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Chapter 1

Introduction

In recent years, practical applications related to the scattering of electromagnetic
waves by objects that are not perfectly conducting have gained significant attention.
One very important application of this type of electromagnetic scattering is the study
of antennas mounted on aircraft. Composite materials are being used more frequently
in the construction of modern aircraft, and their electromagnetic properties are such
that they cannot be modeled by perfect electrical conductors (PECs) as was done in
the past to model good conductors such as aluminum. Several computer codes have
been developed in the last few years to study the radiation properties of antennas
mounted on complex structures. One example of this type of code is the NEWAIR3
Code [1, 2] developed at the ElectroScience Laboratory of The Ohio State University.
This code is based on the Uniform Theory of Diffraction (UTD) {3, 4, 5] and is used to
study antennas mounted on the fuselage of aircraft. This code uses an ellipsoid [1, 2, 6,
7] to model the fuselage of the aircraft and flat plates to model the rest of the aircraft.
It is assumed that the ellipsoid and plates are PECs which as mentioned before is a
good model for good conductors. Thus, the NEWAIR3 Code needs to be modified to
be able to model modern aircraft constructed from composite materials. One good
model of conductor-backed composites is the impedance boundary condition [8] where
the composites are replaced by surfaces with complex impedances. These impedances
are complex, and thus the composites may be lossy.

The first step in the process of modifying the UTD-based NEWAIRS is to add
the capability of modeling composite flat plates by impedance plates. The second,



and more difficult step, is to replace the PEC ellipsoid by an ellipsoid whose surface
can be modeled by a complex impedance. This second step is not the subject of this
report, but it is being pursued at the ElectroScience Laboratory. The following will
briefly describe the original NEWAIR3 Code and also briefly review the literature

concerning the electromagnetic diffraction by a wedge with impedance faces.

1.1 Brief Literature Overview

The NEWAIR3 Code is a Fortran computer code developed at the Ohio State Uni-
versity to investigate the radiation patterns of antennas which are mounted on an
aircraft fuselage. The fuselage is modeled by a composite ellipsoid, and other parts of
the aircraft are modeled by a number of flat plates. Note that the term “composite
ellipsoid” simply means that two ellipsoids are joined at the antenna location and
does not refer to its electrical properties. This “composite ellipsoid” and the flat
plates are assumed to be PECs. By providing an input data file described by the
Airborne Antenna Radiation Pattern (AARP) User’s Manual [1], the far-zone and
near-zone radiation patterns are computed based on the UTD (3, 4, 5.

In order to modify the NEWAIR3 Code to have surface impedance plates, the
literature related to the fields scattered by impedance wedges was studied. There
are basically two methods to solve for the fields scattered by impedance wedges,
namely, the Wiener-Hopf and the Maliuzhinets methods. The method developed by
Maliuzhinets [9] is suitable for studying wedge-shaped objects. In 1988, Rojas [10]
obtained an UTD solution based on the generalized reflection method, which is more
general than the Weiner-Hopf method [11). This paper provides an uniform asymp-
totic solution for the electromagnetic diffraction by an impedance wedge for four
special wedge angles. These four wedge angles are 0 (half-plane), /2 (right-angled
interior wedge), 7 (two-part plane), and 37/2 (right-angled exterior wedge). The in-
cident field to these wedges is assumed to be an arbitrary polarized plane wave which
is obliquely incident to the axis of the wedge. The solution in [10] is written in a
compact matrix notation which is very suitable for numerical computations, and it

will be used to calculate the diffracted fields from impedance wedges.
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1.2 Report Organization

In Chapter 2, the solutions for the geometrical optics fields, which include the source
and reflected fields, will be discussed. The first section will summarize the source-
field solutions for monopole antennas and aperture-typed antennas, which include
axial slots, circumferential slots, and rectangular microstrip patch antennas. The
solutions for monopoles and slots are described in Kim’s dissertation (2], and the
microstrip antenna results are obtained from Rojas and Ly [12]. Following the source-
field solutions, a new Fresnel reflection coefficient, for which the total field (incident
plus reflected) satisfies the impedance boundary condition at the surface of the plate,
is derived. The incident field is assumed to be an arbitrary polarized plane wave.
This solution is then modified to compute the reflected fields in the NEWAIR3 Code,
and is latter applied to obtain the solution for multiple reflected fields. For all field
components in this chapter, an ¢! time dependence is assumed and suppressed from
all the mathematical expressions.

Chapter 3 documents the solutions for edge-diffracted fields for an arbitrary-
polarized plane wave incident upon an impedance wedge. The four special wedge
angles considered here include 0, v, 1/2x, and 3/2r. These solutions are based on
Rojas’ solutions in [10]. In order to implement the solutions in the NEWAIR3 Code,
modifications of some parameters are necessary and will be discussed in the last sec-
tion of this chapter. For all field expressions in this chapter, an e~*! time dependence
is assumed and suppressed. As a result, it is necessary to take the complex conjugate
of the diffracted-field solutions presented in this chapter before the solutions can be
implemented in the NEWAIR3 Code.

Chapter 4 will present numerical results for the impedance plates. This chap-
ter will first show numerical results for various plane-wave incident cases, and then
various ellipsoid-plate models will be simulated with the NEWAIR3 Code. The first
section will emphasize on the reflected and diffracted fields with a plane wave as the
incident field. To illustrate the field behavior for various surface impedance values,

field amplitudes for both the reflected and diffracted fields will be plotted as func-



tions of the surface impedance. Following these examples, the diffracted field as a
function of the observation angles will also be investigated. The next section will
discuss the results obtained with the modified NEWAIR3 Code. Seven examples in-
cluding three ellipsoid-plate geometries are investigated. For the purpose of assessing
the validity of the diffraction solutions discussed in Chapter 3, the first example will
show the individual field component and the approximated first-order total field. In
most applications, the aircraft distorts the desired radiation pattern of the antenna.
Thus, the examples here will mainly show that the undesired reflected and diffracted
fields can be minimized by choosing the right surface impedance value for the plates.
The simulation results for the impedance plates are compared to the ones for the
PEC plates. Each model considered in the NEWAIR3 Code section will have a PEC
fuselage and a number of flat impedance plates.

The final chapter, Chapter 5, summarizes the study conducted for this report. A
brief description on the future work related to the current study is also included at
the end of this chapter.

Two appendices are provided following Chapter 5. The first appendix documents
all modifications and additions to the NEWAIR3 Code. Some mathematical details
and expressions involving the diffraction solutions discussed in Chapter 3 are docu-

mented and summarized in Appendix B.



Chapter 2

Geometrical-Optics Fields from
Impedance Wedges

This chapter will discuss the geometrical-optics (GO) fields, which are a part of the
high-frequency solution for our aircraft radiation problems. As mentioned before,
the fuselage of the aircraft is modeled by a perfectly electrical conducting (PEC)
composite ellipsoid [1] in the vicinity of the antenna. The rest of the aircraft body is
modeled by flat plates that can have PEC or impedance surfaces.

In this analysis, it is assumed that the source and observation points are far enough
from any impedance surfaces and impedance edges, and that the impedance surfaces
are lossy enough so the contribution from surface ray fields can be neglected. The
total electric field £t for the on-aircraft antenna radiation can then be expressed

as

Etotel — ECO 4 E? 4 E° 4+ higher order terms, (2.1)

where EGO are the GO fields, E? are the edge-diffracted fields, and E°* are the cor-
ner diffracted fields. Higher order terms would include multiple reflected, diffracted,
reflected-diffracted fields, etc. For most calculations, the first three terms in Equa-
tion (2.1) are sufficient; however, there are situations where some higher order terms
are needed. The lack of higher order terms is usually observed when the radiation
pattern has jumps or discontinuities in its first derivative. The corner diffracted field
for an impedance plate has not yet been obtained and it will be the subject of further

research.



Effective Source
Source

Y : \ Receiver

(a) Direct Source Field (b) Curved-Surface Diffracted Field

Figure 2.1: Geometry of an aircraft model for direct-source field (a) and curved-
surface diffracted field (b), both fields are referred to as source fields.

For the aircraft models considered in this report, the geometrical-optics field £¢°
is composed of the total source field Ej,,, and the total reflected field EJ,,.,. The
total source field consists of the direct electric field from a given source (i.e., the direct
source field) when the observation point is in the lit region or the surface diffracted
source field when the observation point is in the shadow region. The boundary be-
tween the lit and shadow region is a plane tangent to the curved surface at the antenna
location.

Although the addition of impedance plates does not affect the source-field calcu-
lation in the NEWAIR3 Code, the expressions used for these fields are summarized

in the next section.

2.1 Source Field with Antenna Mounted On a
Convex Surface

The source is assumed to be mounted on the aircraft fuselage which is a convex
surface modeled by a composite ellipsoid. The source shown in Figure 2.1 can be
a monopole, a slot, or a microstrip patch antenna. For the monopole source, the
current density is assumed to be a sinusoidal distribution withan unit amplitude

over the monopole with length L. There are two different types of slot antennas
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Figure 2.2: A conducting cylinder upon which (a) an axial slot or (b) a circumferential
slot is mounted.
available in the NEWAIR3 Code: (i) axial slots, and (ii) circumferential slots, as
shown in Figures 2.2(a) and (b). Recently, a third antenna type has been added to
the NEWAIR3 Code, namely, a rectangular microstrip patch. This patch is modeled
by the well known cavity model as shown in Figure 2.3 where two magnetic current
sources are placed along the radiating edges to calculate the radiated field of the
dominant mode. Since the aircraft code already models slot antennas [1, 2] with
magnetic dipoles, the fields radiated by these two magnetic current sources can be
calculated; however, in the aircraft code, a slot is assumed to have a cosine field
distribution along its long dimension. To model the microstrip patch antenna, it is
assumed that the currents along the length of the dipoles are constant. Thus, the
existing NEWAIR3 Code is modified so that a constant field distribution along the
slot’s long dimension can also be modeled. For more information about the modified
code or the microstrip patch antenna, please refer to [13] and Appendix A.

As discussed in [2], the source field can be expressed in terms of the pattern
factors: P. and P,. These pattern factors are related to the dimensions of the
sources, including the length of a monopole L and the dimensions A and B of a slot

or a microstrip patch antenna. By referring to Section II-B.3 in [2] and [12], the
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Figure 2.3: The cavity model for a rectangular microstrip patch antenna operating
near the lowest-order resonant frequency fio with a far-zone field location.

pattern factors P. and P, for field points in the lit or shadow region are given by the

following expressions:

(i) the receiver in the shadow region:

For slot (or magnetic current dipoles) with a cosine field distribution along long

dimension,
_ . kB(p . in(X4(B,, - b
P, = P,,,2—I3 cos(k%({’ )) sin( (P .b,)) . (2.2)
T 1= (P - t))? B (P - )

For electric current monopoles,
P, = 2/[1 — cos(kL)]. (2.3)

For slot (or magnetic current dipoles) with a constant field distribution along

long dimension,

) ) CorAsin(’% cos(G;))] [sin("TA sin(ﬂ})(f’mi .flj)) s §=1,2 (24)

Pm } = L'my; : A =
o 5 cos(8); 5t sin(65)(Pm; - t'5)
where 6; = 90° in the above equation and Cj is the constant that depends on

the type of feed used to excite the antenna.

(i) the receiver in the lit region:

For slot (or magnetic current dipoles) with a cosine field distribution along long

8



dimension,

p_p 2B cos(—sm(o )(1?,,, t:’)) ] [sm(kTA'sin(G,-)(APm f;’))] (25)
T |1~ (22 sin(6;)( P - t'))? 54 sin(6,)( P - &)

For electric current monopoles,

B ,cos(kLn’ - 3) — cos(kL) (2.6)
1—(n'-3)?

For slot (or magnetic current dipoles) with a constant field along long dimension,

5 _ b Cor Asin(¥ cos(0'))] [sm(—f— (9')(Pm, £))
—2—cos(0)J (0;)(ij tIJ)

] L j=1,2. (2.7)

Thus, the source-field solutions, which are expressed in terms of the pattern factors
described above, are then summarized as follows for various antenna sources. Note
that the source-field expressions of a rectangular microstrip patch antenna are based

on the work of Rojas and Ly in [12].

(i) for a rectangular microstrip patch antenna with the receiver in the lit region (12],

_ L in the far field
E,.=¢ _" _. , (2.8)
Lt in the near field
where L can be written as
Ll =2P,, cos(——( - ') sin(8")), (2.9)

where 13,,,0 is the same as I-’,,.J. defined above, but it is located at the center of
the patch. The angle ' is measured from the normal # of the microstrip to the
field location as shown in Figure 2.3. The length B is approximately one half of
the wavelength inside the substrate. In the near zone, L?, is the summation of
two constant-current magnetic dipoles separated by a distance B. L for the

receiver in the near-zone area is given as
- kB B? s
L* = 2P, cos {T sin(6')(Prm, - ) |1 + 87 sin®(6")( P, - b’)zl }
., | B? ;
-exp [—]k {8 (1 - sin?(6')( P, - ¥)%)

9



(i)

(iil)

(iv)

4

- 12';33(1 + sin(6")( P, -3’)4)}] , (2.10)

where the distance s is from the center of the microstrip to the field location
as depicted in Figure 2.3. The angle 9 is measured from the z axis to the field

direction of s.

for a slot antenna with the receiver in the lit region,

—jks .
) = th field
EL=(Ina+Ibh{ o mUeRMREC (2.11)
e*PoPr in the far field

where
Iy = (P B)(H 4 TEF cos()) + (P - )T, F cos(6),
and
It "4—1" (B - BYT,F + (P - )(S" + T2F cos?(6))]- (2.12)

for a monopole antenna with the receiver in the lit region,

_ . bs e*  in the near field
E, = (L% + LJb) 2 , (2.13)
e’*F+Fr in the far field

where
I = %:m}_’esin(ﬁ")[fl’—kTchos(H‘)],
and
Lt = _4k1’0Pesin(0‘)T,,F.. (2.14)
Y3

All parameters and unit vectors used in the slot and monopole cases are dis-

cussed and documented in [2].

for a rectangular microstrip patch antenna with the receiver in the shadow

region [12],

I (6 = 90°)—=2_ in the near field
_:n _ —m( | )‘/a(pc-h) , (2.15)
LI (8 = 90°) in the far field

where L7, and L/, have the expressions given in Equation (2.10) and (2.9).

10



(v) for a slot antenna with the receiver in the shadow region,

e—Jke

—<% _ inth field
ES, = (Dha+ Dib) | Vet o e neR e , (2.16)
ei*PesPr in the far field
where
n L r — 5kt [Py(Q)
Dm = — (P, V)He™ ’
1 4w ( ) Pg(Q)
an
ik .. . , nN1%
Db = ﬁ[(P,,,.b’)ToS+(Pm-t’)S]e""' [%7)] .(217)
g

(vi) for a monopole antenna with the receiver in the shadow region,

e3% _ in the near field
E: = (D' + D%) Volocts) (2.18)

ekPePe i the far field

where
n _ Jk"lo —-7kt [PQ(Q )]
D'; = T T L]
an
n - s e

The parameters H, S, T,, and all the unit vectors are discussed and defined
in [2). This section then summarized the source-field solution for the on-fuselage an-
tenna radiations. This source field will be used as an incident field for computing
single-reflected field in the aircraft code. The following section will derive the reflec-

tion coefficient for the plane-wave incident case and transform the solution to the

NEWAIR3 Code.

2.2 Calculation of Reflected Field from Flat Impedance
Surfaces

The NEWAIRS3 Code already calculates high-frequency fields reflected from flat PEC

surfaces as shown in Figure 2.4. The only modification that is needed to calculate

11
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Figure 2.4: Geometry of an aircraft model for single-reflected fields.
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it

Impedance Zn -/ A
b

Figure 2.5: Surface-fixed coordinate system with incident field upon a plate with
impedance faces.

reflected fields from impedance surfaces is the development of new dyadic Fresnel
reflection coefficients in a ray-fixed coordinate system. It will be shown that the dyadic
reflection coefficient for an impedance surface is very simple if ray-fixed coordinates
are used.

To develop this Fresnel reflection coefficient, let us assume that a high-frequency
field is incident on a flat surface with the surface impedance Z; on it as depicted in

Figure 2.5. Since the field is assumed to be a high-frequency field, it follows that

. sxE
g~2X2 (2.20)
Mo

where 3 is the direction of propagation. Imposing the boundary condition at the

surface of the plate, yields

A ~ ptotal A ITtotal

naxXnXx E% =—-Zmx Y,

or

Etotal _ fl(’fl . Etotal) — Zo';l X I‘{total’ (2.21)

12



where 7 is the outward normal unit vector with respect to the given impedance
surface, Z; is the surface impedance facing in the # direction, and E‘te! Ht'o! are
the total electric and magnetic fields at the boundary surface, respectively.

The coordinate system is first chosen to be the surface-fixed system (see Fig-
ure 2.5), in which three unit vectors with respect to the impedance plate are defined
as a tangential unit vector £, a normal unit vector 7, and a binormal unit vector
b =i x 7. The electric fields which are incident and reflected by the surface S can

then be expressed in terms of these three unit vectors,
E'" = {E/" + 4B + bE;". (2.22)

Choosing the reflection point Qg to be the phase-reference point, it follows from

Equation (2.21) and (2.20)that

E*(Qr) — A(EL(Qr) + E(Qr)) = —jﬂ

(BL(QR))3 — (7 5)E(Qr) + (EL(QR))5" — (- &) E"(Qn)],  (2:23)

where E'(Qr) and E™(QR) are the incident and reflected electric field at Qr, respec-
tively. E''/(QRr) is the total field at the reflection point and E.(Qgr) and EL(Qr)
are the normal field components of E'(Qr) and E"(QRr), respectively. If all vector
fields (i.e., E‘(Qr), E"(Qr), and E'!®!(QR)) are expressed in terms of unit vectors
£, #, and b as in (2.22), then the reflection coefficient for the electric-field component
perpendicular to the plane of incidence can be obtained by collecting terms in the

binormal direction (i.e., the b component) on both sides of Equation (2.23):

-2+ cos(6")
2 + cos(8*)

E;(Qr) = E4(Qr) , (2.24)

- g

where cos(6') = —# - &'.
Next, the reflection coefficient for the electric-field component in the plane of
incidence will be found. First, the incident and reflected ray-path directions (i.e., 5'

and 8") can be decomposed into # and f unit coordinate pairs (see Figure 2.5):
& =n(3-a)+ i 1),

13
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A.
Impedanci Zo ell/ = SAi X él
A
€, = & x
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Figure 2.6: Ray-fixed coordinate system with field incident upon a plate with
impedance faces.

and

8" = —a(§' - A) + (5 - ). (2.25)
It then follows from (2.23) that

Ei+ %(ﬁ B - DR ) =

(4

. %(fz . Ei)E{ + %0_(5‘ -0)E;. (2.26)

In addition, Equation (2.26) can be further simplified if a ray-fixed coordinate
system, as shown in Figure 2.6, is used. As shown in Figure 2.6, €, is the unit vector
perpendicular to the plane of incidence and éh, €] are the unit vectors paralle] to the
plane of the incidence and reflection, respectively. After a few manipulations, the
relationships between the unit vectors defined in the two previous coordinate systems

are

& = —i(h- &) —a(f-5'). (2.27)

The normal component (i.e., the component in the é, direction) for the reflection

coefficient is obtained from (2.24) since the binormal unit vector b is in the same

14



direction as é,. The reflection coefficient for the field components in the parallel éfl
and €] directions (see Figure 2.6) can be obtained by first writing the electric fields

as

i =xE (R &) - By (i-§), (2.28)

where the plus sign is for incident electric field at Qg and the negative sign is for
reflected one. Employing Equation (2.26) with (2.27) and (2.28), the reflection coef-
ficient for the parallel field components is

Ej(Qr) = E}(Qr)

—;72401 + cos(0‘)] (2.29)

%il + cos(6*)

Thus, by choosing the reflection point Qg as the phase-reference point, the electric

field reflected by the surface S is
E(Qr) =R -E'(Qr) (2.30)

where E'(Qr) is the electric field incident at Qr, and R is the dyadic reflection

coefficient in the following matrix notation

= R 0
="M , (2.31)
0 R,
where

—Zo 4 cos(8')

Ry % T cos(@) |

and )
— 722 + cos(6*

—_ Zo
Ri.= [__g— + ol ] . (2.32)

Therefore, the reflected field at Qr can be easily obtained from Equation (2.30)
if a ray-fixed coordinate system is used.

This reflection solution can then be implemented in the NEWAIR Code to cal-
culate reflected-field patterns for an aircraft model. A cross-sectional geometry of
an aircraft fuselage with two wings whose surfaces are being modeled by impedance
boundary conditions is depicted in Figure 2.7 and used to analyze the reflected-field

computations in the code. A coordinate-system transformation on the 2 x 2 dyadic
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Figure 2.7: Geometry used to determine single-reflected field from an impedance
plate.

reflection coefficient in (2.31) is needed since the aircraft code converts every field
component to the z, y, and z coordinates in order to add all individual field compo-
nents easily. The following will briefly describe the reflected-field computations and
the modifications of the reflection coefficient in the NEWAIR3 Code.

Before the single-reflected field is computed, the computer code will test blockages
of ray paths from a source to the reflection point, and from this point to the receiver.
If the rays are not interrupted by any obstacle, then the electric field with only one
single reflection point on the surface of a specific plate will be computed by applying
image theory.

Consider the cross-sectional geometry of an aircraft fuselage with two wings at-
tached on each side as shown in Figure 2.7. The receiver’s image position with respect

to the j** plate is given by

Pl(j)= P, - 24;- (P, — P.), (2.33)
where the subscript » denotes the reflected field, the superscript I indicates the image
position, and the argument j represents the j** plate. The NEWAIR3 Code first
calculates the source fields (E, E;, E;) at the image position P/(j). The next step
in the computations is to check whether the ray path, from the effective source (2.,)

to the image position (P/(j)), intersects the j*» plate. If the given j** plate does
not interrupt the ray path, then there is no reflection from this plate to the specific

16



receiver position. On the other hand, if the ray does intersect the j** plate, then the

reflected field (E7, E}, E]) at the receiver location is computed as

E(P.) E;(P/(5))
E(P) | =[T1]| EXP/(1) | (2.34)
E(F,) | EXRG))

where the 3 x 3 transformation [T] matrix has z, y, and z components as follows

T,, T.y T..
Tl=|T,. T, T, (2.35)
Tzz' sz Tzz

[T] represents the reflected-field polarization transformation matrix and it has to
be modified such that it satisfies the impedance boundary conditions (2.21) on the
specific j** plate. This [T] matrix is determined by transforming the Ej(Qr) and
E7(QRr) into EL(Qr), E;(Qr), and E;(QRr) field components (i.e., using dot products

between the unit vectors ), €, with &, §, and %), namely,

G @) | o
[T)=| (&f-9) (é+-9) |- R ((“)) ((éj' y)) ((e”)) , (2.36)
(&-3) (ér-2) * SRS

where R is obtained from (2.31). Each element in the [T] matrix can be written in

the following form:
Trnn = Ry (€] - m)(&) - &) + Ri, (6L - h)(€yL - 1), (2.37)

where m and 7 denote &, §, or Z unit vectors. Then, the total single-reflected fields
Er ., of an aircraft model for a given receiver position is the superposition of the
single-reflected field from each individual plate, which is obtained from (2.34) and
(2.36). The GO field is obtained by adding the total reflected field Ej,,,, with the
total source field E;, , discussed in the previous section. This then completes the GO

field solution for the modified aircraft code. If high-order multiple reflected fields are

necessary, they can also be added as discussed below.
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Figure 2.8: Aircraft geometry of an aircraft model for double-reflected field.

2.3 Double-Reflected Field from Flat Coated Sur-
faces

The procedure for acquiring the single-reflected field (described in the previous sec-
tion) can be applied here iteratively to obtain the double-reflected field £7". Hence,
the solution for the double-reflected field can be found by (i) determining the single-
reflected field from the first given plate, and (ii) computing the field reflected by the
second plate, in which the incident field for the second plate is the reflected field
calculated from step (i). This solution can also be implemented in the NEWAIR3

Code to simulate the electric-field patterns for an aircraft model as shown Figure 2.8.

As an illustration, consider a source which is mounted on a perfectly-conducting
convex surface with one impedance plate attached to it as depicted in Figure 2.9.
The incident rays are first reflected off from the i** plate, and then reflected from the
j'* plate to the receiver location. The image of the receiver location with respect to

the j» plate and i*» plate are given, respectively, as follows:

P!(j) = P. — 24; - (P, — P.5),
and

P!(i) = P/(§) — 24 - (P/(j§) — Pur)- (2.38)

The double-reflected field is then calculated by computing the source field E* at
the image position P/(i) if the double-ly reflected ray is not interrupted by any other
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structure. Therefore, the double-reflected field E™ is computed as
E7(P) = [T); [T); [E*(P!()], (2:39)

where [T} matrix is the modified transformation matrix and is defined in equa-
tion (2.37). Both [T); and [T); satisfy the boundary condition (2.21) on the i** and
j'" plates, respectively. The total electric field reflected twice from the flat plates of
the aircraft model is then computed as the sum of each double-reflected field.

Next, due to the fact that the GO fields have discontinuities at the incident and
reflection shadow boundaries and are zero in the shadow regions, edge diffracted
fields are necessary in order to obtain a more accurate total radiated field. The fol-
lowing chapter will summarize and present the plane-wave edge-diffraction solution
for impedance wedges for four specific wedge angles. Modifications of these diffrac-
tion solutions for spherical-wave illuminations, which are necessary in the NEWAIR3

Code, will also be discussed at the end of Chapter 3.
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Chapter 3

Electromagnetic Diffraction by a
Wedge with Impedance Faces for
Four Special Cases |

It is necessary to include the edge diffracted field to complete the expression for
the total electric field in terms of first order terms. This total field is continuous
across the shadow boundaries of the GO field, described in Chapter 2; however, it is
discontinuous across shadow boundaries of the edge diffracted field because the corner
diffracted field is not included. In this chapter, the uniform asymptotic solution for
the edge diffracted field due to an impedance wedge, which has been discussed in
Rojas [10], is summarized. The incident field in [10] is assumed to be a plane wave with
an arbitrary polarization, and obliquely incident to the axis of the wedge. It is noted
that for oblique incidence, rigorous solutions have been obtained for only four wedge
angles. The primary goal of this chapter is to modify the edge-diffraction solution
for plane-wave incidence, so it is also applicable for spherical-wave illumination. This
modification is accurate as long as surface waves are neglected.

The method of steepest descents is applied to obtain the uniform solution, and the
asymptotic evaluation of the integral representation of the diffracted field is carried
out by taking into account of the presence of real geometrical-optics poles. By assum-
ing sources and field locations are far away from the surfaces and edges of impedance
wedges which are coated with the lossy impedance material on their surfaces, surface-

wave fields can then be neglected here.
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Note that e~/ time dependence, which is opposite to e used in the GO-field
solution discussed in the previous chapter, is assumed and suppressed for all the field
expressions described in this chapter. To add this edge diffracted field to the GO field
developed in the previous chapter, it is necessary to first take its complex conjugate.
In addition, a bar and a double bar on top of a function lenote a two-element column

vector and a two-by-two matrix, respectively.

3.1 Formulation

The problem considered here is the electromagnetic diffractions by an impedance
wedge with a plane-wave incidence (see Figure 3.1). The wedge has an impedance
value Z, on its 0 face and Z, on its n face !. The external wedge angle is then equal
to nw. Fields on both impedance faces must satisfy the Leontovich or impedance

boundary condition

mx bﬂl
/g,

): ‘} -ﬁ Om
(q‘s = Té x HY, (3.1)
(3.2)

where ¢ is the unit vector normal to the plane ¢, the admittance Y5, = 1/Z;,, and
E, H are electric and magnetic vector fields. As shown in Figure 3.1, a cylindrical
coordinate system (p, ¢, z) is used, in which the z axis coincides with the wedge axis.
The angles ¢ and ¢’ are both measured from the 0 face of the wedge. The diffraction
point Qg is found by following Keller’s law of edge diffraction (i.e., the angle of
diffraction By is equal to the angle of incident §;). This can also be represented by

é-5=¢.49 (3.3)

in which é is the unit edge vector and &, 3¢ are the incident and diffracted field-

propagation directions, respectively.

1A wedge is formed by two flat surfaces. The 0 face is considered to be the face where the angles
¢ and ¢’ is measured from. The other face is then called n face.
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Figure 3.1: Impedance wedge with plane wave obliquely incident on it.

As described in [10], the diffraction solution is based on the generalized reflection
method (GRM), which is a generalization of the Maliuzhinets method [9], developed
by Vaccaro [14, 15] to investigate fields scattered from an impedance wedge with an
obliquely plane wave incident on it. This scattering problem is much more difficult
to solve than the normal-incident case, which was considered by Maliuzhinets, since
the GRM forms a second-order difference equation, called the Generalized Reflection
Equation (GRE), instead of a first-order one. Fortunately, the GRE can be solved in
terms of the Maliuzhinets functions for four specific wedge angles. These four special

cases are depicted in Figure 3.2(a) to (d) and are listed below [10}:
(i) the half plane (n = 2) with an arbitrary impedance value on each face,

(ii) the two-part impedance plane (n = 1) with an arbitrary impedance value on

each face,

(iii) the right-angled wedge (n = 3/2) with a perfect electric conductor (PEC) or a

perfect magnetic conductor (PMC) on one face, and
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Figure 3.2: Geometries for which the generalized reflection equation has been solved
(a)n=1,(b)n=2,(c)n=23/2,and (d) n = 1/2.

(iv) the right-angled wedge (n = 1/2) with PEC or PMC on one face,

where n is the wedge number and nr is the external wedge angle.
Following the Maliuzhinets approach, the total field E, is expressed in terms of a
spectrum of plane waves, namely

e jkzcos 8 nr

'z — Fz —jkpcosa .
E.(p,¢,2) o .[7 (ax + 5 de da, (3.4)

in which F, is the spectral function and 7 is the twofold Sommerfeld contour depicted
in Figure 3.3. The integral (3.4) can be evaluated in a closed form when n = 1/2 as
described in [10]. Thus, the following discussion will only concentrate on the solutions
for cases of n = 1,3, and 2 first. The n = } case will be discussed at the end of this
section.

The spectral function F,(a) can be written as follows
Fy(a) =A4; (a)F. (3.5)
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Figure 3.3: Twofold Sommerfeld contour.

where (8 # 0) the function A (@) is given by

’

Zz (a+nr/2-¢) = §—1 (+nw/2— @) El (a+n1r/2—¢)8in(")
{cos("‘—'é)l_ cos(ﬂ)+ Bn + Bn cos(a ; ¢)} .
¥ (ar/2- ¢) 5 (nr/2- &), (3.6)

where the 2 x 2 matrices 1=3,l and Bn are given and discussed in Appendix B. When
B = I (i.e., the plane wave normally incident upon the impedance wedge), the above

function A, (3.6) can be simplified as follows

Zz (a+nr/2—¢)= ,
_ 1 sin(%)
U(atnr/2—¢) ¥ (nn/2-4¢)- cos(ﬂ)n- (D) (3.7)

Unlike the equation (3.6), (3.7) is valid for any wedge angles. This asymptotic evalu-
ation on the diffracted field is based on the work of Gennarelli and Palumbo in [16],
and Rojas in [17].

The integral in (3.4) is evaluated asymptotically by applying the method of steep-
est descents [4] to obtain the leading term of E, for large kp. By taking into account
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of the presence of all poles of F, (3.5) near the saddle points where a = +7, and
keeping the leading terms of order (kp)"%, the diffracted field is expressed in terms

of the dyadic diffraction coefficient as
E¥p,¢,2) ~D, (¢,¢'s Lyvo,v,) - Ei(z = 0,y =0, z)msmﬂ, (3.8)

in which the diffraction coefficient D, (p, P’y Lyvo,v,) is (neglecting surface wave
poles)
= ei™/sin(2) =-1 =
D: (¢, ’s Ly, vp) = ——"2". 2 - 2 -
(6,9, L,vo,vy,) nvasksin 8 S (am/2-¢)¥ (r+nx/2- ¢)

cos(m)l—cos(ﬂ)-*- En * Bﬂ €08 (I%Q)

- M (¢ ){——1—,—+ Bn + D, COS(%"&)}

cos (Zt2)_cos (2-)

- . 3 7 _ . 2
.3 1 (n1r/2 _ ¢I) S (n7r/2 _ ¢l) _ \/‘F‘.‘:s‘inﬁ ] Z { (1 ]:’(JkLal )), (39)
=1

where L = psin 3 is the distance parameter. The angles ¢, ¢', and B are defined in
Figure 3.1. The complex parameters vy and v, are related to the surface impedance
Zy and Zy, and they are represented as a diagonal matrix (referred as the modified

Brewster matrix)

sin ;O.n =

0 sin v}
[ noYo.n
_ sin3
= o ] (3.10)
1o sin 8

Due to the fact that Re(Zy,) > 0 for passive surfaces, the real part of v is restricted
to an interval between 0 and 7

The function s; is given by

-

8 = —e /2 cos ?I 1=1,2,3. (3.11)
where
ay, if |Re(oy)| < 2m
a =9 27+ jIm(ay), if Re(oy) > 27 (3.12)

27 + jay, if Re(ay) < —2x

26



and the poles oy for [ = 1,2,3, are defined as

o =¢-¢,

a=¢+¢,

and

a3 =¢+ ¢ — 2nm. (3.13)

The residues 7, inside the summation in (3.9) are
= . = nmt
= ah_.rré‘(a —oq) A, (o + - ®), 1=1,2,3 (3.14)

in which the poles a; are given in (3.13) and :1, (a + 2 — ¢) is defined in (3.6) for
an obliquely-incident field and (3.7) for a normally-incident field.
The function F(z) introduced in (3.9) is the transition function with a complex

argument (according to [18, 4])

T

F(z) = 2j/ze’” /; edt - 3—275 <z < (3.15)

The argument z is restricted to the interval —2¥ < = < % to assure that F(z) is a
single-valued function, and it converges as |z| — oo. The matrix T in (39)isa2x2

identity matrix. The matrix ¥ can be expressed as a 2x2 diagonal matrix

(a)=[q’°(a) y ], (3.16)

=N

0 \I!;,(a)

in which ¥, s(a) is written as a product of four Maliuzhinets functions,

nmw e o nrT e T
Yen(a) = Ynlat 2 + VO,h - —2—)¢ﬂ(a + 5 - Vo'h + 5)
—_ T_ eh - E _ nw _ eh E

Yala— o +0" =3 J¥n(c 5 vty ). (3.17)

The Maliuzhinets function 9(a) and its properties are discussed in Maliuzhinets [9].
Note that one of the important identities given in [9], which was used to develop the

diffracted field is

¥ (a—1)=0(a+7)M(a), (3.18)
in which the diagonal matrix M (a) is given by

MJ(a) 0 ]

M(a) = [
0 M;,(a)
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m(a eh)
Me.h(a) e-h“ (319)

m(—a,vi")’

where . /2 + J24
m(a,v) = < ) cos( ) (3.20)

a+mr/2+U) COS( a+1r+mr/2 -v )

cos(

The matrix § is the transformation matrix which converts the fields that are tangent
to the wedge walls (i.e., Z direction) to the normal component of the fields. The
matrices E,, and B,. are included in order to remove the singularities caused by the
inverse of S (see (3.9)) and to satisfy the edge condition. The expressions for S (a),
v (a), M (a), and 7, will be discussed and defined for each of the special cases in
the followmg sections. The computation of the matrices B,. and Bﬂ is discussed in
Appendix B.

The ray-fixed coordinate system (as shown in Figure 3.1) is used to express the
diffracted field [4]. Thus, the diffracted field E9 in the vector form with 8 and ¢
components is
Ej

) (3.21)
£,

in which the unit vectors €, ﬁ, <$, ,é' , and q@’ are depicted in Figure 3.1 and are defined
as follows [10]:

€=z,
ﬂ=¢x‘§a
ﬂ‘/= “/xél’
. 8§ X €
¢“wxa’
and
- 8 xeé
1A
= - 3.22
é X3 (3.22)

The expression for the diffracted field £ can then be obtained from (3.8) and (3.9),

namely, .
el™?

E%(s,4,8) ~D. (¢,4,8, L, Vo, vn) E'(QE)—= 75 (3.23)

where E(Qg) is the incident field at the diffraction point Qg, s is the distance from
QE to the observation point, and the distance parameter L = s4/sin B. The diffraction
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coefficient D, is given by

Be (¢’ ¢”ﬁaL»V01Vn) = - EBZ (¢1 d”aﬂ,L’VO,V") z’ (3'24)

I= [1 0 } (3.25)
0 -1 |

Unlike the cases discussed above for n = 1,2, and 2, the integral in (3.4) can be
evaluated in a closed form for n = 1/2. As described in [10], the spectral function

where

F, in (3.4) has a period of 27 for n = 1/2; hence, the two integrals represented the
diffracted field canceled with each other. The result is that the diffracted field for the
cases of n = 1/2 (i.e., with the external wedge angle of 7/2) is zero.

The diffracted field discussed here has an order (kp)? with respect to the incident
field. In order to obtain more accurate diffracted fields on the faces of the impedance
wedge for finite nonzero values of Z ,, it is necessary to include the next higher order
term (lcp)_Ta as described in Tiberio and Manara [19, 20]. The expressions for the
diffracted fields in (3.8) and (3.23) are valid as long as all the poles a; in (3.13) are
simple. In the cases that grazing incident ¢’ = 0,nm, or ¢ = 0,nm, or Zo,, = 0
or 0o, there is a possibility of double or higher order poles. In these cases, special
manipulations on the integral (3.4) must be carried out as described in [10]. In the
following sections, the expressions for S (), v (a), M (a), and 7; will be discussed

and defined for each special case.

3.1.1 Transformation Matrix § (a)

The diffracted field presented in the last section can be written as

S 1 [Diffraction Coefficient| S E}QE). (3.26)

There are three steps in order to obtain Equation (3.26):

(i) multiply E!(Qg) with S to obtain an intermediate expression, which is pro-
portional to the normal incident-field component which is perpendicular to the

wedge wall,
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(ii) multiply S Ei(Qg) with the diffraction coefficient to obtain the “normal” com-
ponent of the diffracted field E¢

normal?

111 multiply the inverse of § by Ed - to obtain the diffracted-field component
normal
Ed,

The expression for § is written in terms of the matrix 5’ as

i Qu

(a—7%), forn=1
S=1¢ C (o), for n=2 , (3.27)

(=7(a+"2—"), fornzg,%andzozﬂorZozoo

where

E' (@) =7 cos(a)+ j cos(f),

_[10
I= ,

01
and _
= 0 -1
J= . (3.28)
(1 0

3.1.2 Residues 7;

The 7,1 =1,2,3 are the residues of A, (e + nw/2 — §) given in equation (3.6)
and (3.7), and are computed in (3.14). The following summarizes the expressions

for the residues:

™m=1I,

S H

— { 5_1 (v + &) A (¢'sw0) 5’(1r—¢’), n=1,2

—C (KO (E-¢), n=3/7
and _ =
;3_ C (W+¢)A(n7"_¢aVn)C(7r_¢)s n=1,2 (3.29)

T WA C(E-4) =32
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The functions A (a,v) and A1 are given as follows:

= R(a,v® 0
A (aaV) = (a’u ) 3
0 R(a,v*)
- — L, forZ,=0
A= D (3.30)
L, forZy;=o00
where
R(a,v) = sin (a) — sin (v) (3.31)

sin (a) + sin (v)’
and I is defined in (3.25).

3.1.3 Limits on Matrices ¥ (o) and M (a)

In this section, the matrices M (a) and ¥ (a) are summarized in tables 3.1, 3.2,
and 3.3 for the special cases where the impedance value Z; or Z,, goes to zero or
infinity. For both Z, and Z, are finite, M (a) and ¥ (a) are already defined in (3.19)
and (3.16). The relationship between the two matrices is given in (3.18).

As the impedance value Z; or Z, approaches zero or infinity, the complex argu-
ments v© and v" defined in (3.10) become:

Vel — o0
. {|o| |

v -0

: [val — oo
lim { " ,

Zn—0 uf" -0

and

. vg — 0

lim . (3.32)
Zo—o0 iu(','l — 00

The ¥, x(a) defined in (3.17) can be simplified by applying one of the Maliuzhinets

identities given in [9]

polm da(e) =0 [e"*‘-“’"in" ] (3.33)

Employing the above limits to the equations (3.16) and (3.19) as the |Im(a)| goes
to infinity, the following tables summarize the simplified ¥, s(a) and M, x(a) for the

four special cases.
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Table 3.1: n = 1,2 for ¥, ()

Zo =0,
Z,, # 0 and finite,

¥e(a)
U (a)

Ynla— 5 +vn - 3)dnla- 5 -y +3)

cos(f + F)¥n(a— 5 + v — Fn(a - 28 - sh + §)

Zy # 0 and finite,

Y. (a)

Unla+ B+ 05 = Fbalat F - 45+ )

Zn =0, ¥h(a) cos(f — §)¥n(a+ F + 4 — F)gn(a+ 3 — 15 + 5)
Zo =0, ¥, (a) 1
Z, =0, ¥i(a) cos(5; + §)cos(5 — §
Zo = o0, Wo(a) = cos(E+5)nla— B +i- Dala-F - v5+5)
Z, # 0 and finite. ¥i(a) Ynla— 2+ 0f — D)gpp(a -2 -vh + %)

Table 3.2: n = 1,2 for ¥, ,(a)
Z=0, V(@) = cos(g+§ia(a 5 Vi Palo—F -1 +5)
Z, # 0 and finite, ¥,(a) Yn(a — M-i—u —1)¢n(a———u"+ %)
Zy # 0 and finite, ¥.(a) cos(g5 — T)Wn(a+ 5F + 05 — 5)¥n(a+ B — 5+ 3)
Z, =0, ¥y(a) Yala+ 25 + 0 - g)t,/)ﬂ(a +2 -yl + T)
Zy =0, ¥.(a) cos( 5= + §)cos(5= — %)
Z, =0, ¥y(a) 1
7o = o, ¥e(@) = Ynla—F 475~ FWala-F - 451 5)
Z, # 0 and finite. Yu(a) cos(& + S)nla— B+ vk — I)u(a—2F - vk + 3)

3.2 Modification for Spherical-Wave Illumination

Y]

Finally, in order to apply the above edge diffraction solution for impedance wedges
to the NEWAIR3 Code, modifications on some parameters must be made. Since
the incident field was assumed to be a plane wave for the previously described edge
diffractions, the solution has to be modified for a point source which is compatible
with the aircraft code. The distance parameter L inside the argument of the transition

function F(z) (3.15) has to be replaced by the following expression:

s9(s' +1)

sin?(Bo), (3.34)
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Table 3.3: n = 1,2, %,% for M, 4(a)

cos a-1r+n1rl2
ZO = 0, MC(a) = m(—u,u,‘f) co:zr;ir;-)nﬂ'lz)
Z, # O0and finite, My(a) = m_(—:x—u-)-
e ncos at+®minx /2
Zy # 0 and finite, M(a) = m(a:;(;z -a£1r+rur2£n2) )
2n
Z. =0, My(a) = m(a1p)
cos( a—‘x+rur[2)cos( —-a+12r+n1r[2)
Z() = 0, Me(a) = a+1\3+nn1r[2 —a—n:-nn/2
cos( T ) cos( o )
Z, = 0) Mh(a) = 1
ZO = 00, Mﬂ(a) = 'm_(—-_LT,CS
. Cos(a—ﬂ;nnl'})
Z, # 0 and finite, | Ma(a) = (o oh) con( SETEE]T)

where s' shown in Figure 3.4 is the distance from the effective source point? to the
diffraction point, and s? in Figure 3.4 is the distance from the diffraction point to
the receiver location. The angle 3 is the angle between the incident ray and the edge
where the diffractions occur. Another parameter which also depends on the types of
the sources is the spatial attenuation factor A. For the plane-wave incident case, A
is equal to 1/,/p in (3.23); however, the spatial attenuation factor has the following

expression if a point source is considered:

where s' and s? have the same definitions as above and are depicted in Figure 3.4.
Following all the modifications for the edge diffraction solution, the implementa-

tion of impedance plates in the NEWAIR3 Code can then be completed. The following

chapter will present and discuss the computer simulated results for various aircraft

models with impedance wings.

2If the receiver is determined to be in the lit region, then the effective source point is the same
as the actual source point. However, if the field point is in the shadow region, then rays travel an
extra distance I from the actual source point to a point where the rays diffract. In addition, this
point is then the effective source point.
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Figure 3.4: Geometry of an aircraft model for edge diffraction with the diffraction
point (a) in the lit region, and (b) in the shadow region.
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Chapter 4

Computer Simulations and
Discussions

The purpose of this chapter is to implement the modified plane-wave solutions, which
are discussed in Chapters 2 and 3, to study the effects of the composite plates which
are newly introduced to the NEWAIR3 Code. In most applications, the aircraft
distorts the desired pattern of the antenna. Thus, the examples here will show that
the undesired reflected and diffracted fields can be minimized by choosing the right
surface impedance values for the plates. As mentioned before, the composite plates are
being modeled by impedance plates. The numerical results will include two main parts
: (i) the plane-wave incident cases, and (ii) the NEWAIR3 Code cases. For the plane-
wave incident cases, the behavior of both the reflected and diffracted fields as functions
of the surface impedances and the observation angles are investigated. On the other
hand, seven examples including three ellipsoid-plate geometries are simulated with the
modified NEWAIR3 Code. For the purpose of assessing the validity of the diffraction
solutions discussed in Chapter 3, the first example will show the individual first-order
field component and the approximated first-order total field. Other test examples
will mainly emphasize improving the radiation patterns. The simulation results will
be discussed and compared to the results from the original NEWAIR3 Code. Note
that the lit-side impedance is denoted as Z,, and Z, is referred as the shadow-side

impedance.
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4.1 Plane-Wave Case

This section will discuss and investigate how the surface impedance will affect the
reflected and diffracted fields. The source field is assumed to be a plane wave. The
surface impedances used for all plots of the plane-wave incident cases are normalized
with respect to the free-space intrinsic impedance 5o ~ 377 1, and also the real parts

of the impedances are assumed to be positive.

4.1.1 The Reflected Field

Consider a geometry of a parallel-polarized plane wave! incident upon the lit side
of an impedance ground plane with an incident angle? §' = 60 degree as depicted in
Figure 4.1(a). According to Equation (2.31), the reflected field is decoupled such that
it has the same polarization direction as the incident field. The field amplitude of
the parallel-polarized reflected field is plotted as a function of the surface impedance
as shown in Figure 4.2(a). As both the real and the imaginary parts of the surface
impedance varied, the minimum reflected field can be found at Zy ~ 0.5 x ¢ Q. It is
noted that the surface impedance corresponding to the smallest field magnitude will
be referred as the “optimal” impedance for all numerical examples. Thus, 0.5 * 5,
is the “optimal” impedance for this parallel-reflected field example where §' = 60°.
The next case will consider the perpendicular-polarized incident field for the same
impedance ground plane, as shown in Figure 4.1(b). The incident angle 6" is still fixed
at 60 degrees. The perpendicular-polarized reflected field as a function of the surface
impedance is calculated and obtained in Figure 4.2(b). The “optimal” impedance
value for this case is approximately equal to Z; = 2 % 70 ). Note that the imaginary
part of the “optimal” impedance values is fairly small in both the reflected-field cases.

1A parallel plane wave is an electric field which is polarized in the direction parallel to the plane
of incidence. _
2The incident angle ' is measured from the normal # of the ground plane.
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Figure 4.1: Geometry of a (a) parallel and (b) perpendicular -polarized plane waves

incident on an impedance ground plane.

0.1

0.1 0.2 0.25 0.3

Magnitude of paraliel reflected field(theta_i=60 deg)

0.2

o
=

imaginary(Normalized Z0)
©

&

s

0.45

04 0.6 0.65 07

05 0.55
Real(Normalized Z0)

(a)

imaginary(Normalized 20)
o ! C

S & b
W N

[ 0.05 G2s

0.15

0.2

Magnitude of perpendicular reflected field(theta_i=60 deg)

01

16 18 2 2.2
Real(Nomalized Z0)

24 26

(b)

Figure 4.2: Amplitude distribution of single-reflected field with (a) Ej and (b) EY
incident upon an impedance ground plane at §' = 60 degrees.
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4.1.2 The Edge-Diffracted Field

Following the reflected-field cases, this section will investigate the edge-diffracted
fields as functions of the surface impedances and the observation angles. The geometry
considered here is a half plane with the surface impedance Z, on its lit face and
Z, = (0.1 4+ j0.5) on its opposite face. The axis of the half plane is assumed to
coincide with the 2 axis as shown in Figure 3.1. A TM, or a TE, plane wave is
assumed to be incident upon the impedance half plane and makes a diffraction angle®
of 135 degrees with respect to the z axis. The incident angle ¢; measured from lit
face of the impedance half plane is assumed to be 45 degrees. The diffracted field
is calculated at a distance kp = 10 where k is the free-space wave number, and p is
the distance between the diffraction point on the edge and the field location. The
following will discuss the TM, and TE, cases separately.

(i) TM, Plane-Wave Incident:

The TM, case shown in Figure 4.3 is considered first. With the observation
angle fixed at 60 degrees, the co-polarized and cross-polarized diffracted fields
are calculated and plotted as functions of the surface impedance Z;, as shown in
Figure 4.4(a) and Figure 4.4(b), respectively. The co-polarized diffracted field
has a minimum at Z; = 0.5 * 7 {} according to Figure 4.4(a). On the other
hand, Figure 4.4(b) shows the cross-polarized field component has an “optimal”
impedance located at Zp =~ (1.3 + j0.1) * 10 . Note that the magnitude of the
cross-polarized field is fairly small at Z; = 0 (i.e., the lit side of the half plane
is a PEC).

Next, the diffracted field as a function of observation angles is investigated
in this TM,-incident example. The same geometry as depicted in Figure 4.3
is considered, except the observation angle ¢ is varied from 0 to 360 degrees
and also the lit-side impedance Z; is assumed to be real and varied from 0
to 1 % 7 §. Figure 4.5(a) and Figure 4.5(b) show the co-polarized and cross-

polarized diffracted fields as functions of the observation angles. Five curves

3Please refer to Figure 3.1 for the definition of the diffraction angle 84
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Figure 4.3: Geometry of T M, plane wave incident upon an impedance half plane with
a 135-degree diffraction angle measured from the axis of the half plane.
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Figure 4.4: Amplitude distributions of the (a) co-polarized EZ and (b) cross-polarized
noH? edge-diffracted fields with E! incident upon an impedance half plane. .
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Figure 4.5: Magnitude of (a) co-polarized E? and (b) cross-polarized noH? edge-
diffracted fields with E! incident upon an impedance half plane at ¢; = 45 degree as
shown in Figure 4.3.

(i)

are shown in both figures corresponding to the normalized impedance values
Zy = 0,0.1,0.2,0.6, and 1.0. As the value of Z; increases, the co-polarized
diffracted field in Figure 4.5(a) shows a significant decrease before it reaches
the incident shadow boundary (ISB) at ¢ ~ 225 degrees. In addition, this field
component has the greatest jump at the reflection shadow boundary (RSB)
(i.e., ¢ = 135 degrees). The big variations of the diffracted fields at the RSB is
due to the dependence of both the reflected and diffracted fields on the surface
impedance Z;. However, this co-polarized field component has little changes
around the ISB since the source field is independent of the impedance Z,. On
the other hand, from observing the cross-polarized diffracted field shown in
Figure 4.5(b), the diffracted field again has great variations around the RSB,
but there is no ISB for this polarization. Note that the increase in the surface
impedance value Z, gives rises to the cross-polarized diffracted field shown in

Figure 4.5(b).

TE, Plane-Wave Incident:
This section will investigate the T E, incident case for the edge diffracted fields.

The geometry considered here is similar to the T M, case, except the incident
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field is TE, polarized, as shown in Figure 4.6. With the field angle fixed at ¢ to
60 degrees, the diffracted field distributions for the cross-polarized and the co-
polarized components are separately plotted in Figure 4.7(a) and Figure 4.7(b)
as functions of the surface impedance Z;. According to Figure 4.7(a), the
“optimal” impedance is Zy = (0.6 + 70.2) x 70 2. On the other hand, the cross-
polarized diffracted field as shown in Figure 4.7(b) has the strongest magnitude

around Z; = 0, and a minimum at Z; = 1.9 x 7 Q.

Next, the diffracted fields with a TE, plane-wave incident upon the same
impedance half plane as functions of the field angles are studied. The re-
ceiver angle ¢ is varied from 0 to 360 degrees, and also the normalized lit-side
impedance is chosen to be real and varied between 0 to 1. The cross-polarized
and co-polarized diffracted fields are plotted versus the observation angle as
shown in Figure 4.8(a) and Figure 4.8(b), respectively. Similar results are ob-
tained for the TE,-incident case as compared to the T M, case. According to
Figure 4.8(a), the cross-polarized component is only affected by the existence
of the RSB which is located at ¢ = 135 degrees. On the other hand, the
co-polarized component shows great variations around the RSB and has little
change in magnitude around the ISB as the value Z, varies. The same reasons

as in the TM, case can be used to explain these phenomenon.

4.2 Simulated Examples on the NEWAIR3 Code

Following the plane-wave incident cases, this section will emphasize on the results

obtained with the NEWAIR3 Code. Seven examples including three ellipsoid-plate

geometries are provided for illustrating the new features and flexibilities of the modi-

fied NEWAIR3 Code. For each example, the aircraft model is assumed to be operated

at the frequency f = 1GHz, so one wavelength A is approximately equal to 1 foot.

The aircraft fuselage of each case is assumed to have the same dimensions and is

modeled by a PEC composite ellipsoid as illustrated in Figure 4.9. For Examples 1 to

6, the field components are computed around the roll-plane pattern cut as depicted
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Figure 4.6: Geometry of TE, plane wave incident upon an impedance coated half
plane with a 135-degree diffraction angle measured from the axis of the half plane.
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Figure 4.7: Amplitude distributions of the cross-polarized EY (a) and co-polarized
(b) edge-diffracted fields 7o HZ? with H! incident upon an impedance half plane.
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Figure 4.9: Geometry of the aircraft fuselage considered in the NEWAIR3 Code
Section.
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(a) (b)

Figure 4.10: Definitions of the angles 8, and ¢,, and also the unit vectors ép and c;,,
for (a) the roll-plane and (b) elevation-plane pattern cuts.

in Figure 4.10(a). The angle 6, is assumed to be 90 degrees and ¢, varies from -180
to 180 degrees. The unit vectors 6, and ¢, are assumed to be in the same directions
of the angles 8, and ¢,, respectively. The last example will show the radiated fields
computed around the elevation-plane pattern cut as illustrated in Figure 4.10(b) for
three different aperture-type antennas. The angle 8, is assumed to be 80 degrees and
¢p is between +180 degrees. For more details about the pattern-cut definitions, please
refer to the AARP User’s Manual [1]. Note that the diffracted fields are assumed to
be calculated from all edges of the composite plates, and also all field components are

assumed to be normalized with respect to their source field.

4.2.1 Example 1 : Individual first-order field components

Before any comparisons between the results for the composite plates and the PEC
plates, the first example of the modified NEWAIR3 Code will assess the validity of the
diffraction solutions discussed in Chapter 3. Consider an ellipsoid-plate geometry as
illustrated in Figure 4.11. An arbitrary surface impedance with a value of 100+35150
is assumed on both faces of the plate. The source antenna is assumed to be a quarter-
wavelength monopole mounted on the top of the composite ellipsoid. As indicated in

Figure 4.11, the incident shadow boundaries ISB1 and ISB2 for the dominant edges
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Figure 4.11: Example 1 : The aircraft model consists of a fuselage and a composite
plate which is modeled by an impedance plate.
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Figure 4.12: Example 1: Roll-plane radiation patterns for (a) source field and (b)
single-reflected field.

are located at ¢, = 75° and ¢, = 103°, respectively. The source field in the region
between these two ISBs is expected to be zero. On the other hand, the reflection
shadow boundary RSB1 of one of the dominant edges is located at ¢, = 36°, and
one would expect the reflected field to be zero when ¢, is greater than 36 degrees.
By taking the roll-plane pattern cut of the geometry, the far-zone field patterns are
calculated and shown in Figure 4.12(a) to Figure 4.14(b).

As expected, the source field shown in Figure 4.12(a) is discontinuous between
¢, ~ 75 degrees and ¢, ~ 104 degrees, and also the RSB’s for the reflected field are
located at ¢, ~ 36° and 0° degrees as indicated in Figure 4.12(b). As depicted in Fig-
ure 4.13(a), the edge diffracted field has discontinuities at the four shadow boundaries
mentioned above and also has a jump around ¢, = —120° due to the blockage plates

within the composite ellipsoid. If the diffracted field is added to the source field, then
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Figure 4.13: Example 1: Roll-plane radiation patterns for (a) diffracted field and (b)
source+diffracted field.
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Figure 4.14: Example 1: Roll-plane radiation pattern for (a) reflected+diffracted field
and (b) the 1st order total field.

the summed field in Figure 4.13(b) becomes continuous across the ISB. Similarly,
Figure 4.14(a) shows the sum of the reflected and diffracted fields which is continu-
ous across RSB. In addition, the first-order total field as shown in Figure 4.14(b) is
continuous everywhere. This also shows that the diffraction solutions for impedance

wedges do correct the discontinuities across the GO field shadow boundaries.

4.2.2 Example 2 : Improving the radiation pattern for an
aircraft model for n = 2 case

This example will emphasize on one of the applications of the composite plates,
namely, the reduction of the scattered fields from the plates. By choosing the right

impedance values, one can attain a significant improvement of the radiation patterns
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around the region where the reflected field exists. The aircraft geometry considered
here is the same as the previous example, except a different arbitrary impedance value
is assumed for the plate. The lit-side impedance Z, is assumed to have the value
226+ 710 £, and also the impedance in the shadow face of the plate is Z,, = 185+ 537
Q. As shown in Figure 4.16(b), the distortion of the first-order total field caused
by the existence of the plate is significantly reduced compared to the result of the
one with the PEC plate as depicted in Figure 4.16(a). According to both of the
figures, the roll-plane far-zone radiation pattern is plotted against the ideal radiation
pattern (i.e., the radiation pattern for which only the fuselage exists) to show the
distortions or deviations caused by the plate’s existence. By comparing Figure 4.16(a)
and Figure 4.16(b), the distortions are reduced by as much as 10 dB in the region
where the reflected field exists, i.e., 0 < ¢, < 40°. Note that the distortion of the
ideal pattern behind the impedance plate cannot be fixed because the transmission

coefficient of the impedance plate is zero.

4.2.3 Example 3: Approximate “optimal” impedance value
for an aircraft model for n = 3/2 case

In this section, the aircraft model with two composite plates which form a right-angle
wedge as illustrated in Figure 4.17 is studied. The primary goal of this section is to
find an approximate “optimal” impedance value which would reduce the scattered
fields. Note that the surface impedance on the lit side of the vertical plate is a
PMC which has an infinite surface impedance value. Consider that both plates have
the same impedance value denoted as Z, except Zy(2) = oco. The real part of the
impedance is assumed to be between 0 and 7o 2. An arbitrary value of 10 is chosen for
the imaginary part of the surface impedance. Ih other words, the values of the surface
impedance Zo(1), Z.(1), and Z,(2) are equal to Re(Z) + j10 Q, where Real(Z) is
chosen to be 10, 150, or 377. Note that the arguments 1 and 2 for the surface
impedance Z indicate the plate number.

As illustrated in Figure 4.17, the incident and reflection shadow boundaries of the

dominant edge are denoted as ISB and RSB and located at ¢, = 107° and ¢, = 72°,
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Figure 4.15: Example 2 : The aircraft models consist of a fuselage and (a) a PEC
plate and (b) a composite plate with the source antenna a A/4 monopole.
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Figure 4.16: Example 2 : Roll-plane radiation patterns in the presence of (a) the
PEC plate and (b) the composite plate.
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Figure 4.17: Example 3 : An aircraft model consists of a fuselage and two composite
plates which are modeled by an impedance right-angled wedge.
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Figure 4.18: Example 3 : Roll-plane radiation patterns for (a) the single-reflected
field and (b) the diffracted field.
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respectively. Figure 4.18(a) and Figure 4.18(b) show the reﬂe‘cted fields and diffracted
fields for Re(Z) = 10,150, and 377. Note that there is a significant change around
the RSB (¢, ~ 75°) and a little change around ISB for the diffracted field. For the
impedance Z = 150 + ;10 §, the overall reflected field is below —25 dB. When Re(Z)
is increased to 377, the reflected field is fairly small until the pattern-cut angle ¢,
exceeds 50 degrees. In addition, the diffracted field corresponding to the one with
Z =150 + ;710 ) has the lowest value around the RSB. Thus, the surface impedance
Z =150 + 710 Q, which will be referred as the “optimal” impedance value for this

case, is the best choice over the other two to minimize the scattered fields.

4.2.4 Example 4 : Improving the radiation pattern for an
aircraft model for n = 3/2 case

In this example, the “optimal” surface impedance Z = 150 + 710 {2 obtained from
the previous section is simulated in the NEWAIR3 Code, and also compared to the
one with PEC plates. It is expected that the composite-plate model will significantly
improve the radiation pattern around the region where the reflected field exists (i.e.,
0 < ¢, < 75°). By comparing the dotted lines in Figure 4.20(b) and Figure 4.20(a),
the radiation pattern for the impedance plate model is much closer to the “ideal”
quarter-wavelength monopole pattern as shown in the solid lines in both figures.
This improvement is due to the fact that the surface impedance on the plates has
eliminated the undesired scattered fields by as much as 5 dB around the region where

¢p is between 10 to 75 degrees.

4.2.5 Example 5: Approximate “optimal” impedance value
for an aircraft model with two composite plates for
n =1 case

In this section, a two-part impedance plate as depicted in Figure 4.21 is considered.
Assume both plates have the same surface impedance values with the imaginary part
of the impedance fixed to 10. Note that this case was run to test the solution for
n = 1. It is obvious that this example also corresponds to the n = 2 case since

the impedance values on both sides of the junction are the same. In order to find
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Figure 4.19: Example 4 : An aircraft model consists of a fuselage and two composite
plates which are modeled by (a) the PEC plates or (b) the impedance plates with a

A/4 monopole as the source antenna.
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Figure 4.20: Example 4 : Roll-plane radiation patterns for simulating an aircraft
model with (a) the PEC plates and (b) the composite plates.



the “optimal” surface impedance for this geometry, the real part of the impedance is
chosen to be 10, 150, or 377 for the purpose of minimizing the scattered fields from the
plates. According to the aircraft geometry as depicted in Figure 4.21, the reflection
shadow boundaries RSB1 and RSB for the dominant edges are located at ¢, = 80
degrees and ¢, = 50 degrees, respectively. The reflected field is expected to exist in
the region between RSB1 and RSB2 (i.e., 50° < ¢, < 80°). In addition, the incident
shadow boundaries ISB1 and ISB2 for the dominant edges are located at ¢, = 100
degrees and ¢, = 129 degrees, respectively. The source field is expected to be zero in
the region between ISB1 and ISB2. Moreover, the diffracted field is expected to have
the greatest variations around the various shadow boundaries.

The far-zone reflected and diffracted fields are computed around the roll-plane
pattern cut and depicted in Figure 4.22(a) and Figure 4.22(b), respectively. The
reflected field corresponding to the impedance value Z = 150 + 510 2 has the lowest
magnitude as illustrated in Figure 4.22(a). In addition, according to Figure 4.22(b),
the diffracted field corresponding to the one with Z = 150 + 710 Q has the lowest
distribution around the RSB. Thus, Real(Z) = 150 is the best choice among the three
impedance values considered here. Note that the zero values of the diffracted fields
between —100° and —80° is due to the blocking plates being used in this example.

4.2.6 Example 6 : Improvements of the radiation pattern
for an aircraft model (with two composite plates) for
n =1 case

This section will implement the “optimal” impedance value Z = 15043510 § obtained
from the previous example, and also compare with the result for the PEC plates. Note
that the radiation pattern shown in Figure 4.24(b) is almost identical to the “ideal”
monopole radiation shown in the solid line for most of the regions. By comparing this
figure with the one shown in Figure 4.24)(a), the scattered fields have been reduced
as much as 8 dB around the region where RSB1 and RSB2 are located.
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Figure 4.21: Example 5 : An aircraft model consists of a fuselage and two composite
plates which are modeled by a two-part impedance plane.
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Figure 4.22: Example 5 : Roll-plane radiation patterns for (a) the single-reflected
field and (b) the diffracted field.

4.2.7 Example 7 : Radiation patterns for aperture-type an-
tennas

In this example, the same geometry as in Section 4.2.1 is considered, and the primary
goal here is to investigate the radiation patterns for various aperture-type antennas.
The aircraft geometry with an antenna source mounted on the top of the composite
ellipsoid is depicted in Figure 4.25. Three types of antennas are studied here: an
axial slot, a circumferential slot, and a rectangular microstrip patch antenna. The
microstrip antenna is included here because its radiation pattern can be calculated
by modeling the patch by slots located around its edge. The impedance values are
arbitrarily chosen as Z, = 100 + 7100 © and Z, = 200 + 5200 Q. The far-zone

first-order total fields are computed in the elevation plane with 6,*=80 degrees.

4Please refer to Figure 4.9 and the AARP User’s Manual [1] for more details on the pattern-cut

definitions.
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Figure 4.23: Example 6 : An aircraft model consists of a fuselage and (a) two PEC
plates or (b) two composite plates which are modeled by a two-part impedance plane.
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Figure 4.24: Example 6 : Roll-plane radiation patterns for simulating an aircraft
model with (a) PEC plates and (b) impedance plates.

54



RSBt

.. 18B1

aperure-typed antenna

Figure 4.25: Example 7 : An aircraft geometry of a fuselage with a composite plate
where an antenna source is mounted on top of the fuselage.
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Figure 4.26: Example 7 : Elevation-plane radiation patterns of aircraft model with (a)
an axial-slot antenna source and (b) a circumferential-slot antenna source mounted
on top of the composite ellipsoid.
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First, an axial slot (ref. to Figure 2.2(a)) is placed on top of the fuselage. Since
the long dimension of the slot is along the length of the fuselage, the electric field
radiated by the slot is then polarized in the 6, direction as shown in Figure 4.10(b).
As a result, the §, component of the electric field should be dominant compared to
the ¢, component. As shown in Figure 4.26(a), the magnitude of the electric field
|E¢n| which is in the §, direction generally dominates the ¢, component (i.e., |Eyp|)
in the lit region.

Next, an circumferential slot (ref. to Figure 2.2(b)) as the antenna source is con-
sidered. Since the orientation of the source in this case is orthogonal to the previous
case (i.e., the axial slot antenna), the dominant field is expected to be in the é,, di-
rection in this case. As shown in Figure 4.26(b), |Es| in general is at least 10 dB
higher than |E,;| in the lit region.

Finally, a rectangular microstrip patch is considered as the antenna source mounted
on top of the fuselage. The model used here assumes that this antenna is radiating
its dominant mode. The microstrip antenna is oriented in the way such that the
angle BETADA= 60 degrees and the dimensions SLOTBB and SLOTAA are 0.5\
and 0.6A°, respectively. The field patterns are expected to be the combination of
the results from both the axial and circumferential slots. The radiation patterns
in ép and (2),, directions are depicted in Figure 4.28. The magnitude of both field
components are relatively large. The 6, field component has a similar pattern shape
as the ¢, component of the axial-slot example, and also |E,;| is similar to |E,| of
the circumferential slot, except that the magnitude is approximately 35 dB higher!
This last example ends the discussions of numerical results. In the following chapter,

a conclusion will summarize this report.

5Please refer to Figure 4.27 and Appendix A for the definition of the angle BETADA.
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Figure 4.27: Definitions of dimensions SLOTAA and SLOTBB and angle BETADA.
Note that SLOTBB is the resonant length.
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Figure 4.28: Example 7 : Elevation-plane radiation pattern of aircraft model with a
rectangular microstrip-patch antenna source mounted on top of the composite ellip-
soid.

57



Chapter 5

Summary and Conclusions

In this report, the UTD-based NEWAIR3 Code has been modified such that it has the
capability to model modern aircraft constructed in part by conductor-backed com-
posite materials. One good model of conductor-backed composites is the impedance
boundary condition where the composites are replaced by surfaces with complex
impedances. In most applications, the aircraft distorts the desired pattern of the
antenna. Thus, the test examples for the modified NEWAIR3 Code mainly empha-
size reducing the undesired scattered fields from the surface impedance plates. The
following three sections summarize the report, describe the main contributions of the

report, and finally suggest areas for future study.

5.1 Summary

The list below shows the steps followed to modify the NEWAIR3 Code to add the
capability of modeling composite flat plates by impedance plates.

(i) obtain the source-field solutions, including the solutions for monopoles and slots
which are described in [2] and the results for the microstrip antennas which are

obtained from [12],

(ii) develop Fresnel reflection coefficients for which the total field consisting of an
incident plane wave and the reflected field satisfies the impedance boundary at

the surface of the plate,
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(iii) obtain the plane-wave incident solutions for the edge diffracted fields which are

described in [10] and summarized in Chapter 3 and Appendix B, and

(iv) modify both the solutions from Step ii and Step iii for spherical illuminations
such that the modified solutions are compatible with the NEWAIR3 Code.

All the steps mentioned above are discussed and presented in Chapter 2 and Chap-
ter 3. Chapter 4 shows numerical results for plane-wave cases and for the NEWAIR3

Code cases:

(i) the plane-wave cases,
(a) study the reflected and diffracted fields as a function of the surface impedances,
and

(b) study the diffracted field as a function of the observation angles.
(ii)) the NEWAIR3 Code cases,

(a) assess the validity of the diffraction solutions obtained from Chapter 3,

(b) improve the on-aircraft antenna radiation patterns for three ellipsoid-plate

models, and

(c) illustrate that the rectangular microstrip patch antenna can be modeled

by a pair of slot antennas available in the modified NEWAIR3 Code.

5.2 Report Contributions

The current study has made the following contributions:

(i) modified the NEWAIR3 Code by adding the capability of modeling composite
flat plates by impedance plates,

(ii) developed new Fresnel dyadic reflection coefficient for impedance surfaces,

(iii) modified the polarization transformation matrix, i.e., [T] matrix, such that it
is able to transform incident fields at a receiver’s image location into reflected

fields (from impedance plates) at the receiver location.
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(iv) added the rectangular microstrip patch antenna as one of the aperture-type

antennas available in the NEWAIR3 Code, and

(v) revised the NEWAIR3 Code into independent subroutines and organized similar
computations into one subroutine to enhance the computational efficiency (see

Appendix A).

5.3 Further Research Direction

Accurate electromagnetic diffraction solutions are not available for other wedge angles
besides the four special cases mentioned in Chapter 3. For more practical applications,
the development of general diffraction solutions for an impedance wedge with an
arbitrary wedge angle is necessary. In addition, the solution for the corner diffracted
fields are also under investigations and it is necessary for finite-sized material plates.
Finally, replacing the PEC ellipsoid by an ellipsoid whose surface is modeled by a
complex impedance is necessary to complete the conductor-backed composite models

for the NEWAIR3 Code. This is being pursued at the ElectroScience Laboratory.
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Appendix A

Summary of the Modifications on
Newair3 Code

The Newair3 Code is a Fortran 77 computer code which was developed to simulate the
radiation patterns of antennas mounted on a composite ellipsoid and in the presence
of a finite set of flat PEC plates. In order to reduce the effect of the plate struc-
tures on the antenna radiation patterns, the code was modified so it can now handle
material-coated metal plates which are modeled by impedance surfaces. Thus, new
subroutines for computing the reflection and diffraction coefficients for impedance
surfaces and wedges are implemented in the original NEWAIR3 Code. Furthermore,
besides monopole and slot antennas, rectangular microstrip-patch antennas are also
available as radiation sources for the aircraft code. Note that the radiated source’s
pattern factors are reorganized in two separated subroutines. It is worth mentioning
that all additions and modifications to the Newair3 Code for the current research are

followed by the initials shk.

A.1 Modifications to Input-Data Command

Some modifications on the input-data commands, which are defined in the main
program, are made to provide more flexibility to the NEWAIR3 Code. First, for the
plate-geometry related command PG, the material of a plate can be selected after
the plate’s coordinates are defined. If the MATERIAL(MPX) is selected to be
“one”, then the plate is a perfectly electrical-conducting plate. On the other hand, if
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“two” is defined for a plate’s material, then one has to enter the real and imaginary
parts of the complex impedance values Z, and Z, for both faces of the plate. Note
that the surface impedance on the lit side of a plate (i.e., Z;) is first entered to the
input data, and then followed by the surface impedance on the shadow side of the
plate (i.e., Z,). The following shows the modified input format for the PG command

and please refer to [1] for more descriptions on the original input variables.

PG:

MCX(MPX), LATACH(MPX)
(PVC(N,ME,MPX), N=1,3)
MATERIAL(MPX)

REAL(Z,), IMAG(Z,), REAL(Z, ), IMAG(Z,)

There are two ways to define a PEC plate:

1. Set the MATERIAL(MPX) to one and ignore the following read variables.

2. Set the MATERIAL(MPX) to two and define all real and imaginary parts

of Z, and Z, to be zero.

One example to define an impedance plate would be:

PG: Z,=377.4j10 Q and Z,=0+j150 Q
4, F

4., 14., -20.

6., 14., -20.

6., 14., 20.

4., 14., 20.

2

377., 10., 0., 150.

Also, the plate surface is considered to be a PEC if the absolute value of a given
impedance value is less than 0.001. In addition, the surface of a plate is considered

to be a PMC if its absolute impedance value is greater than 106.

62



Next, the input command SG is also modified to make a rectangular microstrip-
patch antenna [13] available in the NEWAIR3 Code. Assuming that the antenna is
operating at or near the lowest-order resonant frequency 7'M, as described in [13],
then the microstrip patch can be replaced by two magnetic dipoles. Since the aircraft
code already models a slot antenna by a magnetic dipole [2, 1], the two magnetic
dipoles can be easily implemented. The major difference between the two magnetic
dipoles used to model the microstrip antenna and the existing ones in the NEWAIR3
Code is that the fields in the latter ones have a cosine distribution along their long di-
mensions, but the currents on the “new” magnetic dipoles are constant. The following

gives the modified SG input format for rectangular microstrip antennas.

SG:

PHS, Z§

MSX

RHOA(MS), PHIA(MS)

SLOTAA(MS), SLOTBB(MS), BETADA(MS), SMONOA(MS), JANTA(MS)
WMA(MS), WPA(MS)

TSE, X0, Y0, CER,CERI

The parameter JANTA (MS) defines the type of antennas as follows:

1 -> SLOT ANTENNA (AXIAL OR CIRCUMFERENTIAL),
JANTA(MS) = 2 -> MICROSTRIP PATCH ANTENNA,
3 -> RADIAL MONOPOLE ANTENNA.

When a slot or a monopole antenna is chosen as the radiation source in the aircraft
code, the last line of the inputs for SG are ignored and should not be used. On the
other hand, if JANTA(MS)=2, SLOTAA(MS) and SLOTBB(MS) denote the
nonresonant and resonant lengths of the microstrip patch antenna (see Figure A.1).
In addition, the parameter BETADA (MS) represents the angle between the axis
of the fuselage (i.e., z direction) and the microstrip antenna and is measured in the

counter-clockwise direction as shown in Figure 4.27. The parameter TSE represents
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Figure A.1: The geometry of a rectangular microstrip antenna.
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the thickness of the substrate of a microstrip antenna, (X0,Y0) are the coordinates of
the feed point, and CER and CERI are the real and imaginary parts of the relative
dielectric constant €,. For more details about the microstrip antenna in the aircraft
code, please refer to [13].

The following shows an example of defining a rectangular microstrip patch antenna

as a radiation source in the NEWAIR Code:

SG: RECTANGULAR MICROSTRIP PATCH
0.0, 0.1

1

0.0, 0.0

0.14, 0.28, 60.0, 0.0845, 2

1.0, 0.0

0.05, 0.1, 0.0, 4.0, 0.0

A.2 Additions/Modifications on Programs

The following documents the new subroutines and modifications on the original sub-

routines of the NEWAIR3 Code.

1. Subroutine CMATRIX - This subroutine calculates the elements of the transfor-
mation matrix §. By multiplying this matrix to the incident field, the “normal”
incident field with respect to the wedge walls is obtained. After the edge diffrac-
tion is computed, the inverse of the transformation matrix can be multiplied by
the diffraction coefficient and the “normal” incident field to obtain the tangen-
tial diffracted field. For more details on CMATRIX, please refer to Chapter 3

where the discussions on the transformation matrix are detailed.

2. Subroutine CONSTANT1 - This subroutine computes the constant matrices
B: and D, for the edge diffraction with the wedge number n equals to one. The

expressions are given in (B.4) and are obtained from the equation (B.2).
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3. Subroutine CONSTANT?2 - This subroutine calculates the same constant ma-
trices as CONSTANT]1, except that this subroutine is used for impedance half

planes. Please refer to (B.6) for the Eg and Bz expressions .

4. Subroutine CONSTANT3 - The B and D (see (B.10)) for impedance right-
angle wedges are computed in this subroutine. All these constant matrices are
solved from Equation (B.2) (i.e., for the purpose of removing the poles due to

the inverse of §) Please refer to Chapter 3 for more details.

5. Subroutine DIFF_COEF - This subroutine computes the elements of a 2 by
2 dyadic diffraction coefficient (refer (3.24)) for diffraction at an impedance
wedge. All equations are referenced from [10] and are discussed in Chapter 3.
Numerical results have been shown that by taking the limits on the impedance
values to zero, the modified code has almost identical results as compared to

the original NEWAIR3 Code.

6. Subroutine DIFFLD — The modifications on this subroutine are for the pur-
pose of making impedance plates available in addition to PEC plates for the
NEWAIR3 Code. Depending on the selected plate’s material, this subroutine
decides to call either the original diffraction coefficient subroutine WD or the
the new DIFF_COEF subroutine. If the MATERIAL(MPX) for the MP X
plate is chosen to be “2”, then the DIFFLD subroutine starts to look for the
correct impedance values for a wedge formed by the MPX*" plate with the

other structure of an aircraft. Here we consider three cases to form a wedge.

(i) A single plate (i.e., the plate is not attached to any obstacle): This case is
considered to be an impedance half plane. The impedance values Z, and
Z, are entered in the given order at the last line of the input data in the

PG command.

(ii) A plate is attached to another plate: Z; is the impedance value on the lit
side of the M PX* plate. Zp, is the lit-side impedance of the plate attached
to the MPX* plate.
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(iii) A plate attached to the perfectly electrical-conducting fuselage: Since we
only have solutions for right-angled wedges, half planes, and two-part
impedance planes, the plate has to be attached to the fuselage at the
center line 1 Thus, Z; is the lit-side impedance value of the attached

plate and Z, is zero since the fuselage is a PEC.

After the appropriate impedance values are selected, the DIFFLD subroutine
computes the diffraction coefficient and then the diffracted field for each plate

with a desired pattern cut.

7. Subroutine DTMATRIX — This subroutine computes the elements of the ma-
trix that maps the incident field at the receiver’s image location (after double
reflection) into the reflected field at the receiver location. In this subroutine,
the T_MATRIX is called twice so that the incident field is transformed into
a reflected field after reflection from the first plate and subsequently after re-
flection from the second plate. A call statement of DTMATRIX is added to
the RRFLD subroutine for calculating double-reflected fields from all the plate

structures.

8. Subroutine MMATRIX - The expression for the elements of Mis given in (3.19)
and this matrix is related to the Maliuzhinets functions by (3.18). Limits are
taken as the impedance approaches to zero and infinity, and they are summa-
rized in Table 3.3. This subroutine is used in the computations of the edge

diffraction.

9. Subroutine MATLIB - This is a math library which contains various math

operations on complex matrices.

10. Subroutine PATFACT_SOURCE - The purpose of adding this subroutine is to
organize all the pattern-factor expressions for various antenna sources into a
single subroutine. This subroutine is been called by the following three subrou-

tines: ELLFLD, DIFINC, and DINLIT.

1Refer to the Airborne Antenna Radiation Pattern USER'S MANUAL [1] for more details about
the attachment to an aircraft fuselage.
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11. Subroutine REFL_COEF - The parallel and perpendicular reflection coeffi-
cients are computed in this subroutine. Limits on the coefficients have been

taken for the perfectly electrical-conducting case. This subroutine is called in

T_MATRIX.

12. Subroutine THIMATRIX - This subroutine involves the computations of prod-
ucts of well-known Maliuzhinets functions. The expressions of the 2 by 2 matrix
is given in (3.16) and some limits as the impedance approaches zero or infinity
are taken and summarized in Table 3.1 and Table 3.2. For more details, please

see Chapter 3.

13. Subroutine T_MATRIX - This subroutine is added to replace the original RE-
FGEO subroutine. T_MATRIX (refer (2.34)) maps the incident field at the

receiver’s image position into the reflected field at the receiver location. This

matrix is called in the subroutine REFFLD.

Note that the original Newair3 Code has been broken down into a main program
and subroutines which are contained in the same-named files. A GNU makefile is

also written to include all programs involved the NEWAIR3 Code to shorten the

compilation time.
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Appendix B

The Constants 1:3n and l:)n

The 2 x 2 matrices 1=3,, and 5,, are included in the expression of diffraction coefficient
(3.9) to eliminate the singularities introduced by the inverse of the transformation

matrix § (). To satisfy the edge condition for the spectral function in (3.5),

lim F,(a) = constant vector, (B.1)

[Im(a)|—o0

the constant matrices 1=?,, and 1=),, can then be obtained by solving the following

equation:
= 7 = = . a:k
vt ¥ n + Bn + Dn sin(—
{a,.(a)—an(T"— ") ( n )
G- R =0 (B.2)

=-1
The of are the poles of § depicted in Figure B.1 for each special case and

oa(a) = sin(—z—),

vE = [ 45 1 ] :
and
_ E,,
oz — ° ’ (B3)
qOHOz

where E,, and Hy, are arbitrary constants for incident electric and magnetic fields,

respectively, and 7o is the intrinsic impedance in free-space. Note that v* is a 1 x 2

row vector.

In the following, the expressions for B, and D, are presented (see details in {14,

15)).
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Figure B.1: The poles of §



) n=1:

Bio= — N, (ad)Z; (o) N1 (ad),
D = {""], (B.4)
0 0

in which the poles af = %3¢ and ¢ = ln(%’i“’g—ﬁl). The functions Z (a) and

]T/'n can be written as
Zn(@) = ou(a) L —ou(nr/2-¢) 1,

vt ¥ (a)

- ) (B.5)
v~ ¥ (—a)

Nn (a)

where I is defined in (3.25), v* and o,(a) are given in (B.3), and n is the wedge

number of 1,2, 3, or 3.

(i) n=2:
s _ 2B T+ @) (ot T (o) T ()
i (26in(B) + K (ao)) o — ¢) ’
. [T+E@)E e+ E-a0) G (a)
D; = 2sin(f) (2sin(B) + K(av)) -, (B.6)

where af = 7/2 £+ j¢ and ¢ has the same definition as the n = 1 case. The

matrices G (a) and T () are written in the following expressions:

(@) = N; (a) Z2(a) N2 (a),

QL

(@) = N, (¢) 172 (a) N2 (a), (B.7)

w11l

in which N, (a) and Z are the expressions given in (B.5). The function K(ao)

is written in terms of the functions M(a) and D(a,~a*)', namely

4D(ag’ —aa)ﬁ(—a?;, a(;)

oo =2 G () "

(B.8)

14x® denotes complex conjugate.
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in which

-~

D(as _a*) = ‘I’h(a)wﬂ('—a*) - \Ilc(a)q’h(—a*)’

and

M(a) = ¥.(a)¥h(—a) + T4(a)¥.(-a).

(i) n = 3

where

i., for Zy = o0
iy, for Zo =0 .

The row vectors g* and t* can be written as follows:

s ]z o Ble)on(ad)¥u(af)
o {“’( ) (@) (ad) }

a(ap) — on(n7/2 - ¢)
¥ (o )on(ag)¥=(aF)

ot E’(aét)
o=l

{h, if Zo =0
zr =

€, ifZ0=OO

:U,.,(a:lt) - a',,('n,1r/2 - ¢,)] an(ait)q’::(ali)

(B.9)

(B.10)

(B.11)

(B.12)

+

where four poles are captured within the nwr/2 strips and are given as aj =

—7w/4 % j€, af = 37/4 + j€. Moreover, the expressions for the column vectors

72



., iy and the row vector ¢ are given by

- [ 1 .
i, = ,
e 0 -
- N . .
Up = y
L 1 J
v U o)y | 53702 v ¥ (af )y | 571 =
c= — = W= Q w,
7a(a)¥(a; )] ¢ W= |G Ged)
and
= 1, f Z, =0
— oo (B.13)
—Y2 = j, ifZ():OO

where the matrix W is given by

w, = v¥o(ad - B : o
wy vt ¥ ( 0){an(a§)—0n(%-¢’) aﬂ(azlh)_aﬂ(%t_¢l)} (B19

= —ﬁd,

= [0 0}, (B.15)
00

in which the column vector % and the row vector v* are given in (B.13) and

N

(]|
[
|

(B.3), respectively. Only one pole is captured within the n /2 strip and is given

by af = n/4 + j€. The expression for the row vector can be written as

vt E’ (GT )yz

: B.16
V.(a}) {oulal) - oulnr/2 — $)] .

where the subscripts  and y, are defined in (B.12) and (B.13), respectively.
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