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1 Two-Dimensional Boundary Layer Analysis of CDE

1.1 Objective

The objective of this portion of the computational analysis is to obtain the boundary layer displacement and

momentum thicknesses at the cowl lip station for the NASP Concept Demonstrator Engine (CDE) at the Mach

5, 6.28 and 6.80 conditions in the NASA Langley 8' High Temperature Tunnel (8' HTT). These values are to

be compared to those calculated for the SSTO Flowpath Model as installed in the NASA Lewis 1 foot by 1-foot

Supersonic Wind Tunnel (lxl SWT) with various boundary layer diverter heights, to determine the diverter

height which provides the best simulation at each Mach number.

1.2 Approach

The CDE model consists of an 8 degree wedge followed by seven 1/2 degree compressions. Table 1 gives the

coordinates for this planar surface. A 100x65 point grid was generated for this surface using the grid generation

package INGRID2D [2]. The grid was clustered toward the surface using a hyperbolic stretching function to give
a y+ < 1 for the first grid point off the wall at x = 97.43 inches. In addition, the grid was designed to be exactly

normal to the surface so that integration of the profiles could be completed along a single grid line. See Figure

1 for a diagram of this grid. The outer boundary of the grid was located far enough away from the surface so

that edge conditions could be well defined for all cases.

x (inches)

0.000

41.122

51.216
60.413

68.825

76.549

83.670

90.258

97.431

y (inches)

0.000

5.779

7.288
8.745

10.152

11.514

12.834

14.115

15.574

model leading edge

cowl lip station

Table 1: Coordinates for the CDE ramp.

The Navier-Stokes code PARC2D [1] was used to calculate the turbulent flow over the CDE ramp for the

flow conditions given in Table 2. Although the Langley 8' HHT uses a methane combustion process to heat the

air, the molecular weight and ratio of specific heats are close to those of air. Therefore, most of the calculations

were performed using air properties. To assess the sensitivity of the results to a change in the ratio of specific

heats, the Mach 6.28 case was also performed assuming a ratio of specific heats of 1.3. One calculation was also

performed at Mach 6.28 with a cold wall, T_al_ = T_ - 399R.

All the calculations were starting using a uniform inflow plane set to the freestream conditions given in Table
2. The outflow boundary and the fax field boundary were extrapolated from the upstream flow conditions. A

no-slip wall was imposed on the body surface.

The displacement and momentum thickness were determined using the compressible Von Karmen integral

relations,

= 1 = dO (1)
p,U_

o = 1- N co. (2)



where, _ is the direction normal to the surface. Since the grid is orthogonal to the surface, the above integrations
were performed along the normal grid line. The velocity, U is velocity parallel to the surface and is found from

the simple geometric rotation, _" = ucos_ + vsin_, where c_ is the body slope. The predicted values of 6* and

O at the cowl lip, Zbody = 97.43 inches, are given in Table 3.

Figure 2 shows the axial distribution for momentum and displacement thickness as predicted by PARC2D
at Mach 5. The dimensions for both momentum and displacement thickness are given in inches. The spikes

in displacement thickness and to a lesser extent in momentum thickness result from the compression waves

stemming from the 1 degree compressions. Similar axial boundary layer property predictions are given in Figure

3 for Mach 6.28. As the Mach number is increased further, and the Reynolds number reduced, the boundary
layer growth is more pronounced as can be seen in Figure 4.

At Mach 6.28, a cold wall (T_azz = 399 R) reduces the overall boundary layer growth. See Figure 3. The

increase in density near the wall reduces the displacement thickness by approximately thirty percent at the last

axial station. A reduction in the ratio of specific heats does not greatly effect the momentum thickness, as can

be seen by comparing the curves in Figure 3. However, the displacement thickness is increased by approximately
ten percent at the last x station.

1.3 Conclusions

As the Mach number is increased and the Reynolds number decreased, the boundary layer growth rate increases
on the CDE ramp for an adiabatic wall. Cooling the wall reduces the displacement thickness but increases the

momentum thickness because of the elevated density levels near the wall. A variation in the ratio of specific

heats leaves the momentum thickness unchanged but slightly decreases the displacement thickness growth rate.
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Mach

5.00

6.28

6.28

6.28

6.80

(It -1) 7 e.,o,. (psia)

1.758E06 1.4 .509

1.211E06 1.4 .283

1.211E06 1.4 .283

1.211E06 1.3 .283

1.017E06 1.4 .243

Ta*aUc (deg R)

395.

399.

399.

399.

431.

wall cond.

adiabatic

adiabatic

T_ij = 399R

adiabatic

adiabatic

Table 2: Flow conditionsin the NASA Langley 8'High Temperature Tunnel.

ne(l_ -1)

1.758E6

1.211E6

1.211E6

1.211E6

1.017E6

Mach no.

5.00

6.28

6.28, T,o,n = 399R

6.28,7 = 1.3

6.80

_" (PARC)

0.3795 in.

0.4495 in.

0.2858 in.

0.5008 in.

0.5194 in.

O (PARC)

0.0470 in.

0.0418 in.

0.0550 in.

0.0502 in.

0.0436 in.

,5" (STAN5)

0.3956 in.

0.4580 in.

0.3112 in.

0.4852 in.

0 (STAN5)

0.0521 in.

0.0446 in.

0.0574 in.

0.0431 in.

Table 3: Displacement and momentum thicknesses on the CDE ramp at x=97.43 inches.

Figure 1: Grid distribution used for CDE ramp analysis.
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2 Two-Dimensional Analysis for the SSTO Flowpath Model

2.1 Objective

The objective of this study was to determine the diverter heights in the NASA Lewis lxl Supersonic Wind

Tunnel which would best reproduce the boundary layer profiles found for the larger CDE model tested in the

NASA Langley 8' High Temperature Tunnel. To achieve this, the momentum and displacement thicknesses

were determined for the Mach 4, 5 and 5.5 conditions for several facility boundary layer diverter heights. These

boundary layer values were plotted against those computed in the previous section for the CDE model.

2.2 Approach

The incoming facility boundary layer was described using experimental pitot pressure measurements obtained

for the four nozzles. Since these profiles had been obtained at different flow conditions, it was necessary to

rescale them before they could be applied to the current study. This static pressure required to rescale the pitot

pressure profile was determined based on the freestream Mach number in the tunnel. Assuming that this deduced

freestream static pressure remained constant through the boundary layer, a Mach number profile was obtained.

The resulting nondimensional pitot pressure profiles and the Mach number profiles are shown in Figures 5, 6, 7,

and 8. Using these Mach number profiles and assuming that the flow was adiabatic, H_au = H_o, the incoming

velocity and thermal boundary layers were determined. Five diverter heights were simulated by shifting the y

coordinate in these profiles by 0.0, 0.25, 0.5, 1.0 or 1.5 inches. This adjusted Mach number profile was then used

as the inflow plane to PARC2D.
The SSTO Flowpath Model is a 0.3 scale version of the CDE ramp, given in the previous section, which

has been rotated by nine degrees and the initial 60.413 inches has been eliminated. This set of x-y coordinates
are given in Table 4. For this shortened model, the grid size was reduced to 40x65. The grid generation was

performed exactly as described for the CDE calculations and will not be readdressed; except to say that the y+

at the last axial station was less than one when there was no incoming boundary layer. This grid dicretization

should adequately resolve the boundary layer for all diverter heights.
PARC2D was again used to calculate the turbulent, adiabatic flow over the SSTO Flowpath Model ramp.

The predicted displacement and momentum thicknesses are given in Tables 6 and 7 for four Mach numbers and

five diverter heights. The displacement and momentum thicknesses listed for the CDE ramp are for the adiabatic
wall cases and have been rescaled to match the SSTO scale.

At diverter heights less than 0.5 inches, the boundary layer is dominated by the ingested facility shear

layer. The resulting momentum and displacement thicknesses at x=l 1.3 inches are significantly greater than the
boundary layer produced on the CDE model at the corresponding station. A diverter height of 1.5 places the

model outside the facility shear layer and the predicted momentum and displacement thicknesses are lower than

produced on the CDE model. A boundary layer diverter height of 1 inch produces the best simulation for the

boundary layer development on the CDE ramp. This result is consistent for all three Mach numbers compared.

Figures 13 through 15 compared the Mach number and pitot pressure profiles between the CDE model and

the SSTO model assuming a 1 inch diverter height. (Since the NASA Langley High Temperature Wind Tunnel
cannot run at conditions which would correspond to the Lewis Supersonic Wind Tunnel conditions at Mach 3,

this portion of the study has not been performed for this Mach number.) These profiles are at the last computed

station which is a plane normal to the ramp at the cowl lip leading edge. As can be seen, the overall boundary

layer thickness is compatible between the two flow situations. However, the more diffuse nature of the ingested
facility boundary layer used in the SSTO predictions caused a more rounded boundary layer edge.

2.3 Conclusions

Two-dimensional calculationswere performed on the initialramp sectionofSSTO flowpath model. The boundary

layerpropertiespredictedfor fivefacilityboundary layerdiverterheightswere compared to the boundary layer

propertiespredictedfor the CDE ramp model. From this comparison, a 1" diverterheight was determined to

givethe best simulationofthe boundary layergrowth from the longer CDE model.



x (inches)

0.000
2.558
4.911
7.083
9.095
11.289

y (inches)

0.000

0.022

0.063

0.120

0.190

0.287

Table 4: Coordinates for the SSTO Flowpath Model.

Mach Re (ft -t)

2.90 6.2047E6

3.93 1.627E07

4.88 8.405E06

5.55 6.568E06

P,t,,ic(psia)

1.0889

1.0867

0.3118

0.1774

Ts_a_i¢ (deg R)

194.

123.

99.2

86.9

wall cond.

adiabatic

adiabatic

adiabatic

adiabatic

Table 5: Flow conditionsin the NASA Lewis l'x'l'Supersonic Wind Tunnel.
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Figure 5: Pitot pressure and Mach number profiles for the NASA Lewis lxl Supersonic Wind Tunnel with the
Ma_:h 3.0 nozzle•
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Figure 6: Pitotpressure and Mach number profilesfor the NASA Lewis lxl Supersonic Wind Tunnel with the

Mach 4.0 nozzle.
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Figure 7: Pitot pressure and Mach number profiles for the NASA Lewis lxl Supersonic Wind Tunnel with the
Mach 5.0 nozzle.
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-?_(ft 1)

2.068E6

1.626E7

8.405E6

6.568E6

Mach no.

2.90

3.93

4.88

5.55

6_STo,O.O
inches

0.33406

0.49180

0.56947

0.58756

*}STo,O'25
inches

0.21342

0.32170

0.42501

0.46243

0.12299

0.20773

0.30467

0.32614

/_}STO,I.O0
inches

0.04887

0.05946

0.12584

0.15100

6_STO , 1.5
inches

0.04573

0.02716

0.08315

0.09995

_DE

(rescaled)

0.11385

0.13486

0.15583

Table 6: Displacement thickness on the Lewis model ramp at x=ll.3 inches.

Re(ft 1)

2.068E6

1.627E7

8.405E6

6.568E6

Mach no.

2.90

3.93

4.88

5.55

OSSTO ,0.0
inches

0.07763

0.07113

0.06150

0.05752

OSSTo,O.25
inches

0.05225

0.05232

0.04943

0.04538

OSSTo,O.50
inches

0.02994

0.03457

0.03484

0.03375

OSSTO,I.O0
inches

0.01081

0.00899

0.01336

0.01509

OssTo, 1.5
inches

0.00964

0.00376

0.00783

0.00854

Table 7: Momentum thickness on the Lewis model ramp at x:ll.3 inches.

OCDE

(rescaled)

0.01410

0.01254

0.01308
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Figure 9: Momentum and displacement thicknesses at Mach 2.90 with adiabatic walls.
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Mach number profile, x = 11.3in.
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Figure 13: Mach number and pitot pressure profile comparison at the cowl lip stations between the CDE
predictions and the SSTO predictions with a 1 inch diverter height at Mach 3.93.
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Figure 14: Mach number and pitot pressure profile comparison at the cowl lip stations between the CDE

predictions and the SSTO predictions with a 1 inch diverter height at Mach 4.88.
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Figure 15: Mach number and pitot pressure profile comparison at the cowl lip stations between the CDE

predictions and the SSTO predictions with a 1 inch diverter height at Mach 5.55•
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3 CFD Compared to Measured Boundary Layer Profiles

3.1 Objective

The boundary layers for all five Mach numbers and with four facility boundary layer diverter heights were calcu-

lated using the two-dimensional version of PARC. This information was compared to the available experimental

data. Profiles were also calculated for several cases in the test matrix where the lip rakes had been removed.

Additionally, the computational results will be used to provide static profile information at the lip rake station.

3.2 Approach

The two-dimensional calculations documented in the previous section were compared to the available experimen-

tal data[3]. Two rakes were placed at x=9.8 inches from the SSTO leading edge. The "B" rake was placed on
the model centerline and the "A" rake was outboard of the centerline at z=1.682 toward the splitter sidewall.

Upstream of the cowl lip, the model should be essentially two-dimensional so that the "A" and "B" rake should

be identical. However, there appears to be some small three-dimensional influences measured by the "A" rake

which are more pronounced at the lowest Mach number.
Since the model has been placed in the tunnel using an aircraft orientation, the normal distance is given as

increasing in the negative direction. For the computations, the grid is perfectly orthogonal so the profiles are

taken along the grid line at x=9.8 inches from the leading edge of the ramp. Figures 16 and 17 indicate that
the ramp boundary layer is dominated by the incoming facility boundary layer. The thick, near wall viscous

flow gives the pitot pressure and Mach number profiles a rounded edge. At a diverter height of one inch, in

Figure 18 most of the facility boundary layer has been diverted and the boundary layer edge is more definitive.

The computations compare very well with the experimental data obtained for this flow condition. At this lower

Ma_h number, the compression waves stemming from the 1/2 degree compressions are weakest and the inviscid

portion of the profiles have a less "wavy" appearance than will be seen at the higher Much numbers. When the

diverter height is at its highest setting the viscous region is much smaller and the boundary layer edge is clearly

defined, as can be seen in Figure 19.
In Figure 20 the pitot pressure normalized by the freestream total pressure is compared to the experimental

data. The slope of the predicted pitot pressure above y=-1.4 inches matches the experimental measurement,
however the computations predict a thicker boundary layer. For a Much number of 3.93, both the experimental

data and the computations are in agreement for the inviscid portion of the profile. The static pressure ratio shows

the effect of the series of 1/2 degree compressions along the ramp surface. Figure 21 gives the predicted profiles

for Much 3.93 with the diverter height set to 0.5 inches. There is no data for comparison at this condition. At

Much 3.93 with a 1.0 inch diverter height the predicted pitot pressure compares very well to the "B" rake; see

Figure 22. As previously noted, the "A" rake appears to be picking up some three-dimensional influences. With

the diverter height set to 1.5 inches no facility boundary layer is ingested into the fiowfield. For this condition,
there is a discrepancy between the predicted and measured pitot pressures as can be seen in Figure 23. The

computations predict a sharp boundary layer edge at approximately y=-0.09 inches above the ramp. However,

the measured pitot pressure indicate a thicker boundary layer thickness and a more rounded profile. Whether

this could be the result of the rake disturbing the boundary layer is uncertain.

At Much 3.93 the wall static pressure can be assumed to be independent of the diverter height. As the

diverter height is varied, the static pressure ratio at the wall increases only marginally from _ = 1.24 at 0.0

inches to _ = 1.29 at 1.5 inches.
Figures 24 and 25 show the predicted profiles for Mach 4.88 with diverter heights of 0.0 and 0.5 inches

respectively. Unfortunately, there is no data for these conditions. With a diverter height of 1.0 inch, the

measured normalized pitot pressure compares very well to the predicted values; see Figure 26. At this Mach

number, the "A" rake is nearly coincident with the "B" rake indicating that any three-dimensional effects are

minimal. Near the boundary layer edge, there is some discrepancy between the data and the computations. In

this region the data indicates a larger normalized pitot pressure overshoot. However, above and below this region

the two are in good agreement. When the facility boundary layer diverter height is set to 1.5 inches the inviscid

portion of the flow shown in Figure 27 is again in very good agreement but with the measurements indicating a

thicker boundary layer.

As the diverter height is increased for the Mach 4.88 condition, the static pressure ratio at the wall increases
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from _ ---1.28at 0.0 inchesto _ffi-= 1.38 at 1.5inches.
T_ computed profilesfortheP_lach5.6testconditionfor alldiverterheightsare given in Figures28 through

31. At this Mach number, only one set of experimental measurements were taken at a diverterheight of

1.0 inch using the "A" rake. Looking in detailat this case,given in Figure 30, the data again has a more

pronounced normalized pitotpressureovershoot than predictedby the computations. In the near wall region,

the measurements and the calculationsare in agreement. Likewise,in the inviscidregion the data and the

calculationsagree.The reason forthisdiscrepancyisunclear.This discrepancymay be more three-dirneusional

effectsinfluencingthe "A" rake.

The wallstaticpressureisvery dependent upon the facilityboundary layerdiverterheightforthe Mach 5.55

flow condition.Since thisisthe lowestReynolds number case,the thickincoming facilityboundary layerwith a

0.0 inch diverterheightacts as a bufferto the seriesof compression waves from the 1/2 degree turningangles.In

Figure 28, the staticpressureratioincreasesalmost smoothly from itsfreestrearnvalueto _ --1.31at the wall.
With the diverterheight set to 1.5 inches,the seriesof compressions are noticeablethrou_ the staticpressure

profilewhere the pressure ratioincreasesfrom itsfreestream value to v_ --1.45at the wall.
The momentum and displacementthicknessesnear the rake station,x-9.8 inches,are given inTables 8 and

9. This axialstationisjust past the last1/2 degree turning angle or approximately 1.5inches upstream of the

cowl lip.Generally,the displacement thicknessat x-9.8 isleasthan reported in Table 6 at the cowl lipstation.

3.3 Conclusions

The computed pitot pressure profiles at the rake station were compared to the available experimental data. In

general, the comparison showed very consistent profiles between the data and the computations. When the full

facility boundary layer was ingested, the experimental data indicated a thinner boundary layer, but the overall

profile shape was comparable. For the cases where the facility boundary layer was not ingested, diverter heights

of 1.5 inches, the data indicated a softer boundary layer edge than the computations.
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 (ft

6.205E6

6.205E6

1.626E7

1.626E7

1.626E7

8.405E6

8.405E6

8.405E6

6.568E6

6.568E6

Mach no.

2.90

2.90

3.93

3.93

3.93

4.88

4.88

4.88

5.55

5.55

_swo ,0.0 in.

0.3399

0.4902

0.413

0.404

0.5734

0.6111

6*SSTO,0.50 in.

0.1228

0.2091

0.3003

0.3258

6}STO,I.00 in.

0.0438

0.051

0.0549

0.068

0.065

0.1236

0.132

0.132

0.1070

0.155

6*SSTO, 1.5 in.

0.0424

0.0273

0.056

0.054

0.0755

0.059

0.074

0.0902

CFD

data, rake A

CFD

data, rake A

data, rake B

CFD

data, rake A

data, rake B

CFD

data, rake A

Table 8: Displacement thickness on the Lewis model ramp at x=9.8 inches.

Re(ft 1)

6.205E6

6.205E6

1.627E7

1.627E7

1.627E7

8.405E6

8.405E6

8.405E6

6.568E6

6.568E6

Mach no.

2.90

2.90

3.93

3.93

3.93

4.88

4.88

4.88

5.55

5.55

OSSTO ,0.0 in.

0.0770

0.0715

0.06O

O.060

0.0617

0.0522

OSSTo,O.50 in.

0.0296

0.0346

0.0329

0.0299

OSSTO,I.O0 in.

0.0099

0.012

0.0133

0.013

0.015

0.0100

0.015

0.016

0.0104

0.016

OSSTO, 1.5 in.

0.0090

0.0038

0.012

0.012

0.0073

0.009

0.010

0.0077

Table 9: Momentum thickness on the Lewis model ramp at x-9.8 inches.

CFD

data,rake A

CFD

data, rake A

data, rake B

CFD

data, rake A

data, rake B

CFD

data, rake A
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4 Mass Averaged Mach Numbers Across the Inlet Face

4.1 Objective

The objective of this study was to examine the effect that the diverter height and the cowl height had on the

ingestion characteristics of the SSTO model. This was accomplished by calculating the mass averaged Mach
numbers across the previously computed inlet cross sectional profiles.

4.2 Approach

The mass averaged Mach number was determined by integrating the computational solutions along the grid line

which corresponds to the inlet face at x=ll.3 inches. A simple trapezoidal integration technique was used for
the following formula

f_,,_,n._, p(T M dy
_/I -- Jwal/ (3)

all pU ay

where U was the velocity component parallel to the wall. The outer limits of integration were adjusted to

simulate six different cowl heights varying from 0.5 inches to 3.0 inches.

The mass averaged Mach number distribution in relation to cowl and diverter heights is given in Table 7.

These results are also plotted in Figure 32. The curves fits in this figure were obtained using a second degree

least squares fit through the computed Mach numbers. As expected, as the diverter height increases or the cowl

height increases the influence of the incoming facility boundary layer is diminished and all curves asymptotically
approach the inviscid limit.

At Mach 2.90, a diverter height of one inch appears to place the model above the facility boundary layer edge

asthere isno differencebetween the curvesat 1.0and 1.5inches.For thiscase,thereisthe smallestdeviationin

Mach number, approximately 35%, atthe smallestcowl heightwhen compared to the otherflow conditions.For

the other conditions,thisdeviationin mass averaged Mach number increasesas the Reynolds number decreases

owing to the greaterinfluenceof the facilityboundary layergrowth. At Mach 3.93 thereisa 47% variationin

the mass averaged Mach number depending on the diverterheight. At Mach 5.55,thisvariationincreasesto

51% at the smallestcowl height.Figure 32 shows the maas averaged Mach number valueswhich can be obtained

by adjustingthe cowl heightfor a specifiedboundary layerthickness.

4.3 Conclusions

The mass averaged Mach number at the inlet cross sectional face was seen to be sensitive to both the diverter

height and the cowl height. As either of these were increased, the mass averaged Mach number asymptotically
approached the inviscid limit as the influence of the boundary layer thickness became weaker.
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cowl height
inches

0.5

1.0

1.5

2.0

2.5
3.0

0.5

1.0

1.5

2.0

2.5
3.0

0.5
1.0

1.5

2.0
2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

Mach no.

2.90

2.90

2.90

2.90

2.90

2.90

3.93

3.93

3.93
3.93

3.93

3.93

4.88

4.88

4.88
4.88

4.88

4.88

5.55

5.55

5.55

5.55

5.55

5.55

diverter height
0.00 in.

1.7639

2.1563

2.4574

2.5531

2.5983

2.6504

1.9763

2.6065
3.2561

3.4186

3.4853

3.5879

2.2495
3.0346

4.0537

4.2748

4.3474

4.4839

2.4414

3.3304
4.5266

4.8181

4.9021

5.0780

diverter height
0.50 in.

2.3500

2.5681

2.6686

2.7054

2.7244
2.7476

2.8500
3.3002

3.5507

3.6240

3.6567
3.7108

3.1443
3.8899

4.3624

4.4677

4.5146

4.6006

3.4131

4.2529

4.8953

5.0297

5.0840

5.1990

diver ter height
1.00 in.

2.6253

2.7004
2.7415

2.7596
2.7704

2.7842

3.5203

3.6439

3.7165

3.7484

3.7643
3.7945

4.0889

4.3923

4.5638
4.6125

4.6461

4.6985

4.4156

4.8276

5.1056

5.1926

5.2306

5.3037

diverter height
1.50 in.

2.6380

2.7083

2.7462

2.7631

2.7734

2.7866

3.6620

3.7135
3.7557

3.7778

3.7902

3.8150

4.3619
4.5171

4.6188

4.6544

4.6839

4.7272

4.7929

5.0275
5.1923

5.2601

5.2915

5.3489

Table 10: Mass averaged Mach numbers at various cowl and diverter heights.
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