N95-13590

EG&G AND NASA FACE SEAL CODES COMPARISON

Prit Basu EG&G Sealol Cranston, Rhode Island

23073 p. 11

07177 322/46

• Codes Received from NASA

• Seal Hardware and Application

• Description of EG&G's Code

• Description of NASA Code

• Results and Discussion

• Conclusions and Future Works

Codes Received from NASA

- 'SPIRALG' Gas Lubricated Spiral-Grooved Cylindrical and Face Seals.
- 'GCYL' Gas Lubricated Cylindrical.
- 'ICYL' Cylindrical Seals Lubricated by Incompressible Fluids.

• Codes Received from NASA

• Seal Hardware and Application

• Description of EG&G's Code

÷.

- Description of NASA Code
- Results and Discussion
- Conclusions and Future Works

Schematic Diagram

.

1

1

111 111

=

-

Used in Centrifugal Gas Compressors

Spiral-Groove Seal Face

Maximum Operating Conditions

- Pressure 1500 psig
- Temperature 400 °F
- Surface Speed 550 ft/s

- Codes Received from NASA
- Seal Hardware and Application
- Description of EG&G's Code
- Description of NASA Code
- Results and Discussion

781-1

• Conclusions and Future Works

- * Seal Face Distortions
 - Pressure (Finite Element)

1

Ē

=

Ē

- Thermal
- Centrifugal

Pressure Distortion

Finite Element Mesh - Stator

* Fluid Pressure Distribution

- Hydrodynamic Section
 2D Compressible Reynolds Eqn
- Hydrostatic Section 1D Compressible Flow
 - Choking

- Codes Received from NASA
- Seal Hardware and Application
- Description of EG&G's Code

• Description of NASA Code

- Results and Discussion
- Conclusions and Future Works

"SPIRALG" CODE

Gas Lubricated Spiral-Grooved Cylindrical and

Face Seals

11.1.1.1.1.1 1.1.1

:

- Narrow Groove Theory. $N_g \gg 2 \pi \sin \beta$
- Compressible Reynolds Equation Over

the Entire Seal Face.

- Inertial Effects Neglected.
- Face Deformations Not Considered.
- Calculates Frequency Dependent Film

1.11

Stiffness and Damping.

• Codes Received from NASA

• Seal Hardware and Application

• Description of EG&G's Code

• Description of NASA Code

• Results and Discussion

• Conclusions and Future Works

Example Case

Design Parameters :

Seal OD	=	6.0	in
Seal ID	Ŧ	4.6	in
Groove Angle		*	
Groove Depth	=	*	
Number of Grooves	=	12	
Width Ratio	=	*	
(Land/Groove)	=		
Spiral Span		*	

Operating Parameters :

System Pressures	= 100 - 1500 psig
Discharge Pressure	= 0 psig
Speeds	= 7500, 15000 RPM
Temperatures	= 95, 170 ° F

*Proprietary information of EG&G Sealol.

Leakage Correlation

Face Deformations Suppressed in EG&G Code

= 3

1.0

ŝ

11.000

-

:

94

Leakage Correlation

Face Deformations Activated in EG&G Code

15000 RPM

95

Film Stiffness & Damping

Design & Operating Parameters

h	=	100	μ in
α,	=	15°	
Ň	=	16000	RPM

2

Ξ

12

Stiffness & Damping Data

Talat	EG&G	SPIRALG			
Ime	K	K	C	K	C
Pressure		0 rpm	0 rpm	16000 rpm	16000 rpm
Po		(lbf/uin)	(lbf.s/in)	$(lbf/\mu in)$	(lbf.s/in)
(psia)	$(101/\mu m)$	<u>(101/μ11)</u>	-7087	18.7	-3731
114.7	13.44	20.00	-1312	27.0	-1229
314.7	15.81	20.10 20.85	-1012 R41	30.0	594
514.7	17.52	49.03	2750	33.9	2670
1014.7	20.36	33.09	2130	37 1	3520
1514.7	21.68	36.38	3000	51.1	

• Codes Received from NASA

ъ.

ŧ

ł

5

ł

ı.

• Seal Hardware and Application

• Description of EG&G's Code

• Description of NASA Code

• Results and Discussion

• Conclusions and Future Works

Conclusions

For the Example Case :

- EG&G code with face deformations suppressed and "SPIRALG" agree well with each other as well as with the experimental data.
- '0 RPM' stiffness data calculated by EG&G code are about 70-100% lower than that by "SPIRALG".
- Not an appreciable difference between '0 RPM' and '16000 RPM' stiffness and damping coefficients calculated by 'SPIRALG'.
- The film damping above 500 psig calculated by "SPIRALG" is much higher than the O-Ring secondary seal damping (e.g. 50 lbf.s/in).

Future Works

• Annular Seal Analysis with 'GCYL'

.

•

â

1

H

.

• • • • • •

-

1

.

. . .