination is made possible by machining helical groves and concave
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7.3.2

7.3.3

races along the longitudinal axis of the shaft. The solid shaft is strong and highly

versatile weighing 23.2 kg. The running tracks of the shaft are precisely finished for

smooth movement, high positioning accuracy, and long life.

Central Mounting Structure

A circular aluminum casing, the same diameter as the turntable bearing, encloses the ball

screw / ball spline subsystem and provides structural support to mount the robot arm

(Figure 7.3.2.1). The casing is rigidly attached to the turntable around the vertical shaft.

The central robot casing houses the ball screw nut and spline race assemblies (Figure

7.3.2.2). The electrical motors for the turntable bearing and the ball screw nut are housed

from the environmental extremes of the cells chamber. There is a circular access hole in

the bottom plate for power and computer cabling (Figure 7.3.2.3).

Ball Screw Nut

The bail screw nut is equipped with an internal groove fitted with a circuit of bearing

balls that recirculate in the helical grooves between the shaft and nut (Figure 7.3.3.1).

The balls and their running tracks are precisely finished for smooth movement, high

positioning accuracy, and long life. This anti-friction device converts torque to thrust as
the nut is rotated about the fixed axis of the shaft. Rotation of the ball nut is controlled

by a motor and pulley assembly which causes the ball nut to translate in the vertical linear

direction along the fixed shaft.
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7.3.4 Ball SplineNut

The ball splinenutconsistsof aclosedcircuit of bearingballs thatmatewith theconcave
racesmachinedalong thelengthof the shaft(Figure7.3.4.1). As thepathof theballs is
divertedat theextremesof the splineraceinto a returncircuit, unlimited rolling travel is
achieved. There is a smaller force requiredto achieveaxial displacementof spline
memberswhile transmittingtorquewhichrequiresalesspowerfulmotor. Theball spline
nut is a coupling device which permits translationwhile also providing resistanceto
angularrotation resulting from torsional loads.

7.3.5 TurntableBearing

A turntablebearing(Figure7.3.5.1)is boltedto therobotbodycasingwith a verticalaxis
of rotation. The turntablebearingwaschosenbecauseit offers high performancewith
reducedweight. In this design, the bearingsare inside thegearto facilitate an internal
rotationaldrive actuator. The racegeometryof thesebearingsis designedto handlea
combinationof thrust and moment loads. This makesthe turntablebearingideal for
supportingtheweight andmomentof therobotarm, endeffectorandload. The outside
cylinder ring is boltedto thecentralmountingstructureandtherobotarmis boltedto the
inside cylinder ring of the turntable. An electricalmotor with a gear turns the inner
cylinder whichpositionstherobot arm. The turntablebearingis EnduraKote platedfor
evengreatercorrosionandwearresistance.The sealsareof Buna-nrubberwhichretain
lubrication andexcludecontaminantsfrom the CELSSchamberenvironment.

7.3.6 Lower SupportBoot

In the deployedposition, the squareknob on the bottom of the shaft is positionedin a
recessedfitting in thechamberfloor. The lowersupportboot locks theshaftintoposition
for operation.Thelower supportbootconsistsof ahingedclaspsecuredby apin (Figure
7.3.6.1). Theclaspneedsto beopenwhendeployingtherobotassemblyto thecenterof
the chamber. After the shaft is fit in both the overheadrail operationalposition andin
therecessedfitting in thechamberfloor, theclaspis closedaroundthe shaftandpinned.

7.3.7 CableReel

Thecablereelretractorallows thecablingto bedrawnfrom aspring loadedreelmounted
to thesideof thecentralmountingstructure(Figure7.3.7.1). When thecentralmounting
structure is lowered, the excesscable is retractedonto the spring loadedreel. Upon
deploymentof therobot system,thecableis attachedto thefloor of thechamberdirectly
below theretractor.
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Figure 7.3.7.1 CableReel

Chapter 8.0 ANALYSIS OF DESIGN

8.1 EXPLANATION OF CRITICAL ANALYSIS

A critical analysis modeling the robot arm as a cantilever beam indicates it can handle the

stress and moment of the anticipated loads on the combination ball screw / ball spline

assembly. Using the beam decoder finite element module, the deflection and stress for

a 30 node finite element model were generated. The ends of the poles were constrained

from x,y,z U'anslation and rotation. Two point loads of 298 kg were applied on the shaft

to simulate the moment created by the robot arm. The maximum deflection was created

at a node location of 0.75 m length, when the arm was extended to its full length of 1.83

m. The maximum deflection was 3.9 mm at the end effector.

8.1.1 Combination Ball Screw / Ball Spine Shaft

THK Corporation manufactures the Sehma Series "Robotte" combination ball screw / ball

spline shaft. The combination ball screw / ball spline shaft was chosen because it can

linearly translate relative to the ball nut and can also rotate about its longitudinal axis.

The solid shaft is 0.050 m diameter and 3.1 m in length. The shaft is made of heat
treated carbonized steel which resists the humid environment of the CELSS chamber.

The loads applied in the stress analysis of the shaft were computed with a safety factor

of 2.5. The Algor beam element editor module was used as the input processor for the

boundary conditions and forces applied. All stress units were given in Pascals. All
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8.1.2

8.1.3

8.1.4

8.1.5

deflection are given in meters. The maximum angular deflection computes at 0.1 degrees

which leads to a end effector deflection of 3.9 mm with a safety factor of 2.5. In the

analysis of the shaft, 25 nodes were used.

Central Mounting Su'ucture

The central mounting structure consists of three separate parts machined out of aluminum,

two flat circular plates and a cylindrical component. In the upper flat plate, holes are

drilled to mount the spline race, the turntable bearing and the motor that drives the

turntable bearing. In the lower flat plate, holes are drilled to mount the structure to the

ball screw nut. The motor which drives the ball screw nut is mounted to the cylinder

wall. The motors selected should have a 1800 servo RPM (Appendix C). The cylinder's

outside diameter is 0.4 meters and its height is 0.224 meters. The two flat plates are

bolted to the cylinder with evenly spaced bolts. (Figure 7.3.2.2)

The CMS was analyzed using Algor, a finite element analysis software. The su'ucture

was modeled as two octagonal plates joined by a perpendicular wall to approximate a

three dimensional cylindrical housing. The material property used to model the structure
was aluminum with a 1.27 cm thickness. The data results conclude the deflection of the

structure is negligible (0.01 mm) with the forces applied.

Ball Screw Nut

The ball screw nut assembly is available through THK Corporation and Thomson

Saginaw. The ball nut is coated with a black oxide or zinc plate coating, and could be

lubricated with a lithium based lubricant which is inert to the environment (Figure

7.3.3.1).

Ball Spline Nut

The ball spline nut assembly is available through THK Corporation and Thomson

Saginaw. Their ball nut systems provide high speed, antifriction linear motion under

heavy torsional loads. The spline nut assembly has a low coefficient of friction (0.007

maximum) and is manufactured with a hard material (R/C 56) to ensure efficient operation

and durability in environments with a temperature range of -53 to 149 ° C (Figure 7.3.4.1).

Turntable Bearing

The turntable bearing is available through Kaydon Incorporated; however, it will have to

be custom made due to its nonstandard size. Data supplied by the manufacturer indicates

the load capacity of the bearing will exceed required specifications. Typical applications

include cranes and heavy equipment operations.
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8.1.6 Lower SupportBoot

The purposeof the lower support boot is to increasethe stability of the shaft in the
deployedposition. The Aigor analysis of the shaft was based among other things on the

assumption that both ends were fixed. The support boot holds the shaft firmly in the

recessed fitting in the CELSS chamber floor.

8.1.7 Cable Reel

The cable reel contains both the power cabling as well as the computer control cabling.

The cable reel selected is designed for cable rated 9-35 amps for either 110 or 220

services. The cable reel is of the spring rewind type. Cable reels can be bought off the

shelf in various sizes. The size selected may depend on the bin radius of the computer

cabling to control the robots operation.

Chapter 9.0 OBSERVATIONS & RECOMMENDATIONS

The function of this subsystem is to position the robot arm vertically along the shaft and

rotate the arm about the shaft for angular positioning. Other issues considered were the

interface compatibility between this subsystem and the overhead rail structure, the robot

arm and the connection of the shaft to the floor. The functionality of this subsystem was

achieved through a design consisting of a single ball screw / ball spline shaft, a central

mounting structure equipped with a turntable bearing and a system of motors and pulleys,

and a ball screw hand jack.

This subsystem design for the NASA/USRA Advanced Design Program was evaluated

for maintenance, safety, component complexity and operational performance requirements

within the CELSS chamber. The design generally requires u'adeoffs between complexity

of mechanisms, safety, maintenance and general requirements. Cost, weight, and

modification to the CELSS chamber were other major issues considered.

The major component cost is for the ball screw / ball spline shaft. The reason for this

large expense is due to non standard length of the shaft. The 3.1 m shaft has to be

custom made by the manufacturer. The shaft's 50 mm diameter is standard allowing the

use of a standard ball screw nut and ball spline nut. The total estimated cost of the

subsystem is $ 7,400 (Appendix D).

There is a commercially available turntable bearing made with an exterior gear

configuration. The design of the CMS can be altered to use this type of turntable bearing

instead of the internal gear configuration. This is a viable option to consider because it
reduces the cost.
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The shaft itself weighs 25% of the overall estimated weight of the subsystem. Light

weight aluminum was used in the construction of the CMS to reduce its weight. The total

weight estimate for the subsystem is 97 kg (Appendix E).

Depending on the floor thickness in the CELSS chamber, the knob on the lower support

boot may need to be 1.25 cm instead of 0.635 cm as recommended in this report.

The current configuration of the CELSS robot does not comply with the specification for

the end effector to reach 0.254 m above the chamber floor. The CMS was designed as

small as possible to house the motor and pulley assemblies. In addition, the lower support

boot was redesigned to reduce its height dimension; however, the CELSS robot system

still does not meet the specification. Designing the telescopic arm to mount centrally

between the CMS top and bottom plates versus its current top mounted position will meet

the design specification mentioned above.

The servo motors may need gear reduction to provide required torques (Table 1). If
motors are not available that will fit into the CMS, the current CMS dimension can be

modified with minimal effort.

Rotational

Vertical

TABLE 1

Servo Motor Ratings

Torque (F.S. = 2) RPM

0.36 Nm 47

2.6 Nm 900
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Chapter 1 1.0 INTRODUCTION

This chapter reports tile CELSS robotics project is at the 90% completion stage of the design

phase. The robotic arm development is discussed in detail by group 3 in the followiqg report.

The other two components of the over all robot design: (I) the rail or track system which guides

and supports the entire system and (2) the center column which interfaces with the arm; are

covered in detail by Group One and Group Two, respectively.

The report shows the robotic az'm designed for the CELSS Project meets or exceeds all

parameters set by NASA, the Military Specifications which are included in the report, and is

adaptable to the physical resu'ictions of the CELSS capsule (Appendix F, Specification).

The overall design is shown in Figure 11.1.

Chapter 12.0 DESIGN PHASE

12.1 FLOOR MOUNTED, FIXED & TELESCOPIC ARM ROBOT

The double arm floor mounted designs (Figure 12.1.1 and Figure 12.1.2) possess pin

joint connections at the base of the arm, connecting the two arms, and at the point

where the arm meets the end effector. Arm configurations vaa'y with combinations of

fixed and telescoping alms. Both types are connected to a fixed floor mount.

12.1.1 Advantages

This robot is a simple design and incorporates a minimum of moving parts TM. This

robot may be commercially available. The fixed arms may be available as off the shelf

parts thereby minimizing fabrication costs. This robot could be designed to carry a

larger payload than required by the design requirements if desired. The cost of

developing this robot is low due to the small number of required parts.

12.1.2 Disadvantages

This robot may not be able to access all parts of the CELSS chamber. This design may

interfere with existing elecu'ical conduit located along the chamber wall. There may be

some problems with interference with the existing experimental shelves.

12.1.3 Feasibility

The feasibility of this robot is good provided it can be designed to reach all areas of the

CELSS chamber.
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Figure 11.1 Overall Robot Arm Design

68



/

LOVER CHANGER (NOT IN $C1_)

ELEVATIQN
NOT Tfl SCALE
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Figure 12.1.2 Floor Mounted Telescopic Arm
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12.2 FIXED POLE MOUNT, FIXED AND TELESCOPICARMS ROBOT

12.2.1

12.2.2

12.2.3

12.3

12.3.1

12.3.2

An off-center mountedpole, fixed at the top andbottomof the chamber holds a call

screw and robot arm configuration. The arm itself may be composed of several links

of fixed anns (Figure 12.2.1) or one telescopic arm (Figure 12.2.2).

Advantages

This robot requires a small number of moving parts. The arm system may stow floor

level or at the ceiling. This robot is low cost due to the small number and the possible

commercial availability of parts required.

Disadvantages

This design may conflict with existing plant shelving. Anchoring to the chamber at the

top may be difficult due to the slope of the ceiling. Reachability may be restricted to

the shelving nearest the column. The long arm length results in increased moment loads

on the arm and possible reduced load capacity.

Feasibility

This design has fair feasibility because of the reachability restrictions and increased
moments on the robot arm.

SCISSOR CEILING DESIGN

A center, roof-mounted rack-and-pinion (Figure 12.3.1) or scissor (Figure 12.3.2)

configuration raises and lowers the arm attachment at the center of the chamber. The

robot arm may be telescoping, fixed or scissors arrangement and moves in a 360 °
rotation.

Advantages

This design is simple and contains no complicated mechanisms. The collapsible scissor

type extension has the capability of heavy lift, and benefit of small storage volume

when in the stowed position. The cost of this design is reasonable.

Disadvantages

The scissors extension creates a problem with the control and power cables '8b. The

cables could be easily pinched if not firmly secured. It is also difficult for the scissor

extension to counter any moments developed while the extended arm lifts a load.
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Figure 12.3.2 Scissor Ceiling Design
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12.3.3 Feasibility

12.4

12.4.1

12.4.2

12.4.3

12.5

The feasibility of this design is very good. Many of the parts can be procured through
robotics manufacturers.

RACK AND PINION CEILING DESIGN

A center roof-mounted telescopic column (Figure 12.4.1) raises and lowers the arm
attachment at the center of the chamber. The robot arm has a fixed link with

counterweight, to pivot up and down about the bottom center of the column. The fixed

link also provides for 360 ° rotation. An end link works as a single reduction telescope

for fine adjustment of the end-effector location.

Advantages

The telescoping main pedestal and the arm is extended by a rack and pinion mechanism

which is cleaner than a hydraulic piston when in use. The main pedestal is a very

stable structure and provides stability to the entire robot arm by countering any moments

developed during lifting of loads. The robot is designed to stow overhead against the

ceiling, allowing access to the entire chamber floor by technicians.

Disadvantages

One of the disadvantages is the difficulty of accessing the robot on the ceiling for

maintenance and repair. There may be some difficulty in routing control and power

cables to prevent interference when in use j_. The installation may require additional

modifications to the ceiling to ensure the ceiling is strong enough to support the

expected working loads of the final design.

Feasibility

The design is highly feasible and is based on other working models used in industry

today. It has the flexibility of using either an AC or DC power source.

CENTER SCREW COLUMN DESIGN

The robot arm attachment moves up and down the center column using a screw drive _8_

(Figure 12.5.1-3). The design shown in Figure 12.5.1 is unique in that the center screw

column retracts through the roof of the chamber into a sealed conduit above the

chamber. For stowing, the robot latches to the ceiling and pulls the unlocked center

screw column out of the chamber. The robot is aided in lifting the heavy column by

counter balancing springs located in the outside conduit.
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Figure 12.5.1 Center Screw Column Design
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12.5. I Advantages

This design is possibly the most stowable as far as the inside chamber is concerned.

The bulk of the system is stored outside the CELSS chamber. In the deployed position,

this design has a full range of motion of the entire chamber. The screw drive is very

reliable and strong. Minimal down time is expected because all working parts are

contained in the actual robot body and arm. This design has the potential to expand to
the lower half of the chamber if needed.

12.5.2 Disadvantages

The biggest disadvantage of tiffs design is the sealed conduit that extends about seven

feet over the chamber. A disadvantage is the hole has to be cut on the top of the

chamber to push the screw bar through. This compromises the integrity of the chamber.

12.5.3 Feasibility

With adequate clearance above the chamber this design has very good feasibility.

12.6 TELESCOPIC, PULLEY CEILING DESIGN

A center, roof-mounted pulley with a motor, ch'ives a single loop chain, which raises and

lowers the robot arm attachment similar to a block and tackle configuration (Figure

12.6.1). The robot arm attachment moves up and down along a path established by two

lightweight stabilizer columns, which control stability in the z-axis. The robot

armcontains a counterweight to provide stability in the x-axis, and several fixed arm

links to provide reach to the chamber perimeters.

12.6.1 Advantages

This design has excellent stowability since modification of the chamber is not necessary

to provide clear home position. The strength of this design comes from its cost

effectiveness. The reachability is as good as any other top design model because it

extends from top to bottom and the arms 360 ° degree rotation permits full access of the

chamber. This design reachs any point in the CELSS chamber.

12.6.2 Disadvantages

A disadvantage is that the whole system is gravity dependent. This design is able to

achieve resonant frequency during its oscillating motion when the telescopic arm is fully

extended. It also uses the pulley system which may result in a short life span.
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Figure 12.6.1 Telescopic, Pulley Ceiling Design

Feasibility

The feasibility is low even though the design demonstrates an excellent combination of

reachability and cost effectiveness. Due to its instability practical tasks are difficult to

perform.

FLOOR MOUNTED TRACK DESIGN

A freestanding robot lifts in a telescoping fashion, from its base (Figure 12.7.1). The

base moves about the chamber on a circular track, which has a stowing leg that routes

the robot to a location under the bottom plant shelf. The robot arm is a fixed arm

configuration with a ball socket joint for end-effector attachment.

Advantages

This robot will have a range that will cover the entire CELSS cylinder, and perform the

tasks specified by KSC. The robot will be guided by a circular track system (the radius

will equal approximately the radius of the chamber minus the length of the shelves)

located with its center coincident with the center of the chamber. The advantages of

this robot is its ability to reach everywhere in the chamber in case the chamber is

modified, Also, the robot is completely inside the chamber fl_ereby avoiding any

leaking associated with ceiling or wall mounted robots. There will be a section of track
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extending from the circular track to a location under the first shelf to maximize

stowability. Furthermore,since the robot will be at a location very near the object it will

be lifting, the arm will be considerably shorter than a robot located at the center of the

cylinder. This will decrease the moment arm enabling more weight to be picked up or

a less costly material to be used. Lastly, the robot should not be expensive compared

to other types of robots. This robot can be easily removed for repair or replacement.

Disadvantages

This particular robot's track system will not be easily removed. Electric power and

control cables trail the robot since hydraulics can not be used to raise the top half of the
robot.

Feasibility

This design has excellent feasibility by virtue of its compact design and stowability.

Modifications to the chamber are minimal. Maintenance is simple because the robot

may be removed from the space to be serviced. Cost may be high if this type of robot

is not commercially available.
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12.8 CENTER COLUMN WITH SIDE WALL STORAGE

12.8.1

12.8.2

12.8.3

12.9

12.9.1

A center-mounted column rolls out on a top and bottom track, fi'om its side wall stowed

position to a locked center chamber position (Figure 12.8.1-4). The robot arm moves

up and down the column on a ball screw and has three planar links. These planar links

fold in on top of each other to make the assembly more compact in the stowed position.

Advantages

The tracks provide a path for the center column to move from the center locked position

along the wall. The ball screw mechanism which moves the robot arm up and down

the center column is a standard, off-the-shelf configuration which has lower cost. The

large contact surface between column surface and cowling, which supports the robot,

provide very high strength. This design has few parts and a relatively simple
mechanism.

Disadvanmges

Modifications to the chamber will be required for existing electrical and other

components along the wall where the column stows away. Measurements at the center

of the chamber will be impossible to obtain.

Feasibility

The feasibility of this design is very good for gravity and non-gravity situations. There

is a good range of reachability, height adjustment, and reasonable rigidity tg. Chamber

modifications should be minimal to maintain required clearances for electrical

components.

CEILING MOUNTED, FIXED OR TELESCOPING ARMS

This design is a center, roof-mounted arrangement with two fixed arms (Figure 12.9.1).

Pivot points are located near the point of attachment to the roof and at a point

approximately half way down the length of the arm. Figures 12.9.2 through 12.9.4

provide variations in fixed and telescopic arm configurations..

Advantages

The ceiling mounted design provides very good stowability and flexibility in position

as well as 360 ° rotation. All control and power wiring are contained outside the

chamber. The design is simple in construction and has a low installation cost.
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Figure 12.9.1 Ceiling Mounted,FixedArms
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Figure 12.9.2 Ceiling Mounted, Fixed and Telescoping An-ns
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12.9.2 Disadvantages

12.9.3

12.10

12.10.1

12.10.2

12.10.3

This design presents maintenance access problems. It may be hard to reach and service.

The existing hatch opening at the top of the chamber would need to be relocated.

Control would be difficult due to various degrees of fieedom acting simultaneously.

Feasibility

Feasibility for this design is good. Arm link lengths will require careful coordination

to ensure that the top rack is reached by the end effector. Careful calibration will be

required to ensure that the top rack is left undisturbed when the bottom rack is the

target.

CENTERED WALL MOUNTED TRACKS

The basic feature of this design is a track mounted along the perimeter walls of the

chamber halfway up the height of the chamber (Figure 12.10.1). The robot arm attaches

to the track, working inward from the perimeter. The robot arm may be fixed,

telescoping (Figure 12.10.2) or a combination (Figure 12.10.3). The track may be a

single, center mounted track (Figures 12.10.1 through 12.10.3) or a dual track at center

and top positions in the chamber (Figures 12.10.4).

Advantages

The wall track mounted design has good leachability and 360 ° coverage. It is a more

compact design and the shorter arm length may increase load capacity with reduced

moments. The robot arm may handle variable and complex movements. Maintenance

is good from an access standpoint. Stowability is good.

Disadvantages

This design requires coordination with door openings and shelf mounting heights.

Plants may be disrupted or damaged as the arm moves around the circumference.

Installation is difficult and expensive. The robot arm, working from the perimeter may

reduce stability. Reliability is poor due to complexity.

Feasibility

This design has only a fair rating in feasibility because of the large amount of

modification to the existing chamber that may be required. It is costly to implement and

difficult to expand to the lower chamber.
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12.11 LOW WALL MOUNTED TRACK

Similar to the center wall-mounted track, this design uses the chamber perimeter and a

shortened robot arm (Figures 12.11.1 through 12.11.3).

12.11.1 Advantages

This design is compact. The shorter arm length may increase load capacity with

reduced moments. Robot arm may handle variable and complex movements.

Maintenance is good from an access standpoint. Stowability is good.

12.11.2 Disadvantages

This design requires coordination with door openings and shelf mounting heights.

Plants may be disrupted or damaged as the arm moves around the circumference. This

design lacks 360°rotation due to doorways. It is costly to implement and difficult to

expand to the lower chamber. Reliability is poor due to complexity.

12.I 1.3 Feasibility

This design has only a fair rating in feasibility because of the large amount of

modification to the chamber that may be required and the lack of 360 ° rotation.

12.12 CEILING MOUNTED TRACK

Similar to center or low wall mounted tracks, this design uses the perimeter and roof

of the chamber for support and a shortened robot arm (Figure 12.12.1).

12.12.1 Advantages

The ceiling mounted track design provides good reachability and strength. The track

system should fit easily into the upper edges of the chamber without conflicting with

grown plants. 360" rotation and short arm length provide good load capacity and low

moments on the arm. Stowability is good.

12.12.2 Disadvantages

Modifications of the chamber may be extensive and costly. Stability is only fair.

Installation is difficult. Maintenance is poor as robot and track are difficult to access.

Reliability is poor because of the complexity.
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12.12.3 Feasibility

This design has good feasibility due to its ruggedness. The robot arm working from the

perimeter may reduce stability. Extent of modifications also reduces the overall

feasibility.

12.13 TOP CENTER MOUNTED PULLEY WITH MULTIPLE FIXED ARMS

Two center roof mounted pulleys with motors drive single loop chains which raise and

lower the robot arm attachment (Figure 12.13.1). The robot arm rotates 360 ° and

contains a counterweight which provides stability in the x-axis. The arm has a sliding

actuator to provide extension to the perimeter.

12.13.1 Advantages

This design remains self-contained within the chamber. It provides good reachability,

360 ° rotation, short arm length and good stowability.

12.13.2 Disadvantages

The chain may foul with dust or other particulants. The design is inherently unstable

due to lack of support in all axes. The design is gravity dependent and application is

restricted. Maintenance is poor because the motion mechanism is located at the top of

the chamber. Reliability is poor due to the complexity and number of moving parts.

Control is difficult and complicated because pulley, motor and chain motion must be

synchronous for balanced movement. Cost is high.

12.13,3 Feasibility

This design is not feasible due to instability and gravity dependence. Because of these

same two factors, applications are too restrictive. Feasibility is also poor from a control

and maintenance standpoint. Costs are high to install and operate.

Chapter 13.0 FINAL DESIGN

13.1 COORDINATION WITH OTHER GROUPS

Group Three was required to coordinate with Group Two to connect the telescopic arm

to the vertical shaft. The following paragraphs explain how this is accomplished.

The telescopic arm is mounted to the turn-bearing. The turn-bearing is mounted to the

vertical shaft. A rectangular plate is mounted to one side of the turn-bearing (Figure

13.1.1). The telescopic arm is bolted to the plate which will be bolted to the turn table.
The bolts are installed from the internal section of link one.
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13.2.2

Tile plate is mounted only to one side of tile turn table. The bolts are pre-lubed and

torqued to standard value during integration.

CRITICAL PARTS ANALYSIS

Work Envelope

The work envelope is a region in space which the robot mechanism can possibly occupy

while performing different tasks. For claiity, the overall work envelope will be divided

into two parts. The first is the volume swept out when the arm is in the retracted mode
and the other is when the arm is in the full extension mode.

When the arm is retracted it must be capable of staying inside a vertical cylinder of
48.26 cm of radius. This distance is measured from the center of the CELSS chamber,

and extends upward over the vertical length of travel provided by the ball screw

mechanism (Figure 13.2. I. I). This will allow the arm to clear the shelves and plumbing

while traversing up or down.

For the full extension mode of the arm the retracted work envelope must be extended

an additional 136.74 cm (Figure 13.2.1.2). This will enable tile arm to reach out to the

wall of the CELSS unit. It should be noted that this work envelope includes the shelves

and lights and that the controllers need to provide safety considerations to prevent

property damage.

Telescopic Sections and Overlap

The arm is constructed of six, square, hollow, concentric tubes of aluminum with a wall

thickness of 2 mm (Figure 13.2.2.1). Five of dlese tube sections are the same length,

50.8 cm, and slide into main casing of 71.12 cm in length by 16.48 cm width and

height. The main casing provides a 20.32 cm length region for the Linear Actuator

System while also accommodating the rest of the retracted arm. Each of the five

successive extension section, all with a length of 50.8 cm, will reduce down in size to

the final extension section with a width and height of 7.63 cm. The section which

extends to the maximum position will remain extended 10.16 cm when in the fully

retracted position to allow for the future attachment of an end effector.

Due to the resuictions created by the retracted work envelope an extension length of

30.48 cm was decided to be employed for each of the five extension sections. To

provide counter measures for the moments produced by the payload and the weight of

the arm, an overall section length of 50.8 cm was chosen. This results in an overlap

of 20.32 cm. These values were determined by doing a static analysis of the forces and

moments (Appendix G). Using these values, a model of a cantilever beam was created

in ALGOR to determine the maximum deflection due to the maximum intended payload,

(See Section 13.8). The analysis revealed that a deflection of 1.08 mm is to be

92



____o
J

._X.)

I1.|4 Cl4

'' [

z [
Z

J

-- 102.00 cm-_._

l
I I--

[

.]_
75.25

f

Figure 13.2.1.1 Retracted Telescopic Arm Figure 13.2.1.2 Extended Telescopic Arm

0.48 mm 30.48 mr, 30.'48 mm

" -"trio,32 mm

-1

30 .'18 mm

Figure 13.2.2.1 Telescopi_g Robot Arm

93



expected for the aluminum material alone. This value must be included in the

summation of all the contributions from all three main components to a maximum
allowable deflection of 6.35 mm at the end of the arm.

13.2.3 Rollers

To provide a smooth sliding action with minimum frictional resistance in a high

humidity environment it was decided that a steel sealed needle bearing roller be used

(Figure 13.2.3.1). When compared to self lubricating composite bearings, the friction

coefficient of 0.0003 for the steel roller is far superior to the range of .05-. 16 coefficient

of friction for the composite bearing. The rollers are 6.35 mm in diameter and have a

length of 10 mm (See Sections 13.7 and 13.8).

To reduce the point load on each roller and increase torsional stability, a minimum of

four rollers should be used between any two adjacent planes in contact along the arm.

To prevent an over extension or excess travel of any section, roller stops will be

installed at the required positions. The stops used to prevent over extension in the

payload direction are removable to allow for disassembly, inspection and maintenance

of the interior components of the arm assembly.

13.2.4 Trip Mechanism

When the arm is extended it is desired that there be a successive order to the segments

to be extended. To achieve this a pivoting arm held in contact with the arm segment

provides a friction fit to prevent unwanted motion. Links two through five have their

own trip mechanism. For example, when link one is extended by the actuator, it

extends until its roller bearing hits the roller stopper attached to link two. Then link two

extends and so on. Right before the roller stopper in link two, is the trip mechanism.

Link two through five have a small square cut into each link, located immediately

before its roller bearing, and the trip mechanism is attached to a pivot bar located in the

square. The rubber tip presses against the next upper link.

For example, when the roller bearing from link one hits the trip mechanism that is part

of link two, which is friction held to link three, the trip mechanism is forced to move

off of the upper link and then link two is free to move. Since the trip mechanism is

part of link two, it just tides with link two.

All this allows the telescopic arm to extend in order, but to achieve this during

retraction, the same type of mechanism is placed in front of the inner wheels. (See

Section 13.6).
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13.2.5

13.3

Load

The design requirements state that the arm have the capability to lift a 15 kg payload

throughout the entire work envelope. This value has been used in determining the

material and reaction force requirements to be achieved by the robotic arm. At first it

was thought that an off the shelf item could be obtained from a robotics manufacturer.

After contacting manufacturers in the United States and Canada, it was found this load

requirement at full extension excludes the possibility of obtaining an existing model.

MATERIAL CONSIDERATION AND SELECTION

Aluminum alloy has been chosen to be the material for the telescopic arm due to its

desired mechanical and physical properties. The alloys are narrowed down to three

following choices of composition: 6061-0,606 l-T4 (T451), 606 l-T6 (T651). Out of

these three, 6061-T6 (T651) shall be selected to build the telescopic arm for the

following reasons.

Alloy 6061-T6 (T651) is a general purpose material for building light but strong

structures. This alloy is often used in building airplane parts. It is the easiest of the

three to machine and the price difference is not considered significant. The alloy has

one of the highest ultimate tensile strength and tensile yield strength of 45 ksi and 40
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ksi respectivelyamongtheotheraluminumalloys. This alloy alsopossessesonethe
highesthardnessvalues. Theultimate shearingstrengthfor this alloy is 30 ksi, which
is higher thanmost aluminumalloys.

VENDOR SELECTION

The vendor selectionwascompletedby using the ThomasRegisterto obtain vendor
information for the current robotics industry. Representativesfrom robotics
manufacturersweregiveninformation regardingthe telescopicrobotarmdesign. The
designwill not bean off the shelf item due to its uniqueparametersand dimensional
requirementsfor the clearancein the CELSS chamber. Out of the many vendors

selected and contacted by Group Three, very few were able or willing to custom

manufacture the ann. These few were willing to discuss possible future manufacturing

needs, provided they were given more detailed information about the design. The

following are the companies contacted for the possible future manufacturing needs.

John Gibson, Vadeko International Inc. 2600 Argentia Rd., Mississauga, Ontario,
Canada L5N 5V4.

Vadeko Voice Line: (416) 821-3222 Fax Line: (416) 821-2232

CRC Plus, 830 Harrington Court, Burlington, Ontario, Canada L7N3N4

Phone: (905) 639-0086 Fax Line: (905) 639-4248

The University of Central Florida campus machine shop was also contacted as a

possible builder of the telescopic robot arm design. Although the past experience with

the machine shop has been satisfactory, this task may exceed the shop's capability.

LINEAR ACTUATOR SYSTEM

Basic Design

The linear actuator system is responsible for the linear motion of the telescopic arm.

The design is composed of a series of concentric ball screws which force the extension

of the telescopic arm when rotated. The ball screws, gear box and motor are internally

stored in a casing. There are four ball screws used in the design. Each have a length

of 66.04 cm. A gearing box is used to translate the power of the motor into a rotational

force which is applied to the smallest ball screw. The smallest ball screw (screw 1) is

a solid shaft with the threading located on the outside of the shaft. A larger, hollow,

ball screw (screw 2) with threads on the inside and outside of the shaft is threaded onto

the smaller screw 1. Screw 3 is a larger version of screw 2 with threads on the inside

and outside. Screw 3 is threaded onto screw 2. The largest ball screw (screw 4) is

hollow, however, it only has threads on the inside. Screw 4 is threaded onto screw 3.

The threading on each of the ball screws, both inside and outside, stops 7.62 cm. away

from each end. When the linear actuator system is fully extended, there is a 15.24 cm
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13.5.3

overlap at each end of the screws, because the threads stop. This full extension for a

reach of 228.6 cm when the ball screws and the gear box are included. The required

reach for the telescopic arm is 223.52 cm, so the linear actuator system provides the

necessary length for the full extension of the telescopic arm.

Gear Box and Motor

The gear box is used to convey power from the motor into torque required for extension

of the linear actuator system. The gear box has a space of 10.16 cm in the direction the

telescopic arm extends and a cross-section of 40.64 cm by 40.64 cm. A similar design

which uses only two screws is commercially available. The commercially available

system is capable of pushing 454.54 kg. The gear box for the commercially available

system is small enough to fit into the space provided for the gear box for this design.

The motor for the commercially available linear actuator is also small enough to fit into

the largest section of this telescopic arm. If the motor takes up too much space within

the design telescopic arm, it may be alternately mounted on the outside of the arm. The

requirements for the motor are to be determined.

Actuation System

The linear actuation system extends itself to a length of 228.6 cm through the use of

four concentric ball screws. Screw 1 is fixed in position with the gear box and is

rotated along its longitudinal axis. This rotation causes screw 2 and screw 3 to also

rotate. Screw 2 and screw 3 do not actually extend themselves because there is no force

to keep them in place. This is similar to turning a bolt with a nut on the end. When

the bolt is turned, the nut also turns with it until a force is used to keep the nut in place.

Once this force is used, the nut begins to move down the bolt. Screw 4 has a force

applied to it by two screw stoppers which are located on the inside of the actuator

casing near the end. These screw stoppers have a spring in them which causes the

stoppers to apply pressure to the exterior screw and stop its motion. This allows the

mechanism to lengthen, since screw 4 is becoming extended with respect to the

combination of screw 1, screw 2 and screw 3. Screw 4 lengthens itself with respect to

the actuator until it reaches the end of the threads, which is 15.24 cm from the end.

Screw 4 becomes locked into place at this time. This coincides with the screw stoppers

sliding off of screw 4 and onto screw 3. The end of each screw is tapered so that there

is a smooth transition for the screw stoppers, from the larger screw to the smaller screw.

This will allow the springs in the two stoppers to extend themselves so that the screw

stoppers remain in contact with a ball screw at all times. This tapering also allows the

process of retracting the telescopic arm to function smoothly. The screw stopper springs

are forced to contract when going from a smaller to a larger diameter screw. Screw

3 then follows the same process as screw 4. Once screw 3 has been fully extended, the

process is repeated for screw 2. When all three screws have been extended, the

telescopic arm has reached the wall of the CELSS chamber.
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13.6 TRIP MECHANISM

13.7

The trip mechanismenablesthearm to extendone segmentat atime. It consistsof a
pivoting arm on a spoolwith a round rubberend piece(Figure 13.6.1). In its holding
position, it usesa friction fit to hold the middlearm stationaryagainstthe outerarm,
while the inner armslidesout. Whentheinnerarmis fully extended,oneroller on the
top and one on the bottom trip the pivoting armsout of their holding positionsand
allow themiddlearmto beginmovement.Whenthetelescopingarmretracts,thepivot
arms are placed into their friction fit and holding positions by the motor power
retractingthe linearactuator.

TELESCOPICARM ROLLERS AND BEARINGS

Rollers areusedmainly for guidanceof inner telescopicmembersalongand through
outer telescopicmembers(Figure 13.2.3.1). The rollers on the top andbottom of the
membersarealso usedto counterthe forcesand momentsdevelopedat the reducing
joints.

Frictioncharacteristicsmustbeconsideredbecauseof the largenumberof contactpoints
betweentherollersandthealuminumsquaretubes.Typically, thecoefficientof friction
betweenaluminumandaluminum,in afull surfacecontact,is 1.05for staticfriction and
1.4for sliding friction.TM These values emphasize the need for rollers. A reduction in

friction coefficients is directly related to a reduction in motor power to extend and

retract the linear actuator. Calculations for rolling friction (See Appendix H) 2°b show

that the coefficient of friction may be reduced to 0.0053.

_OUTER SEGMENTS (STAIONARY)

TRIP MECHANISM IN .-- _._m_B_ ,Lt §
LOCKING POSITION

6.90 m_ .85 mm

i °°""
TRIP MECHANISM IN _ _-------MIODLE SEGMENT (NE_LY

FREED POSITION _mNu___Bam_----FREED AND MOVING)

SEG'E T,MOV'NG)
ROLLER AT FULL " _ _,00 mm EACH

EXTENSION OF INNER 10,00 mm

TELESCOPING ARM,

"UNLOCKS' NEXT

TELESCOPING ARM

Figure 13.6.1 Trip Mechanism
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13.8 STATIC AND KINEMATIC ANALYSIS

13.8.1 Preliminary Analysis

Initially, Static and Partial Kinematic analysis was performed on the telescopic robot

arm design using the payload weight of 15 kg. Telescoping pieces were modelled as

round, hollow aluminum members for ease of calculations. The largest outer diameter

used was 20 cm. and the smallest outer diameter used was 15 cm. Wall thickness was

taken as 4 ram. Using basic Shear and Moment Diagrams and modelling the robot arm

as a cantilever beam (Appendix I). The maximum shear loads occur at the base of the
robot arm. The maximum moments also occur at the base of the robot arm. Data is

listed in Table 13.8.1.1.

TABLE 13.8.1.1 Maximum Shear Forces and Moments

Maximum Shear Force (N) 242.25

Maximum Moment (N-m) 293.20

Appendix J contains the rationale to justify using a rectangular beam instead of the

circular cylinder used for the model.

13.8.2 Final Analysis - Downsized Arm

Static and Kinematic Analyses from the 60% design phase were refined to streamline

the dimensions and shape of the robot arm telescoping elements.

First, the arm dimensions were reduced to a point at which deflection values fell at or

below the acceptable values. Second, the geometric parameters of the arm were
minimized. Aluminum is the material of consu'uction. Dimensions of the arm at the

ball screw interface are 164.8 mm square, with a 2 mm thick wall. Dimensions of the

arm at the end effector are 76.3 mm square, with a 2 mm thick wall. Values are

summarized in Table 13.8.2.1. Elements are numbered from smallest to largest.

TABLE 13.8.2.1 - Deflection and Geometric Parameters

Element 1 2 3 4 5 6

Deflection (mm) 1.08 - - -

Area (mm 2) 594 736 878 1019 1160 1302

Morn. of Iner. (mm 4) 5.5E4 1.1E5 1.8E6 2.8E6 4.1E6 5.8E6

Sect. Mod. (mm 3) 1.1E4 1.7E4 2.4E4 3.2E4 4.2E4 5.3E4

Tors. Resist. (ram 4) 5.6E5 8.6E5 1.2E6 1.6E6 2.1E6 2.7E6
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Length (mm) 305 305 305 305 305 458

0.828Weight (kg) 0.561 0.694 0.961 1.095 1.843

Maximum deflection occurs at the end effector. Due to the three component nature of

the robot design and maximum allowable deflection of 6.35 ram, deflection per

component is estimated at one third of the total deflection allowed. Deflection

contributions from the arm, incorporating a factor of safety of 2, is 2.168 ram. This is
within 3% of the estimated amount allowed.

Third, the maximum Shear Forces and Moments are reevaluated based on the reduced

arm weight. Values are summarized in Table 13.8.2.2.

TABLE 13.8.2.2 - Maximum Shear Forces and Moments

Maximum Shear Force (N) 255

Maximum Moment (N-m) 297

From the 60% preliminary design phase, the maximum load per roller was calculated

to be 792 N. The design roller bearings have a 6.35 mm outer diameter, 1.59 mm inner

diameter, six rolling elements with 1.79 mm diameter each, a length of 10 mm and are

constructed of normal ball bearing steel material. The allowable load per roller bearing

is calculated as 1095 N. For supporting calculations, see Appendix K tS_. Actual roller

bearings may not have these exact characteristics, but shall be equivalent.

Because aluminum is much softer than steel, the arm element / roller bearing interface

require close scrutiny. To prevent wear patterns or tracks in the arm element, steel

strips shall be resistance-tack welded to the an-n, along the roller bearing pathway. This

method of welding is acceptable for this application as it will not contribute to

deformation of the aluminum in the weld process 2°b. The steel strips will preserve the

integrity of the aluminum arm, avoid the addition of substantial amounts of weight that

would occur if the arms were made entirely of steel, avoid costly surface hardening

treatments for the aluminum and improve the sliding and rolling resistance coefficient
with a steel-to-steel interface. The coefficient of friction is 0.0003 _Sd.

13.9 DYNAMIC ANALYSIS

For the dynamic analysis the telescopic robot arm is modeled as a square hollow beam

with lumped masses. To simplify analysis the telescopic robot arm cross sectional area

is approximated as a constant. The total weight of the telescopic arm is 6 kilograms,

and the weight at the end effector of the payload is 15 kilograms. The parameters, set

by the CELSS Group Two, for angular velocity and acceleration were 0.08 RPM.
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N= Change in angular velocity t=time

The vertical velocity is 9 m/min. The acceleration to reach this speed was not

determined but it will be small.

For the angular rotation the maximum velocity and acceleration occurs at the end of the

arm. At the end of the arm the velocity is 92.0 cm/min, and the tangential acceleration

is .256 mm/s 2. This extremely small velocity and acceleration produce a negligible

inertia force of .00460 N. This inertial force produces a deflection in the tangential

direction of only .0176 mm, which is negligible compared with the 1.1 mm deflection

produced by gravity.

For the vertical motion of the arm, the acceleration has not been determined but it is

also very small. In order for the robot arm to move vertically, it must be in the closed

position otherwise it will hit the shelves. Regardless of the acceleration required to
reach 15 cm/min, there is not a significant difference in dynamic deflection from the

static deflection because the robot arm must be in the closed position. In the closed

position the robot arm is basically inelastic and experiences a very small moment.

Because the support for the telescopic arm was designed for extremely low velocities

and accelerations, the dynamic deflections and vibrations can be neglected. If higher

velocities and accelerations are required these calculations must be reevaluated.

14.0 OBSERVATIONS AND RECOMMENDATIONS

The purpose of this subsystem is to provide horizontal positioning of the end effector

with respect to the center of the CELSS chamber. The three primary considerations for

this design were:

.

2.

3.

Arm manipulation with a 15 kg. payload end effector.

Minimizing the weight of the subsystem.

Maximizing the use of commercially available parts.

The design goals for this subsystem were accomplished by using a six segment

telescopic arm with rectangular cross sections and an electro-mechanical linear actuator

system. Efforts to locate a commercially available telescopic arm system were

unsuccessful. All segments of the telescopic arm system will require fabrication from

6061 T-4 aluminum.
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The roller bearings and bearing track assemblies are commercially available. No special

fabrication or modifications to these assemblies should be required. The extension trip

mechanism is complex and of unique design. The complexity of the mechanism and

required maintenance during the life cycle are an unfavorable component of the

telescopic arm design. The design group is continuing to explore more feasible

alternatives for this system.

The linear actuator system chosen for the telescopic arm may require modification to

allow the system to meet the required full extension length of 183 cm. Consultation

with the manufacturer has led to the conclusion that procuring a modified linear actuator

system may be economically undesirable. The design group is currently consulting with
other vendors in an effort to locate an actuator that will allow full extension of the

telescopic arm without requiring modification.

The arm interface plate will require fabrication. The simplicity of this part should not

require any special fabrication techniques. At the time of this report, arm attachment

to the interface plate is still an issue. Original designs required the arm to be welded

to the interface plate, This design facet may be changed to allow attachment with a

removable fastener system. This would enhance the maintenance access to internal

telescopic arm components. During the design phase Group three had two concerns with

the design of the telescopic arm.
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Chapter16.0 CONSTRUCTION

16.1 MATERIALS

The materials search for the model boom arm consisted of many factors. These

considerations were: strength and rigidity, weight, cost, accessibility, ability and ease

to work with the tools at our disposal, transparency and bonding characteristics. The

materials that met our preliminm'y criterion were: polycarbonate (Lexan), polyamide

(Nylon 6/6), polymethyl-methacrylate (Plexiglas G) and polyacrynitrile-butadiene-

styrene (ABS).

16.1.1 Strength

The Lexan and Nylon have the greatest strength in this material comparison. They

have a tensile strength in the range of 9000 - 12000 psi. The Plexiglas has the lowest

strength of 3,000 psi.

16.1.2 Rigidity

The modulus of elasticity for the materials chosen range from 340-700 psi with ABS

and Lexan being the most flexible and Nylon the most rigid. This is an important

characteristic of the material to be used. It would not be desirable to choose a material

that would cause a noticeable amount of deflection, however, the material must be

flexible enough to allow ease of construction and elimination of unwanted brittleness.

16.1.3 Weight

Densities of the materials are as follows:

ABS 1.05-1.07 g/cm 3

Plexiglas 1.07-1.10 g]cm 3

Lexan 1.20 g/cm 3

Nylon 1.13-1.15 g]cm 3

16.1.4 Cost

The cost per pound of plastic is approximately:

Plexiglas $1.17

ABS _;1.54

Lexan $2.42

Nylon $3.65

pIIBWI['.,_I_ _A(ilt __.$tNllt NOT FLME_
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16.1.5 Accessibility

16.1.6

16.1.7

16.1.8

16.1.9.2

16.1.9.3

16.1.9,4

16.1.9.5

All of tile materials listed are readily accessible. The Nylon is more difficult to find,

but the Lexan and Plexiglas are easy to find locally.

Transparency

All materials listed are either transparent in their natural form or copolymerized to

improve transparency. The polycarbonate is more amorphous in its true form making

it slightly more transparent than the other plastics listed.

Conclusion

These materials all have the important characteristics needed to build the robot arm.

However, after comparing the plastics, Lexan was chosen. This material gives the best

rigidity and transparency. These two characteristics were the critical factors. This

material is easy to work with which also was a factor. Finally, this material is

accessible at a relatively low cost.

Material Selection

The trade name for the polycarbonate is Lexan 9034 (clear). This material was

obtained from Commercial Plastics and Supply Corporation in a half sheets of 5 x 4

ft., and our desired thickness of 1/4 in. Design requh'ements were a minimum of 14.2

ft. 2 at a cost of approximately $100.00.

Materials were not available in metric dimensions so all components were bought using

English measurement units.

Building Plan

Special order Lexan 9034 - 112 (clear) 5 x 4 ft. sheet from Commercial Plastics and

Supply Corporation in Orlando, FL (407) 293-5500.

Obtain material, Lexan, from supply house.

Make sure protective paper is kept on both sides.

Obtain technical drawings of link surface areas for model (Figure 16.1.9.4.1).

Draw surface area of each link on protective paper using a fine tipped permanent

marker and straight-edged ruler. Arrange like Figure 16.1.9.4.1 leaving 1/8 inch

clearance between each link for blade cut width.
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16.1.9.6

16.1.9.7

16.1.9.8

16.1.9.9 Set bladecuttingdepthto 1/2 in.

16.1.9.10If necessarytapea straight-edgeto the protectivecovering.
guide for the sawcarriage.

Obtainhandcircular sawanda 70 tooth8 in. carbidetippedblade,or a lessexpensive
alternativesuchasa plywood finishing blade.

Obtaina 5 x 4 ft. x 1/2 in. or largerpieceof plywood.

Lay plywood on flat surfacewith Lexanon top.

This can be usedas a

16.1.9.11Makecut between3aand2c-2dcontinuingacrossfull 48 in"width (Figure16.1.9.4.1).

16.1.9.12Makecut along right handsidesof 4d through3a. This shouldleavea largesection
of unusedLexan.

16.1.9.13Make longitudinalcuts to separateeachsidefor links 3 and 4.

16.1.9.14Makecut from right handsideof 2d throughthe top of the Lexan.

16.1.9.15Cut from right handsideof 2c throughthe top of the Lexan.

16.1.9.16Makecuts to separateeachof theexisting sidesof links 1 and 2.

16.1.9.17Cut out endcap for link 1 (Upperright handcornerof Figure 16.1.9.4.1).

16.1.9.18Checkeachlink for correctdimensions.

16.1.9.19If any dimensionsare larger than indicatedusea hand file or belt sanderto make
necessarycorrections.

16.1.9.20Sandall edgeswith 100grit sandpaperto eliminateburs.

16.1.9.21Finish sandwith 320 grit sandpaperuntil a smoothfinish is formed.

16.2 ADHESIVES

16.2.1 PolycarbonateCementSC-325

PolycarbonatecementSC-325was selectedas the adhesiveto assemblethe Lexan
robot armcomponents.SC-325is manufacturedby CasewayIndustrialProducts. It
is a solvent cement for bonding polycarbonateto itself and to some dissimilar
materials. The solvent setsin seconds;howeve,, it takestwo weeks for optimum
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16.2.2

16.2.3

16.2.4.2

16.2.4.3

16.2.4.4

16.2.4.5

16.2.4.6

16.2.4.7

curing. The SC-325 has been tested at 5000 psi after two weeks of curing time.

Polyzap and CA glue are alternate adhesives. CA glue was not selected because of its

tendency to "fog" the Lexan. A transparent model is necessary to view the internal

components at work.

Cost

The cost for an 8 ounce container of SC-325 is $6.75. Polyzap is only sold in .5 ounce

tubes at a cost of approximately $12.00 per ounce.

Availability

Polycarbonate Cement SC-325 is available at Commercial Plastics in Orlando. Polyzap

is available and may be purchased at most hobby stores. It is sold locally at Central
Florida Hobbies on the corner of Colonial and Kirkman.

Assembly of the Arm Components

Cut two (2) pieces of I/2 in. thick plywood measuring 26 x 5 in. Refer Figure

16.2.4.1.1 for steps 16.2.4.1 through 16.2.4.1.6.

Label the pieces A and B.

Cut one (1) piece of 1/2 in. plywood measuring 26 x 12 in.

Label this piece C.

Cut one (1) piece of 1/2 in. plywood measuring 12 X 5 in.

Label this piece D.

Place (4) 1/2 in. wide x 1/4 in. deep router grooves in piece C, parallel to the long

edge of piece C extending the full length of piece C, at the following distances from

the left edge of piece C. Refer to Figure 16.2.4.7.1 for steps 16.2.4.7 through
16.2.4.14:

2 in. from left side, label as a

3 in. from left side, label as b

4.24 in. from left side, label as c

6.40 in. from left side, label as d
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Figure 16.2.4.1.1 Plywood Cuts
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1) 2)

3) 4)

Figure 1.2.4.7.1 Construction of Jig
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16.2.4.8 In pieceD place(4) 1/2 in. widex 1/2 in. deeproutergrooves,parallel to 5 in. edge
extendingthefull heightof theedge,at thefollowing distancesfrom the left edgeof
pieceD:

2.25 in. from left side, labelas :t

3.25 in. from left side, label as b

4.49 in. from left side, label as c

6.40 in. from left side, label as d

16.2.4.9 Lay piece C on floor.

16.2.4.10 Stand piece A on its side on the floor parallel to left side of piece C.

16.2.4.11 Nail pieces A and C together and secure with wood glue.

16.2.4.12 Stand piece D on its 12 in. edge and line up with rear sides of pieces A and C.

16.2.4.13 Nail piece D to pieces A and C and secure with wood glue, to form a three sided box.

16.2.4.14 Place long edge of piece B in groove a of piece C.

16.2.4.15 Lay piece alW of Lexan lengthwise inside of wooden frame and on top of piece C,

and flush against piece D. Refer to figure 16.2.4.15.1 for steps 16.2.4.15 through
16.2.4.31.

16.2.4.16 Place piece alH of Lexan lengthwise inside of wooden frame and with edges flat

against pieces A and D.

16.2.4.17 Hold pieces alH and alW flat and flush with each other.

16.2.4.18 Take Polyzap glue and run a bead along inside corner of piece alH and alW.

16.2.4.19 Place piece a2H of Lexan lengthwise inside of wooden fi'ame and with edges flat

against pieces B and D.

16.2.4.20 Hold pieces a2H and alW flat and flush with each other.

16.2.4.21 Take Polyzap glue and run a bead along inside corner of piece a2H and alW.

16.2.4.22 Remove three (3) sided Lexan box from jig.

16.2.4.23 Install bearings per section 1.3.

16.2.4.24 Lay piece a2W horizontally and lengthwise on top of pieces alH and a2H and with.
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1) 2)

3) 4)

5) 6)

Figure 16.2.4.15.1 Construction of Arm Links
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16.2.4.27

16.2.4.28

16.2.4.29

16.2.4.30

16.2.4.31

16.3

16.3.1.2

Line up cornersof piecea2W with cornersof threesidedLexan box.

With a smallamountof Polyzaptack thecornersof piecea2Wto the cornersof the
threesidedbox.

Make sure thatpiecea2W is lined up correctly.

Take Polyzapglue andrun a beadalong theinsidecornersof piecesa2H and alW.

StandLexanbox on end.

Take Polyzapglueandrun a beadalongall four outside edges of Lexan box.

Repeat steps 16.2.4.15 through 16.2.4.30 for sections 2 through 4 of the arm.

SLIDER BEARINGS

To facilitate a smooth action between the telescoping sections of the model arm, a

cabinet drawer slide, model number 1284 WH manufactured by the Knape and Vogt

MFG. Co. of Grand Rapids, Michigan was selected. These slider bearings are rated

for 445 N capacity and should work well for modeling purposes. For the 33 cm

extension sections, the 450 mm length was chosen and can be used without

modification. However, for the 66 cm extension section two sets of the 610 mm length

will have to be sectioned and made to fit this section.

For ease of installation and clarity, a nomenclature will be established for the parts to

be assembled. The end of each section which will be closest to the payload end shall

be considered the front, while the end closest to the ball screw and shaft shall be called

the rear. While assembling only consider the interface between two adjacent telescopic

sections at one time. From now on the section that will fit inside the next larger

section will be called the male section while the larger section shall be called the

female section. Also, the slider bearing which attaches to the male section shall be

called the male slider member and the slider bearing which attaches to the female
section shall be called the female slider member.

Slider Bearings Installation

Determine the right hand female slider member from the left hand male slider member

by locating the stamped "CR" or "CL" on the slide members, respectively.

Determine the right hand male slider member from the left hand male slider member

by locating the stamped "DR" or "DL" on the slide members, respectively.
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16.3.1.3 Align male slider membersto tile outsidebottomof tile male section, flush with the

front of the male section with the rollers located at the rear (Figure 16.3.1.3.1).

16.3.1.4 Drill a hole for the screws through the vertically oriented side slots using a 7/64 in.
drill bit.

16.3.1.5 Fasten male slider member to male section using No. 6 x 7/16 in. flat head screws.

16.3.1.6 Drill and fasten with remaining screws as indicated above, but use the horizontal or

circular slots, for a total of four screws per member.

16.3.1.7 Rest female slider member inside on the bottom of the female section with the roller

end to the front and flush with the front end of the female section (Figure 16.3.1.7.1).

16.3.1.8 Repeat steps 4, 5 and 6 for female slider members.

16.3.1.9 File down all protruding screw ends with a metal file or grinder.

16.3.1.10 Insert male members by guiding male slider member rollers over female slider member

rollers and insert male section into female section. To remove, extend male section to

locked out position, then lift and pull.

16.4 ACTUATOR

The following nomenclature will be used in the assembly procedure of the actuator and

its components. The end of each section which will be closest to the end effector will

be considered the front, while the end closest to the ball-screw shaft shall be called the

rear. In consideration of the links, the link that will fit inside of the next larger one

will be called male, while the larger will be called the female section. The term outer

shall be considered the outside surface area of the specified link, while the term inner

shall mean the inside area of the specified link.

16.4.1 Actuator Arm Extension

16.4.1.1 Cut main body actuators 1-5 to specified length using an imp saw (Figure 16.4.1.1.1).

16.4.1.2 Cut interconnect tubing (Parts la - 4a; 2b - 5b; lc - 4c) using an imp saw to 1/8(.125)

in.

16.4.1.3 Attach 4a to outer rear end of tube 4 using JB Weld.

16.4.1.4 Attach 3a to outer rear end of tube 3 using JB Weld.

16.4.1.5 Attach 2a to outer rear end of tube 2 using JB Weld.
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Figure 16.3.1.3.1 Male Member
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Figure 16.3.1.7.1 Female Member
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16.4.1.6

16.4.1.7

16.4.1.8

16.4.1.9

Attach la to outer rear end of tube 1 using JB Weld.

Attach 5b to inner front end of tube 5 using JB Weld.

Attach 4b to inner front end of tube 4 using JB Weld.

Attach 3b to inner front end of tube 3 using JB Weld.

16.4.1.10 Attach 2b to inner front end of tube 2 using JB Weld.

16.4.1.11 Insert actuator cable into inner rear of link 1.

16.4.1.12 Feed cable to inner front of link I.

16.4.1.13 Screw a 5/32 (.15625) in. screw into front inner end of link 1 until the threads are no

longer seen.

16.4.1.14 Insert front male end of link 1 into real" female end of link 2.

16.4.1.15 Insert front male end of link 2 into rear female end of link 3.

16.4.1.16 Insert front male end of link 3 into rear female end of link 4.

16.4.1.17 Insert front male end of link 4 into rear female end of link 5.

16.4.1.18 Attach outer retention ring 4c to outer front of link 4 using JB Weld.

16.4.1.19 Attach outer retention ring 3c to outer front of link 3 using JB Weld.

16.4.1.20 Attach outer retention ring 2c to outer front of link 2 using JB Weld.

16.4.1.21 Attach outer retention ring lc to outer front of link 1 using JB Weld.

16.4.2 Mounting Bracket

16.4.2.1 Using a Lexan block with dimensions 1 x 3/8 x 1/4 in. (1.00 x .375 x .25), drill a 7/32

(.21875) in. hole through the block using a standard steel drill bit.

16.4.2.2 Drill one 1/8 (.125) in. bolt hole 1/8 (.125) in. over and 1/8 (.125) in. in from the

corner (Figure 16.4.2.2.1).

16.4.2.3 Drill one 1/8 (.125) in. bolt hole 1/8 (.125) in. over and 1/8 (.125) in. in from the other

corner (Figure 16.4.2.2.1).
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16.4.2.4

16.4.2.5

16.4.2.6

16.4.2.7

16.4.2.8

16.4.2.9

16.4.3.4

16.4.3.5

16.4.3.6

16.4.3.7

16.4.4

16.4.4.1

16.4.4.2

Sectionblock usingtable sawat 1/4(.25) in. up from thebase(Figure 16.4.2.2.1).

Repeatprocessfor secondbracket.

Drill two 1/8(.125) in. bolt holesthroughlink 4 at 1 1/8(1.125)in. out from theshaft
and 3/8 (.375) in. over frorn thecenterline(Figure 16.4.2.6.1).

Drill one 1/8(.125)in. bolt holethroughbaseplateat 1/8(.125)in. overand1/8(.125)
in. in from rear right corner (Figure 16.4.2.6.1).

Drill one 1/8(.125)in. bolt holethroughbaseplateat7/8 (.875) in. overand1/8(.125)
in. in from rear right corner(Figure 16.4.2.6.1).

Bolt bottom sectionsof the mountingbracketsthroughthepre-cutholes(steps5 and
6) in link

Drive Channel

Cut the7/32 (.21875) in. aluminumtube to a lengthof 3 13/16(3.8125)in. (Figure
16.4.3.1.1).

Bendtubeat the 17/8 (1.875)in. markto a 90degreeangleusinga Manderelbender.

Bend the tube at the 3 1/4 (3.25) in. mark to a 100degreeangleusing a Manderel
bender.

Placetubewithin mountingbracketsandsecureby tighteningthebolts on the top of
the mountingbrackets.

Pushplastic actuatorwire throughthe tube.

Attach tube to actuatorarmextensionusingJB Weld.

Insertfront of actuatorlink 1 intocollar locatedin the fi'ont of armlink 1andtighten
setscrewusinganAllen wrenchto secureactuator(Figure 1.4.3.7.1).

Winding Assembly

Cut a 3 x 6 in. segmentof 1/4 (.25) in. thick Lexan usinga table saw.

Cut two extensionblocks 3/4 x 2 x 1/4 in.(.75x 2 x .25) out of Lexan using a table

saw.
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16.4.4.3

16.4.4.4

16.4.4.5

16.4.4.6

16.4.4.7

16.4.4.8

16.4.4.9

16.4.4.10

16.4.4.11

16.4.4.12

16.4.4.13

16.4.4.14

16.5

Glue Lexan extension pieces to Lexan block using Polycarbonate Cement SC-325.

(Figure 16.4.4.3.1).

Using a standard steel 1/8 (.125) in. drill bit, drill three axial 1/4 (.25) in. deep holes

for drive wheels and take-up assembly (Figure 16.4.4.4.1).

Tap spring loaded take-up reel assembly into axial hole using a small hammer.

Place 3/8 (.375) in. O-ring into groove on drive-pulley.

Slide in drive axle until 1/4 (.25) in. of tile axle protrudes from the top of the drive

pulley.

Slide inverted 4 mm hexagonal socket over tile top of the drive pulley and JB Weld.

Tap drive wheel assembly into axial hole using a hammer (Figure 16.4.4.9.1).

Repeat steps 6 through 9 for second drive assembly.

Drill 1/4 (.25) in. hole in the top of link 4, 6 in. from the front and 1 7/8 (1.875) in.

from the center line.

Feed arm extension wire through wheels and attach to take-up assembly by the use of

the small hole in the reel.

Glue winding assembly plate onto tile Lexan supports (attached to link 4) so that the

front of the plate is flush with the front of link 4.

Insert drive axle through the top of link 4 and secure into hexagonal socket.

MODEL STAND

The stand for the UCF model of the CELSS chamber robot arm is designed for

strength, simplicity, ease of operation, and transportation. The general design consists

of a 48 X 48 X 0.25 inch aluminum base, a 2.006 inch diameter aluminum sleeve

supported by four equally spaced 8 X 8 X 0.25 inch triangular flanges and a 5.5 ft

steel pipe (Figure 16.5.1). Special pin holes in tile steel pipe allow the Lexan model

of the telescoping arm to be supported through the use of a 0.5 inch diameter steel pin

which is 8 inches in length. The tolerances between the aluminum sleeve and the steel

pipe will be 0.003 inch to prevent material binding between tile sleeve and the steel

pipe. The four aluminum flanges are welded onto tile aluminum sleeve, and both the

sleeve and the flanges are welded to the rectangular base. Tile actual steps for

construction are as follows:
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16.5.1 Obtaina 48 X 48 X 0.25 inch section of sheet aluminum to serve as the model base.

16.5.2 Obtain a 16 X 8 X 0.25 inch section of sheet aluminum and cut it into 4 right triangles

each with a 6 inch base and 8 inches in height. Sand off all sharp edges with standard

metal file.

16.5.3 Obtain a 12 inch length section of aluminum pipe with an inner diameter of 2.006

inches to serve as the sleeve.

16.5.4 Weld the 8 inch section of each triangular flange to the aluminum sleeve at 90 degree

intervals.

16.5.5 Place the sleeve and flange assembly onto the center of the square aluminum base with

the flanges perpendicular to the center of each 48 inch side of the base.

16.5.6 Weld each 8 inch base of the four triangular flanges and the base of the aluminum

sleeve securely to the square base.

16.5.7 Obtain a 2 inch outer diameter section of steel pipe that is 5.5 feet in length.

16.5.8 Drill six 0.5 inch diameter pin holes into the steel pipe using a drill press and standard

metal drill bit. Space these pin holes at 8 inch intervals measuring from the top of the

pipe in a straight line.

16.5.9 To assemble model stand for use, place the 5.5 ft steel pipe into the aluminum sleeve

and pin the Lexan model of the arm securely using an 8 inch, 0.5 inch diameter steel

pin.

16.6 AESTHETICS

16.6.1 Guidelines

16.6.1.1 This section will give instructions as to the appearance of the telescopic link. All pre-

operational procedures will be adhered to by all team members involved in the setting

up of the telescopic link.

16.6.2 Pre-Operational Procedure

16.6.2.1 Inspect the arm for sharp edges visually before the telescopic link is installed into the

chamber.

16.6.2.1.1 File down all sharp edges by using a fine file or 600-800 grit sandpaper. Then,

inspect all edges with hand to ensure a smooth finish.
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16.6.2.2 Remove any tools not used in the operation of the telescopic arm from the CELSS

chamber before the telescopic link is attached as not to interfere with the operation.

16.6.2.3 Paint the stool and bottom platfoma. The paint used is a spray paint called Zinc-

Chromate. Zinc-Chromate is a spray paint of yellowish color and is available at any

hardware store. ( A more suitable color may be applied over the zinc-chromate).

16.6.2.4 Clean the Lexan telescopic links with liquid alcohol or liquid freon before the

telescopic link is brought into the CELSS chamber.

16.6.2.5 Install the NASA and UCF logos to the side of main link (first link above the stand).

If the logos have to be glued to the telescopic link, use a silicon type adhesives, i.e.

silicon glue.

16.6.2.6 If buffing of the Lexan is desired, a stainless composition called lead-center muslin will

be required. This component is a buffing pad attached to a portable drill. Apply

medium pressure since heavy pressure tends to burn or distort the Lexan. After the

buffing is complete, wipe Lexan with liquid alcohol or liquid freon.

Chapter 17.0 SCHEDULING

Logic and Gantt charts are used to maintain an orderly design schedule. The Gantt

chart is used to separate each task and provide a timetable for its beginning and

completion. The Logic chart shows the sequence in which each task is placed along the

design path.

17.1 LOGIC CHART

To show the order in which each task is performed, a Logic chart has been constructed.

A Development Logic chart shows the path of the overall design process, and a Test

Logic chart shows the test process.

The Development Logic chart (Figure 17.1.1) begins with the orientation of new

members and the reestablishment of design objectives. The system design has been

modified to accommodate these new objectives. A model design was derived for the

testing of the telescoping arm on-site at NASA. Rough drawings will be developed into

detailed drawings for fabrication of a final working plan. Material selections were made

using kinematic and deflection analyses. Vendors and/or manufacturers will be found

for all model components. Procurement of components will begin on 2/17/94. Pre-

testing of components and model assembly will be completed by 3/24/94.

Testing of the model will be performed as shown in the Testing Logic chart (Figure

17.1.2). Pretesting of components will include; crack, di,nension, hole alignment, burr,

adhesive/fastener, bearing mounting, load, actuation, collapsibility, cable reel, stand
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attachment,stability, safety,andaesthetics.Testingof themodelon-sitewill include:
fit, deflection.

17.2 GANTI" CHART

Graphicaldisplayof thedesignschedulingis shownin the DevelopmentGantt chart
(Figure 17.2.1)and theTestingGanttchart (Figure 17.2.2).Thesechartswill beused
to track the progressof the project.
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Chapter 18.0 REDESIGN OF ACTUAL CELSS CtlAMBER ROIIOT

18.1 INTRODUCTION

The previous chapters describe the techniques for constructing the CELSS robot model.

The class changed focus at this junction and began redesigning the actual CELSS robot

work that was done last semester. The students started at the basics and redesigned the

telescopic arm. Cross section of the arm as well as the bearings used to facilitate sliding

were investigated. The actuator was changed from a linear ball screw design into a push

cable design. A method of sequencing of the arm links was determined. Bellows for the

arm were looked at to aid in cleanliness. A V-guide bearing was used to replace the turn-

table bearing. The cable reel was examined to determine if a lighter alternative was

available. The aluminum interface plate was replace with a steel plate. A stress analysis

was completed on the new overall actual design.

Chapter 19.0 ROBOT ARM CROSS SECTION ANALYSIS

19.1 INTRODUCTION

After going over the initial design for the robot arm, it was decided that improvements

could be made to enhance the design. In particular, the cross section design for the arm

needed to be finalized. It was decided that four different shapes should be looked at and

compared. The four shapes suggested were: the square, the rectangle, the equilateral

triangle and the equal axial diamond (Figure 19.1.1). The comparison test for these cross
sections included an area moment of inertia. From the flexural formula for the deflection

in a cantilever beam due to an applied load in the vertical direction, v = PL3/3EI, it can

be seen that the larger the I value the smaller the deflection. The main reason for this

analysis is to reduce the amount of deflection and maintain torsional stability while

keeping the overall size of the arm to a minimum. To obtain a fair comparison of the

different cross sections, a material with a perimeter of 25.4 cm by 3 mm thick was used

to make each of the shapes. The area moment of inertia was then calculated for

comparison. The shape which yielded the greatest moment of inertia would be the

optimum cross section design.

19.1.1 Square Cross Section

The first shape looked at was the square. Its dimensions were 6.35 cm on a side by 3

mm thick. The equation used to calculate the area moment of inertia was I = bh3/12,

where b = base dimension and h = the height. The outside dimensions were used to
calculate a moment of inertia for the solid. The area moment of inertia was also

calculated for the hole. Next, the hole was subtracted from the solid which produced an
area moment of inertia of 444.0 x 10 .9 m a with a cross section area of 40.32 cm 2.

(3 _' C-
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19.1.2 Rectangular Cross Section

19.1.3

19.1.4

19.2

The second shape to be analyzed and compared was tile rectangle. The rectangle was

oriented so that it measured 7.62 cm tall by 5.08 cm wide. The area moment of inertia

was calculated in the same manner as the square. This calculation yielded an improved

value of 581.5 x 10 .9 m 4. The cross section area was slightly reduced to 38.71 cm _.

Triangular Cross Section

When the equilateral triangle shape was used for evaluation, the area moment of inertia

was calculated using the equation I = bh3/36. This resulted in a reduction in the area

moment of inertia and the cross section area for a triangle measuring 8.47 cm 2 on all side.

The area moment of inertia calculated for this shape was 281.7 x 10 .9 m 4. This was the

smallest value calculated and would result in a greater deflection if used. The cross

section area was 31.04 cm'- for the triangle.

Diamond Cross Section

The last shape to be analyzed was the equal axis diamond. This is simply the square

turned 45 degrees so it sits on one of its corners. The area moment of inertia was found

by integrating over the area, A, of the shape using the equation ( yZ )dA. Once again an
I value was found for the solid and the hole. The I value of the hole was subtracted from

that of the solid. The final results were identical to that of the square calculations above

giving an I value of 444. x 10 .9 m 4 and an area of 40.32 cm z.

OBSERVATIONS AND RECOMMENDATIONS

From the values acquired during the analysis of the different shapes, the triangle and

diamond were ruled out. The triangle did not produce a favorable value for its moment

of inertia. Furthermore, the cross section does not provide enough room for running

service cables. The diamond shape analyzed did not have the loading characteristics

compatible with an 'off the shelf' bearing. A diamond shaped cross section which is taller

than it is wide was discarded due to rapidly increasing dimensions from section to section.

A combination of the square and rectangle were chosen to be used in the final design.

These shapes gave the best combination of area moment of inertia and cross section area

to provide the least amount of deflection while still providing enough room for service

cables. After testing at the CELSS chamber it was discovered that the arm possessed too

much horizontal reach because of a grating that encircles the inside of the chamber walls.

Furthermore, the size of the end effector must be taken into consideration. It is suggested

the third section of the arm be redesigned to accommodate this problem. By redesign the

length of the third link and the forces in that bearing are reduced. It is possible a smaller

bearing can be used. A table of the arm links dimensions is included in this report, Table

19.2.1.1.

143



TABLE 19.2.1.1
AREA MOMENT OF INERTIA AND CROSSSECTIONAREA

SQUARE RECTANGLE TRIANGLE DIAMOND

CROSSSECTION
AREA CM2

I SHAPE
10-6m4

I-HOLE

10-9 m 4

I-TOTAL

10 .9 m 4

40.32 38.71 31.04 40.32

1.355 1.873 .9270 1.355

910.9 1292.0 645.4 910.9

444.0 581.5 281.7 444.0

Chapter 20.0 BEARINGS

20.1 INTRODUCTION

There are several different types of bearings which perform a vast number of specialized

tasks. The primary function of all bearings is to reduce the amount of friction between

two contact surfaces. The type of bearing which best fits the needs of the CELSS robot

arm is the slider beating. A slider bearing consists of a track in which roller bearings,

connected to a slightly smaller rail than the track, slides axially with respect to one

another (Figure 20.1.1). A practical example of a slider bearing is the bearings used in
cabinet drawers.

20.2 VENDOR SELECTION

After selecting the desired vendor, General Devices Inc., three models of slider bearings

were chosen. The three models are LBS-11-18, LBS-21-18, and LBS-32-26. These

bearings have a maximum load capacity of 489.3 N, 1001 N, and 2980 N respectively,

with a manufacturer factor of safety of 2.

20.3 BEARING DESCRIPTION

The three bearings chosen are the LBS-11-18, the LBS-21-18 and the LBS-32-26. The

LBS-11-18 slider bearing is constructed of two links. The fixed link is a C-channel which

encases the second link. The two links are separated by two rows of ball bearings (Figure
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20.1.1). The LBS-21-18 slider bearing consists of two sets of C-channels with four rows

of ball bearings (Figure 20.3.1). The largest bearing, LBS-32-26, consists of three sets

of C-channels with six rows of ball bearings (Figure 20.3.2).

20.4 MATERIAL PROPERTIES

The slide members are made from 14 gauge work hardened, cold rolled steel. The slide

in which the bearings roll is plated with zinc fox" a lower coefficient of friction and

corrosion resistance. The operational temperature range specified by the manufacturer is -

4°C to +337°C, which is well within the temperature range of the CELSS chamber.

20.5 MOUNTING

All slides are mounted to the sides of the robot arm links by # 8-32 x 3/8 inch slotted pan

head screws and self locking nuts. The interface between link I and link 2 is supported

by using the LBS-11-18 slide bearing. Link 2 and link 3 use LBS-21-18 slide bearings

for support and link 3 and link 4 use LBS-32-26 for their interface. All bearings must

be mounted parallel to the links they support.

20.6 EXTENSION AND OVERLAP

The LBS-11-18 and LBS-21-18 slider bearings have a collapsed length of 45.7 cm and

an extendable length of 80 cm. For the robot arm, only 78.7 cm of extension is used for

these bearings yielding a 12.7 cm overlap between link 1 and link 2, and link 2 and link

3 when fully extended. The LBS-32-26 slider bearing has a collapsed length of 66 cm

and an extendable length of 134.6 cm. Only 132 cm of extension is used for link 3 and
link 4.

20.7 SLIDE BEARING ANALYSIS

20.7.1 Introduction

While analyzing the slide bearings, two main concerns are encountered. The first concern

is whether the bearings can support the vertical loading. The second being whether they

can support the moment produced by the arm and payload. From a comparison to vendor

specifications, vertical loading will not present problems. The moment produced by the

arm's weight and payload will be the main concern.

20.7.2 Bearing Specifications

The slide bearings, LBS-11-18 (Figure 20.1.1) and LBS-21-18 (Figure 20.3.1), consist of

two metal sections, a male section which is supported by ball bearings inside the female

section. These two models have manufacturer load ratings of 489 N and 1001 N,

respectively. Tile LBS-32-26 (Figure 20.3.2) consists of a triple row bearing having a
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20.7.3

20.7.4

20.8.2

20.8.3

20.8.4

20.8.5

load rating of 2980 N. These load ratings are located at tile midpoint of the extended
section.

Maximum Bearing Loads

Reaction forces between the bearing segments for models LBS-11-18 and LBS-21-18 are
modeled as two members and model LBS-32-36 is modeled as three members. The

assumption is made that contact only occurs at each end of the bearing slide's overlap at

full extension. The reaction forces become point loads at these locations. These forces

are calculated by summing the moments about the end of the extended slide. This

calculation yields the reaction force of the stationary section. The remaining unknown

force is found by summing the forces in the vertical direction and setting that quantity

equal to zero. From these point loads, shear and moment diagrams are constructed for

allowable bearing loads. These diagrams show tile maximum shear and moment values

allowable for each set of bearings (Figures 20.7.3.1 - 20.7.3.3). These values are

calculated using the manufacturer's suggested loading at the maximum extension lengths

of the bearings. The actual extension lengths of the bearings are less than the

manufacturer's suggested lengths. This will contribute to an increase of the safety factor.

Actual Beating Loads

The weight of the aluminum arm links and the payload are used in a similar analysis as

section 20.7.3 for the actual loadings. The reaction forces can be found and used to

create shear and moment diagrams (Figures 20.7.3.1 - 20.7.3.3).

OBSERVATIONS AND RECOMMENDATIONS

The LBS-11-18 beating, used between links 1 and 2, has a maximum allowable moment

of 49.7 N*m. From the analysis of the first beating, the expected moment is 49.5 N*m.

This bearing provides sufficient strength for the link coupling.

The LBS-21-18 bearing, used between links 2 and 3, has a maximum allowable moment

of 102 N*m. From the analysis of the second bearing, the calculated moment is 102

N*m. Since the manufacturer's data includes a safety factor of 2, the bearing is adequate.

The LBS-32-26 bearing, used between links 3 and 4, has a maximum allowable moment

of 984 N*m. From the analysis of the second bealing, the calculated moment is 160

N*m. The bearing capacity is larger than needed.

The LBS-32-26 bearing is oversized for this application. A smaller size would satisfy the

desired strength needed, however, one has not been located that meets the requh-ements.

The weights of the bearings were found by talking to a representative at General Devices.

The LBS-11-18 weighs 11.1 N per pair, the LBS-21-18 weighs 22.2 N, and the LBS-32-
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F2 V (llnk) 15 Kg 41 Kg

F1

-390 N

156 N

-391 N

489 N
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MAX= 49.5 N_M

ACTUAL LOAD

BEARING 1

_X= 49.7 N_M

CAPABLE LOAD

BEARING I

Figure 20.7.3.1 SheadMoment Diagrams
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LOAD
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F2 12 N @.229 M 546 N _,4572 m

FI e.127 m 390 N e.33 m
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"////2///////,A
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BEARING 2

_X= 102.1 NmM
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Figure 20.7,3.2 Shear/Monlent Diagrams
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Figure 20.7.3.3 Shear/Moment Diagrams
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26 weighs 133.5N per pair. Furtherresearchand analysismay be necessaryfor other
alternativesif these bearingweightsareexcessive.

Chapter 21.0 ACTUATOR

The following detailed summary is for an actuator system used in a telescoping robot.
The robot is to be located in the CELSS chamber at Cape Canaveral Air Force Station.

The actuator must have a minimum of 183 cm extension, while maintaining a maximum

of 48.3 cm retracted length. The actuator must be able to extend a 15 kg end effector to

the maximum length specified previously. The chamber is considered a clean

environment, so the use of lubricants or any out-gassing materials is prohibited. This

requirement eliminates the use of hydraulics and the requirement of 0.64 cm accuracy

eliminated the use of pneumatics. The following design meets all the required

specifications of the customer (NASA), while maintaining a low weight and cost.

21.1 TELESCOPIC ACTUATOR

The telescopic actuator idea was taken from the concept of an automobile's automatic

antenna. It consists of five primary cylindrical tubes ranging from a diameter of 0.397 cm.

to 1.03 cm. The actuator tubes are placed on the bottom front face of link one. The

length of the telescopic actuator fully extended is 199.14 cm and fully retracted is 39.75

cm. The telescopic actuator links are manufactured out of steel. Between each primary

tube there is a steel tube coupler. The purpose of the coupler is to act as stoppers to

prevent over-extension or under-extension the tubes (Figure 21.1.1).

21.2 DRIVE MECHANISM

The drive mechanism drives a flexible steel braided cable through the telescopic links.

This cable allows the actuator telescopic links to extend and retract. It consists of two

steel pulleys which have dimples around the circumference to provide more friction to the

cable. The first pulley is the drive pulley that provides an interface between the motor

and drive cable. The second pulley provides an adjustable compression fitting to the

cable to provide a positive drive force to extend the arm (Figure 21.2.1). From the drive

pulley, a steel housing is installed to provide a path for the cable from the drive

mechanism to the telescopic links.

21.3 TAKE-UP REEL

The purpose of the take-up reel is to house the cable when the actuator is not fully

deployed. The take-up reel is a 7.5 cm diameter steel reel. A coil spring type mechanism

located under the take-up reel provides self winding characteristics to the drive cable.

The spring constant of this coil spring multiplied by the maximum extended distance of

the cable must be less than the force developed by the drive wheels, or the actuator will

not stay extended.
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21.4 INTEGRATION

21.5

21.6

21.7

The "floor" area for all the components of the actuator system was insufficient in link 4,

so a steel plate raised on two blocks will be incorporated. The purpose of this block is
to raise the actuator from link four into the interior of link three, thus providing more

"floor" area to mount components. The ch'ive mechanism and take-up reel are bolted to

a 7.62 cm X 15.24 cm steel plate (Figure 21.4.1). The plate is mounted to 1.91 cm X

0.64 cm X 2.54 cm steel block. The end of the telescopic actuator is mounted to the

bottom of the front face of link one. This is bolted to the link by cutting threads into the

last 2.5 cm of link one on the actuator (Figure 21.4.2). All bolts used to integrate the

actuator components are 3mm bolts, 16 or 32 threads per inch. All components are bolted

for easy accessibility.

COST

The cost for the total actuator sub-system is estimated at $600.00. The break-down of the

approximate cost per component is as follows:

Tubes $70,00

Motor $300.00

Take-up Pulley $80.00
Drive wheels $135.00

Drive cable $11.00

JB Weld $1.00

3mm Bolts $3.00

WEIGHT

The approximate weight of the total actuator sub-system is 2.5 kg. The break-down of

the approximate weight for each component is as follows:

Tubes 0.50 kg

Motor 1.40 kg

Pulleys 0.25 kg

Cable 0.35 kg

OBSERVATIONS AND RECOMMENDATIONS

The motor used to drive the actuator system needs to have a self containing gear reduction

system. The motor needs to fit into the third link of the telescopic arm with a maximum

height of 6.35 cm and a maximum diameter of 7.62 cm. If a motor fitting these

dimensions and the specified requirements of the arm is not located from a vendor search,
recommend a motor be mounted on the outside of the telescopic arm (link four). The
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drive cable needsto be flexible. Recommendit be madeof a braidedsteel to provide
stiffnessas well asflexibility.

Chapter22.0 SEQUENCING

22.1 INTRODUCTION

The CELSS robot arm consists of four telescoping links. The smallest link, link one,

retracts into link two, the next larger link. Link two then retracts into link three, and link

three retracts into link four. The order in which these links extend and retract involves

a predefined order which was requested by NASA. The order of extension is link one

first, followed by link two, and then link three. Link four is the main housing of the three

other links and does not have any telescoping movement relative to the chamber. The

order of retraction is also successive starting with link one, then link two, etc.

22.2 ROLLER BALL PLUNGER

The method of sequencing is accomplished by two roller type ball plungers. The roller

ball plunger is a hollow piece of stainless steel with a threaded housing having one open

end that has the ball protruding and the other being slotted for screwdriver installation and

adjustments (Figure 22.2.1). Within the housing is a 302 stainless steel spring that

provides pressure on a spherical ball made of Delrin. Delrin is a substitute for stainless

steel which reduces wear caused by sliding contact with the links. The ball is restrained

from falling out of the open end by a small flange. The threads on the housing contain

a locking element made of Nylon 101 which holds the plunger assembly in a fixed place

after installation and adjustments.

22.2.1 BALL PLUNGER SELECTION

Two parameters limit the selection of the roller ball plungers. The first requirement is the

limited clearance between the links, which is the proposed location for the plungers

(Figure 22.2.1.1). The clearance available for a plunger between link two and three is

9.25 mm (0.37 inch). The plunger for link three and four is not constrained because it

can protrude through the surface of link four without hindering any motion of the robot

arm (Figure 22.2.1.1). The second requirement is the force needed to hold link three in

place. For proper sequencing, this force must be greater than the force required to hold

link two. The data for the two plungers that best meets these requh-ements are listed

(Table 22.2.1.1).
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S

(dimpte angte)

S = F/tan(90/8) = F

Figure 22.2.1 Plunger Force
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22.3.2

22.3.3

Table 22.2.1.1 Plunger Specifications

Link 2- model 1 Link 3- model 2
Threads #8-32 #10-32

Force Range 0.50-1.25 lbs. 2-5 ibs.

Height of Tube 0.344 in. 0.52 in.

Ball Extension Length 0.025 in. 0.025 in.

Diameter of Ball 0.093 in. 0.093 in.

Part Number CL-22-SBPN- 1 CL-30-SBPN-3

* Note the force ranges on each model. The forces get larger as the spring inside the

assembly is compressed. This spring compression is achieved by screwing the plunger

housing in (clockwise).

SEQUENCING BY PLUNGER MECHANISM

On the robot arm, there m'e ball bearing slides on either side of links 1, 2, and 3. These

bearings provide a near frictionless sliding u'ack on which the link travels. Due to this

low friction track, the small forces exerted by the ball plungers are effective.

Ball Plunger Installation

1)

2)
3)

4)

5)

Drill and tap the #10-32 threads 1.27 cm from the end furthest from the ball screw

shaft in the location indicated (Figure 22.2.1.1).

Screw in the ball plunger with a regular head screwdriver.

Adjust the force on the roller bearing plunger by screwing the plunger in closer

to link 3, for greater force, or further out from link three, for a weaker force.

At the maximum arm extension and maximum retraction, drill 900 dimples (Figure

22.2.1) approximately .03 inches deep to serve as the seat for the ball plungers at

the proper location (Figure 22.2.1.1).

Follow steps 1 through 4 for the installation of model #1 to link three.

Sequencing

The ball plungers provide the following sequencing: Starting with all links in the fully

retracted position, the plungers on links two and three are engaged into their respective

dimples. When the actuation starts, the smallest link, link 1, extends first because it does

not have the additional force of a ball plunger acting on it. Once link one is fully

extended, Link 2's ball plunger, model 1, disengages from the dimple due to the force

caused by link 1 because it requires a smaller force than the model two plunger (Table

22.2.1.1). The fact that the links get successively heavier also assists in the proper

sequencing. Once link two is fully extended, tile ball plunger locks into the dimple at the

fully extended position and further force will cause the plunger in link three to disengage

allowing extension of link three. When link three is in its fully extended position, the
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model 2 plungerengagesinto its locking dimple. Sinceboth of the plungers are now

engaged in the robot arm's fully extended position, sequencing for the retraction of the

arm is the same as in the extension with link 1 being the first, then link 2 and finally link
3.

22.4 VENDOR

Carr Lane Manufacturing Company
4200 Carr Lane Court

P.O. Box 191970

St. Louis, MO 63119-2196

Phone:(314) 647-6200

Fax:(314) 647-5736

22.5 OBSERVATIONS AND RECOMMENDATIONS

22.5.1 The proposed sequencing will not work correctly without proper location of the dimples.

Without proper location of the dimples, the ball plungers will not provide the resistance

needed for sequencing.

22.5.2 The adjustments of each plunger must be adequate to provide the resistance needed for

proper sequencing.

22.5.3 Any type of resistance application will work for sequencing as long as link one has the
least resistance and link three has the most resistance.

22.5.4 A trial run can be made without any external sequencing devices to see if sequencing

order in the robot arm is self induced. The reason is attributed to link one being the

lightest, and thus having the least friction from it's bearings. Link two should sequence

next for the same reason, and then link three.

Chapter 23.0 BELLOWS

23.1 Introduction

A bellow is a covering which protects the local environment from the system or

component it encloses (Figure 23.1.1). Several different types of bellows were

considered for two components of the CELSS chamber, the central shaft and the robot

arm. The use of bellows protects the CELSS chamber from foreign substances which

leak from the robot such as lubricants used for the arm bearings or central shaft bearings

or metal shavings which may be produced from wearing of different components. In

addition, the bellows also provide protection to the robot from the CELSS chamber. The

bellows safeguard the mechanical components of tile robot from the humid environment

of the CELSS chamber preventing corrosion and other hazardous effects related to
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23.2.2

23.3

moisture in the chamber. The bellows also protect against microscopic particles produced

from the vegetation such as grain dust, pollen, dirt and other air borne substances present

when cultivating food crops.

OPERATIONAL EFFECTS

Central Shaft Bellows

The greatest problem installing the bellows on the CELSS robot is the reduction of the

work envelope. The bellows considered, Stock Sewn Bellows by Centryco, collapsed to

a length of 2.03 cm for every 30.5 cm of extended length. As shown in Figure 23.2.1.1
two bellows are needed for the central shaft, one above and below the robot arm. The

arm is restricted from reaching the top or the bottom of the shaft due to the space required

to accommodate the collapsed bellow shown in Figure 23.2.1.1 For two 2.44 m bellows

on either side of the arm, 16.3 cm of space is required to house the collapsed bellow in

addition to 10.2 cm required for the collar of the bellow. That translates to losing 26.4

cm of vertical length from the top of the central shaft and 26.4 cm from the bottom, a
total loss of 52.8 cm in the vertical direction.

Tapered Arm Bellow

The bellows used for the robot arm, also a product of Centryco, is a tapered type to

properly fit the telescopic arm. Although the robot arm bellow collapses into itself more
than the central shaft bellow because of it's tapered geometry, it requires 1.27 cm of

collapsed space for every 30.5 cm of extended length and 10.3 cm for the collar as shown

in Figure 23.2.2.1. The additional 18 cm needed for the retracted bellow further reduces

the work envelope of the robot.

OBSERVATIONS AND RECOMMENDATIONS

Bellows are an important tool which may be used to protect the CELSS chamber from the

contaminants produced by the robot arm. They may also be used to protect the robot arm

from the environment of the CELSS chamber. The major obstacles in using bellows are

the effects they have on the reachability of the robot in the vertical direction and the

increased collapsible length of the robot arm due to the collapsed bellows. There is a

trade off between the protection of the robot arm and the CELSS chamber, and the

reachability and collapsibility of the robot. Further investigation of different types of
bellows is recommended. A bellows that does not interfere with the working envelope

of the CELSS robot or one that collapses to a smaller length may be found.
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Chapter 24.0

24.1

24.2

DUAL "V" GUIDE SYSTEM

INTRODUCTION

The Dual "V" Guide system functions as a mounting structure between the telescopic

boom and the Central Mounting Structure (Figure 24.1.1). Besides providing a stable

support, the system allows the telescopic boom to rotate around the ball spline shaft which

is essential to reach the entire circumference of the working envelope. This capacity of

rotation is provided by eight precision guide wheels (Figure 24.1.2).

This system consists of the following components:

• Steel wacks

• Precision guide wheels

• Internal gear

• Adjustable adapter bushings

• Spur gear

The selection of this system was based on the following advantages:

• Easy mounting to machined surfaces

• Self cleaning feature due to the circumference being greater at the

edge than it is on the bottom of the "V" groove, and there is

constant wiping action present.

• The eccentric bushings provide the means to take out "slack" and

compensate for any inaccuracy or accumulation of tolerances.

• The cost is atu-active in comparison with the previous turn-table

bearing proposal.

• All the components are commercially available in a wide selection

of sizes and materials. This availability allowed an economical

choice that could meet the load requirements and space constraints.

STEEL TRACKS

The circular steel tracks ale machined with a 90 degree "V" cross-section on one side and

a fiat surface on the other. The "V" cross-section serves as a track ff)r the precision guide
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Figure 24.1.2 Precision Guide Wheel
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wheels to travel on. Furthermore,the circular tracksprovidestability with the added
featureof providing maximumavailableworking areaunobstructedby the ball spline
shaft.

Material: C1042Cold FormedSteel,contactedgeflamehardenedto
RC53.

24.3

24.4

24.5

24.6

PRECISIONGUIDE WHEELS

The precisionguidewheelsprovidea stableand rigid interfacebetweenthe steeltracks
andthe telescopicboom. At thesametime, the guidewheelsserveas friction reducers
allowing thetelescopicboomto rotatearoundtheball splineshaft. The guidewheelsare
attacheddirectly to the internalgearand insertedbetweenthe u'acks. The materialsare
fabricatedof the following:

Wheels: 440C StainlessSteel,hardenedto RC60-62with ground
contactedges

Bearings: StainlessSteel; sealedand pre-lubricated;thus preventing
outgassinginto the CELSSchamber.

INTERNAL GEAR

The internal gearis part of the rotationalactuatormechanismand it is attachedto the
bottomof thetelescopicboom. A pinion attachedto therotationalactuatorelectricmotor
is engagedwith the internalgearto producethe rotation of the telescopicboom.

SPURGEAR

The spur gearis actuatedby theelectricalmotor mountedwithin the CentralMounting
Structure. The spurgearis theactuatorfor the system. It engagesthe internalgearand
providesfor the rotationalmovement.

DUAL "V" GUIDE SYSTEMANALYSIS

The accuracyof the wheel and track system depends on the circular tracks being parallel.

Therefore it cannot be stressed too strongly reasonable care should be taken when bolting

the tracks to the top plate of the central mounting structure to assure proper alignment.

There are eight evenly spaced guide wheels to ensure the leverage of the fully extended

arm with a 15 kilogram weight does not cause stresses exceeding the load capacity of the

wheel.

17 0



24.6.1 Steel Tracks

24.6.2

24.6.3

24.6.4

24.7

The steel tracks are specially made in a machine shop. Holes must be drilled to securely

bolt the internal gear. The eight holes are evenly spaced.

Precision Guide Wheels

There are eight guide wheels evenly spaced in the assembly to provide 360 degree

rotation. The rating provided for average life of the precision series guide wheels is 2500

hours. The system life is 2 years based on the assumption the robot will have 3.25 total

hours of operation per day. The internal bearings are sealed and lubricated with a thin

oil thus preventing any contaminations to the CELSS chamber.

Internal Gear

The internal gem" will have a 14.5 degree pressure angle with 32 pitch teeth. The inside
diameter is 6.00 inches and the outside diameter is 6.75 inches.

Spur Gear

The gear ratio for the internal and spur gear has not been determined. The calculations

provided in Annex C must be revisited with the current data from this system.

OBSERVATIONS AND RECOMMENDATIONS

The accuracy of the system depends on the mounting surfaces being parallel; therefore,

care should be taken when bolting the steel tracks to the mounting surface to ensure

proper alignment.

The deflection of the "V" Guide System was not determined. As indicated above, the

degree of tolerance on the concentric tracks plays an important role in determining the
tolerance.

The precision guide wheels are spaced to ensure the moment created by the over-hanging

loads, produced by the fully extended arm, does not create stresses exceeding the load

capacity of the guide wheels.

The use of adjustable adapter bushings is recommended over the stationary bushings due

to their ability to compensate for inaccuracies of installation and/or the accumulation of

tolerances.

All components of the Dual "V" Guide System are stock items except the tracks. The

tracks must be fabricated. The total cost of the precision guide wheels is $549 (Table

24.7.1).
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Several pre-tests are recommended in the assembly of the "V" Guide System. In

fabrication of the tracks, the tolerances must meet specifications.

The installation of the system will involve accurately mounting both the "V" guide tracks

to the CMS as well as mounting the guide wheels to the underside of the telescopic boom.

There must be a method to install the guide wheels in the track. One possible solution

is to fabricate a slot in the external track which the guide wheels can be inserted one at

a time to a mounting plate. The mounting plate is then bolted to the telescopic boom.

The purpose of designing the Dual "V" Guide System is to provide a lighter and a more

economical alternative than the turntable bearing. The Dual "V" Guide System is both

lighter and less expensive and meets all required specifications (Table 24.7.1).

Table 24.7.1 Price and weight comparison

System/Components Weight Price

1) Turntable Bearing 18 kg $ 1,500

2) Dual "V" Guide System

Steel Tracks 5.13 kg $ ???

Precision Guide Wheels 2.29 kg $ 549

Internal Gear 0.53 kg $ 100

Adjustable Adapter Bushings 0.33 kg $ 52

Spur Gear (Pinion) 0.05 kg $ 20

Total 8.33 kg $ 721

Chapter 25.0 CABLE REEL DESCRIPTION

25.1 INTRODUCTION

The cable reel subsystem provides electrical/control power to the robot arm system. It

has the capability of delivering power to the system as the robot moves vertically inside

the chamber. The cable reel system (Figure 25.1.1) consists of a sp,'ing retraction system

capable of taking in slack cable as the robot arm rnoves vertically. Although a clutch is

available for the cable reel model series it is not used for automatic payout and retrieval

of the cable. A cable stop is used to prevent damage to cable fitting and to permit
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Figure 25.1.1 Cable Reel System
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adjustment of free cable length. The automatic recovery/pick-up system ensures that slack

cable does not interfere with operation of the robot.

25.2 CABLE REEL

The cable reel is mounted on the chamber wall to the left of the door (Figure 25.2.1).

The reel is offset 1/2" from the stowed shaft position. The vertical position of the cable

reel is as close to the floor as possible but also is in a position that won't interfere with

normal chamber operations. The cable runs from the cable reel down the chamber wall

and along the floor to a position directly below the central mounting structure of the

robot. The cable is guided with (3)U-bolts, to ensure correct positioning of the cable. The

first on the chamber wall at the base of the wall, one on the chamber floor one inch from

the wall and a third on the chamber floor below the cenu'al mounting structure.

The cable reel selected is the Hannay Reels narrow frame series NSCR model number

NSCR716-16-17J, with roller position VR. The reel measures a maximum of 17" X 18

3/4" X 16 3/4". The empty weight of the cable reel is approximately 60 pounds. This

model is capable of handling three conductors of gauges ranging from 16 to 8, and cable

length from 40 to 45 feet.

25.3 OBSERVATIONS AND RECOMMENDATIONS

Placement of the cable reel in the chamber is not critical and can be left up to the end

user. Use of a smaller cable reel is recommended if one is available. Prior to making a

final selection consult the Hannay Cable Reel catalog to ensure compatibility with desired

number of conductors and wire gauge.

Chapter 26.0 BALL SCREW INTERFACE PLATE

26.1 INTERFACE PLATE

A 17.15 X 30.48 cm stainless steel plate with a hollow steel cylinder is used to mount the

ball screw to the carriage (Figure 26.1.1). The cylinder is hollowed to accept the 3.2 cm

shaft end. The plate is fastened to the carriage at four bolt holes located at the corners

of the plate. Two Norvell LP-401 stainless steel locking pins, each 10 cm in length and

1.27 cm in diameter, are used to fasten the shaft to the interface plate. The pins are

inserted through the hollow cylinder and shaft at right angles to each other for stability.

This allows easy removal of the shaft for maintenance.

Stainless steel alloy 304CD is used fox" fabrication of the interface plate. This alloy

displays excellent corrosion resistance in all natural atmospheric environments and many
artificial ones.
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26.2

26.3

26.4

To provide lateral flexibility of the deployment position, the four bolt holes on the

interface plate are slotted to 2.5 cm in length. This permits the bolts to be fastened at any

point along the slot length, permitting exact fine tuning of the robot position in the

direction perpendicular to the rail.

REMOVAL PLATE

A 15 X 15 cm stainless steel plate with a 9 cm ID cylinder (Figure 26.2.1) is used for

removal of the shaft for maintenance. The cylinder is stainless steel with a wall

thickness of .5 cm and an interior depth of I0 cm. The top of the cylinder is welded

flush with the top surface of the plate so the center of the cylinder is at the center of the

plate. The top 2 cm of the cylinder is threaded to accept a removal plate cap (Figure

26.2.2). The removal plate cap is a 12 cm diameter stainless steel cylinder with a 2 cm

depth. The cap keeps debris from entering the removal cylinder when not in use.

The plate is positioned in the chamber so the center of the cylinder is directly below the

center of the shaft when the robot is in the stowed position. Modifications to the CELSS

chamber are needed to accept the removal plate. The plate is welded to the chamber on

all sides, The welds must not exceed .5 cm in width.

BRAKING MECHANISM

A braking mechanism is necessary to hold the robot at a stable vertical position during

deployment of the telescoping arm. The mechanism must also lock the robot in place on

the shaft when the power to the system is shut off. An off the shelf, stand alone braking

mechanism is available to accomplish this task. After research into possible methods of

braking, a motor utilizing an internal brake was selected. This internal brake holds the

motor shaft in place when the motor is not in use. In the previous design, a belt was used

to transmit power from the motor to the ball screw actuator. When using an internal

motor brake, the belt cannot be used. If the belt were to break, the internal brake would

not hold the robot in place. If a solid gear is used to transmit the power to the ball screw

actuator, there is a solid connection and no such failure can occur.

OBSERVATIONS AND RECOMMENDATIONS

As previously designed the robot system weight produces a large amount of torque. A

motor with an internal brake capable of producing enough torque to adequately move the

robot and fit in the volume required by the design was not found. With the redesign of

the system, a decreased weight requh'es a smaller motor which fits within the actuator

housing. If a volume constriction still hampers the sizing of the motor, a beveled gear

may be used instead of the spur gear motor-actuator connection. This allows a larger

motor positioned horizontally instead of vertically.
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Chapter 27.0 STRESS AND DEFLECTION ANALYSIS

27.1 INTRODUCTION

The su'ess and deflection analysis of the CELSS chamber robot arm system consists of

a computerized finite element analysis verified through standard engineering calculations

of deflection and bending stress in a cantilever beam for the arm model, and the method

of deflection by integration, and sla'ess on a shaft for the shaft/arm assembly. The system

was modeled in the worst case scenario to ensure structural integrity in all operational

conditions.

27.2 I-DEAS COMPUTER ANALYSIS PROGRAM

The modeling and analysis of the CELSS chamber robot arm system was done using I-

DEAS, Integrated Design Engineering Analysis Software. This software package uses a

concurrent engineering approach to rnechanical engineering analysis. The finite element

modeling and geometry functions of the software are used to calculate deflections and

stresses due to loading.

The package was used to create a solid model of the telescoping arm and a finite element

model of the ball screw/ball spline vertical shaft/arm configuration. The solid model of

the robot arm was created to determine the properties of the arm including the mass and

center of gravity. The finite element model of the ball screw/ball spline shaft was used

to determine the values of stress and deflection during operation. The finite element

model of the arm was used to determine the values of stress and deflection under loading.

These loads included the weight of the arm, the weight of the arm, the weight of the

bearings, and maximum allowable load at the end of the arm.

27.3 MODELING DESCRIPTION

The vertical ball screw/ball spline actuator was first modeled as a solid steel shaft with

a pin support at both the bottom and the top of the shaft and a bending moment

(consisting of the moment created by the load, and the moments created by the weight of

the arm and the weight of the bearings) applied to the midsection of the shaft. These

boundary conditions best resemble the actual configuration of the system allowing

restriction of movement in the x, y, and z directions at both the bottom and top pin

supports and free rotation at both locations. This configuration models the shaft with the

best possible support system, and the worst possible loading location in terms of

deflection, thus, it is sufficient for the purposes of our analysis. The telescoping arm of

the system was modeled as simple bearn with different cross sectional areas to represent
each link.
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27.4 RESULTS OF COMPUTER ANALYSIS

A complete summary of the results frorn the I-DEAS analysis is given in Appendix L.

27.4.1 Results of Shaft Analysis

The results of the computer analysis performed on the shaft with 412 Nm bending

moment applied a the center of the shaft yielded a maximum of 0.467 mm deflection,

with a maximum combined stress (bending and shear) of approximately 16.9 MPa.

27.4.2 Results of Arm Analysis

The results of the computer analysis performed on the robot arm yielded a maximum
deflection of 1.31 ram, with a maximum stress of 5.2 MPa.

27.5 VERIFICATION

Verification of the computer analysis performed with I-DEAS were performed through

the use of the theory of bending stress and the method of deflection by integration. These

theories state that the deflection due to bending caused by an applied force can be

expressed as a function of the resultant force moment, the modulus of elasticity and the

moment of inertia. A complete summary of these calculations is given in Appendix M.

27.5.1 Deflection in the Shaft

The calculations performed for the analysis of the deflection in the shaft are as follows:

El d2y = M(x)
dx 2

_ M
- equation of elastic curve

dr, 2 E1

deflection is then obtained through integration

= = --x + C 1 = dy
E1

fdy f= (-_ + Clx)d'r' = M--M--x2+2EIctx + C2 =y
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where y is the amount of deflection measured in millimeters

Solving for C_ and C 2 with the boundary

conditions x =0, y=0, x=L,y=0

ML

yields C2=0, C t = -_x, thus

M x MLy= 2 ÷ _.X"
2E/ 2F3"

Substituting the polar moment of inertia, J

for the axis moment of inertia, I, yields

y = M.__x2 + _ML.x
2EJ 2Ed

The results of the preceding equations yielded a maximum deflection, y = 3.55 mm for

the shaft with the following values:

J = Polar Moment of Inertia = 6.535(10) .7 m _

M = Applied Bending Moment = 412 Nm

E = Modulus of Elasticity = 200(10) 9 N/m 2

of Steel

L = Length of Shaft = 3.0 m

x = Distance to Applied Moment = 1.5 m

27.5.2 Stress in the Shaft

The calculations for the analysis of the stress in the shaft were performed by averaging
the deflections in each cross section of the beam as follows:

Maximum bending stress = o -
Mc

J

where c is equal to the radius of the shaft

and J is equal to the polar moment of inertia of the shaft

The above equation yielded a maximum value of stress in the shaft as 16.0 MPa with the

following values:
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J = Polar Momentof Inertia= 6.535(10).7m4
M = Applied BendingMoment= 412 Nm
c = Radiusof Shaft= 0.0254rn

27.5.3 Deflection in the Arm

The calculationsfor the analysisof tile deflection in the arm were performedon each
crosssectionof thearm over theentire lengthof the armas follows:

For a fixed supportcantileverbeam,the maximumdeflection is

pL 3
y _ _

3EI

Where I is the cross section moment of inertia calculated as follows

1 : 3 + ! - 20(h - 203
12 b

The preceding calculation yielded a maximum deflection of y = 1.71 mm for the arm with

the following values:

b = Base of Cross Section = 162.6 mm

h = Height of Cross Section = 114.3 mm

I = Moment of Inertia = 3.656(10) .6 m 4

about the x axis

P = Applied Load = 15 kg

L = Length of Arm = 1.83 m

E = Modulus of Elasticity = 70(10) 9 N/m 2
of Aluminum

27.5.4 Stress in the Arm

The calculations for stress in the arm were performed as follows:

maximum stress due to bending = a
Mc

I

Where I is the moment of inertia about the x axis of the cross section,

c is the vertical distance frorn the base of the cross section to the center

of the cross section, and M is the applied moment
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The precedingequationsyielded a maxinlum stressof 5.27 MPa with the following
values:

I = Moment of Inertia = 3.656(10) 6 m 4

M = Applied Bending Moment = 412 Nm
c = Vertical Distance to Centroid = 57.5 mm

27.6 OBSERVATIONS AND RECOMMENDATIONS

The type of pin connection used to model the shaft and arm arrangement does not

adequately account for the fact that there might be small lateral displacements at the pin

connection of the vertical shaft to the overhead rail system. It is recommended that the

I_DEAS model be restricted in only the x and z directions at the top of the shaft to

adequately account for the possibility of small anaounts of play at the connection.
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Chapter28.0

28.1 Phase I:

Pre-Test

28.2 Phase II:

Model Test

FACILITY LOCATIONS

Engineering Building - Senior Design Laboratory

University of Central Florida

CELSS Chamber

Kennedy Space Center

Chapter 29.0

29.1

29.1.1

TESTING GOALS

PRE-TESTING GOALS (U.C.F.)

Verify that all components are within design specifications.

29.1.2 Verify that model actuation is smooth and free of binding.

29.1.3 Pre-test system for fit test.

29.1.4 Verify that system is free of safety hazards.

29.1.5 Verify that system meets aesthetic requfl'ements.

29.2 TESTING GOALS (K.S.C.)

29.2.1 Insure proper installation of model in CELSS chamber.

29.2.2 Generate data for fit and deflection testing of model at various locations in the CELSS
chamber.

Chapter 30.0 PRE-TESTING OBJECTIVES AND PROCEDURES

30.1 CENTER OF GRAVITY TEST

Objective:

Procedure:

1.

2.

°

To determine the center of mass of the model robot arm.

Use angle iron on edge of table in lab 435 to serve as a fulcrum.

Place model arm on top of the angle iron, ensuring that the two remain

perpendicular.

Move arm longitudinally until it is balanced on the angle iron.
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. Measure the distance from the largest end of the rnodel arm to the balance

point.

5. Record the measurement as the center of gravity for the model arm.

30.2 STABILITY TEST

Objective: To determine whether the model robot arm will tip over while the arm is

fully extended.

Procedure:

I. Mark the center of mass with a thin piece of tape.

, Measure a distance of 20.3 cm from the thin tape towards the end-effector

using a standard tape measure or a measuring stick.

. Fasten a 76.2 cm section of string to the arm at the new location 20.3 cm

from the center of mass position found in the previous step.

, Tie the end of the string to a 2.3 kg weight and let the weight hang freely

from the arm. The addition of the 2.3 kg weight will extend the center of

mass towards the end-effector section of the arm, thus creating a larger

moment and providing an adequate factor of safety for the actual test.

, Determine whether the system is able to stand without tipping given the
new center of mass.

30.3 SAFETY TEST

Objective: To ensure that the final assembly of the model arm is safe from pinch

points or sharp unmarked protrusions.

Procedure:

° All telescoping links will have pinch points at the location where the links

retract into its corresponding female link. At these locations, safety tape

must be applied for visual awareness of these safety hazards.

. All sharp protrusions that are capable of cutting or causing harm can be

detected by a visual inspection and by hand inspection. Any unacceptable

protrusions must be filed to ensure no bodily harm can be caused under

ordinary working conditions. If filing is not feasible then safety tape must

be applied for visual awareness of the safety haza,d.
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30.4

30.5

. Any shavings that are collected on the arm must be removed to prevent

any contamination of the CELSS chamber or possible eye irritation.

CRACK TEST

Objective: To ensure that the Lexan sections contain no cracks, chips, hairline

fractures, or warpage.

Procedure:

1. Inspections will occur after:

initial purchase.

cutting of each section.

gluing of the segments.

drilling holes.

sanding burrs and sharp edges.

. Visual inspections will be conducted on each Lexan section. The

inspections will consist of looking for haMine fractures, chips, cracks, and

warpage.

° Hand inspections will be conducted on each Lexan section. The hand

inspections will consist of feeling the surfaces of the Lexan sections for

non-visible hairline fi'actures, chips, cracks, and warpage.

NON-DESTRUCTIVE LOAD TEST

Objective: To determine the material integrity and general stability of the stand arm

arrangement.

Procedure:

° Attach arm to stand and extend to full length. Visually inspect all section

of arm for chips, cracks, hairline fractures, and wax'page to ensure that the

model will withstand its own weight.

. Visually inspect all adhesive locations to ensure that the adhesive has been

applied along the total length of the seam.

. Apply a series of loads to the end of the model m'm. These loads should

range in value from .91 - 2.3 N. Visually inspect all sections of arm for

chips, cracks, hairline fractures, and warpage after each load application.
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30.6 PRE-FITTEST

30.7

Objective: Confirm modelarmandmodelarm standareof sufficient lengthto reach
thenecessaryareasof the proposedwork envelopeof the NASA CELSS
chamber.

Procedure:

° Measure and mark, with chalk, a circle of 132 cm diameter to serve as the

free area of the CELSS chamber floor.

. Measure and mark, with chalk, a circle of 183 crn radius around the inner

132 cm diameter circle keeping the two circles concentric.

. Place model base in the center of the inner circle and measure the

boundary clearance between the base and the inner circle.

. Attach arm to model stand and measure horizontal clearance between the

183 cm outer circle. Compare the measurement to the circumference of

the CELSS chamber at each of the plant tray locations to ensure that they
have a 2.5 cm clearance.

. Attach model arm to stand at each of the 6 pin locations. Measure the

distance from floor to arm at each pin location and compare to vertical

location of each plant tray within the CELSS chamber to ensure that the

arm will reach to within 1.3 cm fi'om tile bottom of tile first tray to the top

of the second tray.

CUT TEST

Objective: To determine the best method of cutting the Lexan sections and the cut

width created by the saw blade.

Procedure:

1. Obtain Lexan and 1.3 cm plywood for backing.

2. Obtain hand circular saw with 70 tooth blade.

.

,

Mark a line with a pen on the Lexan's protective covering to serve as a

guide for the cut test.

Lay the Lexan flat on the plywood backing.
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30.8

30.9

, Adjust the blade depth on the circular saw so it will cut through the Lexan

and .64 cm into the plywood backing.

. Make the cut along the line previously made vaJ'ying the force applied to

the saw to determine the best cutting speed. Cutting too slowly may

induce melting of the Lexan.

7. Measure the width the circular saw blade created during the cut.

, This measurement should be recorded for proper dimensioning of future
cuts.

STAND A'I-TACHMENT TEST

Objective: To inspect stand for possible defects and also adjust for proper leveling.

Procedure:

1. Visually inspect tim steel pipe for any cracks.

2. Visually inspect aluminum base plate, gussets, and sleeve for cracks.

, Determine whether tile stand is level by placing a two-directional bubble

level horizontally on the base of the stand.

, Adjust the bolts at each corner of tim base plate until stand is level in both
directions.

. Ensure that there is no seizing between the steel pipe and aluminum sleeve

by working the pipe into the sleeve until it is flush with the aluminum base

plate.

6. Rotate pipe 360 degrees to verify smooth rotation.

SHARP-EDGE TEST

Objective: Verify no burrs and/or shall) edges are present on any components of the

telescopic arm.

Procedure:

. Carefully inspect the telescopic components visually for burrs and sharp

edges.
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30.10

30.11

2. Gentlyrub a thin cotton sectionalongall surfacesto check for snagging,

and lightly rub fingers along edges to test for sharp edges.

3. All sharp edges should be rounded and burrs removed.

4. Remove any burrs and/or sharp edges by using a smooth file on the metal

parts and use 600 grit sand paper on the lexan parts. Use gentle strokes

to prevent damage or deformity of the lexan.

5. Repeat procedure 1 and 2 until no burrs or sharp edges are found.

6. Remove debris from all cornponents with alcohol.

CABLE REEL SPRING TEST

Objective: Verify cable reel spring stiffness is within acceptable range for smooth

operation of the arm.

Procedure:

1.

2.

3.

4.

Extend cable reel to full length.

Form knot from cable beyond 191 cm extension point.

Attach tensiometer hook through cable knot.

Record tensiometer reading at maximum cable deployment.

5. Use force reading in drive wheel actuation test.

COLLAPSIBILITY TEST

Objective:

Procedure:

1.

2.

3.

Verify telescopic arm will extend and retract before actuator is installed.

Place mounting shaft in base.

Place telescopic arm on shaft and locate height with setting pins.

Extend the telescopic arrn to its full length. Ensure smooth and proper
motion.
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.

,

6.

Use a standard S.I. tape measure to ensure extension of arm to a minimum
of 183 cm.

Carefully retract the telescopic arm. Ensure smooth and proper motion.

Use a standard S.I. tape measure to ensure collapse of arm to a maximum

of 47 cm.

AESTHETICS TEST

Objective:

Procedure:

1.

.

3.

Verify telescopic arm and all its components are presentable.

Visually inspect telescopic arm and stand to ensure components are

presentable before transporting system to NASA.

Verify UCF, NASA, and CELSS logos are attached to the telescopic arm.

If any item is not presentable, consult aesthetics team for further

instructions.

ROTATION TEST

Objective: Verify telescopic arm can rotate 360 degrees.

Procedure:

1.

2.

3.

4.

.

Place mounting shaft in base.

Place telescopic arm on shaft and locate height with setting pins.

Extend arm to maximum length and rotate arm in 90 degree increments.

At each increment, measure the height of arm from the edge of the base

plate using standard S.I. tape measure.

Verify height at each increment is constant +/- 1 cm.

CABLE REEL ACTUATION TEST

Objective: Confirm cable reel extends and retracts cable without binding.
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Procedure:

1. Extend cable from cable reel to maximum length no less than 25 times and

check for binding.

2. If binding occurs, replace or adjust cable reel

dependable cable reel actuation is achieved.

MOUNTING BRACKET TEST

Objective:

Procedure:

1.

2.

.

4.

.

,

7.

8.

9.

and repeat test until

Verify mounting bracket will properly secure tile drive channel.

Place mounting bracket base on a known flat surface.

Place level on top of mounting bracket and verify the level indicator
bubble is within level lines.

Measure ID of mounting bracket hole using micrometer.

If diameter is not .56 +.0 / - .02 cm, modify bracket oi" discard and fashion

new bracket.

Place a section of the drive channel (.56 cm diameter tube) in the hole of

the mounting bracket.

Apply polycarbonate cement to tube and Lexan interface.

Allow 6 days curing time.

Verify physically that drive channel does not slip or twist in tube.

If tight fit is not confirmed, repeat procedure 6 through 8 until positive
lock is obtained.

ACTUATOR ARM EXTENSION AND RETRACTION TEST

Objective:

Procedure:

o

Verify smooth and propel" actuation of overall system before transporting
to KSC.

Place mounting shaft in base.
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2. Place telescopic arm on shaft and locate height with setting pins.

3. Use drive wheel mechanism to extend the arm to its maximum length.

, Fully retract and extend arm, no less than 25 times, until convinced of

reliable actuation.

5. Inspect visible internal parts for repeatability.

6. If failure occurs, retest subassemblies to correct malfunction.

ADHESIVE TEST

Objective: To establish the integrity of the adhesive bond connecting the Lexan arm
links.

The adhesive test is divided into sample preparation and sample testing. Both of

these two steps are in accordance with ASTM Standard Test Methods and the

ASTM Handbook E8-Testing Adhesives. The test that will be used is ASTM D-

1144 (determining strength developments of adhesive bonds).

Test Sample Preparation:

. Cut six test samples from the excess Lexan. The dimensions of

each test sample shall be 5.08 cm x 5.08 cm x .64 cm as

determined by ASTM Handbook E8.

, Each test specimen shall be smoothed with sandpaper to remove
burrs and excess material.

3. Nurnber each test section with permanent marker for easy reference.

4. Align two sections together along the 5.08 cm axis.

. Apply the Polycarbonate Cement SC-325 to the edge of the Lexan

sections. Allow the section to dry for 6 - 7 days as suggested by

the Polycarbonate Cement SC-325 directions.

. After allowing the test sections to dry, drill two .313 cm diameter

holes in each link. Refer to Figure 30.17.1 for placement

dimensions.

7. Continue steps 4, 5 and 6 for all specimens.
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8. There should be three specimens now ready to test.

Testing Equipment

The instrument used to test the adhesive bond strength is an Instron Uniaxial

Tension Tester model 1011. This machine has twin hydraulic 45,5 kg load cells.

The machine is designed to produce no moment on the sample. For this test no

extensometers are necessary because only a fracture strength is needed. The

machine will record, both numerically and graphically, the load versus time for the

specimen during the test. The stress on the sample can then be found from the
area under the curve.

The test shall be done in accordance to ASTM Standard Test Method D-1144

(determining strength development of adhesive bonds). This test is fully explained

in ASTM Handbook E8 - Testing Adhesives.

Testing Procedure

1. Obtain Instron Reference Manual.

. Refer to manual for location and setting instructions for load cells and

cross heads.

3. Hold sample vertically in loosened machine grips.

, Place main locking screw through .313 cm holes in sample. Tighten main

locking screws hand tight.

, Tighten locking plates using a .64 cm socket set until snug, DO NOT

OVER TIGHTEN.

, Find the cross head speed for sample size and material from ASTM

Handbook E8.

7. Set cross head speed as instructed in reference manual.

8. Turn machine on and allow for self-calibration.

9. Make sure the data printer is on-line.

10. Put on safety eye protection.

11. Start test.
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12.

13.

14.

15.

16.

17.

18.

19.

Continueuntil critical fracturehasoccurred.

Stoptest.

Checkto makesuresamplebroke at least1.27cm from thegrips. This
establishesthat theforce fi'om the gripsdid not causeprematurefracture.

Recordresultsin notebook.

Labelgraphwith time andtestnumber.

Loosengrips andremovefracturedLexan sample.

Photographsamplefor recordsthenproperlydiscardusedsample.

Apply steps3-19 for all samples.

DIMENSIONING TEST

Objective: To ensurethatall of thecomponentsof therobotarmarewithin tolerance
prior to assembly.

Procedure:

1. Measurethewidth 5 timesalong thelengthof thebox aswell asthefinal
lengthto verify that eachdimensionis within .16cm of the desiredsize.

2. Measureoverall dimensionsof actuatorto ensurethat it will fit inside
completedmodel.

3. Measurecompletedmodelstandto ensurethat it will fit inside theCELSS
chamberwithout cominginto contactwith any part of thechamber.

HOLE ALIGNMENT TEST

Objective: To determinethat all assembliesthat arebolted or screwedtogetherwill
properly fit togetherbeforefinal assembly.

Procedure:

BeatingMounting Screws

1. After all holes are drilled in links one through four for the bearings, insert

a 1.27 cm long alignment shaft of tile same diameter as the hole.
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°

Lay tile bearing mount on its respected link side, sliding it over the

protruding shaft aligning mounting holes with alignment shafts.

Check for proper fit of bearing on the link and clearances on all sides. If

clearances and fit are not adequate, i.e. bearing will not slide over

alignment shafts and lay flush, remove bearing.

.

5.

Central Mounting Hole

1.

2.

3.

Remove alignment shafts and fill hole with epoxy.

Redrill hole and retest.

Before assembly visually inspect hole for roundness.

Using a piece of the support shaft, slide the shaft through the hole.

Measure the gap at 30 degree increments using a feeler gage. The gap
should not exceed .32 cm.

4. After assembly reinsert support shaft. Check that the angle between the

support shaft and the link is between 89.5 and 90.5 degrees.

30.20 ACTUATOR SLIP TEST

Objective: To determine that there is a adequate coefficient of friction between the
actuator drive wheels and the drive cable to enable the actuator to push

44.64 N.

Pre-Test Procedure:

1. Assemble the actuator and set it up on a piece of plywood in the final

installed configuration.

Pull test

1.

2.

.

Insert manual crank into tile drive wheel.

Attach a pull scale to the end of the actuator link and secure the other end

to a fixed point.

Turn crank handle clockwise slowly. This will cause the actuator to retract

and pull on tile scale.

199



30.21

. Watch the scale to determine that 4.54 N of force is reached before

slipping occurs.

. At the same time visually watch the drive wheels for slippage between the

drive cable. At the point of slippage the crank handle will become

suddenly easier to turn.

o If slippage occurred before 4.54 N was achieved tighten the tension bolt

on the drive wheels and repeat entire test.

Push Test

, With the actuator in the same configuration as before remove the scale

from the end of the actuator.

. Attach the end of the scale to the base plate which serves as the rear

mounting bracket for link 5.

3. Attach the other end of the scale to the adapter plate.

4. Attach the adapter plate to the front of link one.

.
Turn the handle counter-clockwise, this will cause the actuator to deploy

(extend).

6. Repeat steps four through six from the pull test.

SLIDE BEARING TEST

Attachment of Slide Bearings Pre Test

Objective: Make sure that screws used to connect slide bearings to lexan sections are

the proper length. Confirm that the pilot hole for the self tapping sheet

metal screws are the proper dimension. Make sure that screws will hold

intended load.

Procedure:

° Using a piece of scrap lexan and a .28 cm drill bit, drill a hole in the

lexan.

2. Secure slide bearing to lexan with a #6 × .95 cm sheet metal screw.

3. Look for any visible signs of cracking around pilot hole.

200



30.22

4. Grind off anypart of screwprotruding throughlexan.

5. Attach a 11.4kg ( 25 lb ) weight to slide bearingsectionwith a string.

. Holding piece of lexan vertically, lift lexan piece so as to support the 11.4

kg load by the single screw to test shear strength of screw attachment.

Attachment of Slide Bearings Test

Objective: Confirm that the slide bearings are firmly attached to the lexan arm

segments with no sharp protrusions prior to final assembly, (before top

section of lexan is glued in place).

Procedure:

. Visually and physically inspect all screws for proper fit and torque with a

screw driver.

. Visually and physically inspect all sections for sharp edges and protrusion

of screws or glues by rubbing with a cotton ball and looking for any

snagged fibers.

. Remove any sharp edges or protruding objects using a file or sand paper

to obtain a smooth finish.

REQUIRED TRAVEL ACTION OF SLIDE BEARINGS PRE TEST

Objective: Confirm that the slide bearings provide a smooth action and proper amount

of travel for each section to be extended prior to final assembly, (before

top section of lexan is glued in place).

Procedure:

° Visually and physically inspect mated sections one at a time for smooth

action during extension and retraction of section for 20 cycles.

. Physically retract male section fully into female section until it hits the

stop and inspect to see that the ends closest to the end effector are flush.

. Fully extend male section until it contacts the extension stop and measure

the length of the extension.

. Make any adjustments required to achieve smooth action and required

travel distance for section
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. Repeat this test procedure for each slide bearing interface in the telescopic

arn].

Required Travel Action of Bearings Test

Objective: Confirm that the slide bearings provide a smooth action and proper amount

of travel for each section to be extended after final assembly.

Procedure:

. Visually and physically inspect mated sections one at a time for smooth

action during extension and retraction of section.

, Physically retract male section fully into female section until it hits the

stop and inspect to see that the ends closest to the end effector are flush.

. Fully extend male section until it contacts the extension stop and measure

the length of the extension.

. Repeat this test procedure for each slide bearing interface in the telescopic
arm.

30.23 STAND LOADING TEST

Objective: Verify stand integrity and ability to withstand the required loading.

Procedure:

1. At least two persons must be present fo," this test.

. Visually inspect tile stand to verify it is complete and flee of any obvious
defects.

. Assemble all necessary testing components including the stand, weights,

and the pole attachment device.

, Verify you are in an open area 4.72 m x 4.72 m square to ensure the

safety of those involved.

5. Set the stand approximately in the center of tile 4.72 x 4.72 m square.

. Place all of the 11.4 kg weights on the stand plate. (Make sure that they

are evenly distributed.)
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7. Insert tile direct attachmentinto the steelpole (Figure 30.23.1).

8. Placethe 45.5kg weight in the grooveprovidedby the attachment.

9. Recordthe results.

10. Removethe45.5kg weight.

11. Removethedirect attachmentand return to designatedstoragearea.

12. Placethepoleattachmentdeviceoverthesteelpoleapproximately15.2cm
from theedgeof the aluminumsleeve(Figure 30.23.2).

13. Slide a 6.8 kg weight onto the marks provided on the pole attachment
device.

14. Recordtheresult.

15. Removetheweight,rotatethearm approximately90 degrees,andreattach
the weight.

16. Recordthe result.

17. Repeatstep 15two more times; recordingthe resultseachtime.

30.24ARM WEIGHT TEST

Objective:

Procedure:

1.

2.

3.

4.

,

Determine an estimated weight of the aluminum arm based on the actual

weight of the Lexan test model.

Assemble telescoping arm and bearings.

Before incorporating actuation, weigh telescoping arm.

Record weight of arm.

Subtract weight of bearings from weight.

Multiply weight by ratio of density of aluminum to Lexan.

6. Record value as estimated weight of aluminum telescoping arm.
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Chapter 31.0 TESTING PROCEDURES AND OBJECTIVES

31.1 KENNEDY LEVEL TEST

Objective: Ensure telescopic arm test stand is level once installed into the CELSS
chamber located at KSC.

31.2

Procedure:

1. Two people, lifting with handles on opposite sides of base, will position

base in chamber with support close to center of chamber.

2. Use SI tape measure to measure distance from support to wall of chamber

at no less than 4 positions around chamber.

3. Modify position of base until measured distances are equal within 2 cm.

4. Place level indicator on stand in a horizontal fashion.

5. Verify level indicator bubble is within level lines.

6. If indicator is outside of level lines, adjust stand supports until level

indicator is within level lines.

/

7. Move level indicator to a point 90 degrees from first position.

8. Verify level indicator is within level lines.

9. If indicator is outside of level lines, adjust stand supports until level

indicator is within level lines.

10. Repeat procedure 2 through 7 until stand is level.

DEFLECTION TEST

Objective: To determine whether the robot arm will deflect more than 7.7 cm while

in the fully extended position.

Procedure:

. Measure half the distance of the vertical height of link 4 and link 1 with

a standard tape measure or ruler and mark the point with a piece of tape

or pencil mark.
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,

,

.

,

FIT TEST

Objective:

Procedure:

1.

2.

.

,

,

.

.

8.

Hold one end of a 2.15 m piece of string at the center of link 4 measured

in step 2.

Have a second person pull the string taunt along the length of the fully

extended arm while a third person standing near the center of the arm with

a bubble level directs him to adjust the string up or down until the string

is perfectly horizontal.

The person holding the end-effector end of the string will measure the

vertical distance between the horizontal su'ing and the center of link 1,

marked in step 2.

Determine whether the vertical distance is less than the 7.7 cm deflection

mentioned in the objective.

To ensure that the completed robot arm is capable of reaching the entire

working envelope of the CELSS chamber.

Place model arm inside CELSS chamber.

Measure fi'om center of the model shaft to at least ten (10) places on the
chamber outer wall to ensure the model is centered in the chamber.

Raise arm to height just above plant tops in first row of plant trays and pin

in this position.

Position arm so that the right edge of tile arm is lined up with the right

side of the plant trays that are on the right side of the door to the chamber.

Fully extend arm and measure distance from end of arm to the chamber
wall.

Rotate the arm thirty degrees counterclockwise and measure the distance
of the end of the arm from the chamber wall.

Repeat step 6 ten (10) times.

Fully collapse arm.
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, Raise arm vertically so that the etad of the arm is level with the conduit

that is attached to plant shelves.

10. Position arm so that the right edge of the arm is lined up with the right

side of the plant trays that are on the right side of the door to the chamber.

11. Rotate the arm thirty degrees counterclockwise and measure the distance

of the end of the arm to the conduit.

12. In the process of rotating the arm, ensure that no part of the arm comes

into contact with the conduit that is attached to the plant shelves.

13. Repeat step 11 ten (10) times.
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Chapter 32.0

32.1

32.2

32.3

PRE-TESTING OBJECTIVES AND RESULTS

CENTER OF GRAVITY

Objective: To determine the center of mass for the model robot arm.

Results: The center of mass for the model arm was determined to be 91.44 cm from

the large end of the arm at full extension.

STABILITY TEST

Objective: To determine whether the model robot arm will tip over when it is fully
extended.

Procedure:

1.

2.

,

4.

5.

Results:

SAFETY TEST

Place the robot arm on the stand and extend it fully.

Apply a steady fome perpendicular to the top of the central mounting shaft
in the direction of the extended robot arm.

Apply an increasing amount of force until it begins to tip.

Return the robot to the original position.

Determine whether the robot arm system is stable enough without having

to add any additional counter-balance weight to the model base.

The robot arm and stand assembly withstood a 50 Newton force without

tipping when the arm was at full extension. As long as the robot arm is not

pushed or any external force is applied to the central mounting shaft, the

system will remain stable.

Objective:

Procedure:

1.

.

To ensure that the final assembly of the model arm is safe from pinch

points, sharp edges, protrusions and shavings.

Visually inspect the final assembly to find all sharp protrusions.

Visually inspect the robot arm for residual shavings and dirt on the arm

which may contaminate the CELSS chamber.
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Results: All sharp edges and protrusions were filed and sanded until smooth,

rounded surfaces were formed. All surfaces of each arm section were

wiped clean using rubbing alcohol.

CRACK TEST

Objective: To ensure that the Lexan sections contain no cracks, chips, hairline,

fractures, or warpage.

Procedure:

° Inspect the Lexan after initial purchase, cutting of each section, gluing of

the segments, drilling holes, and sanding burrs and sharp edges.

° Visual inspection will be conducted by holding the Lexan pieces up to a

light source to locate cracks in the Lexan. If any imperfections are

present, they will be visible through the protective covering.

. The Lexan sections are set of a flat surface and are visually inspected at

eye level along the entire length to locate any warpage.

Results: None of the sections had any hairline fractures, chips, cracks, or therefore,

all Lexan sheets passed the crack test.

PRE-FIT TEST

Objective: Confirm model arm and model arm stand are of sufficient length to reach

the necessary areas of the proposed work envelope of the NASA CELSS
chamber.

Procedure:

1. Measure and record the length of the arm in the fully extended position.

2. Measure and record the length of the arm in the fully retracted position.

Results: The retracted length of the model arm was determined to be 81.6 cm. The

extended length was measured to be 2.14 m. These results are within

tolerance.

CUT TEST

Objective: To determine the best method of cutting the Lexan sections and the cut

width created by the saw blade.
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Results: Theoptimumcuttingspeedfor theLexanis 6 inchespersecond.Thecut
width createdby the bladewasdeterminedto be 1/8" +/- 1/32".

STAND ATTACHMENT TEST

Objective: To inspectstandfor possibledefectsandadjustfor properleveling.

Procedure:

. Visually inspect the steel pipe, aluminum base plate, gussets, and sleeve
for cracks.

. Determine whether the stand is level by placing a two-directional bubble
level on the vertical shaft.

. Adjust bolts at each corner of base plate until stand is level in the vertical

direction.

. Ensure that there is no seizing between the steel pipe and the aluminum

sleeve by working the pipe into the sleeve until it is flush with the

alurninum base plate.

5. Rotate pipe manually 360 degrees to verify smooth rotation.

Results: Upon visual inspection of the steel pipe, aluminum base plate, gussets, and

the aluminum sleeve, it was determined that no visible cracks were present.

When the base plate was welded to the sleeve along with the gussets,

warpage occun'ed. Steel angles were bolted onto the bottom of the

aluminum plate along all four edges to straighten the base plate. This

straightened the base plate considerably and the four comer bolts were

adjusted until tile robot arm was horizontal.

There was no seizing or sticking between the steel pipe and aluminum

sleeve.

SHARP EDGE TEST

Objective: Verify no burrs and/or sharp edges are present on any components of the

telescopic arm.

Results: All components of the telescopic arm where inspected prior to assembly.

All edges where rounded using sand paper for Lexan and a smooth file for
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metal. Burrsweredetectedusinga cottonswab,andremovedusingsand
paperfor Lexananda smoothfile for metal.

CABLE REEL SPRINGTEST

Objective:

Procedure:

1.

Verify cablereelspringstiffnessis within acceptablerangefor smoothand
properoperationof arm.

Attach the cablereel and drive wheelmechanismto the final mounting
locationon the telescopicarm.

2. Feedthecable into the drive wheelmechanism.

3. Actuatethe drive wheelmechanismuntil the cable hasextendedto the
maximumlength.

4. Verify noslippageof the cableoccurson thedrive wheelmechanism.

5. If slippageoccur,inspectsandpaperondrive wheelmechanismfor surface
roughnessandreplaceif necessary.

6. If slippagecontinues,removeandreplacecablereel spring with a spring
havinga lower springconstant.

Results: At maximumextension,cableexhibitedno slippage.

COLLAPSIBILITY TEST

Objective: Verify telescopicarm will extendandretract beforeactuatoris installed.

Results: Thetelescopicarmextendedandretractedin asmoothandpropermanner.
At maximumextensionthearmmeasured183cm.At minimumextension,
the arm measured50 cm.

AESTHETICSTEST

Objective: Verify the telescopicarm andall its componentsarepresentable.

Results: Thealuminumbasewaspolishedusingaluminumpolish. TheLexanwas
cleanedof contaminatesusing alcohol. The NASA, CELSS, and UCF
logos wereappliedto bothsidesof the arm.
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32.13

32.14

32.15

32.16

Objective: Verify telescopicarm can rotate360 degreesin a level fashion.

Results: Thearmwasrotatedat30degreeincrements.Dueto warpageof thebase,
measurementsweremadefrom thearmtip to thefloor. All measurements
wereconsistentwithin +/- 1cm.

CABLE REEL ACTUATION TEST

Objective: Confirm cablereel extendsandretractswithout binding.

Results: The cable reel was actuated to its maximum length and completely
retracted25 times. No binding occurred.

MOUNTING BRACKET TEST

Objective: Verify mountingbracketwill properly securethe drive channel.

Results: Mounting bracketswere level when placedon a flat surface. The holes
weredrilled smaller than the tubing. Thetubing was pressfit into the
holesand cementedin place. The bracketfunctionedadequatelyafter
curing for 2 days.

ACTUATOR ARM EXTENSIONAND RETRACTION TEST

Objective: Verify smoothandproperactuationof overall systembeforetransporting
to KSC.

Results: The armwasextendedto its maximumlengthandcompletelyretracted5
times. The armmovedin a smoothand propermanner. More testingof
thearmwouldhavebeencompletedbut,thedrive wheelsandpaperuseful
life wasshorterthanexpected.Frequentreplacementof thesandpaperwas
necessary.

ADHESIVE TEST

Objective: To establishthe integrityof theadhesivebondconnectingtheLexanarm
links.

The test is in accordancewith ASTM StandardTestMethodsandASTM
HandbookE8 - Testing Adhesives. The test used is ASTM D-1144
(determiningstrengthdevelopmentof adhesivebonds).
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The instrumentsusedis an Instron Uniaxial Tensiontestermodel 1011.
This machineis designedto test axial load strength. No momentwas
appliedto the sample.

Results: Threesamplesweretestedaftertheadhesivecuredfor 7 days. Theresults
were 560,580, and 605 psi. Two samplesbroke at the adhesivebond,
while one samplebroke at the attachmentholes to the machine. The
values found provide a large factor of safety against failure for the
adhesivebonds.

DIMENSIONING TEST

Objective: To ensurethatall of thecomponentsof therobotarmarewithin tolerance
prior to assembly.

Procedure:

, Measure the width of each piece of lexan five times along the length, and

the overall length to ensure that each dimension is within 0.16 cm of the

desired length.

, Measure completed model stand to ensure that it will fit inside the CELSS

chamber without coming into contact with any part of the chamber.

Res ults: All four components of each link were measured at intervals along the

length and the overall length. The right side of link #4 was found to be

too wide and was re-cut. The following are the final measurements

recorded during this test, if there are two values given for a measurement

then they are the high nd low end of the measurement variations:

Actual (L X W) Desired (L X W)

Link/Side (cm) (cm)

1/Top 44.37 X 5.12 44.45 X 5.08
1/Bottom 44.45 X 5.08 44.45 X 5.08

1/Right 44.37 X 6.51 44.45 X 6.35

1/Left 44.37 X 6.51 44.45 X 6.35

2/Top 44.45 X 8.89, 8.97 44.45 X 8.89

2/Bottom 44.61 X 8.89, 8.97 44.45 X 8.89

2/Right 44.45 X 8.89, 8.97 44.45 X 8.89

2/Left 44.45 X 9.05, 8.97 44.45 X 8.89

3/Top 81.28 X 12.86 81.28 X 12.7

3/Bottom 81.28 X 12.86 81.28 X 12.7

3/Right 81.28 X 11.75, 11.59 81.28 X 11.43
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32.18 ACTUATOR

Objective:

Procedure:

1.

2.

3.

.

.

.

Results:

3/Left 81.28 X 11.59, 11.43 81.28 X 11.43

4/Top 81.28 X 15.24 81.28 X 15.24

4/Bottom 81.28 X 15.4 81.28 X 15.24

4/Right 81.28 X 14.29 81.28 X 13.97

4/Left 81.28 X 14.13, 13.97 81.28 X 13.97

The measurements for 3/Right and 4/Right were out of tolerance by 0.16

cm. It was deterrnined that this discrepancy would not pose a problem,

because these are side pieces and they will not interfere with the operation

of the bearings.

The stand base measured 76.2 X 76.2 cm which will fit inside the chamber

without contacting any part of the chamber.

SLIP TEST

To determine there is an adequate coefficient of friction between the

actuator drive wheels and the drive cable to enable the actuator to fully
extend and retract the arm.

Assemble the actuator and install it into the arm.

Attach the electric screw driver to the drive shaft.

Use the electric screw driver to turn crank handle clockwise for the

extension of arm and counterclockwise for the retraction of the arm.

During the extension process visually watch for pausing or stoppage of the
arm.

At the same time watch for slippage between the drive pulley and the drive

cable. If slippage occurs the force required to hold the screw driver in

place will suddenly lessen.

Should any slipping occur during the extension process, tighten the

compression bolt to increase the friction and retest.

The preliminary tests revealed that the coefficient of friction between the

drive wheel and the drive cable was not high enough to prevent slipping.

Sandpaper was glued to the drive wheel, thus increasing the friction factor.

The test was then redone and adequate friction was achieved to prevent

slipping. However, repeated testing showed that the life of sandpaper on
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32.19

thedrive wheel is extt'emelyshort. Thedesignwaschangedto allow for
easyreplacementof thedrive wheel.

ATI'ACHMENT OF SLIDE BEARING PRE-TEST

Objective: Makesurethatscrewsusedto connectslide bearingsto lexansectionsare
the proper length. Confirm that the pilot hole for the self tappingsheet
metal screwsare theproperdimension. Makesurethat screwswill hold
intendedload.

Procedure:

1. Using a pieceof scraplexan,drill a 7/64 inch hole in the lexan.

2. Secureslide bearingto lexanwith a #6 by 3/8 inch sheetmetal screw.

3. Look for any visible signsof crackingaroundpilot hole.

4. Grind off any partof screwprotruding throughlexan.

. Attach an 11.4 kg ( 25 lb.) weight to slide bearing section with a metal

strap using an 8-32 screw and nut.

. Holding a piece of lexan vertically, lift lexan piece to support the 11.4 kg.

load by the single screw to test shear strength of screw attachment.

Results: When the hole was drilled in the lexan, the drill bit tended to bind and

care needed to be taken not to break the bit in the hole. Otherwise, the

holes were drilled with no other complications.

When the bearings were firmly attached to the lexan the screw holes

showed no signs of cracking but, unfortunately the screws protruded out

of the lexan. To overcome this, the screws were first screwed into a scrap

piece of lexan without the bearings and ground flat to the surface of the
lexan.

For the static loading test, the weights were attached to the bearing as

described above. The screws showed no signs of straining and have

supported more weight.
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32.20 AqTACHMENT OF SLIDER BEARING TEST

Objective: Confirm that the slide bearingsare firmly attachedto the lexan arm
segmentswith no sharpprotrusionsprior to final assembly,(before top
sectionof lexanis glued in place).

Procedure:

o Visually and physically inspect all screws for proper fit and torque with a
screw driver.

. Visually and physically inspect all sections for sharp edges and protrusion

of screws or glues by rubbing with a cotton ball and looking for any

snagged fibers.

° Remove any sharp edges or protruding objects using a file or sand paper
to obtain a smooth finish.

Results: All the screws were checked for a uniform torque. Some of the screws

required a final adjustment. A cotton ball was rubbed across all screw

holes and some careful trimming and filing was required to get a smooth
finish.

32.22 REQUIRED TRAVEL ACTION OF SLIDE BEARING PRE-TEST

Objective: Confirm that the slide bearings provide a smooth action and proper amount

of travel for each section to be extended prior to final assembly, (before

top section of lexan is glued in place).

Procedure:

. Visually and physically inspect mated sections one at a time for smooth

action during extension and retraction of section for 20 cycles.

, Physically retract male section fully into female section until it hits the

stop and inspect to see that the ends closest to the end effector are flush.

. Fully extend male section until it contacts the extension stop and measure

the length of the extension.

. Make any adjustments required to achieve smooth action and required
travel distance for section
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32.22

. Repeat this test procedure for each slide bearing interface in the telescopic
arm.

Results: For the interface between the first section, the end effector section, the

slide bearings fit properly and worked as expected. They were cycled 25

times and exhibited no signs of binding. The travel distance for this slide

bearing action measured 33 cm as required for this section.

When the slide bearings were mounted for the interface between the

second section and the third, some binding occured. The clearance

between the second and third section was at the minimum allowable and

the frames of the wheel tracks were making contact during the last ten

centimeters of collapse. A dremmel tool with a grinding wheel was used

to grind down the frames of the slide bearings to get the required clearance

and smooth action. The metal frames were then sanded to remove any

sharp edges. The travel distance for this slide bearing action measured 33

cm as required for this section. The slide was cycled 25 times

successfully.

The interface between the third section and the fourth would require that

two sets of slides be cut and fitted together to get the required travel of 66

cm. When the bearings were cut and fitted to the sections they worked

smoothly except at the joint of one of the male slides. Due to slight

differences of bearing pairs from manufacturing or mounting, the wheel

tracks did not align perfectly. It was required that one of the tracks be

shimmed to provide smooth transition at the bearing joint. This was done

by placing thin layers of plastic under one of the bearings to make it level

with the other. The proper extension length of 66 cm was achieved with

a smooth action for 25 cycles.

REQUIRED TRAVEL ACTION OF BEARING TEST

Objective: Confirm that the slide bearings provide a smooth action and proper amount

of travel for each section to be extended after final assembly.

Procedure:

l. Visually and physically inspect mated sections one at a time for smooth

action during extension and retraction of section.

, Physically retract male section fully into female section until it hits the

stop and inspect to see that the ends closest to the end effector are flush.
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° Fully extend male section until it contacts the extension stop and measure

the length of the extension.

. Repeat this test procedure for each slide bearing interface in the telescopic

arm.

Results: After final assembly the arm and stand were taken to the CELSS chamber

and tested for smooth action and reachability. The arm sections worked

smoothly but the arm possessed to much reach due to the over sight of a

grating installed on the inside of tim chamber walls. Other than this over

sight in measurements of the CELSS chamber the arm met all the test

requh'ements of the slide bearings.

32.23 STAND LOADING TEST

Objective: Verify stand integrity and ability to withstand the required loading.

Results: The direct attachment device test was not performed. It was determined

that if the stand could handle the load applied by the pole attachment

device, then a vertical load would not cause any problems. The pole

attachment device was fitted to the steel pole. There was a noticeable

amount of deflection, however, since the deflection had no bearing on the

test, it was ignored. A 63.5 kg weight was placed at the end of the pole

attachment device (point of placement was at 85.44 cm from the center

line of the through holes). The stand and pole were capable of holding the

weight, however, it required an additional loading on the stand plate to

keep it from tipping over.

Chapter 33.0 TESTING PROCEDURES AND OBJECTIVES

33.1 KENNEDY LEVEL TEST

Objective: Verify telescopic arm test stand is level when installed into the CELSS
chamber at KSC.

Results: The shaft was centered using a tape measure to within +/- 1 cm of the

center. This measurements were taken in relation to the perimeter metal

sheeting lining the back of the shelves. The shaft was level within the

limits of the bubble level indicator and was rechecked with a plumb bob.

33.2 DEFLECTION TEST

Objective: To determine whether the robot arm will deflect more than 7.7 cm while

in the fully extended position.
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33.3

Procedure:

1.

.

.

.

.

Results:

FIT TEST

Objective:

Procedure:

1.

2.

.

,

.

Measure half tile distance of tile vertical height of link 4 and link 1 with

a standard tape measure or ruler and mark the point with a piece of tape

or pencil mark.

Hold one end of a 2.15 m piece of string at tile center of link 4 measured

in step 1.

Have a second person pull tile string taut along tile length of the fully

extended arm while a third person standing near the center of the arm with

a bubble level directs him to adjust the string up or down until the string

is perfectly horizontal.

The person holding the end of the string measures the vertical distance

between the horizontal string and the center of link 1 marked in step 1.

Record the distance measured in step 4 for the test results.

When the robot was set in a horizontal position, it appeared to have a

slight deflection at the small end of the arm. It was determined that the
deflection was 5.4 cm. This is within the maximum tolerance of 7.7 cm.

To ensure that the completed robot arm is capable of reaching the entire

working envelope of the CELSS chamber.

Place model arm inside CELSS chamber.

Measure from center of model shaft to at least ten (10) places on chamber

outer wall to ensure model is centered in chamber.

Raise arm to height just above plant tops in first row of plant trays and pin

in this position.

Position arm so that the right edge of the arm is lined up with the right

side of the plant trays that are on the right side of the door to the chamber.

Fully extend arm and measure distance from end of arm to the back of

plant trays.
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,

8.

9.

10.

13.

14.

Results:

Rotate the arm thirty degrees counterclockwise and measure the distance

from the end of the arm to the back of the plant trays.

Repeat step 6 ten (10) times.

Fully collapse arm.

Raise arm vertically so that the end of the arm is level with the drain pipes

that are attached to the top row of plant trays.

Position arm so that the center of the arm is lined up with the drain pipe

at the far right.

Measure the distance from the end of the arm to the drain pipe.

Rotate the arm counterclockwise so that the center of the arm is lined up

with the next drain pipe.

In the process of rotating the arm ensure that no part of the arm comes

into contact with the conduit that is attached to the plant shelves.

Repeat steps 11 and 12 fifteen (15) times.

The robot was centered in the chamber. The arm was capable of reaching

the back of all plant trays and was 15.24 cm longer than necessary. The
end of the robot was a minimum of 7.94 cm and a maximum of 14.92 cm

from the drain pipes.
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SECTION VIII

SUMMARY



SUMMARY

The 1993-1994 senior Aerospace Engineering Design class designed and tested a CELSS robot

for use in the Controlled Ecological Life Support System chamber. The design class was divided

into three teams during the first semester to distribute the work load. The first team designed an

overhead rail system that positioned the robot in the center of the CELSS chamber. The second

group designed the vertical shaft. The vertical shaft provided a means of moving a telescopic

arm vertically and radially. The final team designed a telescopic arm that was capable of reach

all the area within the work envelope.

The Overhead Rail Team designed the track system and the base assembly. The center point of

the ceiling was determined the most effective operating position of the base. For greatest

stowability the robot must stow along the wall of the chamber. The track allows the movement

of the base assembly between the ceiling center point and the wall. This movement requires two

people. The base assembly moves the robot smoothly along the track, and fixes the robot in

place when stowed and deployed.

The vertical Shaft Teams design incorporates the use of a combination ball screw / ball spline

actuator to control the vertical motion of the CELSS chamber robot arm. A central mounting

structure is mounted to the ball nut and the ball spline race. A dual "V" guide is used as an

interface between the mounting structure and the ball screw nut. This central mounting structure

contains a system of motors and pulleys which are used as control systems. One motor is used

to rotate the ball nut, while the second motor is used to control the dual "V" guide used for

rotation of the robot arm. The rotation of the ball nut provides the necessary vertical motion to

position the mounting structure along the shaft. The ball spline race adds to the stability of the

system and is used to prevent angular rotation of the mounting structure while still allowing for

vertical motion. Rotational motion of the robot is achieved through the use of the dual "V" guide

which is actuated by the second motor located in the central mounting structure. The robot arm

is bolted to the dual "V" guide. The upper end of the ball screw / ball spline shaft is attached

to a plate which is attached to the overhead rail mounting of the CELSS chamber.

The Telescopic Arm Team designed the telescopic arm sub-system. Slider bearings facilitate the

movement of each link of the telescopic arm. The actuator system is small enough to fit into the

fourth link as well as powerful enough to extend and retract the telescopic arm. The team also

designed a method of sequencing the arm links so the smallest links extend and retract before the

larger links. This allows the moments to act on the larger links instead of the smaller links.

During the second semester, three teams were combined into one group. The class designed a

model of the CELSS chamber robot that could be built by the students. They investigated

materials, availability, and strength in their design. The arm links were built out of Lexan. The

class used slider bearings to ease the sliding of the links. The model stand was built out of an

aluminum base with a steel shaft positioned vertically.
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After themodelarm andstandwerebuilt, theclassperformedpro-testson the entire system. A

stability pre-test was used to determine whether the model robot arm would tip over on the stand

when it was fully extended. The results are that the stand tipped when 50 Newtons were applied

to the top of the stand while the arm was fully extended. This proved that the stand was stable.

Another pre-test was the actuator slip test. This was to determine if there is an adequate
coefficient of friction between the actuator drive wheels and the drive cable to enable the actuator

to fully extend and retract the arm. This pre-test revealed that the coefficient of friction between

the drive wheel and the drive cable was not large enough to prevent slippage. Sandpaper was

glued to the drive wheel and this eliminated the slippage problem.

The class performed a fit test in the CELSS chamber. This test was to ensure that the completed

robot arm is capable of reaching the entire working envelope of the CELSS chamber. The robot

was centered in the chamber. The arm was able to fully extend to the sides of the CELSS

chamber. The arm was also able to retract to clear the drain pipes that separated the upper and

lower plant trays.

Future work on the CELSS chamber robot is envisioned to include building a prototype of the

robot. This aluminum prototype will contain a control system to move the telescopic arm

vertically and radially. To provide needed skills the Senior Aerospace Design class will include

Electrical and Computer Engineering students thus creating a truly interdiscipline Engineering

Design class.
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1.0 SCOPE

1.1

1.2 Purpose

1.3 Definition

2.0 APPLICABLE DOCUMENTS

2.1 Specifications

2.1.1 Federal

2.1.2 Military

2.1.3 NASA

None

None

KSC-SPEC-G-0002

2.2

2.1.4 _)ther None

Standards

2.2.1 F__e_deral None

2.2.2 Military

MIL-STD-700

MIL-STD-454

MIL-STD-889B

MIL-STD- 1472D

2.2.3 NASA

K S C- STD-C-0001

Compiling construction cost

estimates, specifications for.

Plastics.

Standard general requirements for electronic

equipment.

Dissimilar metals.

Human engineering design criteria for military

systems, equipment and facilities.

Protective coating of carbon steel, stainless steel

and aluminum on launch structures and ground

support equipment.
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2.3

2.4

2.5

KSC-STD-Z-0004

KSC-STD-118

2.2.4 Dther None

Drawings None

Bulletins None

Other Documents

2.5.1 Directorates

KSC-DE-512-SM

2.5.2 Handbooks

MIL-HDBK-5

MIL-HDBK- 149

3.0 REQUIREMENTS

3.1 DefinitiQn

3.2

Structural steel buildings and other structures,

the design of, standard for.

Failure Mode and Effect Analysis and single

failure points analyses, standard for preparation

of.

Facility, system, and equipment. General design

requirements.

Metallic materials and elements for aerospace

vehicle structures.

Rubber.

The following are requirements for a robot that shall be incorporated

into the existing Controlled Ecological Life Support System (CELSS)

project at Kennedy Space Center.

Performance Requirements

3.2.1 General Performance Requirements

3.2.1.1 Materials

3.2.1.1.1 Material properties shall be defined.

3.2.1.1.2 Materials shall not alter the chamber environment.
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3.2.1.1.3 Materialsshall resistcorrosion.

3.2.1.1.4 Materialsshall resistfungusgrowth.

3.2.1.1.5 Dissimilar metalsshall not be used in direct contactwith
eachother.

3.2.1.1.6 Materialsshall resiststresscorrosioncracking(SCC).

3.2.1.2 Kinematics

3.2.1.2.1 Robot shall have adequate flexibility.

3.2.1.2.2 Robot shall be of minimum kinematic complexity.

3.2.1.2.3 Robot shall be stowable.

3.2.1.2.4 Velocity shall be adequate.

3.2.1.2.5 Acceleration shall be adequate.

3.2.1.3 Critical Parts

3.2.1.3.1 Design shall minimize the number of critical parts.

3.2.1.3.2 Parts shall be designed to handle necessary force.

3.2.1.4 Actuators

3.2.1.4.1 Actuators shall not alter the chamber environment.

3.2.1.4.2 Standardized parts shall be used whenever possible.

3.2.1.5 Fastener_

3.2.1.5.1 Standardized pal'tS shall be used whenever possible.

3.2.1.5.2 The number of fasteners shall be minimized.

3.2.1.5.3 The number of fasteners requiring torque application is
minimized.

3.2.1.5.4 Bolt and screw length shall not be excessive.

237



3.2.2

3.2.1.6 Cost

3.2.1.6.1 Cost shall be minimized.

3.2.1.6.2 A cost estimate sllall be established.

3.2.1.6.3 Overall cost shall be limited.

3.2.117.2

Use of items with limited life shall be avoided whenever

possible.

Life expectancy of items shall be adequate.

Specific Performance Requiremenls

3.2.2.1 Materials

3.2.2.1.1

3.2.2.1.2

3.2.2.1.3

3.2.2.1.4

3.2.2.1.5

3.2.2.1.6

Material properties shall be defined in accordance with MIL-

HDBK-5 for metals, MIL-HDBK-149 for rubber, MIL-

HDBK-700 for plastics.

Materials shall not out-gas or contain fluids or lubricants

which may alter the chamber environment.

Materials shall resist con'osion or be coated in accordance

with KSC-STD-C-0001.

Materials susceptible to the growth of fungus shall be
avoided in accordance with MIL-STD-454.

Separation by use of barrier tapes, protective coatings, and
other methods of isolation shall be used in accordance with

MIL-STD-889.

Materials shall be selected that are highly resistant to stress

corrosion cracking in accordance with KSC-STD-Z-0004.

3.2.2.2 Kinematics

3.2.2.2.1 Kinematic flexibility shall allow access to any point in the
chamber.
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3.2.2.2.2

3.2.2.2.3

3.2.2.2.4

3.2.2.2.5

Designshall incorporatethe minimumnecessarynumberof

degrees of freedom.

Configuration shall not inhibit stowability.

Velocity shall not exceed 15.5 cm/sec.

Acceleration shall not exceed TBD cm/sec _.

3.2.2.3 Critical Parts

3.2.2.3.1 Design shall minimize critical parts to avoid failure of entire

system in accordance with KSC-STD-118.

3.2.2.3.2 Design shall incorporate a minimum safety factor of 2

over yield in accordance with KSC-DE-512-SM.

3.2.2.4 Actuators

3.2.2.4.1

3.2.2.5

3.2.2.6

3.2.2.4.2

Fasteners

3.2.2.5.1

3.2.2.5.4

Actuators shall not contain fluids or lubricants that may alter

the chamber environment.

Existing vendor parts shall be used whenever possible.

Similar fasteners shall be used whenever possible in

accordance with MIL-HDBK-5F.

Large fasteners shall be used in lieu of many small fasteners.

Fasteners requiring torque application above TBD shall be

avoided.

Bolt and screw length is not excessive to the application in

accordance with MIL-STD- 1472D.

Life-cycle costs shall be minimized by use of existing

vendor parts.

3.2.2.6.2 Cost estimate shall be in accordance with KSC-SPEC-G-

0002.
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3.3

3.2.2.6.3

3.2.2.7 Life

3.2.2.7.1

3.2.2.7.2

Overall cost shall not exceed TBD.

Items with limited life shall be identified and their use shall

be controlled in accordance with KSC-DE-512-SM.

Design shall incorporate a useful life minimum of 20 years
in accordance with KSC-DE-512-SM.

Operational Requirements

3.3.1 Qencr_l Qperational Requirements

3.3.1.1 Critical Parts

3.3.1.1.1 All critical pm'ts shall be identified.

3.3.1.1.2 Redundancies shall be used to support critical parts.

3.3.1.2 Fasteners

3.3.1.2.1 Fasteners shall be easily installed and removed.

3.3.1.2.2 Fasteners shall be accessible.

3.3.1.3 Tran_pgrtability

3.3.1.3.1 Robot shall be of a suitable size for transportation.

3.3.1.3.2 Robot shall have suitable handholds for transportation.

3.3.1.3.3 Robot shall fit in a vehicle for transportation.

3.3.1.3.4 Robot shall be of a suitable weight for transportation.

3.3.1.3.5 Robot handling requirements shall be specified.

3.3.2 Specific Operational Requirements

3.3.2.1 Critical Parts

3.3.2.1.1 Parts exhibiting TBD characteristics shall be considered

critical parts.
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3.3.2.1.2 Redundancies shall support critical parts in accordance with
KSC-STD- 118.

3.3.2.2 Fasteners

3.3.2.2.1 Fasteners shall be installed and removed by hand or with
standard tools.

3.3.2.2.2 Fasteners shall be placed in locations easily accessible by
standard tools in accordance with MIL-STD-1472D.

3.3.2.3 Transportability

3.3.2.3.1 Robot shall be modular in design so as to be broken clown

into manageable sections for transportation.

3.3.2.3.2 Particular areas of each modular section must be specifically

designated as handholds and must be resistant to breaking

under normal handling conditions.

3.3.2.3.3 Each modular section must be a size which is transportable

in a standard light truck.

3.3.2.3.4 Each modular section must be transportable by one person
with a hand cart.

3.3.2.3.5 The safe orientation of each modular section during shipping

and any necessm'y padding or special handling requirements

shall be specified.

4.0 VERIFICATIONS

4.1 Definition The following tests are intended to verify that the requirements of the

CELSS robot apparatus have been satisfied.

4.2 Performance Verifications

4.2.1 General P_rformanc¢ Verification

4.2.1.1 Materials

4.2.1.1.1 Review manufacturing documentation to confirm that defined

properties are satisfied.
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4.2.1.2

4.2.1.1.2

4.2.1.2.1

Review manufacturerdocumentationand, if necessary,
performclosedenvironmenttestson all material.

Usematerialsspecificationsto confirmcorrosionresistance.

Usematerialspecificationsto confirm resistanceto fungus
growth.

Visually verify that nodissimilar metalsarein contact.

Use materialspecificationsto confirm resistanceto stress
con'osioncracking.

Kinemati¢_

A kinematic modeling technique, shall confirm that the limits
of motion of the arm match the dimensions of the chamber.

4.2.1.2.2 Use kinematic modeling to confirm that the minimum

number of degrees of freedom have been established.

4.2.1.2.3 Use kinematic modeling to shall verify stowability.

4.2.1.2.4 Verify velocity characteristics through kinematic analysis.

4.2.1.2.5 Verify acceleration characteristics through kinematic

analysis.

4.2.1.3 (_riti_al Par_

4.2.1.3.1 Use Failure Mode and Effect Analysis (FMEA)

determine the effect of critical part failure.

tO

4.2.1.3.2 Use FMEA to verify that the specified factor of safety is

employed on all components.

4.2.1.4 Actuators

4.2.1.4.1 Review manufacturing data to confirm TBD requirements

properties of the actuators are satisfied.

4.2.1.4.2 Use market research to be conducted to determine

availability of existing vendor parts.
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4.3

4.2.1.5 Fastener_

4.2.1.5.1 Review inventory parts list to verify similar parts are used.

4.2.1.5.2 Review inventory parts list to verify similar parts are used.

4.2.1.5.3 Use design review to verify that torque application is not

necessary.

Use design review to verify that bolt length is not excessive.4.2.1.5.4

4.2.1.6 Cost

4.2.1.6.1

4.2.1.7

Use market research to confirm that existing vendor parts are

used whenever possible.

4.2.1.6.2 Verify format of estimate through comparison with

specification..

4.2.1.6.3 Verify using economic cost analysis.

Verify using material analysis and manufacturer

specifications.

4.2.1.7.2 Verify using

specifications.

Operational Verifications

4.3.1 General Operational Verifications

4.3.1.1

4.3.1.2

material analysis and manufacturer

Critical Parts

4.3.1.1.1 Use Failure Mode and Effect Analysis (FMEA) to determine

critical parts.

4.3.1.1.2

Fasteners

4.3.1.2.1

FMEA shall be used to determine effect of redundancies.

Verify using vendor catalogs or test installation and removal

of fasteners..
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4.3.1.2.2 Review Design to confirm accessibility.

4.3.1.3 Transportability

4.3.1.3.1 Review design to confirm modularity.

4.3.1.3.2 Perform FMEA on all designated handholds.

4.3.1.3.3 Verify using dimensional analysis of design.

4.3.1.3.4 Perform weight estimation.

4.3.1.3.5 Review design to confirm correct procedures.

PACKAGING

NOTES

6.1 A_:ronyms

FMEA

CELSS

TBD

Failure Model and Effect Analysis

Controlled Ecological Life Support System

To Be Determined
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APPENDIX B

SPECIFICATION

UCF-SPEC-193
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1.0 SCOPE

1.1 ._LO_p__N/A

1.2 Purpose N/A

1.3 DefinitiQn N/A

2.0 APPLICABLE DOCUMENTS

2.1 Specification_

2.1.1 Federal none

2.1.2 Military

2.1.2.1 MIL-C-5015 Connectors, Elecu'ical, Circular Threaded, AN Type,

General Specification for

2.1.2.2 MIL-C-22992 Connectors, Plugs and Receptacles, Electrical,

Waterproof, Quick Disconnect, Heavy Duty Type, General

Specification for

2.1.2.3 MIL-C-26482 Connectors, Electrical (Circular, Miniature, Quick

Disconnect, Environment Resisting), Receptacles and Plugs, General

Specification for

2.1.2.4 MIL-C-38999 Connector, Electrical, Circular, Miniature, High Density,

Quick Disconnect, (Bayonet, Threaded and Breech Coupling),

Environment Resistant, Removable Crimp and Hermetic Solder

Contacts, General Specification for

2.1.3 NASA

2.1.3.1 KSC-SPEC-E-0031 Cables, Electrical, General Specification For

2.1.3.3 KSC-SPEC-E-0017 Electrical Power Cables, Installation of,

Specification for

2.2 Standards

2.2.1 Federal none

a t,T  r,0NAtt,
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2.2.2 Military

2.2.2.1 MIL-STD-975 NASA Standard

Electromechanical (EEE) Parts List

2.2.3 NA_A_S.A

2.2.3.1

Electrical, Electronic and

DE-PD 8830.2E Operations and Maintenance Documentation

2.2.3.2 KSC-STD-Z-0004D The Design of Structural Steel Buildings and

Other Structures, Standard for

2.2.3.3 MSFC-STD-486A Standard Threaded Fasteners, Torque Limits for

2.2.3.4 KSC-STD-141A Load Test Identification and Data Marking standard
for

2.2.3.5 KSC-STD-E-0014 Standard for Wire and Cable applications, 60 Hz AC
Power

2.2.4Other

2.2.4.1 ASTM E380 Use of the International System of Units (SI) (the

Modernized Metric System), Standard Practice for.

2.2.4.2 ANSI Y14.5-82 Dimensioning and Tolerancing

2.3 Technical Manuals and Reports

2.5.3.1 GP-435 Engineering Standards

2.4 Management lnstro_:_iQn

2.5.1.1 KMI 5350.1 KSC Maintainability Program

2.5.1.2 KMI 5320.4 NASA Standard Parts Program

2.5 Drawings none

2.6 Bulletins none

2.7 Q_hcr Documcnts
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2.7.1 Textbooks

2.7.1.1 Smith, W.F., Principles of Material Science and Engineering, 2_ ed.,

McGraw-Hill, 1990

r

2.7.1.2 Morgan, C., Robots: planning and Implementation, 1st cd., IFS
Publications, New York, 1984

2.7.1.3 Leatham-Jones, B., Elements of Industrial Robotics, 1st ed,, Pitman

Publishing, London, 1987

2.7.1.4 Ardayfio, D.D., Fundamental of Robotics. 1s' ed.. Marcel Dekker, Inc.,

New York, 1987

2.7.1.5 Rivin, E.E., Mechanical Design of Robots, 1s' ed., McGraw-Hill, Inc.,
New York, 1988

3.0 REQUIREMENTS

3.1 Definition The following are requirements and constraints for the design of a

robot which shall be incorporated into the Controlled Ecological Life

Support System (CELSS) chamber at Kennedy Space Center.

3.2 Performance Requirements

3.2.1 (3encral Performance Requirement_

3.2.1.1 Robot Characteristics

3.2.1.1.1 Robot shall have the required degrees of freedom necessary

to perform all tasks.

3.2.1.1.2 The robots weight shall not exert excess stress on the
structure of the CELSS chamber.

3.2.1.1.3 The robot shall function at speeds necessary to productively

complete required tasks.

3.2.1.1.4 The robot shall manipulate the end effector at necessary

levels of accuracy.

3.2.1.1.5 The performance and reliability of the robot shall not be

affected by the atmospheric extremes of the CELS_
chamber.

249



3.2.1.1.6 The robot shallbe stowable.

3.2.1.1.7 The robot shall becapableof reachingall areaswithin the
workingenvelopeof theCELSSchamber.

3.2.1.1.8 Robotshallbesufficientlystableto performrequiredtasks.

3.2.1.1.9 Robotshallremainstablewhileholdingtoolsandor sensors
in stationarypositions.

3.2.1.1.10Robot shall not be electrically or electro-mechanically
hazardousto theoperatingsystemsof theCELSSchamber.

3.2.1.1.11Electrical, electronic and electromechanical(EEE) parts
shall be selectedcommensuratewith the criticality of the
applicationand the life cycle of thehardwareto beused.

3.2.1.2 Strength Requirements

3.2.1.2.1 The robot shall support the required maximum load at the
end effector.

3.2.1.2.2 Under maximum loading the robot shall meet or exceed the

required structural safety factor.

3.2.1.2.3 Structural analysis shall be supplied for all critical elements
of the robot.

3.2.1.3 Impact To Environment

3.2.1.3.1 While in the stowed position the robot shall not interfere

with the normal operations of the CELSS chamber.

3.2.1.3.2 Robot material shall not produce any harmful substances or
otherwise contaminate the CELSS chamber environment.

3.2.1.3.3 Installation of robot system shall require minimal CELSS

chamber facility modification.

3.2.1.3.4 Robot bearings shall not contaminate the CELSS chamber
environment.

3.2.1.3.5 The robot shall not affect the operating temperature of the

CELSS chamber.
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3.2.1.3.6 The robot structureshallnot interferewith normal airflow
in the CELSSchamber.

3.2.1.3.7 The robotshall not interferewith thehumidity levelsof the
CELSSchamber.

3.2.1.3.8 The installationof the robot structureshall minimize any
permanenteffectson theCELSSenvironment.

3.2.1.3.9 The robot mechanismshall not damagethe interior of the
CELSSchamberor its contents.

3.2.1.3.10The driving mechanismof the robot shall not contaminate
the environmentof the CELSSchamber.

3.2.1.3.11

3.2.1.3.12

Routinerobotmaintenanceproceduresshallnotcontaminate
the CELSSchamberenvironment.

No componentof therobot shall becomedetachedcausing
damageto anypartof theCELSSchamberenvironmentor
its contents.

3.2.1.4 Documentation

3.2.1.4.1 All documentation shall be supplied in a legible,

reproducible and organized format.

3.2.1.4.2 Reports shall be provided in hard copy and/or on diskette.

3.2.1.4.2.1 Drawings within reports shall be provided in

hard copy.

3.2.1.4.3 Engineering drawings shall be provided in hard copy and on
diskette

3.2.1.4.4 Engineering analysis shall be provided hard copy and disk

3.2.2 Specific Performance Requirements

3.2.2.1 Robot Characteristics

3.2.2.1.1 The TBD degrees of fl'eedom of the robot shall enable the

end effector to perfomq all tasks in the working envelope of
the CELSS chamber.
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3.2.2.2

3.2.2.1.2 The weight and mounting of the robot systemshall not
damagethestructureof the CELSSchamber.

3.2.2.1.3 The robot shall operateat a maximum velocity of 15.24
cm/s+TBD cm/sdependentuponthetaskto beperformed.

3.2.2.1.4 The robot shallbecapableof manipulatingtheendeffector
within + 0.635 cm of accuracy.

3.2.2.1.5 The robot shall remain operational at the temperature,

humidity and other TBD extreme conditions of the CELSS
chamber.

3.2.2.1.6 The robot shall be stowable in a TBD space in the CELSS
chamber.

3.2.2.1.7 Robot shall be capable of motion sufficient to enable access
to all TBD work areas of the CELSS chamber.

3.2.2.1.8 Robot shall not vibrate and shall remain stable to within

TBD hertz (Hz) during operation.

3.2.2.1.9 Robot shall remain securely mounted to the CELSS

chamber and shall remain stable to within +TBD mm when

the arm is in a stationary position in the operational mode.

3.2.2.1.10 Robot system design shall identify and comply with any and

all hazard proofing requirements for electrical, and

electromechanical systems operating in the CELSS chamber.

3.2.2.1.11 Determination of the EEE grade shall be based on the

specific circuit function and its associated criticality in

accordance with KMI 5320.4 based on a twenty (20) year

life of the robot.

Strength Requirements

3.2.2.2.1 The Robot shall support a maximum load capacity of fifteen

(15) kilograms at the end effector.

3.2.2.2.2 Under maximum loading the robot shall meet or exceed the

required structural safety factor of two (2) over yield for the
material used.
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3.2.2.2.3

3.2,2.3 !mpactTQ

3.2.2.3,1

3.2.2.3.2

3.2.2.3.3

3.2.2.3.4

3.2.2.3.5

3.2.2.3.6

3.2.2.3.7

3.2.2.3.8

3.2.2.3.9

3.2.2.3.10

3.2.2.3.11

Structuralanalysisfor all critical elementsof therobotshall
be performedusingTBD methods.

Envirgnmen_;

The robot shall stow within a TBD spaceof the CELSS
chamberallowing normaloperations.

Materialsusedshall not leak, out-gas,or produce anodic

con'osive products that shall contaminate the CELSS
chamber environment.

Minimal structural and electrical modifications shall be

made to the CELSS chamber.

Robot bearings shall not leak any lubricants or out-gas into
CELSS chamber.

The operation of the robot shall not affect the temperature

of the CELSS chamber by more than TBD degrees celsius.

The robot structure shall not interfere with the airflow of

the CELSS chamber by more than TBD kg/s.

The robot shall not interfere with the humidity levels of the

CELSS chamber by more than TBD percent.

The robot mounting hardware will be removable and will

not require any permanent modifications to the CELSS
chamber structure.

The robot mechanism shall not inadvertently drop, collide

with, break or damage any part of the CELSS chamber or
its contents.

The driving mechanisms of the robot shall not leak, or out-

gas contaminates into the environment of the CELSS
chamber.

During scheduled routine robot maintenance, no lubricants,

solvents, or any other harmful substance shall be
administered into the CELSS chamber environment.
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3.2.2.3.12No cable, bolt, joint or componentof the robot shall
becomeinadvertentlydetachedcausingdamageto anypart
of theCELSS chamber or its contents.

3.2.2.4 DocumentatiQn

3.2.2.4.1 All documentation shall be type written or generated on a

computer and presented in a format specified by NASA.

3.2.2.4.2 Reports shall be submitted with one (1) 3½ inch computer

disk using Word Perfect 5.1 and on one (1) hard copy using

8½ X 11 inch white paper.

3.2.2.4.2.1 Drawings within a report, per GP 435;

dimensioning and tolerancing per ANSI Y 14.5-

82 to be supplied as one (1) legible and

reproducible hard copy.

3.2.2.4.3 Engineering Drawings, per GP 435 Level 1 (conceptual);

dimensioning and tolerancing per ANSI Y14.5-82 to be

supplied as one (1) legible and reproducible hard copy and

oil (1) one 3½ inch disk

3.2.2.4.4 Engineering analysis shall be submitted using the same

format outlined in the above two (2) sections. The type of

analysis software used is optional. All pertinent data shall

be supplied on hard copy and on 3.5 inch disk.

3.3 Operational Requirements

3.3.1 General Operational Requirements

3.3.1.I Maintainability

3.3.1.1.1 Maintainability shall be considered when selecting materials

and components to insure efficient maintenance.

3.3.1.1.2 Maintenance requiring removal of other components shall
be minimized.

3.3.1.1.3 Use of special tools and test equipment shall be minimized.

3.3.1.1.4 The number of different types of components shall be
minimized.
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3.3.1.1.5 Wheneverpossiblethe robot systemcomponentsshall be
chosenso replacementsshall be readily available from
vendors.

3.3.I. 1.6 Preventativemaintenancerequirementsandfrequenciesshall
beminimal.

3.3.1.1.7 Requiredmaintenancepersonneland skill level shall be
minimal.

3.3.1.1.8 Useful life of systemcomponentsshall bespecified.

3.3.1.1.9 Systemoperationandmaintenanceshall be facilitatedwith
a clearly visible labelingsystem

3.3.1.1.10Labeling on cables, wiring, tubing and piping shall be
located at sequencedintervals to minimize identification
searchtime.

3.3.1.1.11Labelingof all replaceablepartsshallbeclearly visibleand
well organized.

3.3.1.2 Accessibility

3.3.1.2.1 Openings for physical access shall be as unrestrictive as

possible.

3.3.1.2.2 Access openings shall be sufficiently large to provide
effective maintenance.

3.3.1.2.3 Access covers shall be readily opened or removed to

perform maintenance functions.

3.3.1.2.4 Complexity of case/cover fasteners shall be minimized.

3.3.1.2.5 Replaceable system components shall be physically
accessible.

3.3.1.3 Dimensions

3.3.1.3.1 All dimensions shall be given in standard SI units.
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3.3.1.4 Stowability

3.3.1.4.1 The robot shall stow in the CELSS chamber in a position so

as not to interfere with normal chamber operations.

3.3.1.4.2 The robot shall stow in a fully assembled configuration.

3.3.1.5 Cables, Connectors and Wirimz

3.3.1.5.1 The system cable and wiring shall be readily secured and

removed.

3.3.1.5.2 Cable and wiring installations shall not be hazardous to

other system components or maintenance.

3.3.1.5.3 Cables and wiring shall not contain deformations due to

strain.

3.3.1.5.4 Cable and wiring installations are routed to prevent damage

from outside factors.

3.3.1.5.5 Cable and wiring installations shall be routed to reduce their

risk to human mobility within the CELSS chamber work

envelope.

3.3.1.5.6 Cable and wiring installations shall not interfere with

normal operation of system or CELSS chamber.

3.3.1.5.7 Connectors shall be used so the cables and wiring

installation harnesses shall be removable.

3.3.1.5.8 Cables and wires shall be efficiently removable and

replaceable.

3.3.1.5.9 Improper connection of cables during installation or

maintenance shall be prevented.

3.3.1.5.10 Connectors used shall not permit corrosion or cable

deterioration.

3.3.1.5.11 Adequate stocks of replacement connectors shall be
available.

3.3.1.5.12 Connectors shall be easily removed and readily accessible.
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3.3.1.5.13Critical connectors shall be resistant to inadvertent
disconnector intermittentconditions.

3.3.1.5.14Cables and wiring are designedto avoid contact with
liquids and to prevent fluid contact with
connections/tetxninations.

3.3.1.5.15Installationof electricalpowercablesshallbein accordance
with appropriatespecifications.

3.3.1.5.16Electrical power cablesshall be madeof the appropriate
material.

3.3.1.5.17Electrical powercablesshall be usedto provide powerto
the robot.

3.3.1.5.18Selectionof electrical connectorsshall be in accordance
with appropriatespecifications.

3.3.2 Specific Operational Requirements

3.3.2.1 Maintainability

3.3.2.1.1 Maintenance requirements shall be minimized through the

use of sealed bearings and other components that require
little or no maintenance.

3.3.2.1.2 Disassembly of primary structure is prohibited, and

execution of maintenance routines shall require minimal

removal of components.

3.3.2.1.3 Design shall consist of standardized parts and

module/component mounting fasteners shall be

interchangeable.

3.3.2.1.4 Components with identical electrical and or mechanical

functions shall be interchangeable.

3.3.2.1.5 Off the shelf components shall be used, whenever possible,

to insure availability of replacements.
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3.3.2.2

3.3.2.1.6

3.3.2.1.7

3.3.2.1.8

3.3.2.1.9

3.3.2.1.10

3.3.2.1.11

Low maintenance,long life system components and
lubricants will be used to minimize preventative
maintenancefi'equencyrequirements.

The number and skill levels of technicians neededto
performmaintenanceproceduresis TBD.

Equipmentretirementandshelf life shall bespecifiedand
providedwith documentation.

Identifying labelsshall beprovidedfor the following:
1) Racksandconsoles
2) Panelcontrolsandmeters
3) Attach points for tiedowns
4) Accessopenings,servicingand lubricationareas
5) Cables, connectors, wiring, tubing, piping and

points.
lift

Labelingoncables,wiring, tubingandpiping is repeatedat
no more than five (5) foot intervals and at eachend to
minimize searchingfor identification.

All replaceable parts shall be labeled in plain view with the

following permanently readable information:

1) Part Number

2) Revision

3) Manufacturer (CAGE)

4) Serial Number

5) Description

6) Model Number.

Accessibility

3.3.2.2.1

3.3.2.2.2

3.3.2.2.3

The following order of preference is used for physical

access openings; no cover unless safety or performance is

degraded, sliding or hinged doors, or covers with a

minimum number of standard captive fasteners.

Access openings fox" maintenance shall permit full or partial

body access, and include space for tool and component

passage.

Access covers shall be equipped with grasp areas or handles

to assist in opening and closing.
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3.3.2.2.4 Case/coverfastenersshall beof the quick disconnecttype
and non-removablecoversshall be self supportingin the
openposition.

3.3.2.2.5 Sufficient spaceshall be provided for physical and visual
accessibilityanddisconnectof replacementunits.

3.3.2.3 Dimen._i0ns

3.3.2.3.1 All dimensions shall be given in standard SI units as
referenced in std ASTM E380 REV*A 91.

3.3.2.4 Stowability

3.3.2.4.1 The robot shall stow in a TBD location in the CELSS

chamber so that it shall not interfere with normal chamber

operations.

3.3.2.4.2 Disassembly of the robot system shall not be necessary to
stow within the TBD area of the CELSS chamber.

3.3.2.5 Cables, Connectors, and Wirin_

3.3.2.5.1 Cables and wiring routed through holes, etc, shall be easily

removable and adequately protected with grommets, etc.

3.3.2.5.2 Cable and wiring installations shall be clear of sharp edges

and moving parts.

3.3.2.5.3 Cables and wiring shall be routed for strain relief, and to

avoid sharp bends, either in-place or when connected or
disconnected.

3.3.2.5.4 Cables and wiring shall be routed to avoid pinching by

doors, racks, consoles, drawers, panels, clamps, etc.

3.3.2.5.5 Cables and wiring shall be routed so they cannot be walked

on or used as hand holds.

3.3.2.5.6 Cables and wiring shall be routed to avoid interference or

connection with the existing operational equipment within
the CELSS chamber.

259



3.3.2.5.7

3.3.2.5.8

3.3.2.5.9

3.3.2.5.12

3.3.2.5.13

3.3.2.5.14

3.3.2.5.15

3.3.2.5.16

3.3.2.5.17

3.3.2.5.18

Cableandwiring harnessesshallbedesignedfor fabrication
in removablesections.

The connectors selected shall be of standard quick-
disconnector plug-in type and sufficient stocksof slack
loops shall be available to allow for maintenance
procedures.

The connectorsand receptaclesshall be clearly identified
and codedto preventinsertion into the wrong receptacle.
Connectorswith alignmentkeysand slide guidesshall be
usedto preventimproperconnection.

Connectorsusedshall be moistureproof.

TBD quantities of replacement connectors shall be
available.

Connectorsareremovableby hand,andarefar enoughfrom
obstructionsto permit graspingfirmly.

Lock wiring is used on critical connectors to prevent
inadvertent disconnect or intermittent conditions.

Cables and wiring are located to avoid contact with liquids

or liquid can-ying lines, and drip loops are designed into all

cable and wiring installations to prevent fluids from flowing

down to connectors/terminations.

Installation of electrical power cables shall be in accordance
with KSC-SPEC-E-0017.

Electrical power cables shall be flexible multiconductor

neoprene-jacketed cables in accordance with KSC-SPEC-E-
0031.

Sixty (60) hertz alternating current power cable shall be
used in accordance with KSC-STD-E-0014.

Electrical connectors shall be selected from the following

basic families of connectors: MIL-C-5015, MIL-C-22992,

MIL-C-26482, MIL-C-38999.
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4.0 VERIFICATIONS

4.1 DefinitiQn The following tests and procedures shall be used to verify the

requirements and specifications of the CELSS chamber robot as set
forth in this document.

4.2 Performanc_ Reqoirement,,i

4.2.1 General Performance Verification

4.2.1.1 Robot Characteristics

4.2.1.1.1 Visually verify the degrees of freedom are sufficient to

perform all tasks in the CELSS chamber.

4.2.1.1.2 Perform an engineering stress analysis shall be performed
on the CELSS chamber structure at the TBD area of

installation. Visually inspect system mounting to insure the

absence of cracks and/or deformations.

4.2.1.1.3 Track cycle times for tasks performed by robot to ensure

the maximum speed (15.24 cm/s +TBD cm/s) is attainable

while productively completing required tasks.

4.2.1.1.4 Conduct performance tests of specific tasks by physically

measuring levels of accuracy of each task performed in mm.

4.2.1.1.5 Perform testing under maximum environmental stress

conditions to verify operational reliability of robot.

4.2.1.1.6 Compare physical dimensions of robot in stowed

configuration with the actual physical measurement of the

CELSS chamber storage space prior to installation.

4.2.1.1.7 Perform kinematic analysis of robot system prior to

installation to insure that all necessary areas of the CELSS

chamber working envelope can be reached.

4.2.1.1.8 Conduct perfonnance tests with physical distance and strain

gage analysis to inspect stability of robot while performing

required tasks.
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4.2.1.1.9 Conductperfon-nancetestswith physicaldistanceandstrain
gageanalysisto inspectstability of robotarmunder loaded
conditionsin stationarypositions.

4.2.1.1.10Verify throughreviewof systemdocumentationthe robot
complieswithall hazardproofingrequirementsfor electrical
andelectromechanicalsystemcomponents.

4.2.1.1.11Visually inspect all EEE pm-tsto insure selection was
commensuratewith the applicationof the life cycle of the
hardwareto beused.

4.2.1.2 Strenglh Requiremenls

4.2.1.2.1 Apply loads equivalent to 125% of required operational

loads; visually verify the robot structure withstands these

loads without the propagation of cracks or permanent

deformations before installation.

4.2.1.2.2 Perform non-destructive load testing to verify capacity of

the robot arm and compare results to required structural

safety factor.

4.2.1.2.3 Verify validity of structural analysis of all critical elements

of the robot through TBD methods.

4.2.1.3 Impact tO Environmen_

4.2.1.3.1 Perform standard comparison evaluation of operations

before and after installation to ensure robot compatibility

with CELSS chamber operations requirements.

4.2.1.3.2 Perform quantitative comparison evaluation of atmospheric
conditions before installation with conditions after

installation.

4.2.1.3.3 Verify with client no unnecessary modifications have been
made to the CELSS chamber facility during installation of

robot system.

4.2.1.3.4 Verify through product research, standard documentation

and materials literature referenced system bearings do not

leak, outgas, or corrode.
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4.2.1.4

4.2.1.3.5 Verify robot operationsdo not affect the chambersmean
operational temperature by performing temperature
evaluationbeforeandafter installation.

4.2.1.3.6 Verify robotdoesnot affectairflow by performingairflow
comparisonanalysisbeforeandafter installationsof robot.

4.2.1.3.7 Verify robot does not affect humidity by performing
humidity comparisonanalysisbeforeand after installation
of robot.

4.2.1.3.8 Perform quantitative comparison analysis of CELSS
chamberenvironmentbeforeandafter installationof robot
system.Verify with client that CELSS chamber facility has

not been unnecessarily modified.

4.2.1.3.9 Verify through TBD analytic methods structural integrity of
CELSS chamber before and after installation of robot. Refer

to performance tests conducted in sections 4.2.1.1 and

4.2.1.2 to verify stability and control of robot system.

4.2.1.3.10 Verify through product research, product specifications, and

rnaterials literature driving mechanism of robot does not

leak, out-gas, or is corrosive. Perform quantitative analysis

of driving mechanism operation before installation of robot.

4.2.1.3.11 Visually and quantitatively verify the robot routine

maintenance procedmes do not administer harmful
substances into the CELSS chamber environment.

4.2.1.3.12 Verify through product research, part specifications and

materials literature the structural integrity of robot system.

Conduct non-destructive performance evaluation tests of

fully assembled system at maximum velocity and maximum

load capacity to insure system integrity.

Documentation

4.2.1.4.1 Review documentation to insure it is legible, reproducible

and in an organized format.

4.2.1.4.2 Visually verify the format of reports.
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4.3

4.2.1.4.2.1 Visually verify the format of drawings within

reports.

4.2.1.4.3 Visually verify the format of engineering drawings.

4.2.1.4.4 Visually verify the format of engineering analysis.

Operational Requirements

4.3.1 General Qperational Verifications

4.3.1.1 Maintainability

4.3.1.1.1 Perform analysis of maintenance time in man-hours and

evaluate the results. Verify efficiency with client.

4.3.1.1.2 Verify routine maintenance can be performed without

excessive removal of robot components.

4.3.1.1.3 Verify testing and maintenance requires minimal use of

specialized tools and or equipment.

4.3.1.1.4 Verify through inventory that the number of different types

of components is minimal.

4.3.1.1.5 Verify through parts list inventory that the number of off

the shelf components used was maximized.

4.3.1.1.6 Verify preventative maintenance requirements and

frequencies are minimal through a review of maintenance

procedure documentation.

4.3.1.1.7 Verify number and level of training of maintenance

personnel to be sufficient through review of maintenance

documentation. Verify replaceablity of components by

client technicians.

4.3.1.1.8 Verify through review of system component parts list and
documentation that useful life of each component is

specified.

4.3.1.1.9 Visually verify visibility of labeling system on component

parts inventory.
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4.3.1.1.10 Visually verify labeling sequence on cables, wiring, tubing

and piping inventory.

4.3.1.1.11 Visually verify labeling of replacement parts inventory.

4.3.1.2 Ac_:¢ssibility

4.3.1.2.1 Perform physical test on all access openings to verify non-
restrictive movement.

4.3.1.2.2 Perform a simulated maintenance procedure involving all

physical access openings to insure sufficient space is

allowed for tool and component passage.

4.3.1.2.3 Perform physical test on all access covers to insure opening

and removeabilty.

4.3.1.2.4 Verify sitnplicity of case/cover fasteners through review of
fastener documentation.

4.3.1.2.5 Verify physical accessibility of replaceable system

components by performing a simulated replacement of one

or more components.

4.3.1.3 Dimensions

4.3.1.3.1 Verify all dirnensions comply with ASTM E380 REV*A 91

standards by reviewing all required documentation.

4.3.1.4 Stowability

4.3.1.4.1 Perform standard comparison evaluation of operations
before and after installation of robot to insure robot

compatibility with CELSS chamber operations requirements.

4.3.1.4.2 Visually verify no disassembly is required to deploy and

operate the robot from the stowed position.

4.3.1.5 Cables. Connectors and Wires

4.3.1.5.1 Physically verify system cable and wiring can be readily
secured and removed.
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4.3.1.5.2

4.3.1.5.3

4.3.1.5.4

4.3.1.5.5

4.3.1.5.6

4.3.1.5.7

4.3.1.5.8

4.3.1.5.9

4.3.1.5.10

4.3.1.5.11

4.3.1.5.12

4.3.1.5.13

4.3.1.5.14

Visually inspectall cableandwiring installationsto insure
no sharpedgesor twists a,'epresent.

Visually verify all cable connections are free of
deformation.

Visually inspect cable routing to insure damage from
externalfactorsdoesnot occur.

Visually inspectcable routing to insurethat they do not
interferewith humanmobility within theCELSSchamber.

Visually inspectcablerouting to preventinterferencewith
normaloperationsof the systernor theCELSSchamber.

Physicallyinspectcableandwiring harnessesto insurethey
are removable.

Verify with client efficiency of cable installation and
replacement.

Visually inspectcableconnectorsto insureproper labeling,
slide guidesor keysexist.

Performroutinevisual inspectionof cablesandconnectors
for theabsenceof corrosion.

Verify adequateinventoriesof replacementconnectors.

Verify physicallyconnectorsareaccessibleandremovable.

Analyze performanceof all critical connectors during
normaloperationsto insuretheyaxeresistantto inadvertent
disconnector intermittentconditions.

Visually inspectall cablesand wiring to insurethey avoid
contact with liquids and prevent fluid contact with
connections/terminations.

Visually verify powercableshavebeeninstalled.

Verify type of electrical power cables installed through
visual inspection and review of robot system parts
specifications.
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5.0 PACKAGING N/A

4.3.1.5.17 Visually inspect electric power cables to insure appropriate

types are used.

4.3.1.5.18 Verify use of proper connectors by cross referencing with

specifications called for in 3.3.2.5.18

6.0 NOTES

6.1 AfrQnyms

6.1.1 ANSI

6.1.2 CELSS

6.1.3 EEE

6.1.4 KMI

6.1.5 KSC

6.1.6 NASA

6.1.7 SI

6.1.8 SPEC

6.1.9 STD

6.1.10 TBD

American National Standards Institute

Controlled Ecological Life Support System

Electrical, Electronic and Eiectxomechanical

Kennedy Management Instruction

Kennedy Space Center

National Aeronautics and Space Administration

Systems International

Specification

Standard

To Be Determined
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APPENDIX C

TORQUE, SPEED AND ACCELERATION DETERMINATION
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Torque,SpeedandAccelerationDetermination

NOMENCLATURE

J PolarMomentof Inertia.

r Radius.

ga Angular Velocity.

ot Angular Acceleration.

N Numberof teeth.

T Torque.

g Gravity.

V Velocity.

The following section provides a detailed account of the torque, speed, and acceleration
calculationsperformedon the vertical and rotational shaft actuatorsubsystemof the CELSS
chamberrobot.

ROTATIONAL CALCULATIONS

1.) Calculation of polar mornent of inertia for robot arm.

JARM = Wr2/3g

-- 16.8kgms2

where W is the weight and r is the radius of motion of the arm.

2.) Calculation of polar moment of inertia for anticipated load.

JI.OAD = WrZ/g

= 45.4 kg m s z

where W is the weight, and r is tile radius of naotion of the arm.
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3.) Calculationof total polarmomentof inertia.

JTOT = JARM "t- JLOAD

= 62.2 kg m s 2

* NOTE: The polar momeqt of inertia for the gear is negligible in the above calculation.*

4.) Calculation of polar moment of inertia for pinion.

JP_ION = JToT(N_,/NG) 2

= 0.74 kg m s2

Where Np, and N c are the number of teeth of the pinion and gear respectively, and Nc,/N P
= 9.2.

5.) Calculation of angular velocity.

m = V/r

= 0.53 rad/s

Where V, the maximum velocity at the end effector is 15 cm/s.

6.) Calculation of the angular acceleration of the gem'.

o. C = Am/At

= 0.265 l'ad/s 2

Where At = 2 sec, and Am = 0.53 rad/sec.

7.) Calculation of the angular acceleration of the pinion.

Otp = _(Nc,/Np)

= 2.44 rad/s 2

8.) Calculation of applied torque on the pinion.

Tp = Jl,_p

= 0.18 Nm

* NOTE: Using a factor of safety of 2, T_, = 0.36 Nm.
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9.) Calculationof tile pinion RPM.

Pinion RPM = g_(No/Np)(60/2r0

= 46.6

VERTICAL CALCULATIONS

1.) Calculation of applied torque on the ball screw nut.

TBN = WL/2rrr i

= 6.7 Nm

Where W is equal to the combined weight of the load, turntable bearing, mounting

structure, arm, ball screw nut, and ball spline nut, L is the lead of the ball screw nut, and

rl is the ball screw efficiency.

* NOTE: Formula supplied by NSK Corporation.

2.) Calculation of applied torque on the servo.

T s = Tm_(Ds/DI_N)

= 1.3 Nm

Where D is the pulley diameter.

* NOTE: Using a factor of safety of 2, T s = 2.6 Nm.

5:1 pulley diameter ratio is assumed.

3.)

4.)

Calculation of ball nut RPM.

Ball Nut RPM = V(60/L)

= 180 RPM

Where L is the ball screw nut lead.

Calculation of the servo RPM.

Servo RPM = RPMI_N(Dt_N/Ds)

= 900 RPM

Where DBJD s is the pulley diameter ratio.
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APPENDIX D

COST ESTIMATES
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CostEstimates

Ball Screw/BallSpineShaft ....................................... $ 4,036

SplineNut ...................................................... 332

ScrewNut ...................................................... 565

TurntableBearing ................................................ 1,600

Electric Motors (2) ............................................... =125

Aluminum Central MountingStructure

Material ................................................... =100
MachineLabor .............................................. =125
(12) 11mm dia. bolts? .......................................... =8
(4) 10mm dia. bolts ............................................ =4
(25) 6 mm dia............................................... =15

CableReel (spring rewind) .......................................... 279

Lower SupportBoot .............................................. =150

Motor Pulley ..................................................... =6
Ball Nut Pulley ................................................... =8
Pulley Belt ...................................................... =5
RotationalPinion .................................................. =6
(8) ? mm dia. bolts & nuts(electric motors) ................................ =6
Mounting Bracket for Ball ScrewElectric Motor ........................... =35
(4) 10mm bolts for Mounting Bracket ................................... =4

Total EstimatedCost ........................................... $ =7,400
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APPENDIX E

WEIGHT ESTIMATES
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Weight Estimates

Ball Screw/Ball Spine Shaft .......................................... 23.2

Spline Nut ..................................................... 5.45

Screw Nut (2) ................................................... 12.7

Turntable Bearing ................................................. 18.2

Electric Motors (2) ............................................... =8.16

Aluminum Central Mounting Structure .................................. =15
Cable Reel ..................................................... 11.8

Bolts and Nuts .................................................. =0.91

Pulleys ....................................................... =0.91

Mounting Bracket ................................................ =0.45
Gear ......................................................... =0.45

Total Weight Estimation .......................................... =97 kg
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1.0 SCOPE

2.0

This specification defines the system performance and operational

constraints for the design, building, and testing of the Controlled Ecological Life

Support System (CELSS) robot. The performance and requirements were developed

in accordance with established standmds and requirements in documents described in

section 2.0.

1.1

1.2 Backgr0ond T.B.D.

APPLICABLE DOCUMENTS

Specifications

2.1.1 Federal, None

2.1.2 Military, None

2.1.3 NASA

2.1.3.1

2.1.3.2

2.1.3.3

2.1.3.4

2.1.3.5

2.1.3.6

2.1

KSC-SPEC-Z-009, Lubrication, Thread, Corrosion-Resistant Steel and

Aluminum Alloy Tube Fittings, Specification for, Ref. 3.3.3.3.5.

NBS Handbook 105-1, Specifications and Tolerances for Reference

Standards and Field Standard Weights and Measures, Ref. 3.3.5.6.f.

NSS GO 1740.9, NASA Safety Standard for Lifting Devices and

Equipment, Ref. 3.3.1.4.b, 3.3.2.2.h, 4.2.1.

KSC-STD-141, Load Test, Identification and Data Marking, Standard

For, Ref. 3.3.5.2., 4.2.1.

KSC-STD-E-0012, Bonding and Grounding, Standard For, Ref.

3.3.1.5.b.

29 CFR (Part 1910), Occupational Safety and Health Administration,

Labor (Occupational Safety and Health Standards), Ref. 3.3.2.1.d,

3.3.2.2.a, 3.3.5.4, 3.3.8, 3.3.9.2.

MIL-STD-109, Quality Assurance Terms and Definitions, Ref. 4.3.e.

MIL-STD-794, Parts and Equipment, Procedures for Packaging of,

Ref. 5.1.
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2.2

2.1.3.9 KHB 1710.2, Kennedy Space Center Safety Practices Handbook, Ref.
3.3.8.

2.1.3.10 KHB 5310.1, Kennedy Space Center Reliability and Quality

Assurance Handbook, Ref. 3.2.3, 4.

2.1.3.11 KHB 5310.9, Grounds Systems Safety and Reliability Analyses, Ref.

3.2.3, 3.3.8.

2.1.3.12 GP-425, Engineering Standards, Ref. 3.3.3.2.3.

2.1.3.13 KMI 5310.9, Kennedy Space Center Ground Systems Safety and

Reliability Analyses, Ref. 3.2.3.

2.1.3.14 KMI 5320.4, NASA Standard Parts Program,. Ref. 3.3.3.2.2.

2.1.3.15 KMI 5350.1, Kennedy Space Center Maintainability Program, Ref.
3.2.4.

2.1.3.16 ANSI/NFPA 70, National Electrical Code, Ref. 3.2.5.6.

2.1.3.17 MIL-STD-1629A, Procedures for Performing a Failure Mode Effects

and Criticality Analysis.

2.1.3.18 NFPA 43-C, Storage of Gaseous Oxidizing Materials, 1986.

2.1.3.19 NFPA 49, Hazardous Chemical Data, 1991.

2.1.3.20 NFPA 325M, Fire Hazard Properties of Flammable Liquids, Gases
and Volatile Solids.

2.1.3.21 KSC-DE-512-SM Facility, System, and Equipment, General Design

Requirements.

2.1.4 Contractor, None.

Standards

2.2.1 Federal

2.2.1.1 ANSI (American National Standards Institute)

2.2.1.1.1 ANSI approved RIA (Robotic Industries Association) Safety

Standard for Industrial Robots and Robot Systems.
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3.0

2.2.1.2

2.2.1.3

2.2.1.4

ASTM (AmericanSocietyfor Testingand Materials)

ASME (AmericanSocietyof MechanicalEngineers)

ASM

2.2.2 Military, None.

2.2.3 NASA, None.

2.2.4 Contractor,None.

2.3 D_wings, None.

2.4 Buil¢fin_, None.

2.5 Q1;hcr Documents

2.5.1 Manuals, None.

2.5.2 Handbooks, None.

2.5.3 Textbooks

2.5.3.1 1992 Annual Book of ASTM Standards, ASTM, Philadelphia, I992.

2.5.3.2 Boyer, Howard E. and Gall, Timothy L. , Metals Handbook Desk

Edition, American Society for Metals, Metals Park, Ohio, 1990.

REQUIREMENTS

3.1 Definitiqns The following requh'ements shall be incorporated into the design and
construction of the CELSS robot.

3.2 P_rfqrmanc¢ Requirements

3.2.1 General Perf0rrnance Requirements

3.2.1.1 Environmental Effects on Robot

3.2.1.1.1 All materials shall be protected from corrosion.

3.2.1.1.2 Electrical components shall be protected from weathering
alld coYrosion.
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3.2.1.2

3.2.1.3

3.2.1.4

3.2.1.5

3.2.1.6

3.2.1.1.3 Actuatorsandjoints shall beprotectedfrom corrosion.

Installation

3.2.1.2.1 Technicians shall be required to be certified.

Modification

3.2.1.3.1 Any and all modifications shall maintain the integrity of the

CELSS environment as a whole.

3.2.1.3.2 All modifications shall be minimized.

Performance Reliability

3.2.1.4.1 Robot shall meet reliability standards as determined by

Kennedy Space Center.

3.2.1.4.2 Robot shall perform with the necessary level of accuracy

and precision.

3.2.1.5.1

3.2.1.5.2

3.2.1.5.3

Mechanical safety components shall be provided.

Electrical safety components shall be provided.

Safety systems shall be integrated with robot control

systems.

3.2.1.5.4 Intrinsic safety features shall be provided within design.

3.2.1.5.5 Warning devices shall be provided.

3.2.1.5.6 Provide warning sign, in clear view, at single entry door

indicating layout of chamber and robot limits of reach.

3.2.1.5.7 Provide equipment labelling to indicate hazards.

Standardization

3.2.1.6.1 All applicable hardware shall meet the standards specified
here in.
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3.2.1.6.2 All replaceable/interchangeable parts shall meet

standards specified in the original drawings.

3.2.1.6.3 The use of off the shelf parts shall be maximized.

3.2.2 Specific Perfgrmanc¢ Requirements

3.2.2.1

3.2.2.2

3.2.2.3

3.2.2.4

the

Envir0nrnental Effects on Robot

3.2.2.1.1 The materials used shall be capable of operating in an

environment with a maximum relative humidity of 85% and

a minimum pH of 5.7.

3.2.2.1.2 The electrical components shall be capable of operating in

a environment with a maximum relative humidity of 85%

and a temperature range of 10-160 C.

3.2.2.1.3 The actuators and joints used shall be capable of operating
in an environment with a maximum relative humidity of

85% and a minimurn pH of 5.7.

Installation

3.2.2.2.1 Courses required for technicians shall be torque and tubing,

electrical mate/demate of cables, and electrical bonding.

Modification

3.2.2.3.1 All rnodifications shall maintain the individual integrity of

the upper and lower CELSS chambers.

3.2.2.3.2 All proposed modifications shall be reviewed before

implementation.

Performance Reliability

3.2.2.4.1 The robot shall withstand T.B.D. breakdowns and operate

as specified.

3.2.2.4.2 The range of accuracy along any axis shall be no less than

0.635 cm.
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3.2.2.5

3.2.2.6

3.2.2.5.1 Mechanicalsafetycomponentssuchasmicroswitchesand
mechanicalstopsshall beprovided.

3.2.2.5.2 A regular operationelectric circuit interlocked with the
emergency"Off" button and an uninterruptedemergency
powercircuit to returntherobotto its failsafelocationshall
beprovided.

3.2.2.5.3 An operation sequencefor emergencypower operation,
oxygenlevel sensors,and control sequenceto notify KSC
of excessoxygen if oxygen levels exceedT.B.D. levels,
shall be provided.

3.2.2.5.4 Smooth design lines, built in hose/cableroutes with
waterproofinganddrip loops,drive mechanismcoversshall
beprovided.

3.2.2.5.5 Provideroboticssystemsstatuslight andemergency"Off"
(panic)button.

3.2.2.5.6 Warning signsshall be plastic laminate,minimum T.B.D.
dimensions,red background,with lettersof T.B.D. size.

3.2.2.5.7 Labelpinchpoints,properequipmentmountingpoints, and
power supplyaspossiblehazards.

Standardization

3.2.2.6.1 All applicable hardware shall be annotated in all

documentation according to ASTM, ASME, ASM, or ANSI

standards.

3.2.2.6.2 All replaceable/interchangeable parts shall be visibly

designated with markings corresponding to specifications

denoted on original drawings.

3.2.2.6.3 Before ordering/fabrication of any parts, investigate the

availability of the item as an off the shelf part.

290



3.3 Operational Requirements

3.3.1 Oen.eral OPerational Requirements

3.3.1.1

3.3.1.2

3.3.1.3

3.3.1.4

Environmental Effect_ on Robot

3.3.1.1.1 All systems shall maintain integrity throughout their

operational life.

Moflifi_:_t_i0n

3.3.1.2.1 All modifications shall be subject to the approval.

3.3.1.2.2 Any and all modifications shall have minimum structural

and functional impact on the existing CELSS unit.

OPerational Reliability

3.3.1.3.1 Preventive maintenance shall be performed on a regular

basis.

Sa_

3.3.1.4.1

3.3.1.4.2

3.3.1.4.3

3.3.1.4.4

3.3.1.4.5

A design for reduction of kinetic energy shall be provided.

A means to expend excess kinetic energy shall be provided.

Safety training shall be provided.

A safe power "on" procedure shall be provided.

A safe power "off" procedure shall be provided.

3.3.1.5 Standardization

3.3.1.5.1 All applicable hardware shall meet the standards specified

on tile design drawings.

3.3.2 Specific Operational Requirements

3.3.2.1 Environmental Effects on Robot

3.3.2.1.1 Electrical and mechanical systems shall operate as designed

under specified conditions.
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3.3.2.2 Modification,s

3.3.2.2.1 All modifications shall be subject to approval of T.B.D. at

the University of Central Florida, College of Engineering

and Kennedy Space Center.

3.3.2.2.2 All modifications shall not hinder the function nor impede

the access of technical support personnel to the CELSS unit.

3,3.2.3 Operational Reliability

3.3.2.3.1 A T.B.D. preventative maintenance schedule shall be

provided.

3.3.2.4

3.3.2.4.1 Component design and location shall minimize stress in
structural members and fasteners.

3.3.2.4.2 Provide mechanical stops, shock absorbers, and spring type

components for conversion of kinetic energy to potential

energy.

3.3.2.4.3 Classes and manuals on standard safety procedures shall be

provided.

3.3.2.4.4 A second person with their hand on the emergency "off"

button shall be provided.

3.3.2.4.5 Equipment shall be tagged as being out of service and

circuit breakers to main power shall be locked in "off"

position.

3.3.2.5 Standardization

3.3.2.5.1 The following hardware shall meet the standards specified
herein: T.B.D.

4.0 VERIFICATIONS

4.1 Definition, The following tests,and verification procedures shall be used to verify

the requirements and specifications of the CELSS robot as set forth in the document.
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4.2 Pc:rfQrman¢¢ Verifications

4.2.1 General Perform_n_:e Verifications

4.2.1.1 Envirgnrnenl;al Effects on Robot

4.2.1.1.1 Verify corrosion resistance by a simulated test at the most

extreme CELSS eqvironment for T.B.D. hours.

4.2.1.1.2 Verify electrical component protection by a simulated test
at the most extreme CELSS environment for T.B.D. hours.

4.2.1.1.3 Verify actuators and joints integrity by a simulated test at
the most extreme CELSS environment for T.B.D. hours.

4.2.1.2 Installation

4.2.1.2.1 Before performing any integration, all technicians shall
show their certification card to the Task Leader.

4.2.1.3 Modification

4.2.1.3.1 Visually inspect any "through" chamber connections have
been sealed.

4.2.1.3.2 All modifications must be reviewed and approved by

Kennedy Space Center prior to implementation.

4.2.1.4 .Performance Reliability

4.2.1.4.1 Verify reliability by performing T.B.D. tests on all system

components.

4.2.1.4.2 Measurement tests shall be performed to insure a T.B.D.

range of accuracy and precision.

4.2.1.5 Safet_

4.2.1.5.1 Verify mechanical safety components by testing and

measuring for compliance with specified performance
standards and tolerances.

4.2.1.5.2 Verify electrical safety components by testing for

compliance with specified performance standards.
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4.2.1.5.3 Test safety modes and functions for coordination with

existing control systems.

4.2.1.5.4 A close out inspection shall be performed. Inspection shall

verify smooth design lines, pinch point protection/label, and
interlock disconnects.

4.2.1.5.5 Verify location and operation of additional safety devices.

4.2.1.5.6 Visually inspect warning sign for compliance with

specifications.

4.2.1.5.7 Visually inspect labelling for compliance with specification.

4.2.1.6 Standardization

4.2.1.6.1 Visually inspect hardware for ASTM, ASME, ASM, or

ANSI standard markings.

4.2.1.6.2 Parts tags from replaceable/interchangeable items shall be

correlated to original part tags and should include model
number.

4.2.1.6.3 Confirm the unavailability of an item with logistics before

ordering/fabricating any parts.

4.3 Qperational Verification.

4.3.1 General Operational Verifications

4.3.1.1 Environmental Eff_gt_ on Robot

4.3.1.1.1 Visually inspect and run tests for stress cracks, fatigue,

corrosion, and wear.

4.3.1.2 M.odification

4.3.1.2.1 Verify approval is obtained from the departments before

any modifications are implemented.

4.3.1.2.2 Verify Field Engineering Change has been approved before

any modifications are implemented.
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5.0 NOTES

5.1

4.3.1.3

4.3.1.4

4.3.1.5

Pcrf0rmanc¢ R¢liabilil;y

4.3.1.3.1 Verify that a schedule for maintenance is devised, in

addition to regular inspection between maintenance periods.

4.3.1.4.2

Verify that locations of components are properly designed

to reduce kinetic energy by performing a kinematic analysis

of the system.

Test mechanical stops, shock absorbers, and spring type

components for conversions of kinetic energy to potential

energy.

4.3.1.4.3 Observe standard safety classes and review manuals.

4.3.1.4.4 Verify power "on" service procedures are followed.

4.3.1.4.5 Verify power "off" service procedures are followed.

Standardization

4.3.1.5.1 All parts used on CELSS shall be verified before use by

comparing the part number tags to the original design

drawings. All parts tags shall be attached to documentation

after parts are used.

Responsible Engineering Office

5.1.1 The office responsible for development and technical maintenance of this

specification is University of Central Florida, Aeronautical Design I, EAS 4700.
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APPENDIX G

STATIC ARM DEFLECTIONS UNDER LOAD

PAGE _...P.I_. NOT FtI.MED

p_GL_IN 1LPlTiOKP,i,,_
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13Jb.

F2

33tb,

_F = 0

F2 F1 131b. 331b,

F1 = F2 461b.

F1 = 297

F1 = 251

F1 = 125

b. 461b,

b. TOTAL

5lb. PER ROLLER

= 0 FI[O)

F2 =

F2 =

_M

F2(E]

355.51b

177.81b

= 0

n) * 13[35in)

TOTAL

PER ROLLER

+ 33[72in)

APPENDIX G.1

Pllii_lL'lll_ PAGt ULJI.NK NOT FILMED

Static Force and Moment Analysis
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APPENDIX H

CALCULATIONS FOR ROLLING FRICTION

_ _L_ VNT_NTION_T BI_NI_
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CALCULATIONS FOR ROLLING FRICTION

Coefficient of Rolling Friction, fr = P / L

L = Load

P = Frictional resistance

P=(K+K') L/D

L = 250 lb

d = 0.75 in

P = (0.001) * (2) * (250 lb) / (0.75 in) = 0.667

fr = (0.667) / (250) = 0.0027

K = K' = 0.001 (surfaces well - finished and clean)

i_kG_).____ INTENTIONALI.YBI.ANIII
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APPENDIX 1

SHEAR FORCE AND MOMENT SPREADSHEET

PAGE_'d L//INTeNTIONALLy BEAU
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CELSSROBOT DESIGN
STATIC AND KINEMATIC ANALYSIS

THIS SPREADSHEETIS USEDTO GENERATE SHEAR AND MOMENT DIAGRAMS
FIFTEEN KILOGRAM PAYLOAD

SHEARDIAGRAM

X (ram)

00.00

76.26

305.03

533.81

762.58

1067.62

1372.65

1677.68

1830.20

1830.20

MOMENT DIAGRAM

Y (N)

253.69

205.92

187.87

177.08

167.66

159.52

152.65

147.15

147.15

00.00

X

00.00

76.26

305.03

533.81

762.58

1067.62

1372.65

1677.68

1830.20

Y

-297.12

-279.65

-234.56

-192.77

-153.30

-115.84

-68.23

-22.51

00.00

307



APPENDIX J

COMPARISONOF TORSIONAL RESISTANCE

t_ PAGE BLAP/K lqOT Fli',i_D

PAGE_'0 _ INTENTIONALLYBLANI
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COMPARISON OF TORSIONAL RESISTANCEFORTHE MODEL MEMBER AND THE
ACTUAL MEMBER.

Thoughtelescopingpieceswere modelledashollow roundtubes,the actualpieceswill be
rectangulartubes. The largestouterdimensionis 164ram. The rectangulartubes,which
havea closedform like thecircle tubes,will havea torsionalresistanceequal to or greater
than the roundmodels. Resistanceto deflectionwill be improvedover themodel of the
round telescopingpiecesbecauseof the highervalueof El. As the valueof themomentof
inertia, I, is increased,the valueof the deflection,5, is decreased.

F.L 3
_=.

3*E*I

6=Vertical Deflection

E= Young's Modulus

F=Force L=Length
I=Moment of Inertia
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APPENDIX K

CALCULATIONS FOR ALLOWABLE LOAD PER ROLLER BEARING

PAGE ULAtCK NOT FILMED

P..AGE_/_ INTENTIONALLY BLA_e
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CARRYING CAPACITY OF ROLLER BEARINGS

Reference: Ball and Rgllcr Bearing Engineering, Third Edition, Arvid Palmgren,

Engrg.Copyright SKF Industry, Inc. Philadelphia, PA, 1959. Printed S. H.

Burbank and Company, Inc. Philadelphia, PA.

fc =vXgcft f2

gc = (1 + (Ci/Ce)9:2") 2/9

Ci/Ce = f3

Table 3.2, page 80. For radial roller bearings

fl = 21.2

/2 = y'" O-Y)'"+'
(1 +y)Z_

f3 = 1.04 * [(1 - y) / (1 + y)]1+._/_o8

ft coefficient depends on the distribution

of the forces in the bearing and on the

properties of the material.

dm = Pitch circle diameter

Dw = Roller Diameter

y = [Dw cos(CX)] / dm CX = 0, Assumed contact angle

dm = 3.97 mm

Dw =1.79 mm

CX = 90 °

y

(1.79ram) x (coz 90)

(3.97mm)
= .4509(unitless)

_'_'_ P4C_ I_LAt_ ,_FJT F'rL._D

PAGF"_ IPITEi_TIONtlLLYBLANII
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Reference: Ball an0 Rgller Bearing Engineering, Third Edition, Arvid Pah-ngren, Engrg.

Copyright SKF Industry, Inc. Philadelphia, PA, 1959. Primed S. H. Burbank

and Company, Inc. Philadelphia, PA.

Ci/Ce = f3 = 1.04 * [(1 - y) / (1 + y)]143j108 = 0.2873

gc = (1 + (Ci/Ce)9t2) 2'_ = [ 1+ (0.2873)4 5]-°2225 =.99919

y_/8 (1-y)29t z7 (0.4509)o- zz_ (0.5491)1.o74o7f2 -- -- --o. 1
(1 ÷y)'_ (1.4509) _

fc = (1-36)(0.45)(0.99919)(21.2)(0.401 ) = 5.1985

Using a roller length 10 ram:

C = fc [(i)(i_)(cos CX)] v9 Z 3/4Dw zgnv

fc = 5.199

i=l

i_ = 10 mm

CX = 90 degrees

Z=6

Dw = 1.79 mm

C = (5.199)[(1)(10 mm)(1.00)l°777n(6)75(1.79 ram) ''°74°7

C = 223.3 kg = 2190 N

C = 2190 N / 2 F.S. = 1095

From shear and moment diagrams for the rollers given in the preliminary design, the

maximum force the rollers will experience is 792 N.
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APPENDIX L

SUMMARY OF COMPUTER ANALYSIS
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Summaryof ComputerAnalysis

Maximum Deflectionof Shaft

Maximum Su'essin Shaft

Maximum Von Mises Sla'essin Shaft

Maximum Deflectionof Arm

Maximum Stressin Arm

0.467 mm

16.979MPa

16.9MPa

1.31mm

5.222 MPa

Summaryof Engineering Calculations

Maximum Deflection of Shaft

Maximum Stress in Shaft

Maximum Deflection of Arm

Maximum Stress in Arm

3.53 mm

16.0 MPa

1.71 mm

5.27 MPa

NOTE: Stress and deflection of m'm were based upon the largest cross section over

the entire length of the arm.

PAG[_ INT[NTIONA[Lr t_L_
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APPENDIX M

DATA FROM COMPUTER ANALYSIS

P._GE_ z-O INTENTIONALLYBLANE
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Mass Properties of Telescoping Robot Arm

Program: SDRC I-DEAS VI: Solid_Modeling

File : armprop

Object: 1-WORK1, {LINK4, Binl} (Mod)

Date : 15-APR-94 14:57:10

Volume

Density

Mass

Center of gravity:

Modified_SI mm sec kilogram(kgm)

Surface area - Total : 1.825547E+06 mmA2

: 2.716958E+06 mmA3

2.700000E-06 kg/mm^3

7.335787 kg

700.0828 mm 0.0 0.0

from the center of the ball shaft.

Moments of inertia about C.G.:

IXX, IYY, IZZ : 38266.82

IXY, IYZ, IXZ : 0.0 0.0

Moments of inertia about the origin:

IXX, IYY, IZZ : 38266.82

IXY, IYZ, IXZ : 0.0

Principal axis :

1 X, Y,Z : 1.000000

2 X,Y,Z : 0.0

3 X,Y,Z : 0.0

t,nmmeLv NOT
INTENTIONALLYBLANII

2.225817E+06

0.0

5.821203E+06

0.0 0.0

0.0 0.0

0.0 1.000000

- 1.000000 0.0
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Principal momentsof inertia aboutC.G.:

Ill, I22, 133 : 38266.82 2.224934E+06 2.225817E+06

Displacement Data for Ball Screw/Shaft

SDRC I-DEAS VI: FE_Modeling & Analysis 20-APR-94 12:51:47

Group ID

Analysis Dataset

Report Type

Dataset Type

: No stored PERMANENT GROUP

: 1 - CASE 1,LOAD 1,DISPLACEMENTS

: Deformed Geometry Units : MM

: Displacements Load Set : 1

Node Trans-X

1 0.000E+00

2 -8.080E-02

3 - 1.594E-01

4 -2.337E-01

5 -3.016E-01

6 -3.607E-01

7 -4.091E-01

8 -4,444E-01

9 -4.646E-01

10 -4.675E-01

11 -4.509E-01

12 -4.127E-01

13 -3.506E-01

14 -2.626E-01

15 -1.465E-01

16 -1.935E-06

17 1,465E-01

18 2.626E-01

19 3.506E-01

20 4.127E-01

21 4.509E-01

22 4.675E-01

23 4.646E-01

24 4.444E-01

25 4.091E-01

Trans-Y Trans-Z Rot-X Rot-Y Rot-Z

0.000E+00 0.000E+00 0.000E+00 0.000E+00 8.106E-04

4.619E-05 0.000E+00 0.000E+00 0.000E+00 7.998E-04

9.237E-05 0.000E+00 0.000E+00 0.000E+00 7.674E-04

1.386E-04 0.000E+00 0.000E+00 0.000E+00 7.132E-04

1.847E-04 0.000E+00 0.000E+00 0.000E+00 6.375E-04

2.309E-04 0.000E+00 0.000E+00 0.000E+00 5.401E-04

2.771E-04 0.000E+00 0.000E+00 0.000E+00 4.211E-04

3.233E-04 0.000E+00 0.000E+00 0.000E+00 2.804E-04

3.695E-04 0.000E+00 0.000E+00 0.000E+00 1.181E-04

4.157E-04 0.000E+00 0.000E+00 0.000E+00-6.591E-05

4.619E-04 0.000E+00 0.000E+00 0.000E+00-2.715E-04

5.081E-04 0.000E+00 0.000E+00 0.000E+00-4.988E-04

5.542E-04 0.000E+00 0.000E+00 0.000E+00-7.477E-04

6.004E-04 0.000E+00 0.000E+00 0.000E+00-1.018E-03

6.466E-04 0.000E+00 0.000E+00 0.000E+00-1.310E-03

6.928E-04 0.000E+00 0.000E+00 0.000E+00-1.624E-03

6,466E-04 0,000E+00 0,000E+00 0.000E+00-1,310E-03

6.004E-04 0.000E+00 0.000E+00 0.000E+00-1.018E-03

5.542E-04 0.000E+00 0.000E+00 0.000E+00-7.477E-04

5.081E-04 0.000E+00 0.000E+00 0.000E+00-4.988E-04

4.619E-04 0.000E+00 0.000E+00 0.000E+00-2.715E-04

4.157E-04 0.000E+00 0.000E+00 0.000E+00-6.591E-05

3.695E-04 0.000E+00 0.000E+00 0.000E+00 1.181E-04

3.233E-04 0.000E+00 0.000E+00 0.000E+00 2.804E-04

2.771E-04 0.000E+00 0.000E+00 0.000E+00 4.211E-04
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26 3.607E-01 2.309E-04 0.000E+00 0.000E+00 0.000E+00 5.401E-04
27 3.016E-01 1.847E-040.000E+00 0.000E+00 0.000E+00 6.375E-04
28 2.337E-01 1.386E-04 0.000E+00 0.000E+00 0.000E+00 7.132E-04
29 1.594E-01 9.237E-05 0.000E+00 0.000E+00 0.000E+00 7.673E-04
30 8.080E-02 4.619E-05 0.000E+00 0.000E+00 0.000E+00 7.998E-04
31 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 8.106E-04

22 16 1 1 1 1
Maximum 4.675E-01 6.928E-04 0.000E+00 0.000E+00 0.000E+00 8.106E-04

10 1 1 1 1 16

Minimum -4.675E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00-1.624E-03

Average -1.268E-06 3.352E-04 0.000E+00 0.000E+00 0.000E+00 2.345E-05

Combined Stress Data on Ball Screw/Shaft

SDRC I-DEAS VI: FE_Modeling. & Analysis

Combined Stress on Ball Screw/Shaft

20-APR-94 12:49:43

Group ID : Current

Analysis Dataset : 3 - CASE 1,LOAD 1,ELEMENT FORCES

Report Type : Beam Stress Contour Units : MM

Dataset Type : Element Forces Load Set : 1

Data Component : Combined Stress at Maximum Point

Element Node Axial Y-Shear Z-Shear Torque Y-Bend Z-Bend

1

1

2

2

3

3

4

4

5

5

6

6

1-1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

2 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00-1.37E+07

2-1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00 1.37E+07

3 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00-2.75E+07

3-1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00 2.75E+07

4 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00-4.12E+07

4-1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00 4.12E+07

5 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00-5.49E+07

5-1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00 5.49E+07

6 1.88E+05 1.37E+05 0.00E+O0 0.00E+00 O.00E+00-6.87E+07

6-1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00 6.87E+07

7 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.0(1E+00-8.24E+07
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7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

24

24

25

25

26

26

27

27

28

28

7 - 1.88E+05 - 1.37E+05

8 1.88E+05 1.37E+05

8 - 1.88E+05 - 1.37E+05

9 1.88E+05 1.37E+05

9 - 1.88E+05 - 1.37E+05

10 1.88E+05 1.37E+05

10 - 1.88E+05 - 1.37E+05

11 1.88E+05 1.37E+05

11 -1.88E+05 -1.37E+05

12 1.88E+05 1.37E+05

12 - 1.88E+05 - 1.37E+05

13 1.88E+05 1.37E+05

13 - 1.88E+05 - 1.37E+05

14 1.88E+05 1.37E+05

14 - 1.88E+05 - 1.37E+05

15 1.88E+05 1.37E+05

15 - 1.88E+05 - 1.37E+05

16 1.88E+05 1.37E+05

16 1.88E+05-1.37E+05

17-1.88E+05 1.37E+05

17 1.88E+05-1.37E+05

18-1.88E+05 1.37E+05

18 1.88E+05-1.37E+05

19-1.88E+05 1.37E+05

19 1.88E+05-1.37E+05

20-1.88E+05 1.37E+05

20 1.88E+05 -1.37E+05

21-1.88E+05 1.37E+05

21 1.88E+05-1.37E+05

22 -1.88E+05 1.37E+05

22 1.88E+05-1.37E+05

23-1.88E+05 1.37E+05

23 1.88E+05-1.37E+05

24 -1.88E+05 1.37E+05

24 1.88E+05-1.37E+05

25-1.88E+05 1.37E+05

25 1,88E+05-1,37E+05

26 -1.88E+05 1.37E+05

26 1.88E+05-1.37E+05

27 -1.88E+05 1.37E+05

27 1.88E+05 -1.37E+05

28-1.88E+05 1.37E+05

28 1.88E+05-1.37E+05

29 -1.88E+05 1.37E+05

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

O.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

O.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0,00E+00

0.00E+00

0.00E+00

0.00E+00

0,00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0,00E+00

0.00E+00

0.00E+00

O.OOE+O0

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00 8.24E+07

0.00E+00 -9.61E+07

0.00E+00 9.61E+07

0.00E+00 - 1.10E+08

0,00E+00 1.10E+08

0.00E+00 - 1.24E+08

0.00E+00 1.24E+08

0.00E+00 - 1.37E+08

0.00E+00 1.37E+08

0.00E+00 - 1.51E+08

0.00E+00 1.51E+08

0.00E+00 - 1.65E+08

0.00E+00 1.65E+08

0.00E+00 - 1.79E+08

0.00E+00 1.79E+08

0.00E+00 - 1.92E+08

0.00E+00 1.92E+08

0.00E+00 -2.06E+08

0.00E+00 -2.06E+08

0.00E+00 1.92E+08

0.00E+00 - 1.92E+08

0.00E+00 1.79E+08

0.00E+00 - 1.79E+08

0.00E+00 1.65E+08

0.00E+00 - 1.65E+08

0.00E+00 1.5 IE+08

0.00E+00 - 1.51E+08

0.00E+00 1.37E+08

0.00E+00 - 1.37E+08

0.00E+00 1.24E+08

0.00E+00 - 1.24E+08

0.00E+00 1.10E+08

0.00E+00 - 1.10E+08

0.00E+00 9.61E+07

0.00E+00 -9.61E+07

0.00E+00 8.24E+07

0.00E+00 -8.24E+07

0.00E+00 6.87E+07

0.00E+00 -6.87E+07

0.00E+00 5.49E+07

0.00E+00 -5.49E+07

0.00E+00 4.12E+07

0.00E+00 -4.12E+07

0.00E+00 2.75E+07
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29 29 1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00-2.75E+07

29 30-1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00 1.37E+07

30 30 1.88E+05-1.37E+05 0.00E+00 0.00E+00 0.00E+00-1.37E+07

30 31-1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00-2.27E-07

16 1 1 1 1 15

Maximum 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00 2.06E+08

! 1 1 1 | 1

Minimum 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Average 1.88E+05 1.37E+05 0.00E+00 0.00E+00 0.00E+00 1.03E+08

Displacement Data for Telescoping Robot Arm

SDRC I-DEAS VI: FE_Modeling & Analysis

Displacement Data for Telescoping Robot Arm

20-APR-94 01:55:56

Group ID : No stored PERMANENT GROUP

Analysis Dataset : 1 - LOAD 1, DISPLACEMENTS1

Report Type : Deformed Geometry Units : MM

Dataset Type : Displacements Load Set : 1

Node Trans-X Trans-Y Trans-Z Rot-X Rot-Y Rot-Z

1 0.000E+00 0.000E+00 0.000E+00

2 0.000E+00 0.000E+00 0.000E+00

3 0.000E+00 0.000E+00 0.000E+00

4 0.000E+00 0.000E+00 0.000E+00

5 0.000E+00-2.623E-03 0.000E+00

6 0.000E+00-8.157E-03 0.000E+00

7 0.000E+00-1.641E-02 0.000E+00

8 0.000E+00 -2.718E-02 0.000E+00

9 0.000E+00-4.027E-02 0.000E+00

10 0.000E+00-5.550E-02 0.000E+00

I I 0.000E+00 -7.267E-02 0.000E+00

12 0.000E+00-9.366E-02 0.000E+00

13 0.000E+00 -1.203E-01 0.000E+00

14 0.000E+00-1.520E-01 0.000E+00

15 0.000E+00-1.883E-01 0.000E+00

0.000E+00 0.000E+00 0.000E+00

0.000E+00 0.000E+00 0.000E+00

0.000E+00 0.000E+00 0.000E+00

0.000E+00 0.000E+00 0.000E+00

0.000E+00 0.000E+00-4.556E-05

0.000E+00 0.000E+00-8.818E-05

0.000E+00 0.000E+00 - 1.278E-04

0.000E+00 0.000E+00 -1.646E-04

0.000E+00 0.000E+00 -1.983E-04

0.000E+00 0.000E+00-2.292E-04

0.000E+00 0.000E+00 -2.571E-04

0.000E+00 0.000E+00-3.454E-04

0.000E+00 0.000E+00 -4.271E-04

0.000E+00 0.000E+00-5.022E-04

0.000E+00 0.000E+00 -5.717E-04
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16 0.000E+00-2.289E-01 0.000E+00
17 0.000E+00-2.737E-01 0.000E+00
18 0.000E+00-3.223E-01 0.000E+00
19 0.000E+00-3.745E-01 0.000E+00
20 0.000E+00-4.298E-01 0.000E+00
21 0.000E+00-4.880E-01 0.000E+00
22 0.000E+00-5.508E-01 0.000E+00
23 0.000E+00-6.193E-01 0.000E+00
24 0.000E+00-6.930E-01 0.000E+00
25 0.000E+00-7.711E-01 0.000E+00
26 0.000E+00-8.531E-01 0.000E+00
27 0.000E+00-9.392E-01 0.000E+00
28 0.000E+00-1.030E+00 0.000E+00
29 0.000E+00-1.123E+00 0.000E+00
30 0.000E+00-1.218E+00 0.000E+00
31 0.000E+00-1.315E+00 0.000E+00

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00

0.000E+00-6.366E-04
0.000E+00-6.969E-04
0.000E+00-7.526E-04
0.000E+00-8.036E-04
0.000E+00-8.500E-04
0.000E+00-8.921E-04
0.000E+00-9.840E-04
0.000E+00-1.066E-03
0.000E+00-1.139E-03
0.000E+00-1.202E-03
0.000E+00-1.255E-03
0.000E+00-1.326E-03

0.000E+00 0.000E+00-1.381E-03
0.000E+00 0.000E+00-1.420E-03
0.000E+00 0.000E+00-1.444E-03
0.000E+00 0.000E+00-1.452E-03

1 1 1 1 1 1
Maximum 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

1 31 1 1 1 31
Minimum 0.000E+00-1.315E+00 0.000E+00 0.000E+00 0.000E+00-1.452E-03

Average 0.000E+00-3.873E-01 0.000E+00 0.000E+00 0.000E+00-6.534E-04

CQmbined Stress Data on Telescoping Robot Ann

SDRC I-DEAS VI: FE_Modeling_&_Analysis

Combined Stress on Telescoping Robot Arm

20-APR-94 02:00:33

Group ID

Analysis Dataset

Report Type

Dataset Type

Data Component

: Current

: 3 - LOAD 1, ELEMENT FORCES3

: Beam Stress Contour Units

: Element Forces Load Set

: Combined Stress at Maximum Point

:MM

:1

Element Node Axial Y-Shear Z-Shear Torque Y-Bend Z-Bend

1 1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
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2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

16

16

17

17

18

18

19

19

20

20

21

21

22

22

23

23

2 0.00E+00 0.00E+00

3 0.00E+00 0.00E+00

3 0.00E+00 0.00E+00

4 0.00E+00 0.00E+00

4 0.00E+00 3.75E+05

5 0.00E+00-3.75E+05

5 0.00E+00 3.75E+05

6 0.00E+00-3.75E+05

6 0.00E+00 3.75E+05

7 0.00E+00-3.75E+05

7 0.00E+00 3.75E+05

8 0.00E+00-3.75E+05

8 0.00E+00 3.75E+05

9 0.00E+00-3.75E+05

9 0.00E+00 3.75E+05

10 0.00E+00-3.75E+05

10 0.00E+00 3.75E+05

11 0.00E+00 -3.75E+05

I I 0.00E+00 2.42E+05

12 0.00E+00-2.42E+05

12 0.00E+00 2.42E+05

13 0.00E+00-2.42E+05

13 0.00E+00 2.42E+05

14 0.00E+00-2.42E+05

14 0.00E+00 1.70E+05

15 0.00E+00-1.70E+05

15 0.00E+00 1.70E+05

16 0.00E+00-1.70E+05

16 0.00E+00 1.70E+05

17 0.00E+00-1.70E+05

17 0.00E+00 1.70E+05

18 0.00E+00-1.70E+05

18 0.00E+00 1.70E+05

19 0.00E+00-1.70E+05

19 0.00E+00 1.70E+05

20 0.00E+00 -1.70E+05

20 0.00E+00 1.47E+05

21 0.00E+00-1.47E+05

21 0.00E+00 1.47E+05

22 0.00E+00 -1.47E+05

22 0.00E+00 1.47E+05

23 0.00E+00-1.47E+05

23 0.00E+00 1.47E+05

24 O.OOE+O0 -1.47E+05

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

O.OOE+O0

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00 0.00E+O0

0.00E+00 0.00E+00

0.00E+00 0.00E+00

0.00E+00 0.00E+00

0.00E+00 3.95E+08

0.00E+00 -3.70E+08

0.00E+00 3.70E+08

0.00E+00 -3.46E+08

0.00E+00 3.46E+08

0.00E+00 -3.21E+08

0.00E+00 3.21E+08

0.00E+00 -2.96E+08

0.00E+00 2.96E+08

0.00E+00 -2.71E+08

0.00E+00 2.71E+08

0.00E+00 -2.47E+08

0.00E+00 2.47E+08

0.00E+00 -2.22E+08

0.00E+00 2.22E+08

0.00E+00 -2.06E+08

0.00E+00 2.06E+08

0.00E+00 - 1.90E+08

0.00E+00 1.90E+08

0.00E+00 - 1.74E+08

0.00E+00 1.74E+08

0.00E+00 - 1.63E+08

0.00E+00 1.63E+08

0.00E+00 -1.52E+08

0.00E+00 1.52E+08

0.00E+00 - 1.40E+08

0.00E+00 1.40E+08

0.00E+00 - 1.29E+08

0.00E+00 1.29E+08

0.00E+00 - I. 18E+08

0.00E+00 1.18E+08

0.00E+00 -1.07E+08

0.00E+00 1.07E+08

0.00E+00 -9.71E+07

0.00E+00 9.71E+07

0.00E+00 -8.74E+07

0.00E+00 8.74E+07

0.00E+00 -7.77E+07

0.00E+00 7.77E+07

0.00E+00 -6.80E+07
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24

24

25

25

26

26

27

27

28

28

29

29

30

30

24 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 6.80E+07

25 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00-5.83E+07

25 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 5.83E+07

26 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00-4.86E+07

26 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 4.86E+07

27 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00-3.88E+07

27 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 3.88E+07

28 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00-2.91E+07

28 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 2.91E+07

29 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00-1.94E+07

29 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 1.94E+07

30 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00-9.71E+06

30 0.00E+00 1.47E+05 0.00E+00 0.00E+00 0.00E+00 9.71E+06

31 0.00E+00-1.47E+05 0.00E+00 0.00E+00 0.00E+00 9.09E-07

Maximum

1 4 1 1 1 4

0.00E+00 3.75E+05 0.00E+00 0.00E+00 0.00E+00 3.95E+08

Minimum

1 1 1 1 1 1

0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Average 0.00E+00 2.00E+05 0.00E+00 0.00E+00 0.00E+00 1.39E+08
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