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Chapter 1

Introduction

In recent years, practical applications related to the scattering of electromagnetic

waves by objects that are not perfectly conducting have gained significant attention.

One very important application of this type of electromagnetic scattering is the study

of antennas mounted on aircraft. Composite materials are being used more frequently

in the construction of modern aircraft, and their electromagnetic properties are such

that they cannot be modeled by perfect electrical conductors (PECs) as was done in

the past to model good conductors such as aluminum. Several computer codes have

been developed in the last few years to study the radiation properties of antennas

mounted on complex structures. One example of this type of code is the NEWAIR3

Code [1, 2] developed at the ElectroScience Laboratory of The Ohio State University.

This code is based on the Uniform Theory of Diffraction (UTD) [3, 4, 5] and is used to

study antennas mounted on the fuselage of aircraft. This code uses an ellipsoid [1, 2, 6,

7] to model the fuselage of the aircraft and fiat plates to model the rest of the aircraft.

It is assumed that the ellipsoid and plates are PECs which as mentioned before is a

good model for good conductors. Thus, the NEWAIR3 Code needs to be modified to

be able to model modern aircraft constructed from composite materials. One good

model of conductor-backed composites is the impedance boundary condition [8] where

the composites are replaced by surfaces with complex impedances. These impedances

are complex, and thus the composites may be lossy.

The first step in the process of modifying the UTD-basecl NEWAIR3 is to add

the capability of modeling composite flat plates by impedance plates. The second,



and more difficult step, is to replace the PEC eUipsoid by an eUipsoid whose surface

can be modeled by a complex impedance. This second step is not the subject of this

report, but it is being pursued at the ElectroScience Laboratory. The following will

briefly describe the original NEWAIR3 Code and also briefly review the literature

concerning the electromagnetic diffraction by a wedge with impedance faces.

1.1 Brief Literature Overview

The NEWAIR3 Code is a Fortran computer code developed at the Ohio State Uni-

versity to investigate the radiation patterns of antennas which are mounted on an

aircraft fuselage. The fuselage is modeled by a composite ellipsoid, and other parts of

the aircraft are modeled by a number of flat plates. Note that the term "composite

ellipsoid" simply means that two ellipsoids are joined at the antenna location and

does not refer to its electrical properties. This "composite ellipsoid" and the flat

plates are assumed to be PEGs. By providing an input data file described by the

Airborne Antenna Radiation Pattern (AARP) User's Manual [1], the far-zone and

near-zone radiation patterns are computed based on the UTD [3, 4, 5].

In order to modify the NEWAIR3 Code to have surface impedance plates, the

literature related to the fields scattered by impedance wedges was studied. There

are basically two methods to solve for the fields scattered by impedance wedges,

namely, the Wiener-Hopf and the Maliuzhinets methods. The method developed by

Maliuzhinets [9] is suitable for studying wedge-shaped objects. In 1988, Rojas [10]

obtained an UTD solution based on the generalized reflection method, which is more

general than the Weiner-Hopf method [11]. This paper provides an uniform asymp-

totic solution for the electromagnetic diffraction by an impedance wedge for four

special wedge angles. These four wedge angles are 0 (half-plane), w/2 (right-angled

interior wedge), _r (two-part plane), and 3_r/2 (right-angled exterior wedge). The in-

cident field to these wedges is assumed to be an arbitrary polarized plane wave which

is obliquely incident to the axis of the wedge. The solution in [10] is written in a

compact matrix notation which is very suitable for numerical computations, and it

will be used to calculate the diffracted fields from impedance wedges.



1.2 Report Organization

In Chapter 2, the solutions for the geometrical optics fields, which include the source

and reflected fields, will be discussed. The first section will summarize the source-

field solutions for monopole antennas and aperture-typed antennas, which include

axial slots, circumferential slots, and rectangular microstrip patch antennas. The

solutions for monopoles and slots are described in Kim's dissertation [2], and the

microstrip antenna results are obtained from Rojas and Ly [12]. Following the source-

field solutions, a new Fresnel reflection coefficient, for which the total field (incident

plus reflected) satisfies the impedance boundary condition at the surface of the plate,

is derived. The incident field is assumed to be an arbitrary polarized plane wave.

This solution is then modified to compute the reflected fields in the NEWAIR3 Code,

and is latter applied to obtain the solution for multiple reflected fields. For all field

components in this chapter, an e j_t time dependence is assumed and suppressed from

all the mathematical expressions.

Chapter 3 documents the solutions for edge-diffracted fields for an arbitrary-

polarized plane wave incident upon an impedance wedge. The four special wedge

angles considered here include 0, _r, 1/2_', and 3/2_r. These solutions are based on

Rojas' solutions in [10]. In order to implement the solutions in the NEWAIR3 Code,

modifications of some parameters are necessary and will be discussed in the last sec-

tion of this chapter. For all field expressions in this chapter, an e -i_t time dependence

is assumed and suppressed. As a result, it is necessary to take the complex conjugate

of the diffracted-field solutions presented in this chapter before the solutions can be

implemented in the NEWAIR3 Code.

Chapter 4 will present numerical results for the impedance plates. This chap-

ter will first show numerical results for various plane-wave incident cases, and then

various ellipsoid-plate models will be simulated with the NEWAIR3 Code. The first

section will emphasize on the reflected and diffracted fields with a plane wave as the

incident field. To illustrate the field behavior for various surface impedance values,

field amplitudes for both the reflected and diffracted fields will be plotted as func-



tions of the surface impedance. Fonowing these examples, the diffracted field as a

function of the observation angles will also be investigated. The next section will

discuss the results obtained with the modified NEWAIR3 Code. Seven examples in-

cluding three ellipsoid-plate geometries are investigated. For the purpose of assessing

the validity of the diffraction solutions discussed in Chapter 3, the first example will

show the individual field component and the approximated first-order total field. In

most applications, the aircraft distorts the desired radiation pattern of the antenna.

Thus, the examples here will mainly show that the undesired reflected and diffracted

fields can be minimized by choosing the right surface impedance value for the plates.

The simulation results for the impedance plates are compared to the ones for the

PEC plates. Each model considered in the NEWAIR3 Code section will have a PEC

fuselage and a number of flat impedance plates.

The final chapter, Chapter 5, summarizes the study conducted for this report. A

brief description on the future work related to the current study is also included at

the end of this chapter.

Two appendices are provided following Chapter 5. The first appendix documents

all modifications and additions to the NEWAIR3 Code. Some mathematical details

and expressions involving the diffraction solutions discussed in Chapter 3 are docu-

mented and summarized in Appendix B.



Chapter 2

Geometrical-Optics Fields from

Impedance Wedges

This chapter will discuss the geometrical-optics (GO) fields, which are a part of the

high-frequency solution for our aircraft radiation problems. As mentioned before,

the fuselage of the aircraft is modeled by a perfectly electrical conducting (PEC)

composite ellipsoid [1] in the vicinity of the antenna. The rest of the aircraft body is

modeled by flat plates that can have PEC or impedance surfaces.

In this analysis, it is assumed that the source and observation points are far enough

from any impedance surfaces and impedance edges, and that the impedance surfaces

are lossy enough so the contribution from surface ray fields can be neglected. The

total electric field ._tot,,t for the on-aircraft antenna radiation can then be expressed

as

__totat = __ao + __d + __c_ + higher order terms, (2.1)

where _ao are the GO fields, /_d are the edge-diffracted fields, and/_c_ are the cor-

ner diffracted fields. Higher order terms would include multiple reflected, diffracted,

reflected-diffracted fields, etc. For most calculations, the first three terms in Equa-

tion (2.1) are sufficient; however, there are situations where some higher order terms

are needed. The lack of higher order terms is usually observed when the radiation

pattern has jumps or discontinuities in its first deriwtive. The corner diffracted field

for an impedance plate has not yet been obtained and it will be the subject of further

research.
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Figure 2.1: Geometry of an aircraft model for direct-source field (a) and curved-

surface diffracted field (b), both fields are referred to as source fields.

For the aircraft models considered in this report, the geometrical-optics field _co

is composed of the total source field .F'_ot,a and the total reflected field .E'_ot,a. The

total source field consists of the direct electric field from a given source (i.e., the direct

source field) when the observation point is in the lit region or the surface diffracted

source field when the observation point is in the shadow region. The boundary be-

tween the lit and shadow region is a plane tangent to the curved surface at the antenna

location.

Although the addition of impedance plates does not affect the source-field calcu-

lation in the NEWAIR3 Code, the expressions used for these fields are summarized

in the next section.

2.1 Source Field with Antenna Mounted On a

Convex Surface

The source is assumed to be mounted on the aircraft fuselage which is a convex

surface modeled by a composite ellipsoid. The source shown in Figure 2.1 can be

a monopole, a slot, or a microstrip patch antenna. For the monopole source, the

current density is assumed to be a sinusoidal distribution with'an unit amplitude

over the monopole with length L. There are two different types of slot antennas

6
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Figure 2.2: A conducting cylinder upon which (a) an axial slot or (b) a circumferential

slot is mounted.

available in the NEWAIR3 Code: (i) axial slots, and (ii) circumferential slots, as

shown in Figures 2.2(a) and (b). Recently, a third antenna type has been added to

the NEWAIR3 Code, namely, a rectangular microstfip patch. This patch is modeled

by the well known cavity model as shown in Figure 2.3 where two magnetic current

sources are placed along the radiating edges to calculate the radiated field of the

dominant mode. Since the aircraft code already models slot antennas [1, 2] with

magnetic dipoles, the fields radiated by these two magnetic current sources can be

calculated; however, in the aircraft code, a slot is assumed to have a cosine field

distribution along its long dimension. To model the microstrip patch antenna, it is

assumed that the currents along the length of the dipoles are constant. Thus, the

existing NEWAIR3 Code is modified so that a constant field distribution along the

slot's long dimension can also be modeled. For more information about the modified

code or the microstrip patch antenna, please refer to [13] and Appendix A.

As discussed in [2], the source field can be expressed in terms of the pattern

factors: P_ and P_. These pattern factors are related to the dimensions of the

sources, including the length of a monopole L and the dimensions A and/3 of a slot

or a mlcrostrip patch antenna. By referring to Section II-B.3 in [2] and [12], the

7
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Figure 2.3: The cavity model for a rectangular microstrip patch antenna operating

near the lowest-order resonant frequency fl0 with a far-zone field location.

pattern factors Pc and P,,, for field points in the lit or shadow region are given by the

following expressions:

(i) the receiver in the shadow region:

For slot (or magnetic current dipoles) with a cosine field distribution along long

dimension,

/3m: pm 2--_B [._c°s(_-(Pm'!_))][sin(_(Pm.-U))]

For electric current monopoles,

(2.2)

Pc = h'[1- cos(kL)]. (2.3)

For slot (or magnetic current dipoles) with a constant field distribution along

long dimension,

[CorAsin(_cos(8_))] [sin(_ sin(O_)(Pmj•t_j))]P'_J = P'_ _0_0-_. J [ _s-in(8_)(Pm------_:_'j_ J; j -- 1,2 (2.4)

where 8_ = 90° in the above equation and Co isthe constant that depends on

the type of feed used to excitethe antenna.

(ii) the receiver in the lit region:

For slot (or magnetic current dipoles) with a cosine field distribution along long



dimension,

T [1-(_sin(0,)(P,. r))2J [ k--_si_-b'-) ]" (2.5)

For electric current monopoles,

_ = ,_,cos(kLn'. _)- cos(kL) (2.6)
1-- (n'.,_) 2

For slot (or magnetic current dipoles) with a constant field along long dimension,

P"J = P"J _-c--_s(O-_- J [ _;i_-*'i) J; j = 1,2. (2.7)

Thus, the source-field solutions, which are expressed in terms of the pattern factors

described above, are then summarized as follows for various antenna sources. Note

that the source-field expressions of a rectangular microstrip patch antenna are based

on the work of Rojas and Ly in [12].

(i) for a rectangular microstrip patch antenna with the receiver in the lit region [12],

/_ = / L_ in the far field (2.8)
L_ e--Jh' in the near field 't $

where Z,_ can be written as

L/_ = 2Pro0 cos(kB-c/Sm0 • b') sin(8')), (2.9)

where Pro0 is the same as P,,_ defined above, but it is located at the center of

the patch. The angle 8_ is measured from the normal _t of the microstrip to the

field location as shown in Figure 2.3. The length B is approximately one half of

the wavelength inside the substrate. In the near zone,/_, is the summation of

--n

two constant-current magnetic dipoles separated by a distance B. L m for the

receiver in the near-zone area is given as

-" = 2P.,o sin(o')cP.,o b') 1+ _sin2C0')CP_0 /,')2L m C08 • •



12s83(1+ sin4(e)(Pm0•P)') , (2.10)

where the distance s is from the center of the microstHp to the field location

as depicted in Figure 2.3. The angle ¢ is measured from the z axis to the field

direction of _.

(ii) for a slot antenna with the receiver in the lit region,

{ ,-jk. in the near field
$_" = (L"_ + L_b) ej_p'p" in the f_ field (2.11)

where

L_

and

L_

_ --_k[(pm.b')(H'+ T2Fcos(Si))+(Pm.i')ToFcos(8')],

- 4-_Jk[(Pm .O)ToF + (Pro .i')(S' + T2ofcos2(8'))]. (2.12)

(iii) for a monopole antenna with the receiver in the lit region,

e_jk j

@

E_= (L2_+ Lbob) ejke,p,
in the near field

, (2.13)
in the far field

where

-jk77op_ sin(0i)[Ht + T2 F cos(0i)] '
L_ - 4r

and

L,b _ -jk_?O4_rp* sin(Oi)ToF.. (2.14)

AU parameters and unit vectors used in the slot and monopole cases are dis-

cussed and documented in [2].

(iv) for a rectangular microstrip patch antenna with the receiver in the shadow

region [12],

_,_ = I L_(o' = 9oo) _-_"

t L_(o' 90°)

where - nLm and L_

in the near field

, (2.15)

in the far field

have the expressions given in Equation (2.10) and (2.9).

10



(v) for a slot antenna with the receiver in the shadow region,

E,,-"= (D;_+ D_b)
e-Jhs in the near field

in the far field

(2.1s)

where

-1

D,_- 4_" [.p_-_J '

and -1

-jk 6
D_ - 47r [(Pro ._)ToS + (P,_-i')S] e -ikt [P_(Q')] (2.17)

(vi) for a monopole antenna with the receiver in the shadow region,

_-._ko in the near field

e ikp'''p_ in the far field
(2.1s)

where

--1

-jk,o PoHe_J_.[p.(Q')]_-
D_ - 4_ Lp_--_] '
and _,

D_ - -jk_op_roSe_J_.[._(Q')]
47r tp_--_-)J '

(2.19)

The parameters H, S, To, and all the unit vectors are discussed and defined

in [2]. This section then summarized the source-field solution for the on-fuselage an-

tenna radiations. This source field will be used as an incident field for computing

single-reflected field in the aircraft code. The following section will derive the reflec-

tion coefficient for the plane-wave incident case and transform the solution to the

NEWAIR3 Code.

2.2 Calculation of Reflected Field from Flat Impedance
Surfaces

The NEWAIR3 Code already calculates high-frequency fields reflected from flat PEC

surfaces as shown in Figure 2.4. The only modification that is needed to calculate
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Figure 2.5: Surface-fixed coordinate system with incident field upon a plate with

impedance faces.

reflected fields from impedance surfaces is the development of new dyadic Fresnel

reflection coefficients in a ray-fixed coordinate system. It will be shown that the dyadic

reflection coefficient for an impedance surface is very simple if ray-fixed coordinates

are used.

To develop this Fresnel reflection coefficient, let us assume that a high-frequency

field is incident on a flat surface with the surface impedance Z0 on it as depicted in

Figure 2.5. Since the field is assumed to be a high-frequency field, it follows that

(2.20/
_/o

where ,_ is the direction of propagation.

surface of the plate, yields

Imposing the boundary condition at the

x ¢t x _totat = -gob x fI t°t_t,

or

(2.21)

12



where _ is the outward normal unit vector with respect to the given impedance

surface, Zo is the surface impedance facing in the ¢t direction, and ._total fltotai are

the total electric and magnetic fields at the boundary surface, respectively.

The coordinate system is first chosen to be the surface-fixed system (see Fig-

ure 2.5), in which three unit vectors with respect to the impedance plate are defined

as a tangential unit vector i, a normal unit vector _t, and a binormal unit vector

= i x/t. The electric fields which are incident and reflected by the surface S can

then be expressed in terms of these three unit vectors,

]_i,r = iE_,r + _E:,_ + _Eg,_. (2.22)

Choosing the reflection point QR to be the phase-reference point, it follows from

Equation (2.21) and (2.20)that

- n(E.(Qn) + E.(QR)) = Zo.
zlo

[(E_(Q,))_' - (_ .._')E'(QR) + (E:(QR))_" - (_ . _r)]_(QR)], (2.23)

where/_i(Qn) and/_(QR) are the incident and reflected electric field at QR, respec-

tively. E,t°ta'(Qn)is the total field at the reflection point and E_,(Qa) and E_,(Qa)

are the normal field components of/_i(QR) and/_(Qn), respectively. If all vector

fields (i.e., E_(Qn), F/(QR), and F_,t°tat(QR)) are expressed in terms of unit vectors

i, _, and b as in (2.22), then the reflection coefficient for the electric-field component

perpendicular to the plane of incidence can be obtained by collecting terms in the

binormal direction (i.e., the b component) on both sides of Equation (2.23):

E;CQ.) ' + cos(0,)]
= E_,(Qn) _ -_ -co_(Oi ) j, (2.24)

where cos(0 i) = -_t. _i.

Next, the reflection coefficient for the electric-field component in the plane of

incidence will be found. First, the incident and reflected ray-path directions (i.e., _i

and _r) can be decomposed into/t and i unit coordinate pairs "(see Figure 2.5):

¢ = + i(¢. i),

13
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Figure 2.6: Ray-fixed coordinate system with field incident upon a plate with

impedance faces.

and

_r = _h(_i .h) + i($ i.i). (2.25)

It then followsfrom (2.23)that

Zo. • . ZoE_+ _(n.r)E_- 7oE_(_._')=
go.. • Z0..

-El+ _(n._')E_+ _(, •t-)E,_. (2.26)

In addition, Equation (2.26) can be further simplifiedif a ray-fixedcoordinate

system, as shown in Figure 2.6,isused. As shown in Figure 2.6,_± isthe unit vector

• M

perpendicular to the plane of incidenceand ell'e_ are the unit vectors parallelto the

plane of the incidence and reflection,respectively.After a few manipulations, the

relationshipsbetween the unit vectorsdefined in the two previous coordinate systems

are

_iJ= i(a. ¢) - aCi. ¢),
and

_ = -i(h. _') - h(i- ¢). (2.27)

The normal component (i.e., the component in the _± direction) for the reflection

coefficient is obtained from (2.24) since the binormal unit vector b is in the same

14



direction as _±. The reflection coefficient for the field components in the parallel _iI

and _ directions (see Figure 2.6) can be obtained by first writing the electric fields

as

Eli'_= ±EV(_ ._')- E'.'_(i•_'), (2.28)

where the plus sign is for incident electric field at QR and the negative sign is for

reflected one. Employing Equation (2.26) with (2.27) and (2.28), the reflection coef-

ficient for the parallel field components is

(2.29)
EI_(QR ) = E_(QR) _ + cos(e') J"

Thus, by choosing the reflection point Qn as the phase-reference point, the electric

field reflected by the surface S is

F-,'(QR) =R .E'(QR) (2.30)

where E;(Qn) is the electric field incident at QR, and R is the dyadic reflection

coefficient in the following matrix notation

, (2.31)

where

I-

R= i Rli'ii 0

L 0 Rz,I

_z0 + cos(0;)"
tlo

RII,II = z__ + cos(O/) '
r/o

and

[
R±,.

i _ + cos(0,).I
(2.32)

Therefore, the reflected field at QR can be easily obtained from Equation (2.30)

if a ray-fixed coordinate system is used.

This reflection solution can then be implemented in the NEWAIR Code to cal-

culate reflected-field patterns for an aircraft model. A cross-sectional geometry of

an aircraft fuselage with two wings whose surfaces are being modeled by impedance

boundary conditions is depicted in Figure 2.7 and used to analyze the reflected-field

computations in the code. A coordinate-system transformation on the 2 × 2 dyadic

15
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Figure 2.7: Geometry used to determine single-reflected field from an impedance

plate.

reflection coefllcient in (2.31) is needed since the aircraft code converts every field

component to the z, y, and z coordinates in order to add all individual field compo-

nents easily. The following will briefly describe the reflected-field computations and

the modifications of the reflection coefficient in the NEWAIR3 Code.

Before the single-reflected field is computed, the computer code will test blockages

of ray paths from a source to the reflection point, and from this point to the receiver.

If the rays are not interrupted by any obstacle, then the electric field with only one

single reflection point on the surface of a specific plate will be computed by applying

image theory.

Consider the cross-sectional geometry of an aircraft fuselage with two wings at-

tached on each side as shown in Figure 2.7. The receiver's image position with respect

to the jth plate is given by

PJ(j) = - 2%. - A,,A, (2.33)

where the subscript r denotes the reflected field, the superscript I indicates the image

position, and the argument j represents the jt_ plate. The NEWAIR3 Code first

calculates the source fields (E_, B_, E_') at the image position P_(j). The next step

in the computations is to check whether the ray path, from the effective source (Pc,)

to the image position (P/(j)), intersects the jth plate. If the given jth plate does

not interrupt the ray path, then there is no reflection from this plate to the specific

16



receiver position. On the other hand, if the ray does intersect the jth plate, then the

reflected field (E_, E_,,E_) at the receiver location is computed as

E;(Pr)

E;(Pr)

E;(P_)

= IT]

E.'(P:(j))

E;,(P/ (j.))

E_(P/(j))

, (2.34)

where the 3 x 3 transformation [T] matrix has z, y, and z components as follows

IT] = T_x T_ T_z (2.35)

[T] represents the reflected-field polarization transformation matrix and it has to

be modified such that it satisfies the impedance boundary conditions (2.21) on the

specific jth plate. This [T] matrix is determined by transforming the El_(Qn ) and

E[(QR) into E_(QR), E_(QR), and E_(Qn) field components (i.e., using dot products

between the unit vectors _11, _" with _:, Y, and _), namely,

[T] =

(_-_) C_-._)

(_-_) (_l ._)

(_. _) (_l._)
._.[(_i_ _) (6_-_)(_i__)](_._) (_-_)(_'_._) '

(2.36)

where R is obtained from (2.31). Each element in the [T] matrix can be written in

the following form:

T_. = R,,,(_" _)(_i_"_)+ n_,_(_.. ,_)(_-6), (2.37)

where _ and Ct denote $, Y, or $ unit vectors. Then, the total single-reflected fields

--!"

Etota i of an aircraft model for a given receiver position is the superposition of the

single-reflected field from each individual plate, which is obtained from (2.34) and

(2.36). The GO field is obtained by adding the total reflected field "E[ota! with the

total source field E_ot_t discussed in the previous section. This then completes the GO

field solution for the modified aircraft code. If high-order multiple reflected fields are

necessary, they can also be added as discussed below.
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2.3 Double-Reflected Field from Flat Coated Sur-

faces

The procedure for acquiring the single-reflected field (described in the previous sec-

tion) can be applied here iteratively to obtain the double-reflected field/_,r. Hence,

the sohtion for the double-reflected field can be found by (i) determining the single-

reflected field from the first given plate, and (ii) computing the field reflected by the

second plate, in which the incident field for the second plate is the reflected field

calculated from step (i). This solution can also be implemented in the NEWAIR3

Code to simulate the electric-field patterns for an aircraft model as shown Figure 2.8.

As an illustration, consider a source which is mounted on a perfectly-conducting

convex surface with one impedance plate attached to it as depicted in Figure 2.9.

The incident rays are first reflected off from the i th plate, and then reflected from the

jth plate to the receiver location. The image of the receiver location with respect to

the jth plate and i th plate are given, respectively, as follows:

P/(j)= Pr- 2,_,.(P,- Pcl.,),
and

p/(i)= p/(j)-2,_,.(p/(j)-Pet.,). (2.s8)

The double-reflected field is then calculated by computing the source field/_" at

the image position P/(i) if the double-ly reflected ray is not interrupted by any other
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structure. Therefore, the double-reflected field/_r, is computed as

= IT],[z], (2.39)

where [T] matrix is the modified transformation matrix and is defined in equa-

tion (2.37). Both [T]i and [T]j satisfy the boundary condition (2.21) on the i th and

jth plates, respectively. The total electric field reflected twice from the flat plates of

the aircraft model is then computed as the sum of each double-reflected field.

Next, due to the fact that the GO fields have discontinuities at the incident and

reflection shadow boundaries and are zero in the shadow regions, edge diffracted

fields are necessary in order to obtain a more accurate total radiated fidd. The fol-

lowing chapter will summarize and present the plane-wave edge-diffraction solution

for impedance wedges for four specific wedge angles. Modifications of these diffrac-

tion solutions for spherical-wave iUurninations, which are necessary in the NEWAIR3

Code, will also be discussed at the end of Chapter 3.
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Chapter 3

Electromagnetic Diffraction by a

Wedge with Impedance Faces for

Four Special Cases

It is necessary to include the edge diffracted field to complete the expression for

the total electric field in terms of first order terms. This total field is continuous

across the shadow boundaries of the GO field, described in Chapter 2; however, i.t is

discontinuous across shadow boundaries of the edge diffracted field because the corner

diffracted field is not included. In this cha_ter, the uniform asymptotic solution for

the edge diffracted field due to an impedance wedge, which has been discussed in

Rojas [10], is summarized. The incident field in [10] is assumed to be a plane wave with

an arbitrary polarization, and obliquely incident to the axis of the wedge. It is noted

that for oblique incidence, rigorous solutions have been obtained for only four wedge

angles. The primary goal of this chapter is to modify the edge-diffraction solution

for plane-wave incidence, so it is also applicable for spherical-wave illumination. This

modification is accurate as long as surface waves are neglected.

The method of steepest descents is applied to obtain the uniform solution, and the

asymptotic evaluation of the integral representation of the diffracted field is carried

out by taking into account of the presence of real geometrical-optics poles. By assum-

ing sources and field locations are far away from the surfaces and edges of impedance

wedges which are coated with the lossy impedance material on their surfaces, surface-

wave fields can then be neglected here.
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Note that e -_t time dependence, which is opposite to e j'_t used in the GO-field

solution discussed in the previous chapter, is assumed and suppressed for all the field

expressions described in this chapter. To add this edge diffracted field to the GO field

developed in the previous" chapter, it is necessary to first take its complex conjugate.

In addition, a bar and a double bar on top of a function !.lenote a two-element column

vector and a two-by-two matrix, respectively.

3.1 Formulation

The problem considered here is the electromagnetic diffractions by an impedance

wedge with a plane-wave incidence (see Figure 3.1). The wedge has an impedance

value Z0 on its 0 face and Z,, on its n face 1 The external wedge angle is then equal

to rtTr. Fields on both impedance faces must satisfy the Leontovich or impedance

boundary condition

- = ×

- = × 9to,., C3.1)

-{o= (3.2)
nTF,

where _ is the unit vector normal to the plane _b, the admittance Yo,n = 1/Zo,,,, and

/_, /_ are electric and magnetic vector fields. As shown in Figure 3.1, a cylindrical

coordinate system (p, 4, z) is used, in which the z axis coincides with the wedge axis.

The angles _b and q_' are both measured from the 0 face of the wedge. The diffraction

point QE is found by following Keller's law of edge diffraction (i.e., the angle of

diffraction fld is equal to the angle of incident _/0). This can also be represented by

_._i=_._d, (3.3)

in which _ is the unit edge vector and _i, id are the incident and diffracted field-

propagation directions, respectively.

1A wedge is formed by two fiat surfaces. The 0 face is considered to be the face where the angles
¢band _b' is measured from. The other face is then called n face.
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Figure 3.1: Impedance wedge with plane wave obliquely incident on it.

As described in [10], the diffraction solution is based on the generalized reflection

method (GRM), which is a generalization of the Maliuzhinets method [9], developed

by Vaccaro [14, 15] to investigate fields scattered from an impedance wedge with an

obliquely plane wave incident on it. This scattering problem is much more difficult

to solve than the normal-incident case, which was considered by Maliuzhinets, since

the GRM forms a second-order difference equation, called the Generalized Reflection

Equation (GRE), instead of a first-order one. Fortunately, the GRE can be solved in

terms of the Maliuzhinets functions for four specific wedge angles. These four special

cases are depicted in Figure 3.2(a) to (d) and are listed below [10]:

(i) the half plane (n = 2) with an arbitrary impedance value on each face,

(ii) the two-part impedance plane (n = 1) with an arbitrary impedance value on

each face,

(iii) the right-angled wedge (n = 3/2) with a perfect electric conductor (PEC) or a

perfect magnetic conductor (PMC) on one face, and
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Figure 3.2: Geometries for which the generalized reflection equation has been solved

(a) n = 1, (b) n = 2, (c) n = 3/2, and (d) n : 1/2.

(iv) the right-angled wedge (n = 1/2) with PEC or PMC on one face,

where n is the wedge number and nlr is the external wedge angle.

Following the Maliuzhinets approach, the total field/_z is expressed in terms of a

spectrum of plane waves, namely

_:_(p, C,, z) - 2_'------7J-, $;(" + T
q,) da,e (3.4)

in which _'_ is the spectral function and 7 is the twofold Sommerfeld contour depicted

in Figure 3.3. The integral (3.4) can be evaluated in a closed form when n = 1/2 as

described in [10]. Thus, the following discussion will only concentrate on the solutions

3 and 2 first. The n = 1for cases of n = 1, 5, _ case will be discussed at the end of this

section.

The spectral function F_(a) can be written as follows

(3.5)
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-2_

Figure 3.3: Twofold Sommerfeld contour.

where (/3_ O) the function A_ (a)is given by

_.=(o,+ ,-,_-/2- ,/>)
=-1

S (a+nTr/2-c_)'_(a+nlr/2-_) sin(_)
n

_ (,_,_/2- #) } (n,_/2- #), (3.6)

where the 2 x 2 matrices B, and i),, are given and discussed in Appendix B. When

/_ = _ (i.e., the plane wave normally incident upon the impedance wedge), the above

function A_ (3.6) can be simplified as follows

_.: (o,+ n_-/2- ,/,)=
• .E

___---I

I'I,

_ (_,+,,_12-_)_ (n_/2 - ¢1 •cos(L___)_ cos(_) (3.7)

Unlike the equation (3.6), (3.7) is valid for any wedge angles. This asymptotic evalu-

ation on the diffracted field is based on the work of Gennarelli and Palumbo in [16],

and Rojas in [17].

The integral in (3.4) is evaluated asymptotically by applying the method of steep-

est descents [4] to obtain the leading term of/_= for large kp. By taking into account
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of the presence of all poles of _', (3.5) near the saddle points where a = +_', and

keeping the leading terms of order (kp)-½, the diffracted field is expressed in terms

of the dyadic diffraction coefficient as

e jkp .

_,/(p,¢,z)~Dz(¢,¢',L,_,o,,,.l._,_(_:o,_=O,z)_slnn, (3.8/

in which the diffraction coefficient D. (p,p',L, vo, V.) is (neglecting surface wave

poles)

e jwl4 sin(n'_) =-1

D: (¢,¢',L, vo, V.) = n_sinJ S Churl2- ¢) i (,, + n,_12- ¢)

/
=-.--1

-9

D,(__,),l" ..,i _,+ _,, + _,,cos(:+--_-)'l,
t co, ( :.-_-_-*)-<o,(_) ,, J

j 3 ;i (1 - ._(jkL._))
(nx12 - ¢') _7(,,.12- ,'1- .dT-;is_nn"_ s, '

i=1

(3.9)

where L = p sin fl is the distance parameter. The angles _, _b', and fl are defined in

Figure 3.1. The complex parameters Vo and v, are related to the surface impedance

Zo and Z,, and they are represented as a diagonal matrix (referred as the modified

Brewster matrix)

[sin n0]sin Vo,n =
0 sin tA

0,13

= sin fl

0 Zo.
r/o sin B

(3.10)

Due to the fact that Re(Zo.,) > 0 for passive surfaces, the real part of t, is restricted

to an interval between 0 and '_7"

The function st is given by

L_ &t
st -- -e4 x/2cos _-, 1 = 1, 2, 3. (3.11)

(3._2)

where

ai, if IRe(a,)l< 2_
&, = 27r + jim(at), if ReCa,) > 27r

-27r + jal, if Re(at) < -21r
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and the poles at for l = 1, 2, 3, are defined as

_1 = ¢- ¢',

a2 = ¢ + ¢',

and

a3 -- ¢ -4- ¢'- 2n_r. (3.13)

The residues _t inside the summation in (3.9) are

RTr

rt-- lirr_ (a - at) Az (a -4- -_- - ¢), 1=1,2,3 (3.14)

in which the poles a, are given in (3.13) and _L (a -4- _ - ¢) is defined in (3.6) for

an obliquely-incident field and (3.7) for a normally-incident field.

The function _(z) introduced in (3.9) is the transition function with a complex

argument (according to [18, 4])

L_'(z) = 2jv/-_e _x e_Jt, dt - -2- < z <2"37r rr (3.15)

The argument z is restricted to the interval -_ < z < _ to assure that .T(z) is a

single-valued function, and it converges as I_1--' a¢. The matrix _ in (3.9)is a 2 × 2

identity matrix. The matrix _ can be expressed as a 2x2 diagonal matrix

_ (Or)= [ II/e (Or)0 lit h (O_)0 ] , (3.16)

in which @e.h(a) is written as a product of four Maliuzhinets functions,

nTl" 71" 7/,71" vo,h 71"_°'_(_) = ¢"(_ + T + _'_ - 5 )¢"(_ + Y - + 5 )
7r

nlr lr nTr v_,'h -4- (3.17)"¢"(_- -5- + _"_'_- 5 )¢"(_ 9 5 ).

The Maliuzhinets function ¢(a) and its properties are discussed in Maliuzhinets [9].

Note that one of the important identities given in [9], which was used to develop the

diffracted field is

(a - Ir)=_ (a -4-:r) J14 (a), (3.18)

in which the diagonal matrix/_ (a) is given by

0 Mh(a)
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where

m(_, _o,h)
Me,h(a): m(_a,v_,h), (3.19)

{ a+n_r/2-_ a-_r+n_/2+u
_(_,_)_ cos, 2. )cos( _. , (3.20)

cos,(_+"'12+_2.,_cos(a+*+"_12-_2. ,_"

The matrix S is the transformation matrix which converts the fields that are tangent

to the wedge walls (i.e., g direction) to the normal component of the fields. The

matrices B, and D, are included in order to remove the singularities caused by the

inverse of S (see (3.9)) and to satisfy the edge condition. The expressions for S (a),

(a), M (c_), and _t will be discussed and defined for each of the special cases in

the following sections. The computation of the matrices B, and B, is discussed in

Appendix B.

The ray-fixed coordinate system (as shown in Figure 3.1) is used to express the

Thus, the diffracted field /_d in the vector form with /_ anddiffracted field [4].

components is

in which the unit vectors _,/_, _,/_', and q_' are depicted in Figure 3.1 and are defined

as follows [10]:

__ _x_
I._x al'

and

_,_ ,_'x_
I_'x _1" (3.22)

The expression for the diffracted field _d can then be obtained from (3.8) and (3.9),

namely,

eJks
-' (3.23)_(_,¢,_) ~_ (¢,¢',_,L,_o,_.)E (Q_)_,

where F__i(QE) is the incident field at the diffraction point QE, s is the distance from

QE to the observation point, and the distance parameter L = s_. The diffraction
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coefficient .i_e is given by

be (¢,¢',_, L,_0,v,) = - LD_ (¢,¢',_,L, v0,_.) Z, (3.24)

where

Unlike the cases discussed above for n = 1, 3, and 2, the integral in (3.4) can be

evaluated in a closed form for n = 1/2. As described in [10], the spectral function

_'z in (3.4) has a period of 27r for n = 1/2; hence, the two integrals represented the

diffracted field canceled with each other. The result is that the diffracted field for the

cases of n = 1/2 (i.e., with the external wedge angle of _r/2) is zero.

The diffracted field discussed here has an order (kp)_- with respect to the incident

field. In order to obtain more accurate diffracted fields on the faces of the impedance

wedge for finite nonzero values of Z0,n, it is necessary to include the next higher order

term (kp)-_ as described in Tiberio and Manara [19, 20]. The expressions for the

diffracted fields in (3.8) and (3.23) are valid as long as all the poles at in (3.13) are

simple. In the cases that grazing incident ¢' = 0,nlr, or ¢ = 0,nTr, or ZO.n = 0

or Oo, there is a possibility of double or higher order poles. In these cases, special

manipulations on the integral (3.4) must be carried out as described in [10]. In the

fonowingsections, the expressions for S (a), _ (a), _/(a), and ;i will be discussed

and defined for each special case.

3.1.1 Transformation Matrix S (c_)

The diffracted field presented in the last section can be written as

S [DiffractionCoefficient]S E'(Qz). (3.26)

There are three steps in order to obtain Equation (3.26):

(i) multiply with S to obtain an intermediate expression, which is pro-

portional to the normal incident-field component which is perpendicular to the

wedge wall,
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(ii) multiply S -_Ez(QE ) with the diffraction coefficient to obtain the "normal" com-

ponent of the diffracted field TM_-I normal ,

(iii) multiply the inverse of S by -dE,o,.m, t to obtain the diffracted-field component

-d
E z •

The expression for ._ is written in terms of the matrix C as

5= _(a),

_(a+V),

for n=l

for n=2

for n = 3,½ and Z0 = 0 or Zo = o0

(3.27)

where

Ca)=_ cos(a)+) cos(_),

and

,=I0 1]0 (3.2s)

3.1.2 Residues _l

The ;,,l = 1,2,3 are the residues of Az (a + n_r/2 - qb) given in equation (3.6)

and (3.7), and are computed in (3.14). The following summarizes the expressions

for the residues:

;2= / b-1 (_+ _') _.(_',.o) b (_- _'), n= 1,2
L_ _-1 (_ + _') _.,_ (_ _ _'), n = 3/2

and

;_= c (,_+ _')X(-,_- _',,,.) _ (,_- _'), ,, -- 1,2
=--1 -_) ('_ --_- 3/2c (_'- X(_-¢',_,)_ -¢,). n

(3.29)
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The functions A (a,v) and A1 are given as foUows"

$, [ RCs,v°)0 ]0 R(5, v_) '

{ -L, forg0=0_-1 = _, for Z 0 = O0

(3.30)

where

and L is defined in (3.25).

sin (5)- sin (v)
RCs, v) = sin (5) + sin(v)'

(3.31)

3,1.3 Limits on Matrices _ (a) and M (a)

In this section, the matrices _1¢ (a) and _ (a) are summarized in tables 3.1, 3.2,

and 3.3 for the special cases where the impedance value Z0 or Z, goes to zero or

infinity. For both Z0 and Z, are finite, M (a) and _ (5) are already defined in (3.19)

and (3.16). The relationship between the two matrices is given in (3.18).

As the impedance value Z0 or Zn approaches zero or infinity, the complex argu-

ments v* and v h defined in (3.10) become:

lim J ]v_]-o oo

tZo_O V0h --+ 0

lira / Iv_,l-, oo

[Zn-,O Vnh _ 0

and

{ v_-,0
lim (3.32)

The _,,h(5) defined in (3.17) can be simplified by applying one of the Malluzhinets

identities given in [9]

tim ¢.(5) = 0 r '=_-_xl
I,-,(_).-._o [e '" J" (3.33)

Employing the above limits to the equations (3.16) and (3.19) as the IIm(cx)l goes

to infinity, the foUowing tables summarize the simplified $e,h(5) and M,,h(5) for the

four special cases.
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Table 3.1: n = 1, 2 for _,h(a)

z0 = 0, _.(a) = ¢.(_ - V + _. - _)¢.(_"- "-_- _. + 7)

Zn # 0 and finite, q_h(a) = cos(_ + _)¢n(a -- 9._ + vh _ _)¢nCa - v._ _ vh + _)

Z0# 0 and finite, _eCa) = _bn(a+ 9._+v__ _)_bnC_+-_-u_+ _)

z. = 0, _h(_) = cos(_ - _)¢.(_ + V + _h_ _)¢.(_ + V _ _h+ _)

Z0= 0, _(..) = 1

Z. = 0, *h(_) = cos(_ + _) cos(_ -- _)

------_+_)= cosC_+ _)¢.(_- V + _._- U¢"(_ "_

= ¢"(_-v+_h-u¢"(_' 7 _+_)

! _3for q',,h(a)Table 3.2: n = 2, 2

Z0=O,

Zn # 0 and finite,

Zo # 0 and finite, @e(ct) = cos(_ n - {)¢n(a + -_ + v_ - _)¢n(¢t + _-_ - v_ + _)

Z n -- O, tIlh(Ot) = t_rt(Ot 3I- V "+ lthO -- _)t_n( Ot "31" V -- lthO "4- _)

z0 = 0, ¢o(_) = co_(_ + _)co_(_ - _)

Z. = O, Ch(Ot) = 1

Zo= oo, _(_) = ¢.C_- V + _._- _)¢.(a - "¢ - _, + _)
r, h *r

Zn #Oandfinite. _h(a) = cos(yff+4)¢n(a- _+v h- _)¢n(a- _-_-v n+ 7)

3.2 Modification for Spherical-Wave Illumination

Finally, in order to apply the above edge diffraction solution for impedance wedges

to the NEWAIR3 Code, modifications on some parameters must be made. Since

the incident field was assumed to be a plane wave for the previously described edge

diffractions, the solution has to be modified for a point source which is compatible

with the aircraft code. The distance parameter L inside the argument of the transition

function Jr(z) (3.15) has to be replaced by the following expression:

sd(s _ + l) sin2(/_0), (3.34)
L- ad + si.4_ I
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3 forTable 3.3: n = 1, 2, ½,

Zo=O,

Z. _ Oand finite,

Z0 # 0 and finite,

g, = 0,

, a-_r+n_/2,

""sc_, ),. (_ = cost 2n ),. ¢,, i q+_'+n_/2
rnt-a,u-/cost 2n )

Mh(ot) _ 1

c°st 2. )
Me(a) = ..(_,v;) ,-o+.+,,./2.

cos( .... +"'_/_
2n ,r

M.(a) = m(a, Voh)

) costM_(a) cos(o--+-_'/" .... +-+,',-/'
-- _, , -a-,_+n*/2

_--_ _n ) c°st 2n )

Mh(Ct) = 1

Mo(,,) = '

Mh( ot) cost 2n '

where s + shown in Figure 3.4 is the distance from the effective source point 2 to the

diffraction point, and s a in Figure 3.4 is the distance from the diffraction point to

the receiver location. The angle _ is the angle between the incident ray and the edge

where the diffractions occur. Another parameter which also depends on the types of

the sources is the spatial attenuation factor A. For the plane-wave incident case, A

is equal to 1/V _ in (3.23); however, the spatial attenuation factor has the following

expression if a point source is considered:

I si (3.35)A= sd(s a + s_ ),

where s i and s a have the same definitions as above and are depicted in Figure 3.4.

Following all the modifications for the edge diffraction solution, the implementa-

tion of impedance plates in the NEWAIR3 Code can then be completed. The following

chapter will present and discuss the computer simulated results for various aircraft

models with impedance wings.

2If the receiver is determined to be in the lit region, then the effective source point is the same

as the actual source point. However, if the field point is in the shadow region, then rays travel an

extra distance l from the actual source point to a point where the rays diffract. In addition, this

point is then the effective source point.
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Figure 3.4: Geometry of an aircraft model for edge diffraction with the diffraction

point (a) in the lit region, and (b)in the shadow region.

34



Chapter 4

Computer Simulations and
Discussions

The purpose of this chapter is to implement the modified plane-wave solutions, which

are discussed in Chapters 2 and 3, to study the effects of the composite plates which

are newly introduced to the NEWAIR3 Code. In most applications, the aircraft

distorts the desired pattern of the antenna. Thus, the examples here will show that

the undesired reflected and diffracted fields can be minimized by choosing the right

surface impedance values for the plates. As mentioned before, the composite plates are

being modeled by impedance plates. The numerical results will include two main parts

: (i) the plane-wave incident cases, and (ii) the NEWAIR3 Code cases. For the plane-

wave incident cases, the behavior of both the reflected and diffracted fields as functions

of the surface impedances and the observation angles are investigated. On the other

hand, seven examples including three ellipsoid-plate geometries are simulated with the

modified NEWAIR3 Code. For the purpose of assessing the validity of the diffraction

solutions discussed in Chapter 3, the first example will show the individual first-order

field component and the approximated first-order total field. Other test examples

will mainly emphasize improving the radiation patterns. The simulation results will

be discussed and compared to the results from the original NEWAIR3 Code. Note

that the lit-side impedance is denoted as Z0, and Zn is referred as the shadow-side

impedance.
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4.1 Plane-Wave Case

This section will discuss and investigate how the surface impedance will affect the

reflected and diffracted fields. The source field is assumed to be a plane wave. The

surface impedances used for all plots of the plane-wave incident cases are normalized

with respect to the free-space intrinsic impedance 7/0 _ 377 l), and also the real parts

of the impedances are assumed to be positive.

4.1.1 The Reflected Field

Consider a geometry of a parallel-polarized plane wave 1 incident upon the lit side

of an impedance ground plane with an incident angle s 0 i = 60 degree as depicted in

Figure 4.1(a). According to Equation (2.31), the reflected field is decoupled such that

it has the same polarization direction as the incident field. The field amplitude of

the parallel-polarized reflected field is plotted as a function of the surface impedance

as shown in Figure 4.2(a). As both the real and the imaginary parts of the surface

impedance varied, the minimum reflected field can be found at Z0 _ 0.5 * _/o fL It is

noted that the surface impedance corresponding to the smallest field magnitude will

be referred as the "optimal" impedance for all numerical examples. Thus, 0.5 * _/o fi

is the "optimal" impedance for this parallel-reflected field example where 0; = 60%

The next case will consider the perpendicular-polarized incident field for the same

impedance ground plane, as shown in Figure 4.1(b). The incident angle 0 _ is still fixed

at 60 degrees. The perpendicular-polarized reflected field as a function of the surface

impedance is calculated and obtained in Figure 4.2(b). The "optimal" impedance

value for this case is approximately equal to Z0 = 2 * 7/0 ft. Note that the imaginary

part of the "optimal" impedance values is fairly small in both the reflected-field cases.

I A parallel plane wave is an electric field which is polarized in the direction parallel to the plane
of incidence.

2The incident angle 0i is measured from the normal Ftof the ground plane.
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Figure 4.1: Geometry of a (a) parallel and (b) perpendicular -polarized plane waves
incident on an impedance ground plane.

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0,15 0.2 O 2.-.

Magnitude ot parallel reflected field(theta_i=60 deg) Magnitude of perpendicular reflected fleld(theta_i=60 deg)

26

(a) (b)

Figure 4.2: Amplitude distribution of single-reflected field with (a) E{i and (b) E'_

incident upon an impedance ground plane at e i = 60 degrees.
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4.1.2 The Edge-Diffracted Field

Following the reflected-field cases, this section will investigate the edge-diffracted

fields as functions of the surhce impedances and the observation angles. The geometry

considered here is a half plane with the surface impedance Z0 on its lit face and

Zn = (0.1 + ]0.5) on its opposite face. The axis of the half plane is assumed to

coincide with the _ axis as shown in Figure 3.1. A TMa or a TEa plane wave is

assumed to be incident upon the impedance half plane and makes a diffraction angle s

of 135 degrees with respect to the _ axis. The incident angle _ measured from lit

face of the impedance half plane is assumed to be 45 degrees. The diffracted field

is calculated at a distance kp = 10 where/c is the free-space wave number, and p is

the distance between the diffraction point on the edge and the field location. The

following will discuss the TMa and TEa cases separately.

(i) TMz Plane-Wave Incident:

The TMa case shown in Figure 4.3 is considered first. With the observation

angle fixed at 60 degrees, the co-polarized and cross-polarized diffracted fields

are calculated and plotted as functions of the surface impedance Z0 as shown in

Figure 4.4(a) and Figure 4.4(b), respectively. The co-polarized diffracted field

has a minimum at Z0 _ 0.5 • 70 f_ according to Figure 4.4(a). On the other

hand, Figure 4.4(b) shows the cross-polarlzed field component has an "optimal"

impedance located at Zo _ (1.3 + ]0.1) • 70 f_. Note that the magnitude of the

cross-polarized field is fairly small at Z0 : 0 (i.e., the lit side of the half plane

is a PEC).

Next, the diffracted field as a function of observation angles is investigated

in this TMa-incident example. The same geometry as depicted in Figure 4.3

is considered, except the observation angle _ is varied from 0 to 360 degrees

and also the llt-side impedance Zo is assumed to be real and varied from 0

to 1 • 70 f_. Figure 4.5(a) and Figure 4.5(b) show the co-polarized and cross-

polarized diffracted fields as functions of the observation angles. Five curves

3Please refer to Figure 3.1 for the definition of the diffraction angle/3d
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Figure 4.3: Geometry of TM_ plane wave incident upon an impedance half plane with

a 135-degree diffraction angle measured from the axis of the half plane.
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Figure 4.4: Amplitude distributions of the (a) co-polarized E_ and (b) cross-polarized

7/oH_ edge-diffracted fields with E_ incident upon an impedance half plane..
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Figure 4.5: Magnitude of (a) co-polarized E a and (b) cross-polarized r/0H / edge-

diffracted flelds with E_ incident upon an impedance half plane at _i = 45 degree as

shown in Figure 4.3.

(ii)

are shown in both figures corresponding to the normMized impedance values

Z0 = 0,0.1,0.2,0.6, and 1.0. As the value of Z0 increases, the co-polarized

diffracted field in Figure 4.5(a) shows a significant decrease before it reaches

the incident shadow boundary (ISB) at _ _ 225 degrees. In addition, this field

component has the greatest jump at the reflection shadow boundary (RSB)

(i.e., q_ _ 135 degrees). The big variations of the diffracted fields at the RSB is

due to the dependence of both the reflected and diffracted fields on the surface

impedance Z0. However, this co-polarized field component haz little changes

around the ISB since the source £eld is independent of the impedance Zo. On

the other hand, from observing the cross-polarized diffracted field shown in

Figure 4.5(b), the diffracted field agfin has great variations around the RSB,

but there is no ISB for this polarization. Note that the increase in the surface

impedance value Zo gives rises to the cross-polarized diffracted field shown in

Figure 4.5(b).

TE, Plane-Wave Incident:

This section will investigate the TEa incident case for the edge diffracted fields.

The geometry considered here is similar to the TM, case, except the incident
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field is TE, polarized, as shown in Figure 4.6. With the field angle fixed at $ to

60 degrees, the diffracted field distributions for the cross-polarized and the co-

polarized components are separately plotted in Figure 4.7(a) and Figure 4.7(b)

as functions of the surface impedance Zo. According to Figure 4.7(a), the

"optimal" impedance is Z0 _ (0.6 + j0.2) • 7o ft. On the other hand, the cross-

polarized diffracted field as shown in Figure 4.7(b) has the strongest magnitude

around Z0 = 0, and a minimum at Z0 _ 1.9 * 70 ft.

Next, the diffracted fields with a TEa plane-wave incident upon the same

impedance half plane as functions of the field angles are studied. The re-

ceiver angle $ is varied from 0 to 360 degrees, and also the normalized lit-side

impedance is chosen to be real and varied between 0 to 1. The cross-polarized

and co-polarized diffracted fields are plotted versus the observation angle as

shown in Figure 4.8(a) and Figure 4.8(b), respectively. Similar results are ob-

tained for the TEa-incident case as compared to the TM, case. According to

Figure 4.8(a), the cross-polarized component is only affected by the existence

of the RSB which is located at $ = 135 degrees. On the other hand, the

co-polarized component shows great variations around the RSB and has little

change in magnitude around the ISB as the value Zo varies. The same reasons

as in the TM_ case can be used to explain these phenomenon.

4.2 Simulated Examples on the NEWAIR3 Code

Following the plane-wave incident cases, this section will emphasize on the results

obtained with the NEWAIR3 Code. Seven examples including three ellipsoid-plate

geometries are provided for illustrating the new features and flexibilities of the modi-

fied NEWAIR3 Code. For each example, the aircraft model is assumed to be operated

at the frequency f = 1GHz, so one wavelength A is approximately equal to 1 foot.

The aircraft fuselage of each case is assumed to have the same dimensions and is

modeled by a PEC composite ellipsoid as illustrated in Figure 4.9. For Examples 1 to

6, the field components are computed around the roll-plane pattern cut as depicted
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Figure 4.6: Geometry of TE= plane wave incident upon an impedance coated half

plane with a 135-degree diffraction angle measured from the axis of the half plane.
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Figure 4.7: Amplitude distributions of the cross-polarized E d (a) and co-polarized

(b) edge-diffracted fields r/oH d with H i incident upon an impedance half plane.
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Figure 4.8: Amplitude distributions of (a) cross-polarized E a and (b) co-polarized

Ha_/o = edge-diffracted field with/-/j incident upon an impedance half plane as shown

in Figure 4.6.
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Figure 4.9: Geometry of the aircraft fuselage considered in the NEWAIR3 Code

Section.
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(a) (b)

Figure 4.10: Definitions of the angles Sp and Cp, and also the unit vectors 0v and Cv

for (a) the roll-plane and (b) elevation-plane pattern cuts.

in Figure 4.10(a). The angle 0v is assumed to be 90 degrees and Cp varies from -180

to 180 degrees. The unit vectors t_v and Cv are assumed to be in the same directions

of the angles 0v and Cv, respectively. The last example will show the radiated fields

computed around the elevation-plane pattern cut as illustrated in Figure 4.10(b) for

three different aperture-type antennas. The angle 8p is assumed to be 80 degrees and

Cv is between +180 degrees. For more details about the pattern-cut definitions, please

refer to the AARP User's Manual [1]. Note that the diffracted fields are assumed to

be calculated from all edges of the composite plates, and also all field components are

assumed to be normalized with respect to their source field.

4.2.1 Example 1 : Individual first-order field components

Before any comparisons between the results for the composite plates and the PEC

plates, the first example of the modified NEWAIR3 Code will assess the validity of the

diffraction solutions discussed in Chapter 3. Consider an ellipsoid-plate geometry as

illustrated in Figure 4.11. An arbitrary surface impedance with a value of 100+j150

is assumed on both faces of the plate. The source antenna is assumed to be a quarter-

wavelength monopole mounted on the top of the composite ellipsoid. As indicated in

Figure 4.11, the incident shadow boundaries ISB1 and ISB2 for the dominant edges
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Figure 4.11: Example 1 : The aircraft model consists of a fuselage and a composite

plate which is modeled by an impedance plate.

o

-5

-10

-15

-- -25

_='-3o

_-_

-45

\
\
N

ii i I i i i

-160 -120 -80 -40 40 80 120 160

Roll-plane patlem cut angie _p v_lh ep=90°(degree)

|
_5

0

-5

-10

-15

-20

-25

-3O

-35

-4O

-45

-50
-160

/3

i I I i i I i

.120 -80 -40 0 40 B0 120 160

Roll-plane pattern cut angle _ with _--90°(degtee)

(a) (b)

Figure 4.12: Example 1: Roll-plane radiation patterns for (a) source field and (b)

single-reflected field.

are located at _bv = 75 ° and _bv = 103 °, respectively. The source field in the region

between these two ISBs is expected to be zero. On the other hand, the reflection

shadow boundary RSB1 of one of the dominant edges is located at _bp = 36% and

one would expect the reflected field to be zero when _bv is greater than 36 degrees.

By taking the roll-plane pattern cut of the geometry, the far-zone field patterns are

calculated and shown in Figure 4.12(a) to Figure 4.14(b).

As expected, the source field shown in Figure 4.12(a) is discontinuous between

Cp _ 75 degrees and ¢p _ 104 degrees, and also the RSB's for the reflected field are

located at Cv _ 36° and 0 ° degrees as indicated in Figure 4.12(b). As depicted in Fig-

ure 4.13(a), the edge diffracted field has discontinuities at the four shadow boundaries

mentioned above and also has a jump around ¢p = -120 ° due to the blockage plates

within the composite ellipsoid. If the diffracted field is added to the source field, then
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Figure 4.13: Example 1: Roll-plane radiation patterns for (a) diffracted field and (b)
source+diffracted field.
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Figure 4.14: Example 1: Roll-plane radiation pattern for (a) reflected+diffracted field

and (b) the 1st order total field.

the summed field in Figure 4.13(b) becomes continuous across the ISB. Similarly,

Figure 4.14(a) shows the sum of the reflected and diffracted fields which is continu-

ous across RSB. In addition, the first-order total field as shown in Figure 4.14(b) is

continuous everywhere. This also shows that the diffraction solutions for impedance

wedges do correct the discontinuities across the GO field shadow boundaries.

4.2.2 Example 2 : Improving the radiation pattern for an
aircraft model for n = 2 case

This example will emphasize on one of the applications of the composite plates,

namely, the reduction of the scattered fields from the plates. By choosing the right

impedance values, one can attain a significant improvement of the radiation patterns
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around the region where the reflected field exists. The aircraft geometry considered

here is the same as the previous example, except a different arbitrary impedance value

is assumed for the plate. The lit-side impedance Z0 is assumed to have the value

226 +jl0 _, and also the impedance in the shadow face of the plate is Z, = 185 +j37

fl. As shown in Figure 4.16(b), the distortion of the first-order total field caused

by the existence of the plate is significantly reduced compared to the result of the

one with the PEC plate as depicted in Figure 4.16(a). According to both of the

figures, the roll-plane far-zone radiation pattern is plotted against the ideal radiation

pattern (i.e., the radiation pattern for which only the fuselage exists) to show the

distortions or deviations caused by the plate's existence. By comparing Figure 4.16(a)

and Figure 4.16(b), the distortions are reduced by as much as 10 dB in the region

where the reflected field exists, i.e., 0 < ep _< 40 °. Note that the distortion of the

ideal pattern behind the impedance plate cannot be fixed because the transmission

coefficient of the impedance plate is zero.

4.2.3 Example 3 : Approximate "optimal" impedance value

for an aircraft model for n : 3/2 case

In this section, the aircraft model with two composite plates which form a right-angle

wedge as illustrated in Figure 4.17 is studied. The primary goal of this section is to

find an approximate "optimal" impedance value which would reduce the scattered

fields. Note that the surface impedance on the lit side of the vertical plate is a

PMC which has an infinite surface impedance value. Consider that both plates have

the same impedance value denoted as Z, except Z0(2) = c_. The real part of the

impedance is assumed to be between 0 and 70 ft. An arbitrary value of 10 is chosen for

the imaginary part of the surface impedance. In other words, the values of the surface

impedance Z0(1), Zn(1), and Zn(2) are equal to Re(Z) ÷ jl0 fl, where Real(Z) is

chosen to be 10, 150, or 377. Note that the arguments 1 and 2 for the surface

impedance Z indicate the plate number.

As illustrated in Figure 4.17, the incident and reflection shadow boundaries of the

dominant edge are denoted as ISB and RSB and located at ep = 107 ° and ep = 72 °,

47



P_+B1

. RS82

"" ,I$BI

' 'I'++'..,0,,0+,. ." _,c. •._"_,o;;>........

' . . ..... . . ,_

RBB_

• R882
.+

,+- + ...... . ..... ISBI

x _ )J4 mon°p_" kld " .... _ 1_'.+_{ 10'1e)

pq_lr • ,,: .....

(a) (b)

Figure 4.15: Example 2 : The aircraft models consist of a fuselage and (a) a PEC

plate and (b) a composite plate with the source antenna a _/4 monopole.
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Figure 4.16: Example 2 : Roll-plane radiation patterns in the presence of (a) the

PEC plate and (b) the composite plate.
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Figure 4.17: Example 3 : An aircraft model consists of a fuselage and two composite

plates which are modeled by an impedance right-angled wedge.
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Figure 4.18: Example 3 : Roll-plane radiation patterns for (a) the single-reflected

field and (b) the diffracted field.
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respectively. Figure 4.18(a) and Figure 4.18(b) show the reflected fields and diffracted

fields for Re(Z) = 10,150, and 377. Note that there is a significant change around

the RSB (¢p _ 75 °) and a little change around ISB for the diffracted field. For the

impedance Z = 150+j10 fl, the overall reflected field is below -25 dB. When Re(Z)

is increased to 377, the reflected field is fairly small until the pattern-cut angle Cp

exceeds 50 degrees. In addition, the diffracted field corresponding to the one with

Z = 150 + jl0 F_ has the lowest value around the RSB. Thus, the surface impedance

Z = 150 + jl0 _, which will be referred as the "optimal" impedance value for this

case, is the best choice over the other two to minimize the scattered fields.

4.2.4 Example 4 : Improving the radiation pattern for an

aircraft model for n = 3/2 case

In this example, the "optimal" surface impedance Z = 150 + jl0 9t obtained from

the previous section is simulated in the NEWAIR3 Code, and also compared to the

one with PEC plates. It is expected that the composite-plate model will significantly

improve the radiation pattern around the region where the reflected field exists (i.e.,

0 < Cp < 75°). By comparing the dotted fines in Figure 4.20(b) and Figure 4.20(a),

the radiation pattern for the impedance plate model is much closer to the "ideal"

quarter-wavelength monopole pattern as shown in the solid lines in both figures.

This improvement is due to the fact that the surface impedance on the plates has

eliminated the undesired scattered fields by as much as 5 dB around the region where

Cp is between 10 to 75 degrees.

4.2.5 Example 5 : Approximate "optimal" impedance value

for an aircraft model with two composite plates for

n = 1 case

In this section, a two-part impedance plate as depicted in Figure 4.21 is considered.

Assume both plates have the same surface impedance values with the imaginary part

of the impedance fixed to 10. Note that this case was run to test the solution for

n = 1. It is obvious that this example also corresponds to the n = 2 case since

the impedance values on both sides of the junction are the same. In order to find
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Figure 4.19: Example 4 : An aircraft model consists of a fuselage and two composite

plates which are modeled by (a) the PEC plates or (b) the impedance plates with a
,_/4 monopole as the source antenna.
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Figure 4.20: Example 4 : Roll-plane radiation patterns for simulating an aircraft

model with (a) the PEC plates and (b) the composite plates.
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the "optimal" surfaceimpedancefor this geometry, the real part of the impedance is

chosen to be 10, 150, or 377 for the purpose of minimizing the scattered fields from the

plates. According to the aircraft geometry as depicted in Figure 4.21, the reflection

shadow boundaries RSBI" and RSB2 for the dominant edges are located at _bp = 80

degrees and q_p -- 50 degrees, respectively. The reflected _field is expected to exist in

the region between RSB1 and RSB2 (i.e., 50 ° _< _p _< 80°). In addition, the incident

shadow boundaries ISB1 and ISB2 for the dominant edges are located at _p = 100

degrees and q_p = 129 degrees, respectively. The source field is expected to be zero in

the region between ISB1 and ISB2. Moreover, the diffracted field is expected to have

the greatest variations around the various shadow boundaries.

The far-zone reflected and diffracted fields are computed around the roll-plane

pattern cut and depicted in Figure 4.22(a) and Figure 4.22(b), respectively. The

reflected field corresponding to the impedance value Z = 150 + jl0 f_ has the lowest

magnitude as illustrated in Figure 4.22(a). In addition, according to Figure 4.22(b),

the diffracted field corresponding to the one with Z = 150 + jl0 ft has the lowest

distribution around the RSB. Thus, Real(Z) = 150 is the best choice among the three

impedance values considered here. Note that the zero values of the diffracted fields

between -100 ° and -80 ° is due to the blocking plates being used in this example.

4.2.6 Example 6 : Improvements of the radiation pattern

for an aircraft model (with two composite plates) for
n -- I case

This section will implement the "optimal" impedance value Z = 150+j10 f_ obtained

from the previous example, and also compare with the result for the PEC plates. Note

that the radiation pattern shown in Figure 4.24(b) is almost identical to the "ideal"

monopole radiation shown in the solid line for most of the regions. By comparing this

figure with the one shown in Figure 4.24)(a), the scattered fields have been reduced

as much as 8 dB around the region where RSB1 and RSB2 are located.
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Figure 4.21: Example 5 : An aircraft model consists of a fuselage and two composite

plates which are modeled by a two-part impedance plane.
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Figure 4.22: Example 5 : Roll-plane radiation patterns for (a) the single-reflected

field and (b) the diffracted field.

4.2.7 Example 7 : Radiation patterns for aperture-type an-

tennas

In this example, the same geometry as in Section 4.2.1 is considered, and the primary

goal here is to investigate the radiation patterns for various aperture-type antennas.

The aircraft geometry with an antenna source mounted on the top of the composite

ellipsoid is depicted in Figure 4.25. Three types of antennas are studied here: an

axial slot, a circumferential slot, and a rectangular microstrip patch antenna. The

microstrip antenna is included here because its radiation pattern can be calculated

by modefing the patch by slots located around its edge. The impedance values are

arbitrarily chosen as Z0 = 100 + jl00 f/ and Z, = 200 + j200 f_. The far-zone

first-order total fields are computed in the elevation plane with 0p4=80 degrees.

4please refer to Figure 4.9 and the AARP User's Manual [1] for more details on the pattern-cut
definitions.
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Figure 4.23: Example 6 : An aircraft model consists of a fuselage and (a) two PEC

plates or (b) two composite plates which are modeled by a two-part impedance plane.
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Figure 4.24: Example 6 : Roll-plane radiation patterns for simulating an aircraft

model with (a) PEC plates and (b) impedance plates.
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Figure 4.25: Example 7 : An aircraft geometry of a fuselage with a composite plate

where an antenna source is mounted on top of the fuselage.
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Figure 4.26: Example 7 : Elevation-plane radiation patterns of aircraft model with (a)

an axial-slot antenna source and (b) a circumferential-slot antenna source mounted

on top of the composite ellipsoid.
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First, an axial slot (ref. to Figure 2.2(a)) is placed on top of the fuselage. Since

the long dimension of the slot is along the length of the fuselage, the electric field

radiated by the slot is then polarized in the _p direction as shown in Figure 4.10(b).

As a result, the 6p component of the electric fleld should be dominant compared to

the _bp component. As shown in Figure 4.26(a), the magnitude of the electric field

Igthl which is in the 0, direction generally dominates the ¢_, component (i.e., IE, hl)

in the lit region.

Next, an circumferential slot (ref. to Figure 2.2(b)) as the antenna source is con-

sidered. Since the orientation of the source in this case is orthogonal to the previous

case (i.e., the axial slot antenna), the dominant field is expected to be in the q_p di-

rection in this case. As shown in Figure 4.26(b), IEphlin general is at least 10 dB

higher than fEthl in the lit region.

Finally, a rectangular microstrip patch is considered as the antenna source mounted

on top of the fuselage. The model used here assumes that this antenna is radiating

its dominant mode. The microstrip antenna is oriented in the way such that the

angle BETADA= 60 degrees and the dimensions SLOTBB and SLOTAA are 0.5)_

and 0.6A s, respectively. The field patterns are expected to be the combination of

the results from both the axial and circumferential slots. The radiation patterns

in 0p and q_p directions are depicted in Figure 4.28. The magnitude of both field

components are relatively large. The 0p field component has a similar pattern shape

as the q5v component of the axial-slot example, and also IEvh I is similar to IEpnt of

the circumferential slot, except that the magnitude is approximately 35 dB higher!

This last example ends the discussions of numerical results. In the foUowing chapter,

a conclusion will summarize this report.

5Please refer to Figure 4.27 and Appendix A for the definition of the angle BETADA.
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Figure 4.27: Definitions of dimensions SLOTAA and SLOTBB and angle BETADA.

Note that SLOTBB is the resonant length.

0

m -10
t-

-20

-30
(3.

-40

•_ -50

_._

_ -70

-80

IEthl

......... i_l

o.. .",, //

: .... ".i_' '_' i

•_ it:
I I I I I B I;_1 i L

-160 -120 -80 -40 0 40 80 120 160

Elevation-plane pattern cut angle Sp with Op=80° (degree)

Figure 4.28: Example 7 : Elevation-plane radiation pattern of aircraft model with a

rectangular microstrip-patch antenna source mounted on top of the composite ellip-

soid.
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Chapter 5

Summary and Conclusions

In this report, the UTD-based NEWAIR3 Code has been modified such that it has the

capability to model modern aircraft constructed in part by conductor-backed com-

posite materials. One good model of conductor-backed composites is the impedance

boundary condition where the composites are replaced by surfaces with complex

impedances. In most applications, the aircraft distorts the desired pattern of the

antenna. Thus, the test examples for the modified NEWAIR3 Code mainly empha-

size reducing the undesired scattered fields from the surface impedance plates. The

following three sections summarize the report, describe the main contributions of the

report, and finally suggest areas for future study.

5.1 Summary

The list below shows the steps followed to modify the NEWAIR3 Code to add the

capability of modeling composite flat plates by impedance plates.

(i) obtain the source-field solutions, including the solutions for monopoles and slots

which are described in [2] and the results for the microstrip antennas which are

obtained from [12],

(ii) develop Fresnel reflection coefficients for which the total field consisting of an

incident plane wave and the reflected field satisfies the impedance boundary at

the surface of the plate,
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(iii) obtain the plane-wave incident solutions for the edge diffracted fields which are

described in [10] and summarized in Chapter 3 and Appendix B, and

(iv) modify both the sohtions from Step ii and Step iii for spherical illuminations

such that the modified solutions are compatible with the NEWAIR3 Code.

All the steps mentioned above are discussed and presented in Chapter 2 and Chap-

ter 3. Chapter 4 shows numerical results for plane-wave cases and for the NEWAIR3

Code cases:

(i) the plane-wave cases,

(a) study the reflected and diffracted fields as a function of the surface impedances,

and

(b) study the diffracted field as a function of the observation angles.

(ii) the NEWAIR3 Code cases,

(a) assess the validity of the diffraction solutions obtained from Chapter 3,

(b) improve the on-aircraft antenna radiation patterns for three ellipsoid-plate

models, and

(c) iUustrate that the rectangular microstrip patch antenna can be modeled

by a pair of slot antennas available in the modified NEWAIR3 Code.

5.2 Report Contributions

The current study has made the following contributions:

(i) modified the NEWAIR3 Code by adding the capability of modeling composite

flat plates by impedance plates,

(ii) developed new Fresnel dyadic reflection coefficient for impedance surfaces,

(iii) modified the polarization transformation matrix, i.e., [T] matrix, such that it

is able to transform incident fields at a receiver's image location into reflected

fields (from impedance plates) at the receiver location.
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(iv) added the rectangular microstrip patch antenna as one of the aperture-type

antennas available in the NEWAIR3 Code, and

(v) revised the NEWAIR3 Code into independent subroutines and organized similar

computations into one subroutine to enhance the computational efficiency (see

Appendix A).

5.3 Further Research Direction

Accurate electromagnetic diffraction solutions are not available for other wedge angles

besides the four special cases mentioned in Chapter 3. For more practical applications,

the development of general diffraction solutions for an impedance wedge with an

arbitrary wedge angle is necessary. In addition, the solution for the corner diffracted

fields are also under investigations and it is necessary for finite-sized material plates.

Finally, replacing the PE C ellipsoid by an ellipsoid whose surface is modeled by a

complex impedance is necessary to complete the conductor-backed composite models

for the NEWAIR3 Code. This is being pursued at the ElectroScience Laboratory.
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Appendix A

Summary of the Modifications on

Newair3 Code

The Newair3 Code is a Fortran 77 computer code which was developed to simulate the

radiation patterns of antennas mounted on a composite ellipsoid and in the presence

of a finite set of flat PEC plates. In order to reduce the effect of the plate struc-

tures on the antenna radiation patterns, the code was modified so it can now handle

material-coated metal plates which are modeled by impedance surfaces. Thus, new

subroutines for computing the reflection and diffraction coefficients for impedance

surfaces and wedges are implemented in the original NEWAIR3 Code. Furthermore,

besides monopole and slot antennas, rectangular microstrip-patch antennas are also

available as radiation sources for the aircraft code. Note that the radiated source's

pattern factors are reorganized in two separated subroutines. It is worth mentioning

that all additions and modifications to the Newair3 Code for the current research are

followed by the initials shk.

A.1 Modifications to Input-Data Command

Some modifications on the input-data commands, which are defined in the main

program, are made to provide more flexibility to the NEWAIR3 Code. First, for the

plate-geometry related command PG, the material of a plate can be selected after

the plate's coordinates are defined. If the MATERIAL(MPX) is selected to be

"one", then the plate is a perfectly electrical-conducting plate. On the other hand, if
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"two" is defined for a plate's material, then one has to enter the real and imaginary

parts of the complex impedance values Z0 and Zn for both faces of the plate. Note

that the surface impedance on the lit side of a plate (i.e., Z0) is first entered to the

input data, and then followed by the surface impedance on the shadow side of the

plate (i.e., Zn). The following shows the modified input format for the PG command

and please refer to [1] for more descriptions on the original input variables.

PG:

MCX(MPX), LATACH(MPX)

(PVC(N,ME,MPX), N:1,3)

MATERIAL(MPX)

REAL(Z0), IMAG(Z0), REAL(Z,), IMAG(Z,)

There are two ways to define a PEC plate:

1. Set the MATERIAL(MPX) to one and ignore the following read variables.

2. Set the MATERIAL(MPX) to two and define all real and imaginary parts

of Z0 and Zn to be zero.

One example to define an impedance plate would be:

PG: Zo=377.+jlO _ and Zn=0+jlS0 n

4, F

4., 14.,-20.

6, 14.,-20.

6., 14., 20.

4., 14., 20.

2

377., 10., 0., 150.

Also, the plate surface is considered to be a PEC if the absolute value of a given

impedance value is less than 0.001. In addition, the surface of a plate is considered

to be a PMC if its absolute impedance value is greater than 10 s.
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Next, the input command SG is also modified to make a rectangular microstrip-

patch antenna [13] available in the NEWAIR3 Code. Assuming that the antenna is

operating at or near the lowest-order resonant frequency TM10 as described in [13],

then the microstrip patch can be replaced by two magnetic dipoles. Since the aircraft

code already models a slot antenna by a magnetic dipole [2, 1], the two magnetic

dipoles can be easily implemented. The major difference between the two magnetic

dipoles used to model the microstrip antenna and the existing ones in the NEWAIR3

Code is that the fields in the latter ones have a cosine distribution along their long di-

mensions, but the currents on the "new" magnetic dipoles are constant. The following

gives the modified SG input format for rectangular microstrip antennas.

SG:

PHS, ZS

MSX

RHOA(MS), PHIA(MS)

SLOTAA(MS), SLOTBB(MS), BETADA(MS), SMONOA(MS), JANTA(MS)

WMA(MS), WPA(MS)

TSE, X0, Y0, CER,CERI

The parameter JANTA(MS) definesthe type of antennas as foUows:

I -> SLOT ANTENNA (AXIAL OR CIRCUMFERENTIAL),

JANTA(MS) = 2 -> MICROSTRIP PATCH ANTENNA,

3 -> RADIAL MDNOPOLE ANTENNA.

When a slot or a monopole antenna is chosen as the radiation source in the aircraft

code, the last line of the inputs for SG are ignored and should not be used. On the

other hand, if JANTA(MS)=2, SLOTAA(MS) and SLOTBB(MS) denote the

nonresonant and resonant lengths of the microstrip patch antenna (see Figure A.1).

In addition, the parameter BETADA(MS) represents the angle between the axis

of the fuselage (i.e., _ direction) and the microstrip antenna and is measured in the

counter-clockwise direction as shown in Figure 4.27. The parameter TSE represents
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Figure A.I: The geometry of a rectangular microstrip antenna.
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the thickness of the substrate of a microstrip antenna, (X0,Y0) are the coordinates of

the feed point, and CER and CERI are the real and imaginary parts of the relative

dielectric constant er. For more details about the microstrip antenna in the aircraft

code, please refer to [13].

The following shows an example of defining a rectangular microstrip patch antenna

as a radiation source in the NEWAIR Code:

SG: RECTANGULAR MICROSTRIP PATCH

0.0, 0.1

1

0.0, 0.0

0.14, 0.28, 60.0, 0.0845, 2

1.0, 0.0

0.05, 0.1, 0.0, 4.0, 0.0

A.2 Additions/Modifications on Programs

The following documents the new subroutines and modifications on the original sub-

routines of the NEWAIR3 Code.

o Subroutine CMATRIX - This subroutine calculates the elements of the transfor-

mation matrix S. By multiplying this matrix to the incident field, the "normal"

incident field with respect to the wedge walls is obtained. After the edge diffrac-

tion is computed, the inverse of the transformation matrix can be multiplied by

the diffraction coefficient and the "normal" incident field to obtain the tangen-

tial diffracted field. For more details on CMATRIX, please refer to Chapter 3

where the discussions on the transformation matrix are detailed.

. Subroutine CONSTANT1 - This subroutine computes the constant matrices

B1 and _)1 for the edge diffraction with the wedge number n equals to one. The

expressions are given in (B.4) and are obtained from the equation (B.2).
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3. Subroutine CONSTANT2 - This subroutine calculates the same constant ma-

trices as CONSTANT1, except that this subroutine is used for impedance half

planes. Please refer to (B.6) for the B2 and D2 expressions.

4. Subroutine CONSTANT3 - The B and D (see (B.10)) for impedance right-

angle wedges are computed in this subroutine. All these constant matrices are

solved from Equation (B.2) (i.e., for the purpose of removing the poles due to

the inverse of 3). Please refer to Chapter 3 for more details.

5. Subroutine DIFF_COEF - This subroutine computes the elements of a 2 by

2 dyadic diffraction coefficient (refer (3.24)) for diffraction at an impedance

wedge. All equations are referenced from [10] and are discussed in Chapter 3.

Numerical results have been shown that by taking the limits on the impedance

values to zero, the modified code has almost identical results as compared to

the original NEWAIR3 Code.

6. Subroutine DIFFLD - The modifications on this subroutine are for the pur-

pose of making impedance plates available in addition to PEC plates for the

NEWAIR3 Code. Depending on the selected plate's material, this subroutine

decides to call either the original diffraction coefficient subroutine WD or the

the new DIFF_COEF subroutine. If the MATERIAL(MPX) for the MPX *h

plate is chosen to be "2", then the DIFFLD subroutine starts to look for the

correct impedance values for a wedge formed by the MPX *h plate with the

other structure of an aircraft. Here we consider three cases to form a wedge.

(i) A single plate (i.e., the plate is not attached to any obstacle): This case is

considered to be an impedance half plane. The impedance values Z0 and

Zn are entered in the given order at the last line of the input data in the

PG command.

(ii) A plate is attached to another plate: Z0 is the impedance value on the lit

side of the MPX th plate. Zn is the lit-side impedance of the plate attached

to the MPX th plate.
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(iii) A plate attached to the perfectly electrical-conducting fuselage: Since we

only have solutions for right-angled wedges, half planes, and two-part

impedance planes, the plate has to be attached to the fuselage at the

center llne 1 Thus, Z0 is the lit-side impedance value of the attached

plate and Z. is zero since the fuselage is a"PEC.

After the appropriate impedance values are selected, the DIFFLD subroutine

computes the diffraction coefficient and then the diffracted field for each plate

with a desired pattern cut.

7. Subroutine DTMATRIX - This subroutine computes the elements of the ma-

trix that maps the incident field at the receiver's image location (after double

reflection) into the reflected field at the receiver location. In this subroutine,

the T_MATRIX is called twice so that the incident field is transformed into

a reflected field after reflection from the first plate and subsequently after re-

flection from the second plate. A call statement of DTMATKIX is added to

the RRFLD subroutine for calculating double-reflected fields from all the plate

structures.

8. Subroutine MMATRIX - The expression for the dements of 114 is given in (3.19)

and this matrix is related to the Maliuzhinets functions by (3.18). Limits are

taken as the impedance approaches to zero and infinity, and they are summa-

rized in Table 3.3. This subroutine is used in the computations of the edge

diffraction.

9. Subroutine MATLIB - This is a math library which contains various math

operations on complex matrices.

10. Subroutine PATFACT_SOURCE - The purpose of adding this subroutine is to

organize all the pattern-factor expressions for various antenna sources into a

single subroutine. This subroutine is been called by the following three subrou-

tines: ELLFLD, DIFINC, and DINLIT.

1Refer to the Airborne Antenna Radiation Pattern USER'S MANUAL [1] for more details about

the attachment to an aircraft fuselage.
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11. Subroutine REFL_COEF - The parallel and perpendicular reflection coeffi-

cients are computed in this subroutine. Limits on the coefficients have been

taken for the perfectly electrical-conducting case. This subroutine is called in

T_MATRIX.

12. Subroutine THIMATRIX - This subroutine involves the computations of prod-

ucts of well-known Maliuzhinets functions. The expressions of the 2 by 2 matrix

is given in (3.16) and some limits as the impedance approaches zero or infinity

are taken and summarized in Table 3.1 and Table 3.2. For more details, please

see Chapter 3.

13. Subroutine T_MATRIX - This subroutine is added to replace the original RE-

FGEO subroutine. T_MATRIX (refer (2.34)) maps the incident field at the

receiver's image position into the reflected field at the receiver location. This

matrix is called in the subroutine REFFLD.

Note that the original Newalr3 Code has been broken down into a main program

and subroutines which are contained in the same-named files. A GNU makefile is

also written to include all programs involved the NEWAIR3 Code to shorten the

compilation time.
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Appendix B

m
m

The Constants Bn and Dn

The 2 x 2 matrices B,_ and D,_ are included in the expression of diffraction coefficient

(3.9) to eliminate the singularities introduced by the inverse of the transformation

matrix .q (a). To satisfy the edge condition for the spectral function in (3.5),

lim $'=(a) = constant vector,
[lm(a) I""_

(B.1)

the constant matrices B, and D,, can then be obtained by solving the following

equation:

-1 T/,_ TtTr• (y - ¢3 _ (_- - ¢')_o== 0

The ct_ are the poles of
--1

depicted in Figure B.1 for each special case and

(B.2)

_.(_) = 8,,_(_),

v_+= [:kj 1],

and

(B.3)

where Eo= and Ho= are arbitrary constants for incident electric and magnetic fields,

respectively, and _/0 is the intrinsic impedance in free-space. Note that v_+ is a 1 × 2

row vector•

In the following, the expressions for B, and D,, are presented (see details in [14,

15]).
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Figure B.I: The poles of S
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(i) n = 1:

_-- -1 -----1

_, = - N, (ao+) z, (ao+) _1 (ao+),

[oo]= )

0 0

in which the poles ao_ = +j_ and _ = I,,¢(1-_'_)_
°"_ sine J"

N,_ can be written as

}.(a)

(B.4)

The functions },_ (a) and

= _.(a) Z -_.(n_/2- ¢') _,

v+_ (a) ]
_.(a) = -

__-_ (-a) J (B.5)

where L is defined in (3.25), v_± and w,,(a) are given in (B.3), and n is the wedge

1
number of 1,2, 3, or _.

(ii) n = 2:

=-1 =-1

2sin(3) _ + F (a +) r (-ao )+ F (-aft) r (a +)
B2 =

(2sinCe)+ KCa0))_2(_- ¢')

[ ]-2 _ + _ (%+)_-' (-"o)+ _ (-%) a (,,o+) 03.6)
_92 = 2sin(fl) (2sin(3) + K(ao)) '

where aft = 7r/2 + j_ and _ has the same definition as the n = 1 case. The

matrices G (a) and P (a) are written in the following expressions:

=-1

(a) = N2 (a) }_ (a) _,_(a),

=-1

(a) = N2 (a) LZ2 (a) N2 Ca), (B.7)

in whichN2 (a) and}2 arethe expressionsgivenin (B.5). ThefunctionK(ao)

is writtenin termsofthe functions217/(a)and D(a,-a*) 1,namely

K(ao) = 2 + 4DCa°+'-a°)bC-a°+'a°) (B.8)
M(ao+)M(_a;) '

1,,. denotes complex conjugate.
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in which

b(_,-_') = *,,C_),r,(-_')- ,r,,c_),r_c-_'),
and

(B.9)

_ 3
(iii) n-

}:=-Q _,
2

and

_)a= __C_
2

(B.10)

where

],q_
and

_={ _, forZo=oO_, forZo=O
(B.11)

The row vectors q± and t + can be written as follows:

q+

t_±

= _ ,_-("0_)-_-(n_/2-¢ ')
(._)_.(.o_)_.(.0_) /

h, if Zo = 0
(B.12)

e, if Zo = o0

where four poles are captured within the n_r/2 strips and are given as s0:t: =

-7r/4 + j_, ct_ = 31r/4 + j_. Moreover, the expressions for the column vectors
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u_, uh and the row vector c are given by

[']0

[0]1

and

J y2 = 1,
Yl t -y2 = j,

Q w=

ifZo = 0

ifZo = oo

__+_ C_+)y_] _--1=_.(_1+)_=(_1+) O w,

(B.13)

where the matrix I_ is given by

tO-

w_ = v_ _ (_o_) _.(_o_)_ _.CV- ¢')
)1

- _ .(B.14)
_.(_)- _.(_- _') J

1.

B,_ = -fit/,
2

2 0 0
, (B.15)

in which the column vector _ and the row vector v__+ are given in (B.13) and

(B.3), respectively. Only one pole is captured within the nTr/2 strip and is given

by ct+ = _r/4 + j_. The expression for the row vector can be written as

v+ 9 (a+)Y2 (B.16)_d--
,_=@<+) {,,.(<,,+) - <,.(_,,_12- ¢')} '

where the subscripts z and y2 are defined in (B.12) and (B.13), respectively.
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