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Abstract

The focus of this work is the buckling response of symmetrically laminated composite plates having a

planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied

perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply

supported boundary conditions, while the parallel ends are assumed to have either simply supported or

clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the

Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in

this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions

by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for

the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of plane displacement is

approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional

parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters

representing geometric properties. For comparison purposes, a number of specific plate geometry, ply

orientation, and stacking sequence combinations are investigated using the general purpose finite element

code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the

finite element model show agreement within 5%, in general, and within 15% for the worst cases. In order to

verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy

plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation

system, and experimental technique are described. Experimental results for the buckling load, the buckled

mode shape, and the prebuckling plate stiffness are presented and show good agreement with the analytical

results regarding the buckling load and the prebuckling plate stiffness. However, the experimental results

show that for some cases the analysis underpredicts the number of halfwaves in the buckled mode shape. In

the context of the definitions of taper ratio and aspect ratio used in this study, it is concluded that the

buckling load always increases as taper ratio increases for a given aspect ratio for plates having simply

supported boundary conditions on the parallel ends. There are combinations of plate geometry and ply

stacking sequences, however, that reverse this trend for plates having clamped boundary conditions on the

parallel ends such that an increase in the taper ratio causes a decrease in the buckling load. The clamped

boundary conditions on the parallel ends of the plate are shown to increase the buckling load compared to

simply supported boundary conditions. Also, anisotropy (the D16 and D26 terms) is shown to decrease the

buckling load and skew the buckled mode shape for both the simply supported and clamped boundary

conditions.
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Chapter 1

Introduction

1.1 Description of Problem

Thin plates are fundamental components of many engineering structures. The aerospace industry exploits

the high stiffness-to-weight and strength-to-weight ratios afforded by fiber reinforced composite plates by

using them as both primary and secondary structures to reduce the weight of high performance aircraft.

Many of these plates, particularly wing skins and fuselage panels, are used in stiffness critical applications.

Thus, for those plates loaded in compression, buckling must be considered as the primary mode of failure.

Many of the composite plates on aircraft, again notably wing skins, have a nonrectangular planform area; in

fact, many of the composite plates in aircraft applications have a planform area that is tapered along the

length. The purpose of this study is to investigate the buckling response of composite plates having planform

area in the shape of an isosceles trapezoid.

Figure 1.1 presents the planform geometry of an isosceles trapezoid considered in this study. The plate is

defined to have length L, widths W 1 and W 2, and half-widths b I and b2 on the narrow and wide ends,

respectively. The trapezoid is considered isosceles because the corner angle 0 is the same for both the right

and left halves of the plate. The coordinate system originates in the center of the narrow end of the plate. The

x axis coincides with the centerline of the plate, and the y axis traverses the narrow end.

1.1 Description of Problem 1
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W(x)

0 0

Figure 1.1 Trapezoidal Plate Geometry

_y

L

1.2 Survey of Literature

An investigation of the buckling response of plates having a tapered planform first appeared in the open

literature in 1956. Klein [ 1] presented design curves for determining the buckling loads of simply supported

isotropic plates having the shape of an isosceles trapezoid. Simply supported boundary conditions were

assumed on all four edges, axial compression loads were imposed on the parallel ends, and shear loads were

assumed to act along the tapered edges to allow the plate to remain in static equilibrium for any ratio of axial

loads on the ends of the plate. The analysis used the method of collocation in which a deflected shape is

assumed, appropriate derivatives are calculated, the derivatives are evaluated numerically at several discrete

collocation points, and these equations are then substituted into the governing differential equations to yield

an eigenvalue problem. The method of collocation does not required the assumed displacement functions to

1.2 Su_ey of Literature 2



Chapter 1: Introduction

be integrable in closed form, form an orthogonal set, or even satisfy the boundary conditions exactly for the

entire plate. The method only requires the assumed shape to be reasonable at the collocation points. Klein

used a trigonometric function for the assumed deflected shape and developed a solution using three

collocation points distributed along the centerline of the plate. The results showed an increase in the

buckling load of a plate with a tapered planform as compared to the buckling load of a rectangular plate of

the same length and with the same width as the wide end of the trapezoidal plate. No experimental results

were included for verification.

In 1956 Klein [2] also investigated the buckling response of plates tapered in both planform and thickness.

The method of collocation was again used for the analysis. Many graphs were presented to show the effect

of plate geometry on buckling over a very wide range. Again, however, experimental verification was not

included.

In 1957 Klein [3] presented a method of solution for the shear buckling of simply supported isotropic plates

tapered in planform. The analysis was again based on the method of collocation using three points along the

centerline of the plate. The buckling load and deflected mode shape were presented for one specific

geometry. No experimental results were included for verification.

Pope [4], in 1962, studied the effects of different boundary conditions on the buckling loads of isotropic

plates having a planform area in the shape of an isosceles trapezoid. This analysis was developed using the

Rayleigh-Ritz method and assumed that the buckled shape across the width of a tapered plate differs little

from the buckled shape across a rectangular plate under uniform end load and with the same boundary

conditions along the sides. Results are presented graphically for plates with opposite pairs of edges either

simply supported or clamped. These results showed an increase in the buckling load when the planform is

tapered as compared to the buckling load of a rectangular plate of the same length and with the same width

as the wide end of the trapezoidal plate. Clamping the ends of the plate is also shown to increase the

buckling load. For comparison purposes, the buckling loads presented by Pope are usually lower than those

presented by Klein. It is somewhat disturbing, however, that Pope doesn't obtain the classical solution for

the buckling loads for rectangular uniaxiaily loaded isotropic plates having simple supports on all four edges

[5], a festooned curve with the minimum value of 4 at aspect ratios 1, 2, 3 etc. (if the buckling parameter has

the classical definition of Nxb2/n2D). The results presented by Pope have a minimum value of

approximately 3.7 at aspect ratios 1, 2, 3, and 4.

The buckling analyses for plates having tapered planform presented in the technical literature to date are

restricted to isotropic plates. There is a significant amount of information available regarding the buckling

response of composite plates, but this is limited to rectangular geometries. Of particular importance in a

1.2 Survey of Literature 3
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buckling analysis when considering composite plates is the effect of the anisotropic plate bending stiffness

terms DI6 and D26. These terms couple the out-of-plane bending and twisting of the plate. Because these

stiffness terms appear as coefficients of terms involving mixed partial derivatives of the displacement

functions, including these terms greatly increases the complexity of an analysis and hence they are often

neglected. Neglecting these terms, however, can yield significant errors for certain anisotropic plates

In 1969 Chamis [6] presented a criterion, based on experimental results, for determining when the

anisotropic bending stiffness can be neglected. Nemeth [7], in 1986, presented nondimensional parameters

that can be used to assess when the anisotropic bending stiffness can be neglected. These nondimensional

parameters resulted naturally from the nondimensionalization of the buckling equation. Finite element

results showed that a specially orthotropic analysis (D16=D26=0) can yield nonconservative errors as high as

25% in the predicted buckling loads for certain anisotropic cases.

Nemeth [8] used the same nondimensional formulation of the buckling equation in 1992 to study long

symmetrically laminated plates subjected to compression, shear, and inplane bending loads. Variational

methods were used to derive the buckling analysis in terms of nondimensional parameters that characterize

the plate bending orthotropy and plate bending anisotropy. Because the analysis is constructed in this

manner, it is well suited for parametric studies. Results are presented as families of parametric curves that

cover a wide range of material properties, plate geometries, and load combinations.

1.3 Objective and Scope

In general, the survey of literature shows that the buckling of plates tapered in planform is limited to

isotropic cases, while the buckling of composite plates is limited to rectangular geometries, often with the

influence of Dl6 and D26 neglected. Therefore, the objective of this study is to determine the buckling

response of composite plates which have a trapezoidal planform area and which are subjected to uniform

end-shortening. The influence of D16 and D26 are included. The investigation is conducted using three tools.

A special purpose analysis is developed using variational energy methods and the Rayleigh-Ritz

method of solution. The analysis is posed in nondimensional parametric form, well suited for

isolating and investigating the effects of individual material and geometric properties.

A finite element analysis is performed to verify several assumptions made in developing the

Rayleigh-Ritz analysis, and to compare results for some specific plate geometries.

Buckling loads are determined experimentally for a series of graphite/epoxy composite specimens

to verify both the finite element and Rayleigh-Ritz analyses.

1.3 Objective and Scope 4



Chapter 1: Introduction

The scope of this study is limited to symmetrically laminated composite plates having simply supported

boundary conditions on the nonparallel edges, while the parallel edges have either simply supported or

clamped boundary conditions. Known inplane compressive loads applied perpendicular to the parallel edges

are assumed to represent the effects of uniform end shortening.

The question may be asked: "Why bother with a semi-analytic approach if solutions can be obtained using

the finite element method?" Because there is a wide range of materials, ply orientation angles, stacking

sequences, and plate geometries, it is useful to present buckling loads in the form of design charts consisting

of nondimensional parametric relationships. These relationships can present buckling coefficients over a

wide range of materials, geometries, and boundary conditions in relatively few graphs. Additionally, these

parametric relationships can be grouped into sets to reveal trends in the structural response governed by

certain parameters. Because results must be calculated over a wide range of combinations of design

parameters when generating these design charts, a special purpose analysis is preferred over a general

purpose finite element analysis due to the cost and effort involved in developing numerous finite element

models. Also, on a more philosophical level, developing the analysis using energy methods allows one to

"keep their fingers in the physics" and investigate the effects of various parameters at many stages

throughout the analysis before buckling loads are ever calculated.

In what follows, Chapter 2 presents the basic assumptions, develops the analysis based on variational energy

methods, presents the assumed shape for the out-of-plane displacement, and discusses the computer

implementation. Chapter 3 discusses the case of simply supported boundary conditions on the parallel ends

of the plate and presents figures comparing analytical results with finite element predictions. A series of

parametric curves is then presented for this set of boundary conditions. Chapter 4 discusses the case of

clamped boundary conditions on the parallel ends of the plate and presents figures comparing analytical

results with finite element predictions. A second series of parametric curves is then presented for this set of

boundary conditions. Chapter 5 describes the experimental method used to measure the buckling load and

Chapter 6 presents the experimental results for comparison with the analytical results. The appendices

contain much of the details of the mathematics involved in Chapter 2.

1.3 Objective and Scope 5



Chapter 2

Development of Analysis

2.1 Overview of Method

A nondimensional analysis for the buckling loads of symmetrically laminated plates having trapezoidal

planform and subjected to inplane uniaxial compression is developed in this chapter. The analysis is based

on the Rayleigh-Ritz method. This semi-analytic method assumes a series approximation for the out-of-

plane, or buckling, displacement of the plate. The analysis originates by formulating the total potential

energy of a plate subjected to inplane loading. Because the Trefftz criterion argues that a change in the

stability of a structure occurs when the first variation of the second variation of total potential energy of the

structure equals zero, the first variation of the second variation of total potential energy is computed and then

expressed in a nondimensionai form suited for parametric studies. A series approximation satisfying the

kinematic, i.e., displacement, boundary conditions of the plate is substituted into the nondimensional

expression of the first variation of the second variation of the total potential energy. Assuming that the

resulting surface integrals can be performed on a term-by-term basis yields a symmetric general eigenvalue

problem that can be solved using standard routines on a computer. The prebuckling equilibrium conditions

are addressed directly by assuming an inplane force resultant distribution. The prebuckling equilibrium

equations are not solved explicitly.

2.2 Basic Assumptions

The development of the buckling analysis is based on the following basic assumptions:

(1) Each layer in the laminate is orthotropic, linear elastic, and of constant thickness.

(2) The plate thickness is small compared to its length and width.

(3) The plane-stress assumption is valid: the out-of-plane normal and shear stresses are zero.

(4) Kirchhoff's assumption is valid: line elements normal to the reference surface of the plate

remain normal and inextensible during deformation.

2.1 Overview of Method 6
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(5) Von Karman nonlinear strain-displacement equations are applicable: strains are small

compared to unity, out-of-plane rotations are moderate, and rotations about the normal to the

reference surface are zero.

(6) No body forces exist.

(7) The plates are initially flat.

Nonlinear strain-displacement equations are necessary because when an initially flat plate loses stability, the

out-of-plane displacements are no longer linearly proportional to the applied inplane loading. The von

Karman plate theory accounts for this by allowing moderate transverse rotations during displacement. This

yields a geometrically nonlinear relationship between the inplane forces and out-of-plane displacements

because the plate membrane forces are contributing to the out-of-plane equilibrium of the plate.

2.3 Total Potential Energy

The total potential energy of a plate is defined as

H/2

oo  IIII'I (U , V , W °) ---- {OxE x -I- l_yEy "+" {_zEz 4. 'l_xy_xy + 'i_xz'_xz -I- "_yz'yyz} dzdA

(2.1)
A -H/2

+ IIio_d (u °, v°, w°) ,

where I-lload is the potential energy due to the tractions on the surfaces of the plate, and the superscript o

indicates quantities defined at the reference surface of the plate. With the plane-stress assumption, Eq. (2.1)

can be simplified to

H/2

o  II[1-1(u°, v , w °) =
i

A -H/2

{(_xEx+ OyEy + XxyTxy} dzdA + Hload (U°,v°,W °) . (2.2)

Using Kirchhoff's assumption, the strains throughout the thickness of the plate can be expressed in terms of

the reference surface strains and curvatures as

o o

Ex = Ex + ZKx

o o

Ey = Ey + ZKy

o o

'_xy = _xy "Jr" ZKxy .

(2.3)

2.3 Total Potential Energy 7
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Substituting Eq. (2.3) into Eq. (2.1) yields

o W oH(H °, v , )

H/2

: III
A -H/2

o o o o

{(_x (E_'F ZK_) "t-(_y(EyWZKy) +'_xy(Txy+ZKxy) } dzdA (2.4)

FI o o+ lo.d(u,v,w °)"

Integrating through the thickness and using the following standard definitions for the inplane force and out-

of-plane bending moment resultants,

H/2 H/2

Nx- _ axdZ Mx- _ axzdz

-H/2 -H/2

H/2 H/2

Ny--- _ (_ydZ My- f OyZdZ

-H/2 -11/2

H/2 H/2

Nxy-_ f "_xydz Mxy--- ff _xY zdz ,

-H/2 -H/2

yields

 ,uOO ffooooo ov , w °) = (Nx_ x + Ny£y + NxyYxy + Mr: x + MyKy + Mxy_Cxy ) dA

A

o

+FIload(U °,v,w °) •

2.4 Variation of Total Potential Energy

As indicated by the notation of Eq. (2.6), the total potential energy of a plate is a function of the kinematic

variables u °, v °, and w °. To develop the stability equations, the variation of the total potential energy with

respect to arbitrary but infinitesimal variations in these kinematic variables must be investigated. The total

potential energy of a plate computed with arbitrary infinitesimal variations in the displacements u °, v °, and

w ° can be written as

(2.5)

(2.6)

2.4 Variation of Total Potential Energy 8
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o oH+AFI = { (Nx+AN x) (e_+A8_) + (Ny+ANy) (£y+Aty) (2.7)

A

+ (Nxy+ANxy)(T°y+AT_y) + (Mx+AMx) (K_+A)c °)

+ (My+AMy)(_+A_)+ (Mxy+AMy) (_:_y+A)c°y) }dA

o o o o Wo+H+AHioad(U +Au,v +Av, +Aw °) '

where the notation A ( ) represents an increment in ( ) due to the increments Au °, Av °, and Aw °. At this

point it is necessary to express the right hand side of Eq. (2.7) completely in terms of the displacements u °,

v °, and w ° and their increments. It is important to note that both the displacements and their increments

satisfy the kinematic boundary conditions of the plate. The strains in Eq. (2.7) are calculated by substituting

the displacements into the strain-displacement equations, and the stress resultants are computed by

substituting the strains into the constitutive equations and integrating with respect to z, as specified by Eq.

(2.5).

Using the von Karman assumption of moderate rotations, the reference surface strains and curvatures are

defined as

and

o ,(ow°]
Ex= --+-0x 2 _,0x J

o Ov ° 1 (ctw°l 2

£Y = --(_y + 2- k--_-/

O

T =
xy

--+--+
by 0x _-0x Ov J

o 02w°

Ox 2

o 02w°
K --

Y _y2

o _20 20

(2.8)

(2.9)

Using these strain-displacement relationships, the (_ + AC) term in Eq. (2.7), for example, can be

expanded as follows:

2.4 Variation of Total Potential Energy 9
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o A o 1 AwO)l 2.Ex+ Ex = O-_(u° + Au°) + _ [_-_(w° + (2.10)

It is more convenient to express the variations, or increments, in the displacement field using small

parameter notation, namely,

oAu ° EUI

Av ° = Ev_

Aw ° = Ew_ •

(2.11)

0 0 0

Using this notation, the displacements u l, v x,wt are functions of x and y which must satisfy the same

kinematic boundary conditions as u °, v°, and w °. The subscript 1 indicates that these are displacements in

the neighborhood of the equilibrium displacement field, and the scalar parameter e is assumed to carry the

infinitesimal smallness of the variation. Consequently, the first, second, third, and fourth variations of the

responses may be determined by grouping terms with like power of e, i.e., c, E2, E3, E4. Using the notation of

Eq. (2.11), Eq. (2.10) can be expressed as follows:

Therefore,

where

O+A o=__ +eul ) +_I__(wO+Ewt)l
ex Ex (u o o 1 o 2

, ( wO1 °
- +- + + 0x 2kOx )Ox 2 \ _x 7 e _'-_-x ---_--x/+

o o 2 o

=£x +EEx I +E Ex2 •

A o o 20
E x = EEx_+E Ex2 ,

o o

o =--+Ou1 Ow°Ow I
_' Ox Ox Ox

2

o o

In a similar fashion, the (ey + A£y) term can be expanded as

(2.12)

(2.13)

(2.14)

2.4 Variation of Total Potential Energy 10
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,i_hen,

o

e_ + ay

0

o 0

=a'_
o

2 o

(2.xs)

(2.16)

wh_e 0 0

FinallY, the shear strain term can be expanded as o. a _o + aw °)

a (o + au°) + _(v + av°) + ax o

0 0o o
a__ axv aw_ +

au° av_°+ .__-

0 0

\ ax By
2 o ,

"_ o

AS a result, = o + _ 'Yxy_'0

A'Yxy _'Yxy_

(2.V_)

(2.1g)

(2.19)

where

11
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:',-- by
o o

o Ow Ibw i
_ °

Y_Y2= bx by

The curvatures can be handled in like fashion. Specifically:

o

o bw, bw°bw °Ow I +

bx by bx by

K x + AK x = + £W 1)

0x

_2wO _2w°
_ _E _ "!

_x2 bx2

0 0

= K x+ £Kxl ,

which yields

aK_ o----£Kxt •

In the same manner,

o o oKy + AKy = W ° + E'W 1)

by

b2wO 2 o/)w I

by2 by2

O o

= Ky + EKy I ,

and

(2.20)

(2.21)

(2.22)

(2.23)

and finally

with

AK_ eke,

2

o AZ_y -2_x-_W° + ewe)Kxy + =

-,,2 O --_2 o

= -2 ° w _2co w 1

bxOy Oxigy

o o

=Kxy+EKxy I'

(2.24)

(2.25)

2.4 Variation of Total Potential Energy
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where

o o

AI( = EK ,
xy xy 1

(2.26)

2 o

o _ W I

Kxl = _)X2

o
KYl = _)y2

o = -2
l_xY' 3x_y

The constitutive equation relating the inplane force and out-of-plane bending moment resultants to the

inplane reference surface strains and the out-of-plane reference surface curvatures is well known and is

given by

Ny

Nxy

My

M

-All

A12

A16

Bit

BI2

_BI6

At2 A16 • BII B12 B16-

A22 A26 Bt2 B22 B26

A26 A66 Bt6 B26 B66

B12 BI6 DII DI2 DI6

B22 B26 Di2 D22 D26

B26 B66 D16 D26 D66_

Tx y |
o

K x

o

Ky

o

k"

(2.27)

(2.28)

The Aij, Bij, and Dij are defined as follows:

H/2 H/2 H/2

I I IAij = Qijdz gij = Qijzdz Dij = Qijz dz • (2.29)

-H/2 -H/2 -H/2

The Qij are the reduced ply stiffnesses, defined for a state of plane stress, transformed into global

coordinates. The A matrix relates the force resultants to the reference surface strains; the D matrix relates the

bending moment resultants to the reference surface curvatures; while the B matrix couples the force

resultants with the reference curvatures and couples the bending moment resultants with the reference

surface strains. The variations in the stress resultants in terms of the variations in strains and curvatures

become

2.4 Variation of Total Potential Energy 13
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ANy /

ANxy

AM x

AMy

AM

-A_

AI2

Al6

Bit

Bl2

_B 16

AI2 AI6 Bll Bl2 BI6-

A22 A26 B 12 B22 B26

A26 A66 B16 B26 B66

Bl2 BI6 Dll DI2 D16

B22 B26 D12 D22 D26

B26 B66 DI6 D26 D66_

AE;1
Ey

A °
Txy

AKy

A_ °

(2.30)

For symmetric laminates the B matrix is zero, providing no coupling between the inplane and out-of-plane

responses of the plate. Assuming symmetric laminates and substituting the expressions from Eqs. (2.13),

(2.16), (2.19) into Eq. (2.30) yields the following expression for AN x:

E2Eo) 2 o 2AN x = All (EE: "I" -I-AI2(E,E_ +E Ey) -l-Al6(E_/°xy,"l-E '_ 2)

o 2 o + A12£ _ + A16,yxOy2)=E(AllE: +Al2F.,_l+Al6"l'xy) +8 (AllEx2 2

2N ,
= IzNx, + £ x2

(2.31)

where

Nx, = AIIE:I + A12£_, + Al6_xy,°

Nx2= All r° +A128 _ +A oz 2 16_xy2 "

(2.32)

Similar expressions are obtained in Eqs. (2.33) through (2.42) for ANy, ANxy , AMx, AMy, and AMxy,

namely,

A o 20 o+ 20 20
ANy = 12(EExl+E Ex_ ) +A22(EEy 1 8 Ey2) +A26(E_xyl+E _'xy2)

A o + A22£_1 +A o o o o= E ( 12Exl 26_xyl) + E2 (A128x2 + A22Ey 2 + A26_txy2)

2

ANy = £Nyl + £ Ny 2 ,

(2.33)

ANxy=AI 6(E8o 2 o (88_ + 2 o 2, + 8 Ex2) + A26 , £ £y2) + A66 (ET:y, + £ ' ,2)

A o o +A o E2 o +A26£ _ + o= E ( 16gx, + A26Ey t 66_xyt) + (AI6Ex2 2 A66'_xY2 )

ANxy = ENxy I + 82Nxy2 ,

(2.34)

2.4 Variation of Total Potential Energy 14
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K ° K ° K °
AMx=DIIE xt+Di2 E yl+Dl6 E xy t

K ° K°= E(D11_¢° +D12 yt+DI6 xy,)

AM x = EMxt,

(2.35)

AMy = D t2eKx°, + D228_¢ _, + D26EK°y,

K ° K °
= 8(D12 K°,+D22 y,+D26 xy,)

AMy = E;My I ,

(2.36)

o o _o
AMxy = DI6E x I + D26EKy I + D66_; xy 1

o .Ko
= £ (DI6Kxl + D26K_t + D66 xy_)

AMxy = £Mxy t'

(2.37)

where

= AI2EO + o oNYl l A22Ey' + A26"ItxYt

Ny 2 = A128°2 + A228_ + A26Y°y,

o o

N = AI6 E° + A26Ey 1+ A66_[xylxYl 1

o o

Nxy 2 = A16E° 2 + A26Ey 2 + A66_/xy2

(2.38)

(2.39)

o Ko KO (2.40)
Mxl = DIIKxj+DI2 yl+Dl6 xy t

o o o
My_ = D12Kx + D22Ky z + D26 xy_

(2.41)

Mxy, = Dl6l°x + D26K_, + D66K°xy,'
(2.42)

As stated previously, interest centers on the variation of the total potential energy with respect to variations

in the displacement field. That is,
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AFI = (I-I + AI-I) - FI. (2.43)

Substituting Eqs. (2.6) and (2.7) into Eq. (2.43) yields the desired result, which can be written as

A

N o O+ANy£_ + ANyAEy]+ E yEy + NyAgy

N o+ ;::,+ +:,.#o +,,.
+ EM, ° + M,A,_ + AM,, ° + AM A1,;::g (2.44)

o+ o

+ o+EM.,,¢,+-.,,'¢,+,'-.,,¢,,,..
+ o- ENx'O+Ny,g_y+ NxyT_y°+ MxK:o +Mylg; Mxylgx_ } dA

+ I-Iload (U ° + Au °, v ° + Av °, w ° + Aw °) - FIload (U °, v°, W°) ,

where, until more is said about the specific loading, Flloadmust remain in symbolic form. Expanding Eqs.

(2.44) according to Eqs. (2.12), (2.15), (2.18), (2.21), (2.23), (2.25), (2.31), (2.33), (2.34), (2.35), (2.36), and

(2.37) yields

All _j'{Nx(gEx°+ 2 °= _ E,,) + (_N,,+E2N,_)E°+(EN + E2N,,)(_E°, + E2E_,)

A

+ o 2 ° o 2 °
Ny(EEyl+f_ F..y2) + (ENyl+£2Ny2) gx+ (gNyl+E2Ny2) E o( ey_+_ _y2)

2 o E2NxY2) o+ Nxy (E_g:Yl + _ _xY2) + (£Nxyt + "/xy

Eo 2 °
+ (gNxy t + E2Nxy2) ( Txy_+ g Txy2) (2.45)

lg o o + o
+ M_e x, +EM_,lfx _M_E_:_,

o

+ MygK_, + eMyKy + CMy gK_,

+ M,yECy, + EM,_y_y + EMxy EKxy' } dA

o o V o o W o o o o
+I'Iload(U +EUI, +F..VI, +EWI) --l"Iload(U , V , W °) "

Combining terms with like powers of E produces

2.4 Variation of Total Potential Energy 16
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lf_ o o oAll {£ E xExt NxlEx+NyEyI+ Y lNylE_+Nx _t°y +Nxyl_t°y

A

+ o
+ Mxl¢O, +..tVlx_ xo+..MyKy,O+ M y,l_ + Mxy Kx°y, Mxy l_xy ]

2 o + o o o + Ny2E _ + Ny ¢_+ 8 _N x8x2 N%8 x + Nxl 8x, + NyEy 2 ) 1

N o +MxK_+My_:O +My)C_y'-]+ xy_'xy 2 + Nxy2_'x°y + Nxy _/_y ' , y,

+838N oNxtSx2+ x Sxlo +NyiE_2+Nys_ +NxyrOy2+Nxyj_y _o

4r N o +.. o +N o -7
+ 8 [_ x28% l'qy28y_ xy2yxy_j } dA

0 0 V 0 0 0 0 0 0+I-lload(u +su 1, +svl, w +13wl)-Flload(U,V,W°) •

Equation (2.46) can be expressed as

(2.46)

AFI = 8II 1+ 821-I2 + 1331-I3+ 841"14, (2.47)

where 8FI l is the first variation, which is linear with respect to the variations in the displacements, 82I-I2 is

the second variation, which is quadratic with respect to the variations in the displacements, etc.

If the displacement field (u °, v °, w °) is a solution that renders the total potential energy 11 of a structure to

be at a minimum, then the change in total potential energy AII must be positive for all kinematically

admissible variations in the displacement field (8u_, ev_, 13w_). The first variation of total potential energy

is sign-dependent because it is linear with respect to displacement variations. Hence it is possible to have a

decrease in total potential energy for at least one variation of the displacement field. Therefore, a necessary

condition for the total potential energy of a structure to have a minimum value in the neighborhood of an

equilibrium displacement field is for the first variation, eH I , to be zero for all kinematically admissible

variations in the displacement field. Setting 131-11equal to zero leads to the equilibrium conditions for the

structure.

The next higher order term, 82F12, must be investigated to determine if a minimum of the total potential

energy exists (as opposed to a maximum or an inflection point). The second variation of total potential

energy is quadratic with respect to the variations in the displacements. Thus it is sufficient to use this term in

determining the conditions for which a minimum exists. If 821-12 equals zero for even one nontrivial

variation in the displacement field, then 83I-I3 must be investigated.
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The second variation of total potential energy of the plate is a function of the displacement field of the plate.

The displacement field is, in turn, a function of a loading parameter p. When p = 0, the plate is in stable

equilibrium in its unloaded state and the equilibrium displacement field has the trivial solution

o o o

u = v = w = 0. Increasing p by sufficiently small amounts will normally yield nontfivial equilibrium

solutions such that e2F12 > 0 (positive definite). The loading parameter p is said to have a critical value Per

at the smallest value of p that renders e2F12 > 0 (positive semi-definite). In general, determining the

conditions which cause a functional to change from positive definite to positive semi-definite can be

accomplished using calculus of variations by setting the first variation of the functional equal to zero.

Accordingly, the value of Pcr can be determined by setting the first variation of the second variation of total

potential energy equal to zero. This approach is known as the Trefflz stability criterion.

Expanding the second variation of the stress resultants in the second variation of the total potential energy by

using Eqs. (2.32), (2.38), and (2.39) produces

E21-I2 _ff{N ° + (AIIE:2+AI2E_ +ml6'_x°y2)Exx_"x2 2 0

A

o o o

+ (Nye_2 + (A12e_2 + A22ey 2 + A26")(xy 2) E °y)

o o A o A o . o
+ {NxyTxy2+ (Al6Ex2 "I- 26Ey2 + 667xy2) Txy

+ NxEx_ + Ny 8_ + oo l t Nxylq/xYt

+M K:°,+My,K:_,+MyK°y, }dA"

(2.48)

Using the definitions of Eq. (2.28), (2.48) becomes

E2ri2 o= xlExl I I NxylTxYt

A

+M x K° +My K:_ + ox I 1 I Mxytl'CxYl } dA'

(2.49)

The variations in strains and curvature are now expanded by Eqs. (2.14), (2.17), (2.20), and (2.27) to

produce
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' f (ow:l (<l row:<l
E21"I2=_jj[ x\-_X / "+'Nyk_y / +2Nxy_ X by /

A

ow (< +ow°<1_'auo o o

+ Nx'/l"-_x + 3---x b---x- \ by _yy _yy / (2.50)

+NxYlvby 0--7 + bx by _x by /

1(° + My 1_ + Mxy roy } dA "+Mx I x_ _ i , t

For initially flat plates w ° = 0. For this analysis, it is assumed that the plate is loaded inplane to the

buckling condition by specifying the inplane force resultants N x, N r and Nxy Furthermore, to study stability

with respect to out-of-plane displacements, it is necessary that the variation occur only in the out-of-plane

o

component, w l" These conditions imply the following relations are true:

bW ° bW °

-- --0

bx by

o o

U I = V 1 = 0

o o

W 1 _W

Eo au_ (2.5_)
x,- _xx -0

_v_ °+ bul 0 ,
_':Y,- _x by

where, as indicated in the 3rd relation, the subscript 1 has been dropped from the out-of-plane displacement

to simplify notation. Using Eq. (2.51), Eq. (2.50) reduces to

A

K° +Mxy _::y }dA •+ MxK:° t + My, Yt 1 I

(2.52)

Expanding the variations in the moments by using Eqs. (2.40) - (2.42) yields
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A

+ (DI1K ° +D °, 12Ky, + DI6K:yl) K:,

D o+ o o+ (D121(:1 + 22Ky! D26Kxyz) Ky,

+ (DItK: ' + D26K_, + O66K:y,)K:y, } dA"

Substituting Eq. (2.27) for the variations in the curvatures (no subscripts on w) results in

E2Fl2:_ff{Nx_._x Yko_y/ +2N_yI_x x _y/

(2.53)

A

Ic_2w°] 2 2D /°_2w°]/_)2w°]+D22/-_2w°]2+4D _2w°_ 2 (2.54)

+ 4DI6 It) 2w°/(__ 2° 1 + 4D26 It)2w°/(¢92w° /

_,_x-7) _x3----f_ t,_y_) _xay _ _dA.

Integrating the coefficient of 4D66 by parts twice using Green's theorem yields

/owl/ow/l  +/ow° r
A A _A

Figure 2.1 depicts an arbitrary plate having area A enclosed by a smooth boundary OA with an inplane

outward normal vector ft. The outward normal vector is composed of the components fix and fly as used in

the boundary integral of Eq. (2.55). The term ds appearing in Eq. (2.55) is an infinitesimal arc length along

boundary 8A traversing the plate in a counterclockwise direction.
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v

Figure 2.1 Arbitrary Plate Geometry

For polygonal plates which have w = 0 along the boundary, the boundary integral appearing in Eq. (2.55)

is zero (see appendix A). Making this substitution into (2.54) yields

A

¢ wOl ( wO wO1
+ N x \ o_x ) + Ny \ _Y ) + 2Nxy k oqx --_ I } dA •

2.5 Nondimensional Form

(2.56)

The development to this point has been for a polygonal plate of arbitrary geometry. The second variation of

total potential energy is now nondimensionalized for the case of a plate with a planform geometry of an

isosceles trapezoid. This geometry was first presented as Fig. 1.1, and is repeated here for convenience in the

nondimensional coordinate system.
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bl

w(_,)

(
--" b 2 __ y

W 2 _

r

L

_ r

Figure 2.2 Trapezoidal Plate Geometry

Referring to Fig. 2.2, the geometric nondimensional parameters aspect ratio and taper ratio are defined as

L
aspect ratio A.R. = --

W 2

w2 (2.57)
taper ratio T.R. -

W I

The x and y coordinates are nondimensionalized according to the following relationships:

x y=- , _- (2.58)
L b_
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The differential area dA appearing in Eq. (2.56) equals dxdy in the coordinate system of Figure 2.2 which,

when nondimensionalized, equals Lbld_d q . Using the chain rule of differentiation for the derivatives of w

yields the relationships

_w ° 1 _w °

° 1 °

_)X 2 L2t)_ 2

igx L_)_ 32w° 1 32w°

3w° 1 _w ° _y2 b12 _)112

0y blO'q O2w° 1 _2o

bxOy Lbl 8_0rl

(2.59)

Substituting Eqs. (2.59) into Eq. (2.56) yields

Iz2FI2 = _ff fDll fO2w°12 2(DI2+2D66)(O2w°/I02w°l+D22 f92w°12

A

4D16 (O2W°l/0_2W° "] + 4D26 fO2w°) (_02w° 1

+ L3bl _,_2 ) k,0-_2 LD----_L_ 2 ) _'0-_ /

+ N___xx

° 2+b--_kO--- _ / -_1 k0_ ',01] /

(2.60)

Equation (2.60) can now be divided into two parts, one dependent only on the bending stiffnesses D !1, D12,

etc., and the other dependent only on the inplane force resultants. The division takes the form

E2I-I2 = UB + UIS, (2.61)

where

I Dll (_)2w°/Z 2 (Dr2 + 2D66) (02w°/(_2°/+ D22/O 2°_

A

4D16 I_)2w°/(_)2w° 1 4D26 (_ 2w°l (O2w° 1

+ L3b---_ _-°_ 2 ) kO_Oil./+ Lb---T LO'q 2 ) x't_)q/ }Lb,d_drl ,

(2.62)
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and

A

(2.63)

To nondimensionalize the material properties in the fashion of Nemeth [7], Eqs. (2.62) and (2.63) are first

Lb I
multiplied by _------, resulting in

_JD,ID22

--U B = +
L2_/D22t,3_ 2 ) ql-DllD22 t,3_ 2 Jt3--_ )

A

_UIs = _ (____) _2
_/DIID n X2_ID_ b_ 4/Oll 1¢2022

A

^ L D/-D--_22 Nxyb_ 2(3w°'_(_gw°'_
+2--4-- /t -- -- }d_dr I

b, C{tTI2 )

(2.64)

The nondimensional coefficients appearing in Eq. (2.64) can be defined:

a : _4_ G Nxb_
k x -

DI2 + D66 n241-D_i D22
I_-

ky-
DI6 n2D22

_/= _lID22 k -,t 3 Nxyb21

D26 11;2 3- __ liD22

This results in nondimensional forms of the two components for the second variation of total potential

energy. These components are

(2.65)
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and

Lbl = = + + 1
A

+ 4txy (O2w°] rO2w° 1 4_i ¢_2w°] (_2° _

_UIs = UIS = {l_2kx o)2+_._ Yk_--q ] + {X sk_3_ )xO_ ] }d_dTI

,JdllD22
A

(2.66)

(2.67)

2.6 First Variation of Second Variation of Total Potential Energy

The nondimensional functional for the second variation of total potential energy is given by

1-12 = OB + Ois, (2.68)

where 0 n and Uis are given by Eqs. (2.66) and (2.67). The buckling condition is determined by setting the

variation of this functional equal to z_ro, i.e.,

_fi2 = 80B+_iO,s= o. (2.69)

This equation will be referred to as the stability equation. Interchange of the variational and differential

operators and standard steps in variational calculus provides the following relationships:

t._,_ J _,_ _

L,_n2) On2 On2

/_wO_wo' _wO_2_wo y_wO0_wo
_t_ _ :_ _'_ _

_(a_wO_wo _O_w o p_wO_wo

{__ :_ _-c-_+ __
_I_O_w o _wOo_wo p_wo#_wo
t_ _ - b,_2_ +-_ _

(2.70)
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Applying Eq. (2.70) to Eqs. (2.66) and (2.67) yields

and

a_2 a_2
A

I a_w°a_aw°
...I

or2a.q2 aq2

Fa_woa_aw°

+ 2°_'tl_a-_ a_---_+

,,?,_l-a_wOe,_w°
o_Lart2 a_an

_r  wOe,wo

#Sw ° a_o-

a_2 a_an_

a2awOa_ °
+

an2 a_an_

(2.71)

A

+_,pw._w. _w:__:_'t.0,_ o_ + a_ arl /}d_d'q •

(2.72)

Note that these functionals are symmetric and bilinear with respect to w and 8w.

2.7 Out-of-Plane Displacement Approximation

At this point, it is necessary to know w and 8w as functions of _ and 1"1.The Rayleigh-Ritz method assumes

w(x,y) to be an infinite series of the form

w (x, y) = XXWij¢i (x)D..i (x, y). (2.73)

i=lj=i

The Wij are to-be-determined weighting functions; ¢#i and _i are functions that must match the kinematic

(displacement) boundary conditions at the ends and side edges of the plate, respectively. The kinematic

boundary condition to be met for a simply supported boundary is that the displacement must be equal to zero

at the boundary. The displacement and the slope, or derivative of the displacement, must equal zero to meet

the kinematic boundary condition at a clamped boundary. The bending-twisting coupling terms (DI6 and
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D26) included in this analysis cause the buckled mode shape to be skewed (like a rectangular plate under a

shear load) if these terms are of the same order of magnitude as D l i, D22, D l2, and D66. This skewed mode

shape can be represented by combinations of symmetric and antisymmetric functions of x and y in Eq.

(2.73). Because of this, the functional form of _ and f_j must contain complete sets of symmetric and

antisymmetric functions of x and y. For a plate having the geometry of Fig. 2.2, the series along the length

the plate is very straightforward, namely,

• [-ixx-] 7=
Oi =Sln L"L- j 1,2,...

t_i= c°sI(i-1)/xl-c°s[(i+ 1) ?1 7=,.2,...

simple supports

clamped supports.

(2.74)

These functions contain the complete set of symmetric and antisymmewic functions. The functional forms in

y, across the width of the plate, however, are not as straightforward because the width of the plate varies as a

function of x. Thus, the f_j, as indicated in Eq. (2.73) must be functions of both x and y. To develop the

functional form of the I2 i (x, y), consider first a more simple geometry shown in Fig. 2.3.

D

A

h (_)

y

C

B

r

Figure 2.3 Simple Geometry
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In this figure, h (_) represents a variation in the geometry. For simple supports along AB and CD, an

admissible set of functions is

sin F J_-Y 1 " (2.75)

Lh(x)Alj=l 2....

This same function can be used for the isosceles trapezoid of Fig. 2.2 by introducing the simple coordinate

transformation

= y + b (x), (2.76)

where

b (x) = b I + ( b2 - bl _x. (2.77)
_, L ,I

as illustrated in Figure 2.4.

Y

J
J

m X_IIP
h(x)

l b(i)

v X

v

Figure 2.4 Coordinate "lYansformation Illustration
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Equation(2.75) then becomes

sin [ J_ _ ]
Lh (x) J _.._sin[ j_(y+b(x))]2b(x)

=sin[-jTty +_]L2b (x)

=sin[_]cosF jny ]+cos[_]sin[ j_y ] •
L2b (x) J L2b (x) J

(2.78)

Investigating individual terms of Eq. 2.77 for specific values ofj reveals a pattern identifying the sets of

symmetric and antisymmetric basis functions. Consider the following terms:

j= E ]
j= 3---}-cosF 3_y "]

L2b(x)J

j = 4--> sin [ 2nY ]
Lb(x)J

first symmetric function

first antisymmetric function

second symmetric function

second antisymmetric function.

(2.79)

The complete set of symmetric and antisymmetrie functions is thus,

[symmetric set: cos (2j- 1) _ j-- 1.2,...

• _zy _=antisymmetric set: sin [J b--_x)] i,2 ....

(2.80)

The kinematically admissible form for w(x,y) can now be written as

w(x, y) = Z Z¢i (x)IW_cos [(2j- l) =2_x)] + W°sin" L[-jb(x)]]'_y ]] (2.81)
i=lj=l

where Wi_ and W °ij correspond to the to-be-determined constants associated with the even and odd, i.e.,

symmetric and antisymmetric, respectively, functions of x and y. Remember that ¢i (x) is the complete set

of symmetric and antisymmetric functions of x, and takes the different forms of Eq. (2.74) depending on the

boundary conditions at the ends of the plate.
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It is now necessary to write the out-of-plane displacement approximation in terms of the nondimensional

variables according to Eq. (2.58). Using the definition of b(x),

where

Y Y

b(x)

y/b I

_L (b2 - bt1+_ --if-)

_ 'tl ,

1 +e_

(2.82)

b 2
E - 1. (2.83)

b I

Equation (2.81) can then be written as

E X _ . x_
w(_, 1'!)= Z Z Gbi(_) [Wijcos [ (2j-1)2 1--_-E_ + W°sin [J I--'_E_]] " (2.84)

i=lj=l

Making the following substitutions,

fj(_, I"I)= (2j- I)-_ rl
2 l+e_

gj(_,n)=J _n
1 + _ (2.85)

v+(fj)= cos(_)
F i (gi) = sin (gi) ,

yields the series approximation for the buckled shape of the plate in terms of the nondimensional variables,

namely,

oo to

= W E + W° 1-'j (_, . (2.86)w(_,n) _Y_,,,(_)I ,jvjEfj(¢,n)] Igj n)J]
i=lj=l

The variational of w, 5w, has the same functional form, specifically
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_W(_'n) = 2 2*P(_)[_WEqt_/q[fq (_'T'I)] +(_WOqFq [gq(_''rl)]] ' (2.87)

p=lq=l

where the series indices are chosen to be different so the product of terms in Eqs. (2.71) and (2.72), which

are now represented by series, are properly computed.

2.8 Derivatives of Out-of-Plane Displacement

To proceed further it is necessary to compute the first and second derivatives of w (_, rl) and _Sw (_, rl)

appearing in lJ B and l_llS of Eqs. (2.71) and (2.72). These derivatives are:

where

N N

0W° -- { Cij Wij + Cij ij }ZE '°w° ,
i=lj=l

(2.88)

c_jE= *,(_) __fjj _ j +¢'i(_)v,

'J \0gi2 \0{ 2 II}'i (_) FJ

(2.89)

where

02wO N N

- _ _ {c2Ew_+c2°w°_
0_2 u ,J ij ij-,

i=lj=l

Cij =l_i(_) JL0_2) LOfj2 )\O_ j J \Ofj Jk'O_ j

C20=(lIi(_) {(_._j_. ,_(_2gil + (_2Fiqr_g j.]2[ +2,'i (_)(_I'i)(_)k,?giJki)¢2) [,Og_)kO¢ j J \agi) +*"i(_a) rJ

(2.90)

(2.91 )

N N

IN_Ew E NmW o-c_w° - XE- ij ij+''ij ij},
On

i=lj=l

(2.92)
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where

(2.93)

where

O_2wO N N

ZZ 2E E N2Ow O.-- {Nij Wij + ij ij -_'

_I]2 i= lj= I

(2.94)

where

_j= ,_ (_) +
_JLon _ L_) _J J

_agJJt_) tag_J

_2wO N N

2EwE 20 O ,
_3_,r"I - ZZ {Mij ij + Mij Wij}

i=lj=l

(2.95)

(2.96)

(2.97)

_w °

a_

N N

-Z Z e° w°Pq pq" ,

p=lq=l

(2.98)

_)2_wO N N

-- Z Z {C2pE_WEq'I-C2°_W O""pq pqJ, ,

a_2 p= _q_
(2.99)
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_w °
N N

,rN1EswE + "I°_'W°-
E E" Pq pq /Npq 0 pql;

p=lq=l

(2.100)

and

_w °
N N

2E W E 2o W o ,
EE {Npq8 pq+Npq8 pq} "

p=lq-1

(2.101)

3Z_w°
N N

"M2ESw EZ
p---lq= I

(2.102)

2.9 Matrix Form of the Stability Equations

Substituting Eqs. (2.88), (2.90), (2.92), (2.94), (2.96), (2.98) - (2.102) for individual terms appearing in the

equations for UB and 0is yields the following important relationships:

N N N N

. _2E_2E...E C20c2EwOl E
O[2ZZ E Z { [_ij tSpqWij + ij pq 'J" 8Wpq

i=lj=Ip=lq=l

---2E--20--.E 20 20,, rO E
+ [(Sij _pqWij +Cij Cpq wij ] _Wpq } ;

N N N N

•_2E. 2E + N2Ec2E. W E + 2ON2E + 2Oc2E. W O] W EE E E E {[ [Lqj INpq ij pq) ij (Cij pq Nij pq) _ pq

i=lj=lp=lq=l

._2E..20 +. 2E_20. W E 2ON20 20C20. W O, 0
+ [ [Idiji_pq iNijl,Spq) ij"I"(Cij pq +Nij pq) ij]8Wpq }

N N

1/02w°/(_Sw°'_=_._2_ZE 2EN2EwE N2ON2Ew o- W E
ct2 _2 )\ _)r12 ) { [Nij pq ij + ij pq ij j _ pq

i=lj=lp=lq=l

IN2EN2°W E + N2°N2°W °'1 8 E- ij pq ij ij pq ij _Wpq }+

(2.103)

(2.1o4)

(2.105)
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and

N N N N

-c2EM 2E M2Ec2E, W E (C2°M 2E+M2OC2E-W O- 5WEq

i=lj=Ip=lq=l

.c2EM2O+M2Ec20.WE c2OM2O+M2O20 wo] 8wOq}+ [ I, ij pq ij pq ) i i + ( ij pq ij Cpq)

: rf:w°]¢e_w°/+:_wO/p_wO_
N N N N

E 2E. 2E + M2E 2E (N20M2E + M20N2E. W O] 8WEq

i:lj:lp=lq=l

N2E 20 + 2E 20 W E + N2OM20 + M20 20 W O] _WOq }+ [( ij Mpq Mij Npq) ( ij pq ij Npq)

N N N

Pw°lpw°) k._EEE _., .. ,,+_,_,,w,]
x k't_{ )\ 3{ ) = [cIEcIEw E IO IE 0 _WEq

i=lj=lp=lq=l

L. L.W"'IE"IO"'E+ I0 10 O E
-I'- [ ij pq ij Cij Cpq Wij ] _Wpq } ;

k
Y
L_wOqp,_wO,/ . . . .

= tNmNIEw E N_°NlEW°l 8W_q

i=li=Ip=lq=l

[NIENI°w_ Nl°Ni°W °] 8W_q } ;--I-. ij pq ij + ij pq ij-

(2.106)

(2.107)

(2.108)

(2.109)

rr wolr , wo)+:wo,IoQo)]k'Lk_ ;k Oq k O_ x =

N N N N

(cIENtE + N1Ec1E/W E -cIONIE + NIOcIE- W O- 8W E

i=lj= lp= iq=l

.cIENIO+ .IE_IO.. E ._IONIO NIOcIO,IwO,,.W 0
+ [ ( ij pq lXlij LSpq)Wij+ l,L';ij pq + ij pq- ij JO pq }"

(2.110)

Substituting Eqs. (2.103) - (2.107) into Eq. (2.71) and assuming that the integrations can be performed on a

term-by- term basis,/SU B can be expressed as follows:

N N N N

_':',:EEEE[': '<:-"_wE+OEo.Tijpq ij KTijpqWij ) _Wpq

i=lj=lp=lq=l

+ (K EOw E+K OOwO_sw o },
Tijpq ij Tijpq ij / pq

(2.111)
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where

f 9.(_)
| " 2c2E_2E B (c2EN2E N2Ec 2E" 1 .2E_.2E

I<:_E j l _ ij Cpq + + + _Sr_ij _pqTijpq = _- ij pq ij pq )

o -b (_)

20_ ---2E--2E+ 2E 2E 25 2E 2E.I_M2EN2E
+ "_l,{Sij Mpq Mij Cpq) "1-- (Nij Mpq ij pq) } drld_ '

(2.112)

(_) 2C20_2E + .C20..2E + 20C2 E 1 .20_.2EKTijpqOE = {IX ij LSpq [31' ij INpq Nij pq) + _-__r_lij INpq

o -b (_,)

+2  (c OML +M2Oc:E, .. :o..:E+..:ON:E.
ij pq) + -- tNij Mpq Mij pq) } drld _ ,

(2.113)

f l (g)
EO = . 2c2E_20+ 2E 20+ 2Ec20 1 . 2E_,20

KTijpq t_ ij ISpq B(Cij Npq Nij pq) +_-_l_lij l_pq

o -b (_)

2E 20 M2E 20 2_i .. 2E..20.I_..2EN20.
+ 2o_y(Cij Mpq + ij Cpq) + -- _lNij Mpq Mij pq) } drld_ ,

(2.114)

and

f l(_)
----. o_2c2.Oc20 + C20 20 N2Oc2O. 1 . 20..20

K oo { I_ ( ij Npq + + _-_lNij INpqTijpq U Pq ij pq )

0 -b t_)

^ ._20M20+M20C20. 25 20- 20 20N20
+ZI3C'_I'I'Sij pq ij pq) +--_ (Nij Mpq +Mij pq) }dTld_.

(2.115)

Substituting Eqs. (2.108) - (2.110) into (2.72) and assuming that the integrations can be performed on a

term-by-term basis, 51]Is can be expressed as follows:

where

N N N N

_l_JIs = E E E E { (KG_Eq WE + KGOEq WO) _WEq

+ tK EOw E+K OOwO_gw o },
x Gijp q ij Gijpq i j; pq

(2.116)
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K EE ----IGijpq

0

(_){rc2k cIEcIE+ It k N 1E IE
x ij --pq _ y ij Npq

-b (_)

_2 (c!.ENIE+NIEc1E" }dqd_ (2.117)
+ -_kxy- q pq ij pq)

K OE =IGijpq

0

j.(D 2 g2
-/t2k --lO--IE _ k NIONIE+ clONIE+NIO IE
t x_ij (-;pq + _ y ij pq -_kxy ( ij pq ij Cpq) } d_d_ ;ct

-b(_,)

(2.118)

f _(_,) _2 /i;2
K EO I ./_2 k _IE--IO

= j t x%ISpq +--kyN:jENlp°+ k "C'EN '° NIE 10Gijpq 0[ 2 _ xy ( ij Pq -t- ij Cpq ) } drld_,

o -b(_)

(2.119)

f i (_) 2oo: _:_oeo +____?N,o+_ (c,O_lO+N,oeo_
Gijpq 13t2 -_ xy" ij pq -ij --pq" } drld_"

o -b(_)

Combining Eqs. (2.111) and (2.116) yields the series form of the stability equation as

N N N N

_n=E E E E _r(e_WE---_:EEWE,+ .. OEWo -KO_wO,78W_q
L'lijpq ij P Goj_ ij I (l%rijpq ij--P Gqpq ij) A

i=lj=lp=lq=l

.KEO W E -,,EO ,,,E. ,KOO W o -KOO wO.-78WO =
+ [(. T0pq ij--PlkGtj_Wij) + ( Tqpq ij --P Gij. ij)J pq 0 •

(2.120)

(2.121)

The 13 appearing in the equation is the loading parameter associated with the inplane force resultants which

can be factored out of the geometric stiffness matrix. Note that a negative sign is factored out with p. The

load factor 13 is defined such that in Eq. (2.65),

Nx = pNx Ny = 131qy Nxy = 131qyx, (2.122)

where lq x, Ny, and lqxy are the inplane force resultants caused by a load much smaller than the buckling

load. These quantities are referred to as the prebuckling force resultants. Buckling occurs when Nx, l¢/y, and

Nxy are multiplied by 13cr" Since the variational displacements 6WEq and 8W°q are arbitrary, their

coefficients must vanish. This results in an eigenvalue problem for loading p = 13cr that can be expressed in

matrix form as
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-_,r-7o_ I[Ko: ojtwoj
(2.123)

The terms I_E , K_°, "OZ, K_ °ijpq tj_ h'r_j_ ijpqare elements of the so-called total stiffness matrix [KT] and the terms

Ko_jrq,EE Kc,jpq,Eo Kc,j,OEKOOc,j_qare elements of the so-called geometric stiffness matrix [KG] where

___,Eo to  :oojT IK'_ L_c!

(2.124)

See appendix B for further detail in developing [KT] and [KG].

2.10 Prebuckling Inplane Force Resultant Distribution

As stated previously, the equilibrium equations are obtained by setting the first variation of total potential

energy equal to zero. The resulting equilibrium equations are then solved for the spatial distributions of the

force resultants N x, Ny, and Nxy, In order to simplify this analysis, however, a relatively simple prebuckling

inplane force resultant distribution is assumed for the plate rather than solving the equilibrium equations.

The prebuclding inplane force resultant distribution is assumed to be caused by a known shortening of the

plate in the x direction and is of the form

P
NX _ ----

W(x)

Ny=0

N =0.
xy

(2.125)

In Eqs. (2.125), P is the applied load required on the ends of the plate to produce a given end shortening, and

W(x) is the width of the plate, the width varying linearly with x (see Fig. 2.2). This simplification of the

force resultant distribution is based on finite element results obtained using the general purpose finite

element program ABAQUS [9] showing that N x is significantly greater than Ny and Nxy for the range of

geometries under consideration. ABAQUS is well suited to analysis of composite structures because it

handles anisotropic material properties quite easily. In this case, the ABD matrix of a particular stacking

sequence is computed using a separate analysis and is entered as input data to ABAQUS. Table 2.1 presents
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maximum values for Ny and Nxy, normalized by the maximum value of N x, for various geometries and

stacking sequences.The results in Table 2.1 are taken from the finite element studies. The material properties

used here and throughout are given in Table 2.2. The graphite/epoxy properties represent AS4/3502 [7], the

material used in the experiments. Aluminum is used to represent the isotropic case and these properties are

also given in Table 2.2.

Table 2.1 Maximum In

1.0 Isolropic 0

,lane Force Resultants for Various Cases

0

1.0 1.0 [+306/-306] s 0 0

3.01.0 Isotropic

[+306/-306] s1.0

0.148

0.1273.0

0.213

0.216

Note that for a given plate geometry there is very little difference in the ratios of Ny/N x and Nxy/N x between

an isotropic and a highly anisotropic material, indicating that the geometry plays a much stronger role than

material properties in the force resultant distributions. Also note that for the most severe taper ratio, N x and

Nxy are but 20% the magnitude of N x.

Table 2.2 Material Properties for AS4/3502 Graphite Epoxy and Aluminum

I I I I I I i i

Et 127 GPa

Ply Thickness

72.0 GPa

F_,2 11.0 GPa ......

G_2 5.73 GPa .....

v 0.35 0.32

0.127 mm .....
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The simple assumption in Eq. (2.125) for N X was made because it agrees fairly well with finite element

results and is straightforward to incorporate into the computer code written for this analysis. The assumed

form of N x must be nondimensionalized as well. From Eq. (2.125),

where

P P

W(x)
b2 - 2bl )x2bl + k

P/2b I

N l
X

1+_

(2.126)

1 P

N_=

b 2
E= ---1 •

bl

(2.127)

Figure 2.5 is a plot of the assumed distribution of N x along the length of the plate for various geometries.

Note that the relation N x vs. x is independent of stacking sequence.
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Figure 2.5 Nr/N 1 vs. x/L for Various Plate Geometries

Implicit in Eqs. (2.125) is the assumption that N x is uniform across the width of the plate. Figures 2.6 and

2.7 compare the assumed values for N x with finite element results across the width of the plate at several

locations along the length for isotropic and [90]24 composite plates having aspect ratio of 1.0 and taper ratios

1.5 and 3.0, respectively. The solid lines show normalized finite element results, while the dashed lines show

normalized assumed values for N x, both of which are normalized with respect to Nix . The highly orthotropic

[90]24 laminate is chosen as a contrast to the isotropic plate. Figures 2.8 -2.11 show finite element results,

again normalized with respect to Nx1 , revealing the spatial distribution of Ny and Nxy in the plate.

Remember that these quantities are assumed to equal zero in this analysis. For comparison, Figs. 2.12 - 2.17

show results for the same geometries for isotropic and [0]2 4 composite plates, plates with an extreme in

orthotropy.
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By examining these figures, it is seen that for the isotropic plate N x is least uniform near the narrow end. The

largest error in assuming Ny is zero is at the narrow end. Assuming Nxy is zero in an isotropic plate also

results in the most error at the narrow end. For the [90]24 plate, the error in N x is similar to the isotropic case.

The error in Ny is greater than for the isotropic case and the spatial distribution is different. For the isotropic

case, the errors in Ny are both positive and negative, while for the [90]24 laminate, the errors are all positive.

For the [90]24 laminate, the errors in Nxy are very similar to the errors in Nxy for the isotropic case. For the

[0]24 case, the errors in N x are exaggerated relative to the errors in N x for the isotropic case. Oddly enough,

the errors in Ny for the [0]2 4 case are considerably less than those of the isotropic case, as is the case for Nxy.

The accuracy, or the lack of it, in the prebuckling force resultant distributions has an impact on the buckling

predictions. Unfortunately, it is not possible to make general statements regarding whether the error is

always conservative or always nonconservative. Falsely adding inplane compressive forces to the problem

will result in the buckling loads being predicted lower than is actually the case. Falsely adding inplane

tensile forces to the problem will result in the buckling loads being predicted higher than is actually the case.

In addition, the sign of the falsely assumed shear is important. As can be seen from the figures, the sign of

the error in representing the inplane force resultant distribution varies from location to location in the panel,

and it varies with panel orthotropy and, to some degree, panel geometry. Figures 2.6 - 2.17 are considered

quite important to this study, and will help put the buckling predictions obtained from the semi-analytic

analysis into context when compared to results obtained from the finite element analysis.

With the prebuckling stress resultants specified, kx, k r and kxy of Eq. (2.65) can be rewritten as

Nlb 2
x 1

kx- /t2 _11D22 (1 + £_)

k =0
Y

kxy = 0 -

These specific expressions greatly simplify the components of the geometric stiffness matrix [KG].

Referring to Eqs. (2.117)-(2.120),

(2.128)

. Ib2 1 l(_) -_Tt 2 _IEc1E
Gijpq 2_J I"SiJ Pq '

o -b (_,)

(2.129)

.]b 2 1 b_(_)

OE = _xt) t f [ 2_1OcIEK
Gijpq ll:2_J., { 1 + E_ kgij Pq } dqd_ ,

0 -b (_)

(2.130)
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and

N,b 2 _ _.(r) _:2

K EO _ x_j j {__c!.Ec,O
} d_ld_

Gijpq /g2 1 + 8_ 'J Pq
o -b (_)

(2.131)

KO o N_b_ t _(_) n2- I " clOc IO

Gijpq 2_J J _'_ ij pq }dT_d_ .

o -b (_)

(2.132)

With the geometric stiffness matrix posed in this form, the loading parameter p will then have the form

Nlh 2
xVl

(2.133)

Note that the negative sign has been removed. Recall, it was factored out in posing the problem in the form

of Eq. (2.121)

2.11 Computer Implementation

The stability equation is posed as a generalized eigenvalue problem having the form

[KT] {X) = p [KG] (X}. (2.134)

The eigenvector {x } is an arbitrary arrangement of the unknown constants W E and W °, while the loading

parameter p constitutes the eigenvalue. Obviously, there are multiple eigenvalues and associated

eigenvectors. The matrices [KT] and [KG] are symmetric because the functionals 81J B and 801s are

symmetric with respect to w and 8w. The symmetry of the stiffness matrices results in real-valued

eigenvalues. An additional important property to note is that [KT] is positive definite because the strain

energy of a plate is a positive quantity. These special properties of the stiffness matrices allow the use of

simple eigenvalue extraction routines on the computer, resulting in much shorter run times than general

eigenvalue extraction routines.

The elements in [KT] and [KG] are functions of plate geometry, material properties, and the indices i, j, p,

and q in the series for w(x,y) and 8w(x,y) (see eqs. 2.85 and 2.86). An important factor in developing the
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computer code is defining the order in which the unknown constants are included in {x} because the i andj

indices define a specific position within the eigenvector, and hence, a specific column in the stiffness

matrices. In this analysis, the following pattern is used:

{x} = {W E E wErv _. Z E E E EII' W12 ..... W21' W22 ..... W2N' WNl' WN2 ..... WNN'

wO,wO2, o o o o o o o.... WIN, W21, W22 ..... W2N, WNl, WN2 ..... WNN } .

(2.135)

Once the order of the Wij in the eigenvectors is determined, the structure of the computer program is

relatively straightforward. Both matrices [KT] and [KG] are composed of four submatrices each having size

N 2 x N 2, namely, ( [KEE], [KOE], [KEO], [K °°] ) which are be computed concurrently. The

bookkeeping to keep track of position in the eigenvector is handled by two arrays having length N 2 which

are constructed as follows:

{P} = {1,1,1 ..... 2,2,2 ..... N,N ..... N}

{Q} = {1,2,3 ..... N, 1,2,3 .... N ..... 1,2,3 ..... N}.
(2.136)

An outer loop in initiated to step through the N 2 rows of the submatrices. For a specific row, the fixed values

of p and q are determined from the {P } and {Q } arrays (p=P(k) and q---Q(k) for the kth row) while i and j are

free indices, each ranging from 1 to N. Once p and q are determined for the specific row, two nested loops

are initiated to step from 1 to N for both i and j indices, each combination of i and j defining a specific

column within the row under consideration. After the two nested loops are complete and all of the columns

are accounted for, the outer loop updates to the next row and the process is then repeated until all rows are

complete. When the outer loop is finished, the four submatrices comprising [K T] and [KG] are combined and

a standard eigenvalue extraction routine is used to solve for the eigenvalues and eigenvectors. The critical

value of the loading parameter, i.e., the buckling load, is then given by the lowest eigenvalue. See Appendix

C for a more detailed discussion of the procedure used to construct the submatrices.

2.12 Convergence and Efficiency of Analysis

Because a series approximation is used for the out-of-plane displacement of the plate, the accuracy of this

analysis is dependent on the number of terms used in the approximating series. Table 2.3 presents results

showing the convergence of this analysis over a variety of geometries for both isotropic and highly

anisotropic plates with clamped end conditions. In each row of the table analytical results for buckling
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coefficient are normalized by finite element results for buckling coefficient for a specific material and plate

geometry. The general purpose finite element code ABAQUS is used.

Table 2.3 Convergence of Analysis for Clamped End Conditions

Isotropic

[+306/-306] s

ls0tropic

[+306/-306] s

Isotropic

[+306/-306] s

Isotropie

[+306/,306] s

Isotropic

[+306/-306] s

Isotropic

[+306/-306] s

Isotropic

[+306/-306] s

Isotropic

[+306/-306] s

Isotropic

[+306/-306] s

1.00 1.00 1.00 1.00 1.00
1.0 1.0

1.17 1.04 1.02 1.01 1.01

1'o

1.03 0.96 0.96 0.95 0.95..........

1.0 [ 3.0 1"281 1"0! [ 0'961 0,94 0193

2,0I 1 i.23
lO /lOO099

2.0 2.0 1.29 1.14 1"01 /l 0;99 0.98

2.0 ii68 i_ 0.99

1!29 11_ 0.991019 _ ii96

2.09 1.07 1.07 | 1.00 1.00

3.0 1.0 1.53 1.18 1.05 I] 1.02 1.02

3'03 L30 li03 LoiII LO0

3.0 2.0 I
ii85 1.20 L08 iiOi 1_00

3.31 1.41 1.06 1.Ol l.O0
3.0 3.0

1.93 1.22 1.10 l.O1 0.99

1.00 1.00 1.00 1.00 1.00

1.01 1.00 1.00 1.00 1.00

0.95 0.95 , 0.95 0.95 0.95

0,9210.91 . 0191I 0.91 [ 0;91
_1!011 1,01 I i01 [ ii01

iI i i i

0.99. 0.99 ] 0.99

0.9810-98.0.9810,9810.98

0_99 0!9910_1o:_

0!96 0!96'0195' 019510:95

1.o0 1.oo' i.oo 1.oo11.oo
1.01 1.01 ' 1.01 l.O1 [ 1.01

0,99' :0.99 0:99110.99

1100 0.99 0,99 0199 0:99:

0.99 0.99 0.99 0.99 0.99

0.99 0.98 0.98 0.98 0.98

Note that the solution converges more quickly for the isotropic material than for the composite material

because more terms are required to accurately model the skewed buckled mode shapes associated with

highly anisotropic material. For the highly anisotropic case, there is less than 1% difference for successive

solutions between 5 and 6 terms in the series and the series is assumed to have converged.

While increasing the number of terms used in the approximating series has a positive effect on the accuracy

of the solution, it has a profoundly negative effect on the computer run time. For N terms in the

approximating series, the resulting stiffness matrices have size 2N 2. Doubling the number of terms in the
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series has the result of quadrupling the size of the stiffness matrices. This has a significant effect on both the

number of individual stiffness terms that must be calculated and the eigenvalue extraction routine. Table 2.4

shows the resulting stiffness matrix size and run times for various numbers of terms in the approximating

series. The run times are reported for a CRAY YMP..

Table 2.4 Matrix Size and Run Time for Number of Terms in Series Approximation

for Clamped End Conditions

1

2

3

4

5

6

7

8

9

I0

2 0.005

8 0.015

18 0.058

32 0.187

50 0.482

72 1.049

98 2.020

128 3.568

162 5.879

200 9.165

2.13 Prebuckling Plate Stiffness

An additional item of interest in the analysis of structures is the slope of the load vs. end-shortening curve

prior to the onset of buckling. This quantity is referred to as the prebuckling stiffness of the structure.

Because the prebuckling inplane force resultant distribution is a function of location along the length of the

plate for tapered plates (rather than a constant as it is for rectangular plates), the calculations for the

prebuckling stiffness are more involved than those for rectangular plates. Using the assumed inplane force

resultant distributions shown in Eq. (2.125) yields the following constitutive equations:

N x = AIIE x + AI2Ey

0 = A12_x+ A22Ey

0 = A667_y

(2.137)

Solving for N x yields
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In A_21Nx = --- ex"
II A2_

Assuming there is no out-of-plane displacement, substituting in for N x and e x yields

(2.138)

P = All A2z.JdxIx
(2.139)

Multiplying through by dx yields

Pdx

w, (w2 Wl)x
- du,

= All A2 _
(2.140)

which can be integrated along the length of the plate to obtain the following equation for end-shortening as a

function of load P

L i1

A2zJ

/w,log + /× =

(W2_-Wt) _,W I A2_

___[n___1_w_-w'' u.
A22-J L ln(W21

\Wi/

(2.141)

Note that Eq. (2.141 ) is undefined for rectangular plates, i.e., W 2 = W l . For rectangular plates, Eq. (2.141)

simplifies to
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L u

 Tduf Pdx

o o

PL[
w,CP = -- All - u •
L A2_

(2.142)

Using Eqs. (2.141) and (2.142) yield the following definitions for the prebuckling stiffness of tapered and

rectangular plates:

[ _1(w__w,)AI1 - A221 W2

[ 2]Wl A12
-- AIj---
L A22.J

Wl_ W 2

W 1 = W 2 •

(2.143)

The next chapter presents numerically predicted buckling coefficients and mode shapes for plates with

simply supported ends. The results based on calculations from the series solution are verified by further

comparisons with finite element results. The chapter following the next chapter presents similar calculations

for plates with clamped end conditions. Extremes in laminate arrangement, as well as the case of an isotropic

plate, are investigated to provide insight into the buckling response of plates with trapezoidal planform.
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Results for Simply Supported Ends

3.1 Overview of Simply Supported Boundary Condition

As mentioned in the previous chapter, the nondimensional out-of-plane displacement of the plate is assumed

to have the form

w (_, 11) = ,_ _ Oi (_) [W_wj [fj (_, I1) ] + W°Fj [gj (_, rl) ] ], (3.1)

i=lj=l

where _i (_) [i = 1, 2 ..... N contains the complete set of symmetric and antisymmetfic functions of x which

must meet the kinematic boundary conditions at the ends of the plate. For simply supported boundary

conditions, the displacement must equal zero at the boundary. The form used in this analysis to satisfy this

condition is

oo

_i (_) = ( 1 + e_) 2sin (ig_) [i = 1,2...." (3.2)

The ( 1 + e_) 2 term appearing in Eq. (3.2) is included to factor out identical terms that appear in the

denominator of the integrand resulting from the integrations with respect to 1"1in the expression for the total

potential energy (see Appendix B). If this term is not removed from the denominator, the resulting

integrations with respect to _ can not be calculated in closed form.

3.2 Description of Finite Element Model

To evaluate the accuracy of the Rayleigh-Ritz analysis, the buckling response of trapezoidal plates is also

investigated using the general purpose finite element program ABAQUS for a limited number of conditions.

The finite element model consists of a 10 by 10 mesh of 8-node shell elements having 5 degrees of freedom

per node. A convergence study shows that a model of this size has converged for the aspect and taper ratios

considered in this study. Because of the tapered geometry and skewed buckled mode shapes, no symmetry of

the model can be assumed.
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3.3 Effect of Fiber Orientation on Nondimensional Parameters

The material properties that directly affect the stability of laminated plates are the elements of the D matrix.

The elements of the D matrix are governed by the stacking sequence of the laminate and are accounted for in

the analysis via the non-dimensional parameters cx, 13,7, and (3(see Eq. 2.64). Because cx is a function of both

plate geometry and material properties, to simplify future discussions it is redefined as

bl^
o_ = --o_, (3.3)

L

where,

(3.4)

Figure 3.1 shows how the four parameters _, [3,y, and fi vary with ply orientation and stacking sequence for

a typical graphite/epoxy composite. Two stacking sequences, [+06/-06] s and [+016s, are considered, with 0

ranging from 0 to 90 degrees.

2.5
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1.5

0.5

0

/

/
/

f/ "_\

,¢'

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

0, degrees

Figure 3.1 Nondimensional Parameters vs. 0
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From the definitions in Ch. 2, it is seen that the parameters _x and 13are functions only of DI1, D12, D22, and

D66. Thus they have the same value for both stacking sequences. The parameters y and _i,on the other hand,

are functions of Dl6 and D26. These two terms are greatly different for the two stacking sequences. Hence,

for certain laminates the bending-twisting coupling terms O16 and 026 can have a dramatic effect on the

buckling load of plates. Typically, plates having plies with a specific orientation grouped together, the [+06/-

06] s laminates, have higher DI6 and 026 terms than plates having plies of the same orientation interspersed,

the [+016s laminate. These effects are the motivation for studying two different stacking sequences.

3.4 Comparison of Analysis with Finite Element Results

This section compares analytical results with finite element results.The first case considered for comparison

is an isotropic material. Analyzing an isotropic material removes the effects of orthotropy and anisotropy,

revealing how well the analysis handles the tapered geometry. For the isotropic case the parameters T and

equal zero, 13equals 1, while _x and E vary as functions of the aspect and taper ratio. Considering an isotropic

case, additionally, provides a means of comparison with classical solutions for rectangular plates. In this

analysis, results are presented in the form of a buckling coefficient, ko defined as

PW 2

kc _2 fO-llD22

(3.5)

where P is the applied load, W 2 is the plate width at the wide end as shown in Fig. 2.2, and D]l and D22 are

plate bending stiffnesses as defined by Eq. (2.29). Note that the buckling coefficient, as defined by Eq. (3.5)

is slightly different than the loading parameter Per that appears naturally as a result of nondimensionalizing

the first variation of the second variation of total potential energy. The results are presented in terms of kc,

rather than in terms of Pc,, because the form of the buckling coefficient is similar to that used by Brush and

Almroth [10], Timoshenko [11] and Nemeth [7] [8] and allows direct comparison with their results for

rectangular plates.

Figure 3.2 presents buckling coefficients as a function of plate aspect ratio for various plate taper ratios for

an isotropic plate. Analytical results are represented by lines and finite element results are represented by

symbols. The analytical results presented are for four terms in the series approximation for the out-of-plane

displacement. Finite element results are computed for a number of aspect ratios between 1.0 and 2.0, and for

aspect ratio of 3.0. Taper ratios of 1.0, 1.5, 2.0, and 3.0 are considered.
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Figure 3.2 Buckling Coefficients for Isotropic Plates: Simply Supported Ends

As can be seen in Fig. 3.2, there is less than 1% difference between the analysis and the finite element results

for all of the aspect and taper ratios considered with the finite element analysis, the analytic results

predicting slightly greater buckling coefficients than the finite element results. The relationship for the

rectangular plate (T.R.=I.0) matches the classical solution exactly, a festooned shape with a minimum at

kc--4 [5] [ 10]. This festooned shape is the result of mode shape changes, specifically a change in the number

of half waves along the length of the plate. As the taper ratio increases, the critical buckling coefficient

increases and the mode changes occur at smaller aspect ratios. This can be interpreted as the taper creating a

narrower average plate width, causing a stiffening effect in the plate, and decreasing the critical length of the

buckling half-wave. Note also that the relationships are smoother for plates having higher taper ratios, there

not being as much sharpness to the cusps in the festooned shapes.

Buckling coefficients, as a function of plate aspectratio, are shown for various plate taper ratios of graphite/

epoxy composite plates having stacking sequences [0]24 and [90]24, respectively, in Figs. 3.3 and 3.4. These

stacking sequences are limiting cases for investigating how well the analysis handles orthotropy. The
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parameters 3' and 5 equal zero, however, 13now equals 0.405 for AS4/3502 graphite/epoxy. The results in

Figs. 3.3 and 3.4 for [0]24 and [90]24 laminates, respectively, are for five terms in the series for the out-of-

plane displacement approximation, and show the same trends as the isotropic case, specifically, an increase

in buckling coefficient due to an increase in the taper ratio of the plate. However, there are greater

differences between the analytical and finite element results for these composite cases than the isotropic

case. Again, the analytic results are greater than the finite element results. For the [0]2 4 laminate, the analytic

solution yields nonconservative results 12% higher than the finite element solution for taper ratio 3.0, 10%

higher for taper ratio 2.0, and 5% higher for taper ratio 1.5. For the [90]24 laminate the analytic solution

yields results 6%, 4%, and 2% higher, respectively, than finite element results. This closer agreement

between the analytic and finite element results for the tapered geometries of the [90]24 laminate compared to

the [0]24 laminate can be attributed to the more accurate approximation of the prebuckling inplane force

resultant distribution for the "softer" laminate, as was shown in Figs. 2.6 - 2.17. For both the [0]24 and [90]24

laminates, the analysis again yields exact agreement between the analytic and finite element solutions for

rectangular plates
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Figure 3.4 Buckling Coefficients for [9012,1 Laminate: Simply Supported Ends

Buckling coefficients as a function of plate aspect ratio for various plate taper ratios of graphite/epoxy plates

having stacking sequences of [_-k3016sand [+306/-306] s, respectively, are presented in Figs. 3.5 and 3.6. The

analytic results are shown for a five term displacement approximation, and include the effects of geometry,

orthotropy, and anisotropy. Notice that the sets of relationships for the two different laminates have nearly

identical shapes, but the buckling coefficients for the [+306/-306] s laminate are approximately 20% lower

than those for the [_.+3016slaminate. This is a direct result of the large values of DI6 and D26 for the [+306/-

306] s laminate with the grouped plys relative to the values for the [+3016 s laminate with the dispersed plys.

Figures 3.5 and 3.6 show excellent agreement between than analytical and finite element results for taper

ratios up to 1.5. The analytical results are approximately 5% lower than finite element results for taper ratio

2.0 and approximately 11% lower than finite element results for taper ratio 3.0. Note that for the higher taper

ratios the analytical results are less than those obtained using finite element analysis for the 30 degree

laminates, while the analytical results are greater than the finite element results for the 0 and 90 degree

laminates.
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The four preceding figures provide a general measure of accuracy of the analysis over the range of

geometries considered for plates with simply supported ends. Based on comparison with finite element

results, it appears safe to say that, for laminates of practical interest, this analysis can predict buckling

coefficients accurate to within 11% for taper ratio 3.0, 6% for taper ratio 2.0, 3% for taper ratio 1.5, and

0.5% for taper ratio 1.0. These errors are significantly smaller at higher aspect ratios and are accurate to

within 5%, 2%, and 1% for taper ratios 3.0, 2.0, and 1.5 at aspect ratios greater than 1.5. Nothing, in general,

can be stated regarding whether the errors are conservative or non-conservative.

Before proceeding, a comment is in order regarding the semi-analytical predictions of the buckling

coefficient sometimes being greater than the predictions based on finite elements and sometimes being less.

Generally the semi-analytical predictions with 5 to 10 terms in the series should be greater than the finite

element predictions. This is because the number of degrees of freedom in the finite element model would be

larger and the semi-analytical prediction should approach the finite element prediction from above as the

number of terms in the series is increased. However, this assumes that the prebuckling equilibrium solution

is the same in the finite element model as in the semi-analytical model. We have seen that this is not the case.

It is believed that using the assumed simplified form of the prebuckling stress distributions is the primary

cause of the discrepancies between the analytical and finite element results shown in the previous figures,

and the lack of consistency in the semi-analytic solution approaching the finite element calculations from

above.

3.5 Dimensional Relationships

This section presents analytical results of buckling coefficient over a wide range of ply orientations, stacking

sequences, and plate geometries for the case of simply supported ends. Because of the demonstrated

accuracy of the analysis, comparisons are not made with finite element results. The following figures show

the effect of ply orientation, stacking sequence, and plate taper ratio for AS4/3502 graphite/epoxy composite

plates.

Figure 3.7 presents buckling coefficients as a function of ply orientation for (+0) laminates for several plate

taper ratios and the two different stacking sequences [+0]6s and [+06/-06] s. The solid lines are results for the

[+0]6s stacking sequence and the dashed lines are results for the [+06/-06] s stacking sequence. Different

taper ratios are indicated by various symbols, and the aspect ratio is maintained at 1.0 for all cases. For Fig.

3.7, and similar figures, calculations are performed in I degree increments, while symbols are shown only
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every 15 degrees. Note the significant change in slope that occurs near 0--60 degrees for the relationships

having T.R. =1.0.
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Figure 3.7 Buckling Coefficients for _-e) Laminates: Simply Supported Ends; A.R. = 1.0

Again note the significant effect the large DI6 and D26 terms, resulting from the grouped plies, has on the

buckling load. This effect is least for 0 near 0 and 90 degrees and greatest for 0 between 40 and 50 degrees.

The ply orientation angles for which the buckling load is maximum are given in Table 3.1.

Table 3.1 Ply Orientation Angle 0 for Maximum Buckling Load: Simply Supported Ends

1.0 45

1.5 46

2.0 44

3.0 42

40

44

42

42

3.5 Dimensional Relationships 62



Chapter 3." Results for Simply Supported Ends

The effect of an increase in plate taper ratio causing an increase in buckling coefficient appears to be most

significant as the plate taper ratio is first increased from 1.0, i.e., there is a larger increase in buckling

coefficient between taper ratios 1.0 and 1.5 than between 2.0 and 3.0. To demonstrate this more clearly,

buckling coefficients, as a function of taper ratio, for several different graphite/epoxy laminates are shown in

Fig. 3.8.
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Figure 3.8 Buckling Coefficient vs. Plate Taper Ratio: Simply Supported Ends

Note that for all of the cases shown in Fig. 3.8, with the notable exception of the [0]24 laminate, the slope of

the curve is greater near taper ratio 1.0 and asymptotically approaches a maximum value near taper ratio 3.0.

The curve for the [0]24 laminate, however, actually has a negative slope near taper ratio 1.0 and does not

appear to be converging to a maximum near taper ratio 3.0.

3.6 Buckled Mode Shapes

An item of interest, in addition to the critical buckling load, is the buckled mode shape. The buckled mode

shape can be calculated for a specific eigenvalue by using the elements of the corresponding eigenvector as

the weighting factors in the assumed series for the out-of-plane deflection of the plate. Figures 3.9 through

3.20 show buckled mode shapes calculated for a wide range of plate geometries, ply orientations, and
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stacking sequences by using the eigenvector corresponding to the lowest eigenvalue. The mode shape

calculated using the lowest eigenvalue is often referred to as the fundamental or primary mode. Comparing

Figs. 3.9 and 3.10 shows the skewing of the mode shape resulting from the large D16 and D26 terms of the

[+306/-306] s laminate. Figures 3.11 and 3.12 show mode shapes for the same pair of stacking sequences as

Figs. 3.9 and 3. I 0 but for plates having tapered geometries.
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It is clear that the D 16 and D26 have a significant influence on the buckled shape of the plate. Figures 3.13

and 3.14 show the same plate geometry as Figs. 3.11 and 3.12 but for [_+6016sand [+606/-606] s laminates,

respectively. Note that these laminates, because they are softer in the loading direction than the (+30)

laminates, buckle with two half waves in the loading direction. Figures 3.15 through 3.18 contrast the mode

shapes of a very "stiff" laminate with a very "soft" laminate. Note again the laminate that is softer in the

loading direction buckles in multiple half waves. Figures 3.19 and 3.20 show the mode shapes for two

different stacking sequences, one highly anisotropic, of a highly tapered geometry.

This survey of buckled shapes provides insight into the character of the buckling of tapered plates, and the

important role of laminate stacking arrangement

3.7 Nondimensional Relationships

Up to this point, buckling coefficients have been presented for plates with specific geometries, ply

orientations, and stacking sequences. This section, however will present a series of generic relationships

showing the effect of individual nondimensional parameters on the buckling coefficients. This series of

relationships, based on nondimensional parameters, covers a wide range of material properties and plate

geometries in relatively few graphs. Reference points showing specific stacking sequences are included for

an isotropic material and ply orientation angles 6 (almost 0), 45, and 84 (almost 90) degrees. Refer to Fig.

3.1 for nondimensional parameter values at other ply orientation angles.

Figures 3.21 - 3.23 show the buckling coefficient as a function of the parameter fx for various combinations

of 13,_', and _ifor aspect ratio 1.0 and taper ratios 1.0, 1.5, and 2.0 respectively. Recall from the definitions of

Eqs. (2.64), (3.3), and (3.4), that & and 13are measures of bending orthotropy, i.e., _ is a measure of the

bending stiffness in the longitudinal direction relative to the bending stiffness in the transverse direction.

Unfortunately, there is not a corresponding simple physical meaning for the quantity 13because it is a

combination of all of the orthotropic terms in the bending stiffness matrix. It is a measure of the curvature

effects (anticlastic curvature and twisting curvature) relative to the average bending stiffness. The quantities

_, and _iprovide a measure of bending anisotropy, i.e., DI6 and D26, respectively. It is clear that an increase in

the anisotropic parameters _tand 3 causes a decrease in the buckling coefficient. This was shown in previous

figures comparing stacking sequences with grouped versus interspersed plies and it is also illustrated in these

nondimensional relations. It is also clear that an increase in the orthotropic parameter 13causes an increase in

the buckling coefficient. The orthotropic parameter _t appears to have the smallest effect on the buckling

coefficient, though for values of 6t > 0.9, buckling coefficients increase more or less monotonically at a very

slow rate. The cusps due to a changes in mode shape are noteworthy. As observed before in the dimensional

plots, the relations become, smoother for plates with higher taper ratios. Note the general increase in
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buckling loads as the taper ratio increases, i.e., comparing Fig. 3.21 for taper ratio 1.0 as opposed to Fig.

3.23 for taper ratio 2.0.
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To demonstrate more clearly the effect of 13, Figs. 3.24 - 3.26 show the buckling coefficient as a function of

the parameter [3 for various combinations of _t, y, and 8 for the same geometries shown in Figs. 3.21 - 3.23.

Again it is clear that an increase in the anisotropic parameter 3, and 8 causes a decrease in the buckling

coefficient. These figures also demonstrate that the parameter 13has a larger effect on the buckling coefficient

than the parameter &, especially at values of & between 0.5 and 1.0. Note that the relations become spaced

closer together as 13 increases. This indicates that the decrease in buckling load due to anisotropy decreases

for higher values of 13. As the taper ratio of the plate increases, the sets of curves generated by the three

different values for & tend to overlap each other more. This implies that as the taper ratio of the plate

increases, the effect of the plate geometry on the buckling coefficient is as significant as the ratio of

longitudinal and transverse bending stiffnesses. These areas of overlap are significant from a design

perspective because they provide flexibility when choosing geometry and material properties to achieve a

specific buckling coefficient
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The next chapter presents results for plates with clamped ends. Buckling coefficients as functions of plate

geometry and laminate arrangement will again be discussed. These results will be compare with the results

of simply supported plate to provide further insight into the buckling response of plate with tapered

plan form.
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Results for Clamped Ends

4.1 Overview of Clamped Boundary Condition

For convenience, the assumed form of the nondimensional out-of-plane displacement of the plate is repeated

here. The assumed form is

oo

w(g,n) = _i(g)[w_wjIfj(g,n)] +w°_[gj(g,n)]], (4.1)

i=lj=l

where _i (_) [i = 1,2..... N contains the complete set of symmetric and antisymmetric functions of x which

must meet the kinematic boundary conditions at the ends of the plate. For clamped boundary conditions, the

displacement and the slope in the _ direction, or derivative of the displacement, with respect to _, must equal

zero at the boundary. The form used in this analysis to satisfy these conditions is

_i (_) = (1 + e_) 2 { cos [ (i - 1) 7t_] - cos [ (i + 1) n_] } I_*=t, 2, ..." (4.2)

The term ( 1 + c_) 2 appearing in Eq. (4.2) is included to factor out identical terms that appear in the

denominator of the integrand resulting from the integrations with respect to "q in the expression for the total

potential energy (see Appendix B). If this term is not removed from the denominator, the resulting integrals

over _ can not be calculated in closed-form.

4.2 Comparison of Analysis with Finite Element Results

As was done for plates with simply supported ends, this section compares analytical results with finite

element results from ABAQUS.The first case considered is an isotropic material. As was stated previously,

analyzing an isotropic material removes the effects of orthotropy and anisotropy, revealing how well the

analysis handles the tapered geometry for clamped ends and simply supported side edges. Recall for the

isotropic case the parameters T and _iequal zero, [3 equals 1, while ct and E vary as functions of the plate

aspect and plate taper ratios. Buckling coefficients as a function of plate aspect ratio for various plate taper
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ratios for an isotropic plate are shown in Fig. 4.1. Analytical results are represented by lines and the finite

element results are represented by symbols. The analytical results shown are obtained using five terms in the

series approximation for the out-of-plane displacement approximation.
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Figure 4.1 Buckling Coefficients for Isotropic Plates: Clamped Ends

There is less than 2 percent difference between the analysis and the finite element results for plate taper

ratios less than 2. Differences of approximately 4.5% occur at aspect ratios less than 1.3 for taper ratio 3.0.

Note that for the isou'opic clamped case, the analytic results are slightly less than the finite element results.

This is opposite to the situation for the isotropic simply supported case, Fig. 3.2. Comparisons with Fig 3.2

show that the clamped boundary conditions have a significant stiffening effect on the plate. Buckling

coefficients can be twice as large for a plate with clamped ends as those for a plate having the identical

geometry but with simple supports on the ends. Similar trends are exhibited in Fig 4. I that were noted in Fig.

3.2, specifically, as the taper ratio increases the buckling coefficients increase, the mode changes occur at

smaller aspect ratios, and the relationships become more smooth, the cusps not being as distinct. The

relationship for the rectangular plate, (T.R. = 1.0) again matches the classical solution exactly. To be noted in

the clamped case, for aspect ratios between 0.5 and 1.0, the buckling coefficient relations for the various
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taper ratios cross over each other, reversing the effect of taper ratio. This was not the case for the simply

supported case in Fig. 3.2

Buckling coefficients, as a function of plate aspect ratio, for various plate taper ratios of graphite/epoxy

composite plates having stacking sequences [0]24 and [90]24, respectively, are shown in Figs. 4.2 and 4.3.

The parameters y and _i equal zero, however, 13now equals 0.405 for AS4/3502 graphite/epoxy material. The

ply properties for this material are as given in Table 2.2
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Figure 4.2 Buckling Coefficients for [0]24 Laminate: Clamped Ends
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Figure 4.3 Buckling Coefficients for [90]24 Laminate: Clamped ends

These relationships for the [90]24 laminate have the same trends as the isotropic case, specifically, an

increase in buckling coefficient due to an increase in the taper ratio of the plate. Note, however, that Fig. 4.2

reveals a decrease in the buckling coefficient due to an increase in the plate taper ratio for [0]24 laminates

having plate aspect ratios less than 1.7. As seen in Fig. 3.3, this phenomenon is not exhibited in [0]24

laminates with the same geometries but with simple supports on the ends. This is a further exaggeration of

the aforementioned reversal effect seen in Fig. 4.1 relative to Fig. 3.2.

Note that for the [0]24 and [90]24 laminates, the buckling coefficients predicted by the analysis are greater

than the buckling coefficients predicted by the finite element approach. This is similar to the simply

supported case for [0]24 and [90]24 laminates. There is better agreement between the analytical and finite

element results for the [90]24 laminate than for the [0]24 laminate. This is consistent with the observation, in

Ch. 2, that the assumed N x distribution is closer to the actual prebuckling stress resultant distribution for the

[90]24 composite plates than for the [0]24 composite plates (see Figs. 2-6 -2.11 vs. Figs 2.12 - 2.17). For the

[90]24 laminate, the analytic solution yields nonconservative results 3% higher than the finite element

solution for taper ratio 3.0, 1.5% higher for taper ratio 2.0, and less than 1% higher for taper ratio 1.5. For

plate aspect ratios less than 1.4, the analytic solution for the [0]24 laminate yields results 9% higher than the
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finite element solution for taper ratio 3.0, 7% higher for taper ratio 2.0, and 5% higher for taper ratio 1.5. The

analysis yields the same solution as finite elements for the rectangular case of both laminates.

Buckling coefficients as a function of plate aspect ratio for various plate taper ratios of graphite/epoxy plates

having stacking sequences of [+3016s and [+306/-306] s, respectively, are presented in Figs. 4.4 and 4.5.

These cases include all of the effects of geometry, orthotropy, and anisotropy in the analysis. Notice that the

sets of relationships for the two different laminates have nearly identical shapes, but the buckling loads for

the [+306/-306] s laminate are approximately 16% lower than those for the [+3016s laminate. The same trend

is visible in Figs. 3.5 and 3.6 for plates having the same stacking sequences but with simply supported ends.

Figures 4.4 and 4.5 show excellent agreement between the analytical and finite element results for taper

ratios up to 1.5. The analytical results are approximately 5% lower than finite element results for taper ratio

2.0 and approximately 11% lower than finite element results for taper ratio 3.0. Note again the reversal of

trends with respect to taper ratio as the aspect ratio increases past 1.1 - 1.2
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Figure 4.5 Buckling Coefficients for [+306/-306] s Laminate: Clamped Ends

The four preceding figures provide a general measure of the accuracy of the analysis over the range of

geometries studied for plates having clamped ends. Based on comparison with finite element results, it

appears safe to say that for all laminates of practical interest, the analysis can predict buckling coefficients

accurate to within 11% for taper ratio 3.0, 7% for taper ratio 2.0, 4% for taper ratio 1.5, and 0.5% for taper

ratio 1.0 for plates having simple supports on the side edges and clamped supports on the ends. Note that this

is the same level of accuracy observed for the plates having simply supported boundary conditions on all

four edges.

4.3 Dimensional Relationships

This section presents analytical results of buckling coefficient over a wide range of ply orientations, stacking

sequences, and plate geometries for the case of clamped ends. Comparisons are not made with finite element

results. The following figures show the effect of ply orientation, stacking sequence and plate taper ratio for

AS4/3502 graphite/epoxy composite plates. Figure 4.6 presents buckling coefficient as a function of ply

orientation for ( + 0) laminates for several plate taper ratios and the two different stacking sequences [+0]6s

and [+06/-06] s. The solid lines are results for the [:_]6s stacking sequence and the dashed lines are results for
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the [+06/-06] s stacking sequence. Different taper ratios are indicated by symbols, while the aspect ratio is

maintained at 1.0 for all cases.
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Figure 4.6 Buckling Coefficients for @_0)Laminates: Clamped Ends; A.R.=I.0

Comparison with Fig 3.7, which shows the same geometries and stacking sequences for _-0) laminates

having simple supports on the ends, shows that boundary conditions have very significant effects on the

buckling response of the plate other than causing an increase in the buckling load. A simple comparison

between Figs. 3.7 and 4.6 is that for the clamped ends the buckling coefficient more or less decreases

monotonically with increasing fiber orientation angle, while for the simply supported ends the buckling

coefficient increases with increasing fiber orientation angle and then decreases. However, perhaps the most

significant characteristic to notice in Fig. 4.6 is that for each of the two stacking sequences there is a unique

fiber orientation angle at which increasing the plate taper ratio has no effect on the buckling coefficient of

the plate. This angle will be referred to as 0ct-it. For stacking sequences having fiber orientation angle less

than 0crit, the buckling coefficient decreases for an increase in taper ratio. If the fiber orientation angle is

greater than 0et-it, the buckling coefficient increases for an increase in taper ratio. This phenomenon of a

unique combination of plate aspect ratio and ply orientation, either side of which the effect of plate taper

ratio has drastically different effects, was referred to in discussion of Figs. 4.2, 4.4, and 4.5. It should be

noted that 0crit is different for various plate aspect ratios and stacking sequences. As an example of this, Fig.
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4.7 presents the buckling coefficient, as a function of ply orientation angle, for the same geometries and

stacking sequences as shown in Fig. 4.6, but with a plate aspect ratio of 2.0 rather than 1.0. The relationships

shown in Fig. 4.7 look more like the relationships of Fig. 3.7. Note that there is no critical angle in the

stacking sequence for this plate aspect ratio.
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Figure 4.7 Buckling Coefficients for _0) Laminates: Clamped Ends; A.R.=2.0

Figure 4.8 presents results for plate aspect ratio 1.5. Note that although the relationships for the two

laminates cross each other, a clearly defined critical angle does not exist.
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Figure 4.8 Buckling Coefficients for (5:0) Laminates: Clamped Ends; A.R.=I.5

4.4 Buckled Mode Shapes

An item of interest, in addition to the critical buckling load, is the buckled mode shape. The buckled mode

shape can be calculated for a specific eigenvalue by using the elements of the corresponding eigenvector as

the weighting factors in the assumed series for the out-of-plane deflection of the plate. Figures 4.9 through

4.20 show buckled mode shapes calculated using the eigenvector corresponding to the lowest eigenvalue for

a wide range of plate geometries, ply orientations, and stacking sequences. Comparing Figs. 4.9 and 4.10

shows the skewing of the mode shape resulting from the large DI6 and D26 terms of the [+306/-306] s

laminate. Figures 4.11 and 4.12 show mode shapes for the same pair of stacking sequences as Figs. 4.9 and

4.10 but for plates having tapered geometries. Figures 4.13 and 4.14 show the same plate geometry as Figs.

4.11 and 4.12 but for [+6016s and [+606/-606] s laminates, respectively. Figures 4.15 through 4.18 contrast the

mode shapes of a very "stiff" laminate with a very "soft" laminate. Figures 4.19 and 4.20 show the mode

shapes for two different stacking sequences, one highly anisotropic, of a highly tapered geometry.
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Comparing Figs. 3.9 with Figs. 4.9 shows that the clamped end conditions force greater curvature for the

clamped plate because the plate mode shape is moved in towards the center of the plate, although the

longitudinal location of maximum out-of-plane displacement is the same for the two different sets of end

conditions. Figures 3.9 and 4.9 show the same trend. Additionally, as seen when comparing Figs. 3.10 with

4.10, the skewing effects due to material anisotropy are amplified by the clamped end conditions.

Comparing Figs. 3.11 - 3.14 with Figs. 4.11 - 4.14 shows that the clamped end conditions cause the peak of

the out-of-plane displacement to shift toward the narrow end of the plate. Comparing Figs. 3.18 and 4.18

shows that the simply supported boundary conditions cause the [90]24 laminate to buckle into three half

waves with a relatively large area in the narrow end having very little out-of-plane displacement, while the

clamped boundary conditions cause this laminate the buckle into 4 half waves.

4.5 Nondimensional Relationships

As in Ch. 3, this section presents a series of generic relationships showing the effect of individual

nondimensional parameters on the buckling coefficients. This series of relationships, based on

nondimensional parameters, covers a wide range of material properties and plate geometries in relatively

few graphs. When possible, points showing a specific ply orientation or stacking sequence are included for

reference. Figures 4.21 - 4.23 show the buckling coefficient as a function of the parameter & for various

combinations of 13,y, and 8 for aspect ratio 1.0 and taper ratios 1.0, 1.5, and 2.0 respectively. It is clear that

an increase in the anisotropic parameters _, and 8 causes a decrease in the buckling coefficient. This was also

shown in previous figures comparing stacking sequences with grouped versus interspersed plies. It is also

clear that an increase in the orthotropic parameter 1_causes a decrease in the buckling coefficient. Unlike

Figs. 3.21 - 3.23 for the case of simply supported ends in Ch. 3, however, the orthotropic parameter

appears to have a significant effect on the buckling coefficient. Specifically, the buckling coefficient

increases almost monotonically with an increase in &. There is one cusp due to a changes in mode shape

and, as observed before regarding the plots of dimensional relations, the nondimensional relations become

smoother for plates with higher taper ratios.
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To demonstrate the effect of 13,Figs. 4.24 - 4.26 show the buckling coefficient as a function of the parameter

[3 for various combinations of &, T, and 8 for the same geometries shown in Figs. 4.21 - 4.23. Again it is

clear that an increase in the anisotropic parameters 7 and 5 causes a decrease in the buckling coefficient,

however, in Figs. 4.24 - 4.26 changes in Tor l_cause significant changes in the curvature of the relations in

addition to shifting them downward, whereas the curvature does not change significantly due to increased T

and 5 in Figs. 3.24 - 3.26. As shown in Figs. 4.24 -4.26, the relations become spaced closer together as 13

increases, indicating the detrimental effects of anisotropy on the buckling coefficient decrease for higher

values of 13.Note that there are significant areas of overlap between the three sets of relations shown in each

figure, and this area of overlap becomes larger for increased taper ratios. This overlap area implies that a

designer should have a moderate amount of flexibility when choosing ply orientation on stacking sequence

to achieve a specific buckling coefficient.
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Figure 4.26 Effects of [3, y, and 8 for several values of h on Buckling Coefficient:
Clamped Ends; A.R. = 1.0, T.R. = 2.0

It is clear by comparing Figs. 4.21 - 4.26 with Figs 3.21 - 3.26 that clamped boundary conditions on the ends

can have a significant effect on the buckling load through interaction with material properties. Specifically,

the ratio of longitudinal bending stiffness to transverse bending stiffness represented by the parameter h has

a much more significant effect for clamped plates than it does for simply supported plates.

With the characteristics of the buckling response of plates with trapezoidal planform having been thoroughly

discussed for plates having either clamped or simply supported ends, and with insight into the influence of

/

the various parameters on the response established, attention turns to the experimental investigation. The

next chapter describes the experiments conducted as part of this study
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Experimental Approach

5.1 Overview of Experimental Program

In order for analytical results to be credible and useful, they should be verified experimentally. To

complement the numerical predictions, experiments were conducted to measure the buckling characteristics

of laminated composite plates with a trapezoidal planform area over a range of stacking sequences and plate

geometries. This chapter presents the plate geometries and stacking sequences investigated; describes the

specialized test fixtures used to provide the required boundary conditions for the specimens; discusses the

various instrumentation techniques used to measure end-shortening, inplane swain, out-of-plane deflection,

and buckled mode shape; and defines the specific experimental procedure used to conduct the experiments

and reduce the data.

5.2 Test Specimen Geometries and Stacking Sequences

The variables of interest for this problem can be divided into two categories, specimen geometry and

material properties. In the specimen geometry category the two variables of interest are the taper ratio and

aspect ratio. For convenience these definitions are repeated here, namely,

W 2
T.R. =

WI

and

(5.1a)

L
A.R. - (5.1 b)

W 2

Figure 5.1 is a schematic diagram which shows the test specimen geometry. As in Fig. I. 1, the dimensions

W 1 and W 2 are the unsupported plate width at the narrow and wide (top and bottom) ends, respectively, and

L is the unsupported plate length. The term unsupported is used because in order to provide the appropriate

boundary conditions for the experiments, the specimens are oversize to accommodate fixturing. The gray

areas, with associated dimensions, in Fig. 5.1 represent areas of the specimen held within the test fixture.
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The dimensions W z, W 2, and L are the dimensions of the test specimens required to obtain the necessary

fixturing areas and unsupported lengths.

9.53 mm

6.35 mm 6.35 mm

9.53 mm

w2w2

Figure 5.1 Test Specimen Geometry

Table 5.1 presents the specific aspect ratio and taper ratio combinations investigated and the corresponding

values for dimensions W I , W 2, and t..
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Table 5.1 Range of Geometric Parameters Studied and Specimen Dimensions

1.0 1.0 368 368 375

1.5 1.0 247 372 375

1.5 2.0 248 370 730

3.0 1.0 125.6 375 375

The effects that material fiber orientation angle and plate stacking sequence have on the nondimensional

parameters were discussed in connection with Fig. 3.1. To investigate these effects, specimens for the

experiments have ply orientations ranging from 0 to 90 degrees at 0, 30, 45, 60, and 90 degrees. To assess

the effect of D16 and D26, both clustered and interspersed stacking sequences are studied for each value of 0.

As limiting cases to bound the problem, the [0]24 and [90]24 plates are studied. And finally, a quasi-isotropic

laminate [+45101-4519013s is studied because it is a laminate of interest. Aluminum specimens are also tested.

Table 5.2 presents the matrix of the specific ply orientation and stacking sequence combinations

investigated.

Table 5.2 Laminates Investigated

ii_i__iiiii_ili_ii_i_i_ili!!_ili_i_iii_iii_i_ ¸

, ,,,,,,,,

0

....... ..............i _ : "ili:ii ......... ..................

[0]24

30 [+30/-3016s

30 [+306/-306] s

45 [+45/-4516s

60 [+60/-6016s

60 [+606/-606] s

90 [90]24

Quasi- [+45/0/-45/9013s

Isotropic

Isotropic aluminum
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5.3 Specimen Fabrication

Test panels are laid up by hand from Hercules AS4/3502 graphite/epoxy prepreg and cured in an autoclave

using the manufacturers recommended cure cycle. A single test specimen is machined from each test panel

using a diamond abrasive cutting wheel with flood coolant. Special care is taken to ensure that the ends

remain as flat, parallel, and undamaged as possible. The Micro-Measurements CEA-125UR-350 [ 11] strain

gages are applied using M-Bond 200 strain gage adhesive [12]. To enhance the shadow moir6 images, the

front of the specimen is painted white. The sections outside of the unsupported area are masked off before

painting to ensure that the test fixture contacts only unpainted surfaces. Prior to testing, thickness

measurements are made at three locations along each of the four edges of the specimen. The average

specimen thickness for each edge, and the resulting average ply thickness for the specimen are reported in

Table 5.3. Recall from Table 2.2 that the analysis assumed a ply thickness of. 127 ram.

Table 5.3 Average Specimen Thickness

[90]24

[+30/-3016s

[+306/-306] s

[+45/-4516s

[+45/0/-45/9013s

[+60/-6016s

[+606/-606] s

[0]24

[90]24

[+30/-30]6s

2.95 3.00 2.97 2.97 .124

2.79 2.84 2.87 2.87 • 119

2.87 2.90 2.90 2.87 . 119

2.87 2.84 2.90 2.87 . 119

2.90 2.92 2.90 2.90 •122

2.95 2.90 2.87 2.92 .122

2.95 2.95 2.97 2.97 .122

2.84 2.90 2.84 2.87 .119

:2.84 2.84 .119

2.84 2.84 .119

2.90 2.92 • 122

2.87 2.84 •119

2:90 2.92 ,122
I

2.87 2.90 .122

2.87 2.90 .119
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Table 5.3 Average Specimen Thickness

1.0 3.0 [0]2 4 2.87 2.90 2.90 2.87 .119

1.0 3.0 [+30/-3016s 2.87 2.90 2.90 2.90 .119

1.0 3.0 [+306/-306] s 2.84 2.84 2.79 2.82 .117

1.0 3.0 [+45/-45] 6s 2.87 2.90 2.90 2.90 .122

1.0 3.0 [+45/0/-45/9013s 3.02

1.0 3.0 [+606/-606] s 2.90

3.05 3.05 3.02 .127

2.92 2.92 2.95 .122

5.4 Test Fixture

Specialized test fixtures are used to provide the required boundary conditions on the wide variety of tapered

specimens, and to ensure uniform loading of the specimen. The main components of the test fixture are: top

and bottom clamping blocks with sliding plates to enforce the clamped boundary at the top and bottom of

the plate, knife edge rails to provide simple supports along the sides of the plate, knife edge restraints to

keep the knife edge rails from moving out-of-plane during the test, and a top loading platen loaded through a

semi-spherical ball to provide uniform loading by accommodating any lack of parallelism of the ends of the

specimens. Figure 5.2 is an isometric drawing showing the major components of the test fixture and a cross

section of the knife edge rails.
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Top Clamping Block

Top Sliding Plate

Specimen_

x_, / Sliding Bar

I._.1

Knife Edge Rail

Knife Edge Restraint

3.2 mm spacer

Bottom Clamping Block

Bottom Sliding Plate

Knife Edge Restraint

Figure 5.2 Schematic of Test Fixture

Figure 5.3 is a photograph from the front of the test fixture with a specimen. The taper ratio of the specimen

is 1.5 and the aspect ratio is 1.0. Visible are the top and bottom clamping blocks, the right and left knife edge

rails, top and bottom loading platens, and the right and left DCDT mounts, to be discussed shortly. The top

loading platen and the semi-spherical loading ball, which will also be discussed shortly, are visible as well.
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The specimen is painted white to enhance the shadow moir6 patterns, and strain gage lead wires running

vertically are visible on the face of the specimen.

Hemispherical Ball

Top Loading Platen

DCDT Mount

Top Clamping
Block

Rail

3ottom Clamping
Block

Loading
Platen

Figure 5.3 Front View of Test Fixture
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Figure 5.4 is a close-up photograph showing the lower left-hand comer of the test fixture.Visible are the

interactions of the bottom clamping block and sliding plate, knife edge rail, and knife edge restraints.

Knife Edge Rail

,"Restraint

Bottom Clamping
Block

Bottom Sliding Plate

Knife Edge Restraint

Figure5.4 DetailofTestFixture

The bottom clamping mechanism consists of the bottom clamping block and a bottom sliding plate. The

bottom 9.53 mm of the specimen is clamped between the clamping block and the sliding plate. The sliding

plate is in the foreground of Fig. 5.4 and the gap due to the specimen thickness is visible as a dark vertical

line. The gap between the knife edge rail and bottom clamping block/bottom sliding plate assembly due to

the 3.18 mm spacer is also visible. Before testing the spacer is removed and this gap allows for end-

shortening of the specimen during application of the compressive load. The knife edge rails grip the outer

6.35 mm of the specimen, and one knife edge restraint bolts to the clamping block while the other bolts to

the sliding plate. As can be seen in Fig. 5.2, the specimen is squeezed between knife edges on the knife edge

rail and the sliding bar. The interaction between fixture components shown in Fig. 5.4 occurs at all four

comers of the specimen.
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Figure 5.5 shows the detail of the semi-spherical ball arrangement used to allow the loading platen to

accommodate any lack of parallelism between the top and bottom edges of the specimen

Top Crosshead of
Load Frame

Rectangular
Block

Dowel Pin
(1 of 4)

Convex Half of

Semi-Spherical
Ball

Concave Half of
Semi-Spherical
Ball

Top Loading
Platen

Figure 5.5 Detail of Semi-Spherical Loading Ball

The rectangular block is indexed in the center of the load frame crosshead with small blocks that fit into a

square opening normally used for tensile wedge grips. The convex half of the semi-spherical ball is aligned

in the center of this block with four dowel pins. The concave half of the ball fixture is indexed to the center

of the 38.1 mm thick top loading platen by two other dowel pins (not visible in Fig. 5.5). The four long bolts

visible in the upper portion of Fig. 5.3 are designed to hold the loading platen up when the specimen is

unloaded. The entire test fixture is centered front to back in the load frame with mechanical stops on the top

and bottom loading platens. All of this alignment is to ensure that the load is transmitted from the center of

the crosshead through the center of the top loading platen, through the center of the test fixture, and
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therefore, through the center of the specimen. This alignment is critical. The front to back alignment is

especially critical for preventing bending, an event which would seriously affect the buckling loads.

5.5 Instrumentation

A variety of sensors are used to measure the response of the plates. Load is measured using the standard load

cells of the Tinius Olsen load frame. Specimen end-shortening is measured, relative to the erosshead support

columns of the load frame, on both sides of the specimen with direct current displacement transducers

(DCDTs). End-shortening measurements on both the left and fight sides of the specimen reveal any side to

side nonuniformities in the loading of the specimen. The barrels of the DCDT's clamp to the support

columns with blocks that are adjusted up/down and in/out to accommodate specimens of varying length. The

cores of the DCDTs attach to the top loading platen with swivel joints that allow the core to remain vertical

even if the loading platen should rotate slightly due to a specimen with non-parallel ends. Coarse zero

adjustment for each DCDT is provided by sliding the damping block up or down on the support column,

and fine zero adjustment is provided by turning the threaded rod connecting the core to the loading platen.

Figure 5.6 shows the detail of the DCDT mount.
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Crosshead Support Column

roint

Top Loading Plate:

Figure 5.6 Detail of DCDT Mount

Out-of-plane deflection of the specimen is measured by a third DCDT. This DCDT is oriented horizontally

and is spring loaded to maintain contact with the center of the plate. Inplane strains are measured with 350

ohm foil-gage strain gages adhesively bonded to the specimen. Back-to-back strain measurements are taken

at all four corners and the center of the plate. The strain measurements at the comers of the plate are useful

to determine if any undesirable bending due to nonuniform loading occurs prior to buckling. The strain

measurements at the center of the plate provide additional data to help determine the buckling load. All data

is acquired using an Orion Solartron data logger controlled by an IBM PC. Shadow moir6 is used to

visualize the buckled mode shapes. The specimen grating has a frequency of 1.968 lines/mm and the lines

are aligned vertically. The angle of incidence of the light is 45 degrees, and the angle of observation is zero

degrees. A Sony video camera and U-Matic video recorder are used to record this video data. Figure 5.7

shows the location of the 10 strain gages and the out-of-plane DCDT. The rectangles signify the location of

5.5 Instrumentation 107



Chapter 5." Experimental Approach

the strain gages. The odd numbered strain gages are on the front (painted white) of the specimen, while the

even numbered strain gages are in the same location on the back (unpainted) of the specimen. The solid

circle represents the location of the out-of-plane DCDT.

specimen --_

\
incident light

viewing location

Figure 5.7 Shadow Moir_ Setup, Strain Gage and Out-of-Plane DCDT Locations

5.6 Experimental Procedure

The following is the list of steps used to load the specimen in the test fixture, ensure alignment and

uniformity of loading, and test the specimen:

1. Clamp the bottom 9.53 mm of the specimen loosely in the bottom clamping block and sliding plate

mechanism using a bar clamp near the left and right edges of the specimen. (A bar clamp is similar to

a 'C' clamp.)
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10.

11.

12.

15.

Adjust the specimen until the distance from the bottom edge of the specimen to the edge of the bottom

clamping block is the same, to within 0.25 mm, on both the right and left edges of the specimen. This

measurement is made by using a steel rule.

Tighten the bar clamps to firmly grip the specimen. Tighten the bolts holding the bottom sliding plate

to the bottom clamping block.

Place the 3.18 mm spacing pads next to both the left and right bottom edges of the specimen.

Rest the bottoms of the knife edge rails on the spacing pads and clamp them loosely to the edges of

the specimen using the sliding bar shown in Fig. 5.2. Inspect to make sure that the specimen is fully

inserted into the knife edge rails.

Firmly clamp the bottom knife edge restraints against the knife edge rails using the bar clamps.

Tighten all of the bolts on the knife edge rails and the bolts that secure the bottom knife edge restraints

to the bottom clamping block and bottom sliding plate.

Place the top clamping block and sliding plate assembly on the top of the specimen and loosely clamp

the specimen in the assembly using the bar clamps. Measure the space between the top specimen edge

and the top clamping block edge on both the left and right edges of the specimen, and adjust until

there is less than 0.25 mm difference between the right and left edges, as was done for the bottom

clamping block. Firmly clamp the specimen, and tighten the bolts holding the top sliding plate to the

top clamping block.

Clamp the top knife edge restraints against the knife edge rails and tighten the bolts that secure the top

knife edge restraints to the top clamping block and top sliding plate.

Position the fully assembled fixture against the alignment stops on the top and bottom loading platens.

Align the marked center of the fixture with the marked centerline of the bottom loading platen.

Load the specimen to 1334 Newtons.

Loosen and then retighten finger tight the four nuts on the bolts holding up the top loading platen.

Ensure that the knife edge rails are perpendicular (front to back) with the top and bottom clamping

blocks.

Unload the specimen.
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16. Attach all of the strain gage leadwires to the data acquisition system.

17. Start the data acquisition system, slowly load the specimen to 2220 Newtons, then unload the

specimen.

18. Examine the response of the left and fight DCDT's for uniformity of end-shortening from left to fight

on the specimen (This checks for misalignment of the top loading platen).

19. Examine the response of the four strain gages mounted at the top of the plate. Again check for

uniformity of loading right to left. Also check for front to back bending.

20. Make adjustments to fixture and specimen, if necessary, to attain uniformity of loading.

21. Place the shadow moir6 grating in front of the specimen

22. Start the video recorder and data acquisition system.

23. Slowly load the specimen to a load level approximately 30% greater than the load at which a

significant number of shadow moir6 fringes first start to appear.

24. Unload the specimen.

5.7 Determining Buckling Load

Buckling is characterized experimentally by a change in slope of the load vs. end-shortening curve. This

change of slope of the load vs. end-shortening curve occurs after the plate buckles because the out-of-plane

deflection of the plate has a softening effect on the structure. This results in significantly more end-

shortening for a given increase in load. The experimental buckling load is determined by the intersection

point of straight lines fit through the prebuckling and postbuckling portions of the load vs. end shortening

relations. Figure 5.8 presents typical load vs. end-shortening relations as measured by the left and fight

DCDTs. The particular specimen for which the data are presented has aspect ratio 1.0, taper ratio 1.5, and

stacking sequence [+606/-606] s. The straight lines through the prebuckling and postbuckling portions of the

relations shown in Fig. 5.8 are faired in by hand. While this technique seems quite arbitrary, using the

computer to calculate a linear least-squares fit would also require arbitrary choices for locations to begin and

end the fits to both the prebuckling and postbuckling portions of the relations. Drawing the lines by hand

also allows for judgement to avoid the initial portions of the curves when the fixtures are taking up slack.

Figures 5.9 - 5.12 present load vs. strain and load vs. out-of-plane relations for the same specimen.
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Figure 5.8 Typical Load vs. End-Shortening Relations
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Figure 5.12 Typical Load vs. Out-of-Plane Displacement Relation, Center of Specimen

Note that in Fig. 5.8 there is very little difference between the load vs. end shortening relations obtained

from the left and right DCDTs, indicating that the specimen was loaded uniformly across its width. The load

vs. strain relations in Figs. 5.9 -5.10 also indicate a uniform load across the specimen width, in addition to

revealing minimal bending of the specimen before buckling. Finally, note that the load at which the back-to-

back strain gages in Figs. 5.9 - 5.11 begin to diverge and the load at which the out-of-plane displacement

begins to have a large increase are approximately the same as the buckling load determined using the

outlined procedure in connection with Fig. 5.8.

It must be stated that the process of fitting a line through the prebuckling and postbuckling portions of the

load vs. end-shortening relationships is not always as clear as the case shown in Fig. 5.8. For the stiffer

laminates the change in slope between the prebuckling and postbuckling stiffness is not as great. Figures

5.13 and 5.14 demonstrate this point by presenting load vs. end shortening curves for a [+_3016s laminate and

a [0]24 laminate, respectively. Comparing Figs. 5.8 and 5.13 reveals that the difference between prebuckling

and postbuckling slopes is less for the [+_3016slaminate. Comparing Fig. 5.8 with Fig. 5.14 shows that this

trend continues for the [0]24 laminate. Note also that the uncertainty is amplified further for this laminate
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because the total end shortening is much smaller due to its high stiffness parallel to the loading direction

compared to both the 30 degree and 60 degree laminates.
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Figure 5.13 Load vs. End-Shortening Relations: [+3016s Laminate
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5.8 Calculating Experimental Buckling Coefficient

Due to the definition of the buckling coefficient in Ch.3, there is a subtle difference in calculating the

buckling coefficient for experimental results compared to calculating the buckling coefficient for the

analytical results. As shown in Eqs. 2.128 -2.131, the eigenvalue computed by the semi-analytic approach is

the loading parameter p which has the form

where

1 2

Nxbl (5.2)

Nix = W_" (5.3)
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Remember that Wt and b I are the unsupported plate width and plate half-width, respectively, at the narrow

end of the plate. In order to pose the analytical results in the form of Eq. 3.5, p is modified according to

N _ b2

___ XinalYsil |

2 _ lD22

N 1 W 2

4p - x.,.. I

/I;2 "_-DI I D 22

PW I
4_-

2 "_11D 22

(5.4)

This yields

(5.5)

When computing the experimental buckling coefficient, however, the plate width at the narrow end of the

plate has dimension W I , which is wider than the unsupported plate width W 1, as shown in Fig. 5.1. This

changes the above derivation according to

N _ b2

___ X©xP ]

/_2,_--11D22

N _ W 2

4p - x p I

_2_/-DI 1D22

4p=

_/l'/t 2,s/-D'l1D22

w,

(5.6)
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(w__,l
This shows that the measured buckling loads must be multiplied by the quantity 2_ _,Wl j to

provide correct buckling coefficients for comparison with the buckling coefficients calculated by the semi-

analytic approach.

The next chapter describes experimental results and offers a comparison with semi-analytical predictions.
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Chapter 6

Experimental Results and Comparison with Analysis

In this chapter, comparisons between the measured and predicted prebuckling stiffnesses are made for the

ranges of plates tested. Buckling loads are compared, as are buckled mode shapes. As will be seen, the

agreement between predictions and observation is generally quite good. However, for selected cases the

agreement is not quite as good. The final section of this chapter offers possible explanations for the

discrepancies that do occur.

6.1 Comparison of Experimental and Analytical Prebuckling Plate Stiffness

The formula for prebuckling plate stiffness, i.e., the slope of the prebuckling load vs. end-shortening

relationship, was developed in Ch. 2 based on the assumed prebuckling inplane force resultant distribution,

and is given by Eq. 2.141. Table 6.1 compares the calculated and experimentally determined prebuckling

plate stiffness values for all of the plate geometry and stacking sequence combinations tested. The

experimental stiffness values reported are the slopes of the lines fit by hand through the prebuckling portion

of the load vs. end-shortening relationships, as described in Ch. 5. With the exception of the [0]24 laminates,

there is very good agreement between the calculated and experimental values. To a large degree the table

speaks for itself. Typically the calculated values and experimental results are within 9%. However, there is

between 27% and 35% difference for the [0]24 laminates. Furthermore, the differences for all cases

considered seem to be random in that the calculated results are neither always greater nor always less than

the experimental results.
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Table 6.1 Calculated

i ! i

[0]24

[0]24

[0]24

[+306/-306] s

[+306/-306] s

[+306/-306] s

[+306/-306] s

i ¸¸ ...... i¸¸ , i,lil/ .......... i ¸¸

[+45/0/.-45/9013s

+45101-4519013s

+4510/-4519013s

-t.45/0/-45/9013s

[+606/-606] s

[+606/-606] s

[+606/-606] s

[+606/-606]s

1

1

3

l

1

3

1

I

!

} r

3

1,

1

1

3

1

iii_l

1

1

3

1

and Experimental Prebuckling Plate Stiffness Values

1.0 3.89E5 3.05E5

1.0 3.21 E5 2.51 E5

1.0 2.37E5 1.75E5

.... li56E5

.... 9,02E4

1.0 1.50E5 1.56E5

1.0 1.24E5 1.24E5

1.0 9.13E4 9.34E4

5.57E4

.... 3!96E4

2i_9E4 2.60E4

1.0 1.55E5 1.46E5

1.0 1.27E5 1.19E5

1.0 9.39E4 8.32E4

2.0 6.36E4 6.48E4

3.85E4 :
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Table 6.1 Calculated and Experimental Prebuckling Plate Stiffness Values

6.2 Comparison of Experimental and Analytical Buckling Loads

As mentioned in Ch. 5, several aluminum plates were tested to provide a baseline comparison. The buckling

coefficients from the experiments with aluminum plates are given in Table 6.2 along with the buckling

coefficients for the aluminum plates as computed by the semi-analytical analysis. In Table 6.2, and in similar

tables to follow, finite element results are included because not all of the experimental cases are considered

in the figures of Ch. 4. In this way, future comparisons between the semi-analytic approach and the finite

element results are available. Discussion in this chapter, however, will be limited to comparing experimental

results to results from the semi-analytic analysis. Additionally in Table 6.2, the number of halfwaves in the

buckled mode shape is given by numbers in parentheses in the Experimental and Analysis columns .The

fundamental case for a baseline comparison is a square (A.R. -- 1.0, T.R. =0) isotropic (aluminum) plate

because it simplifies all of the material and geometric parameters in the analysis. Table 6.2 shows

approximately 1.5% disagreement for this important case. The other two rectangular cases (A.R. = 1.0) have

disagreements of 10% and 2.2%. As the taper ratio increases, the effect of the geometric parameters in the

analysis is investigated, while the material parameters are still simplified. The moderately tapered geometry

(A.R. = 1.0, T.R. -- 1.5) shows a 4.1% disagreement and the extremely tapered geometry (A.R. = 1.0,

T.R. = 1.5) shows a 1.2% disagreement. Nothing can be stated regarding the sign of these disagreements, in

some cases the analytical results are conservative and in other cases they are nonconservative. In all cases

the number of half waves observed is correctly predicted.
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Table 6.2 Experimental Buckling Loads for Aluminum Plates

ii , , 6.6Aluminum 1.0 1.0 (1)* 6.7 (1) 6.8

Aluminum 1.0 1.5 4.9 (1) 5.4 (1) 5.4

Aluminum 1.0 3.0 4.5 (3) 4.4 (3) 4.5

Aluminum 1.5 1.0 7.3 (1) 7.0 (1) 7.0

Aluminum 3.0 1.0 7.8 (1) 7.7 (1) 8.2

* The numberof halfwaves in the buckled mode shape is indicated by the numberin parentheses.

The next logical step, after investigating the baseline aluminum material, is to investigate the effects of the

orthotropic parameters independently from the effects of the anisotropic parameters. Table 6.3 presents

analytical and experimental results for [0]24 and [90]24 composite plates. As mentioned in Ch. 3, these

laminates are limiting cases for the orthotropic parameters in this analysis. As can be seen from Table 6.3,

there is much better agreement, in general, between the calculated and measured buckling coefficients for

the [90]24 composite plates than for the [0]24 plates. Some difficulties due to initial imperfections were

encountered while conducting the experiments on the [0]24 laminates. The disagreements between the

experimental and analytical results range from 22% to 32% for the [0]24 laminate, compared to a range from

0% to 7.8% for the [90]24 laminate.

Unidirectional composites have inherent difficulties as test specimens due to the large difference in stiffness

between the two principal directions. Unidirectional plates can be less flat than angle ply or cross ply

laminates due to a high sensitivity to fiber misalignment as the individual plies are laid down during

fabrication. Indeed, one of the [0]24 specimens was completely discarded because the specimen showed

significant shadow moire fringe patterns in the unloaded state and exhibited large out-of-plane

displacements immediately upon application of the load. Also, not having the 0 degree direction perfectly

perpendicular to the loaded edges can be a problem, i.e., the laminate could actually be a [3]24 instead of a

[0]24 laminate. Additionally, it would appear that the difficulties associated with testing unidirectional

specimens are more severe when the specimens are loaded in the stiff direction than when they are loaded

perpendicular to the stiff direction. Recall from Ch. 2 that the assumed prebuckling inplane stress

distribution is more accurate for the specimens loaded perpendicular to the stiff direction. Note the

disagreement in the number of halfwaves predicted by the analysis for the long [90]24 laminate.
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Table 6.3 Experimental Buckling Loads for Unidirectional Composite Laminates

The final step in the investigation is including all of the effects of the geometric, orthotropic, and anisotropic

parameters. To that end, buckling coefficients for angle-ply composite plates are presented in Table 6.4. As

in Table 6.3, there is better agreement between the measured and calculated buckling coefficients for

specimens loaded perpendicular to their stiff direction. The [+30/-30] 6 and [+306/-306] s have differences up

to 32% between the measured and calculated buckling coefficients, while the largest difference for the [+60/

-60]6 and [+606/-606] s laminates is 13%. For 75% of the cases shown in Table 6.3 there is less than 12%

difference between the measured and calculated buckling coefficients. In only 4 of the 19 cases shown is the

difference greater than 20%. Note that for the long plates, A.R. -- 2.0, the analysis underpredicts the number

of halfwaves by 1. It is also worth noting, however, that the cases in which there is greatest disagreement

between analytical and experimental buckling coefficients are not always those in which there is

disagreement in the number of halfwaves in the buckled mode shape.

Table 6.4 Experimental Buckling Loads for Angle-Ply Laminates
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Table 6.4 Experimental Buckling Loads for Angle-Ply Laminates

[+45]6 s 1.0 1.0 8.7 (1) 9.2 (1) 9.2

[+45]6 s 1.5 1.0 9.0 (1) 9.8 (1) 10.0

[+4516 s 3.0 1.0 11.4 (2) 10.6 (1) 12.1

[+45]6 s 1.5 2.0 8.9 (3) 9.3 (2) 8.9

[+606/-606] s 1.0 1.0 6.4 (1) 6.9 (I) 6.8

[+606/-606] s 1.5 1.0 6.0 (2) 6.8 (1) 6.8

[+606/-6061 s 3.0 1.0 6.6 (2) 7.5 (2) 7.7

[+606/-606] s 1.5 2.0 5.7 (4) 5.8 (3) 5.7

Table 6.5 presents analytical and experimental results for quasi-isotropic composite plates. The

disagreements associated with these laminates are comparable to those of the [+4516s laminates shown in

Table 6.4. In all cases the number of half waves predicted was observed.

Table 6.5 Experimental Buckling Loads for Quasi-Isotropic Laminates

[+45/0/-45/90]3 s 1.0 1.0 7.1 (1) 7.4 (1) 7.4

+45/0/-45/90]3 s 1.5 1.0 8.2 (1) 7.7 (1) 7.5

+45/0/-45/9013s 3.0 1.0 9.6 (1) 8.1 (1) 9.9

+45/0/-45/90]3 s 1.5 2.0 7.1 (2) 6.3 (2) 6.3

6.3 Comparison of Experimental and Analytical Buckled Mode Shapes

This section presents representative fringe patterns to demonstrate the effects of plate geometry and ply

stacking sequence on the buckled mode shape. The drastic effect the direction of orientation of the principal

direction having the greater stiffness has for laminates that are highly orthotropic is shown in Fig. 6.1. The
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specimen on the left has a [0]24 stacking sequence while the specimen on the right has a [90]24 stacking

sequence. Both specimens have aspect ratio 2.0 and aspect ratio 1.5. Notice that because the [90]24 laminate

is relatively soft in the direction of the applied load, it buckled into 5 half-waves along the length. The [0]24

specimen, on the other hand, is very stiff in the direction of the applied load so it buckled into only a single

half wave. Because neither of these specimens has a D16 or D26 component in the bending stiffness matrix,

the buckled mode shapes are not skewed.

Figure 6.1 Experimental Buckled Mode Shapes for [0]24 (left) and [90]24 (right) Laminates:

A.R. = 2.0, T.R. = 1.5
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The effect of the DI6 and D26 terms skewing the buckled mode shape is visible in Fig. 6.2. The specimen on

the left has stacking sequence [+60/-60]6 s and the specimen on the right has stacking sequence [+606/-606] s.

The specimens both have aspect ratio 2.0 and aspect ratio 1.5. Note that both specimens buckled into the

same number of half-waves, but the waves are not symmetric from left to right for the specimen on the right.

As was seen in Fig. 3.1, the [+606/-606] s laminate has much larger values for DI6 and D26. However, D16

and D26 are not zero for the [:L,60]6slaminate and close inspection of the left portion of Fig. 6.2 shows very

mild skewing for this specimen also.

Figure 6.2 Experimental Buckled Mode Shapes for [_+6016s (left) and [+606/-606] s (right) Laminates:

A.R. = 2.0, T.R. = 1.5
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Figure 6.3 shows a similar effect for [+30/-3016s and [+306/-306] s laminates having aspect ratio 2.0 and

aspect ratio 1.5. Note that for this case, the [+306/-306] s laminate buckles into 3 half-waves while the [+30/-

3016s laminate buckles into only 2 half-waves. The skewing for the [+306/-306] s laminate is quite extreme.

Figure 6.3 Experimental Buckled Mode Shapes for [__3016s (left) and [+306/-306] s (right) Laminates:

A.R. = 2.0, T.R. = 1.5
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Figure 6.4 shows a specimen with stacking sequence [+306/-306]s, but with plate taper ratio 3.0 and aspect

ratio 1.0. It is important to note the large effect the combination of an extremely tapered geometry and a

highly anisotropic material have on the buckled mode shape. There is clearly a high lack of symmetry for

this case.

Figure 6.4 Experimental Buckled Mode Shape [+306/-306] s Laminate: A.R. = 1.0, T.R. = 3.0

Although the number of halfwaves calculated by the analysis are presented in Tables 6.1 through 6.4, for

comparison purposes Figs. 6.5 through 6.8 present contour plots of the buckled mode shape calculated by

the semi-analytic analysis for the same plate geometries and stacking sequences shown in Figs. 6.1 through

6.4. Comparing the two sets of mode shapes reinforces what was shown in Tables 6.1 through 6.4 regarding

the number halfwaves in the buckled mode shape computed by the analysis compared to the number of

halfwaves exhibited by the specimens during testing. Specifically, for the longer aspect ratios the analysis

underpredicts the number of halfwaves in the fundamental buckling mode. What is not apparent from the

tables, however, is that the amount of skewing in the calculated buckled mode shapes is very similar to that

shown in the experiments.
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Figure 6.5

E _F

// ,
Calculated Buckled Mode Shapes of [0124 (left) and [90124 (right) Laminates:

A.R. = 2.0, T.R. = 1.5 (compare with Fig. 6.1)
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J

Figure 6.6 Calculated Buckled Mode Shapes for [_"!-6016s (left) and [+606/-606] s (right) Laminates:

A.R. = 2.0, T.R. = 1.5 (compare with Fig. 6.2)
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I

I<

Figure 6.7 Calculated Buckled Mode Shapes for [+_3016s (left) and [+306/-306] s (right) Laminates:

A.R. = 2.0, T.R. -- 1.5 (compare with Fig. 6.3)

6.3 Comparison of Experimental and Analytical Buckled Mode Shapes 130



Chapter 6." Experimental Results and Comparison with Analysis

Figure 6.8 Calculated Buckled Mode Shape [+306/-306] s Laminate: A.R. = 1.0, T.R. = 3.0

(compare with Fig. 6.4)

6.4 Summary of Sources of Disagreement between Experiments and Analysis

Many possible sources of disagreement have been discussed throughout this chapter and throughout this

investigation. The ones believed to have the greatest influence on the experimental and analytical results are

summarized in this section.

Recall from Ch. 2 the discussion associated with Figs. 2.6 - 2.17 regarding the assumed form of the

prebuckling inplane force resultant distribution. In that discussion it was pointed out that the discrepancy

between the assumed form and the finite element results appeared to be a strong function of the degree of

orthotropy and the degree of taper. This discrepancy in prebuckling force resultant distribution appears to be

a major contributor to the disagreement. Recall the isotropic cases show much better agreement than the

composite laminates, and the composite laminates that have their stiff axis oriented perpendicular to the

loading direction show better agreement than the composite laminates that have their stiff axis oriented

parallel to the direction of loading. This dependence of the orientation of the stiff axis was also evident when

comparing buckling predictions from the semi-analytic analysis with buckling predictions from the finite

element analysis. It can be expected, then, that for those cases where the prebuckling assumptions in error,

differences between experiments and analysis will occur.
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Recall from Ch. 5 that the straight lines through the prebuckling and postbuckling portions of the load vs.

end-shortening relationships were fit by hand. For some experimental cases this was very straightforward

while others required quite a bit more judgement. For those requiring more judgement, deviations between

experiments and analysis can be expected.

Recall from Ch. 2 that the material properties reported in Table 2.2 are typical values. Implicit in these

values is a specified fiber volume fraction and resulting ply thickness. If the actual ply thickness is less than

the specified ply thickness, the resulting laminate will have both a higher fiber volume fraction and a smaller

plate thickness. The higher fiber volume fraction enhances the laminate stiffness and will contribute to a

higher buckling load. The smaller plate thickness degrades the plate stiffness and will contribute to a lower

buckling load. The opposite is true if the actual ply thickness is greater than the specified ply thickness.

Any manufacturing errors involved in machining the ends of the specimens flat and parallel will manifest

themselves in the experimental results. This is a much more important factor for the laminates that have their

stiff direction oriented parallel to the direction of load.

Finally, although the experimental fixtures appeared to do a good job providing uniform loading, there is no

way the ensure a perfectly clamped boundary conditions on the ends or simply supported boundary

condition on the edges. Unfortunately, is also no way to measure how well the fixture is providing the

clamped or simply supported boundary conditions.

In spite of difficulties and possible error sources, there is excellent agreement between the experiments and

analysis regarding the prebuckling plate stiffness. There is also an acceptable level of agreement between the

experiments and analysis to verify that the semi-analytic analysis is accurately predicting the buckling loads.

The [0]2 4 laminate, however, is the obvious exception to both of these statements.
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Summary, Conclusions, and Recommendations

7.1 Summary

This research has used three different tools to investigate the buckling response of symmetrically laminated

composite plates having a planform area in the shape of an isosceles trapezoid. The nonparallel edges of the

plate were assumed to have simply supported boundary conditions, while the parallel edges of the plate were

assumed to be either simply supported or clamped pairs. The loading was assumed to be an inplane

unidirectional force perpendicular to the parallel edges of the plate. First, a semi-analytic closed-form

solution based on energy principles and the Trefftz stability criterion was derived in terms of six

nondimensionai parameters. Two of these parameters were measures of material orthotropy, two were

measures of material anisotropy, and two were measures of plate geometry. Standard classical lamination

theory, based on Kirchhoff's plate theory, was used in conjunction with the von Karman nonlinear strain-

displacement relations. A simplified prebuckling force resultant distribution was assumed to simplify the

analysis, and the out-of-plane displacement was approximated by a double trigonometric series. The

Rayleigh-Ritz method of solution provided a symmetric eigenvalue problem that can be implemented on any

computer. The second tool used in this investigation was a finite element analysis to compare buckling loads

for several specific material and plate geometry combinations. Models consisting of a 10 by 10 mesh of 8-

node shell elements were constructed using PATRAN and buckling loads were computed using the general

purpose finite element code ABAQUS. The third tool used in this research was an experimental

investigation. Special test fixtures were designed, and an experimental technique developed to verify the

results obtained from the semi-analytic analysis.

7.2 Conclusions Regarding the Analysis

Intrinsic elements of the semi-analytic analysis were the inclusion of the effects of the anisotropic material

terms (D16 and D26), the simplified prebuckling inplane force resultant distribution, and the series

approximation for the out-of-plane displacement of the buckled mode shape. Including the anisotropic terms

added complexity to the analysis because these terms were coefficients of mixed partial derivatives of the
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out-of-plane displacement. Including these terms, however, was important because they were shown to

decrease the buckling load, and cause the buckled mode shapes to be skewed.

Rather than solving the first variation of total potential energy, the prebuckling force resultant distribution
P

was assumed to have the simplified form N x - and N = N y = 0, where P is the applied load
W(x) Y

and W(x) istheplatcwidth.Comparison withfiniteclementresultsshowed thatthiswas a veryaccurate

approximationforisotropicmaterial,and was more accurateforcompositeplatcsifthestiffmaterialaxisis

orientedperpendiculartotheloadingdirectioncompared toifthestiffmaterialaxiswas orientedparallelto

thcloadingdirection.Ingeneral,the assumed forceresultantvalueswere within7% ofthefiniteelement

results,and intheworstcase,theresultswere within25%. No generaltrendexistedastowhetherthe

assumed forceresultantdistributionwas conservative,ornonconservativc.

The series approximation for the out-of-plane displacement is more complex for tapered plates when

compared to approximations for rectangular plates because the width of the plate is a function of position

along the length of the plate. Including the anisotropic material terms added to this complexity, also, because

the resulting skewed mode shapes prevented assuming any symmetry. The out-of-plane displacement was

approximated by a double lrigonomctrie series comprised of products of odd and even functions (i.e.,

symmetric and antisymmetric functions) that were assumed to have different forms for the two different sets

of boundary conditions on the parallel edges of the plate. For the plate geometries considered, this series

converged using 4 terms for isotropic materials. Including 5 terms in the series resulted in a 50 by 50

eigenvalue problem that ran in less than 1/2 second on a Cray YMP. Because of the fast convergence rate,

and the fact that this analysis can run on any computer capable of supporting FORTRAN, this analysis can

be a valuable design tool for the preliminary design of tapered composite plates.

Based on comparison with finite clement results, it appears safe to say that, for laminates of practical

interest, this analysis can predict buckling coefficients accurate to within 11% for highly tapered plates and

within 3% for moderately tapered plates. For more traditional rectangular plates, the analysis is within 0.5%.

For simply supported boundary conditions on the parallel ends, the parametric relationships showed that

increasing the taper of a plate always increased the buckling load when compared to a rectangular plate

having the same width as the wide end of the tapered plate. There was an interesting interaction between

boundary conditions and material properties for the plates having clamped ends, however, that caused this

trend to reverse for certain plate aspect ratios. The clamped end conditions always yielded higher buckling

loads when compared to plates with the same geometry but with simply supported end conditions. The

anisotropic parameters were shown to severely decrease the buckling load, and the nondimensional

parameter [3, which includes all of the orthotropic material terms, was shown to have a large effect on the
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buckling load. Increasing I_ caused a significant increase in the buckling load, and the decrease in buckling

load due to anisotropy was shown to be less for higher values of 13.The nondimensional parameter ix, which

is the ratio of the longitudinal bending stiffness to transverse bending stiffness, was shown to have a greater

effect on the buckling load for plates with clamped end conditions when compared to plates with simply

supported end conditions. For both sets of end conditions there were areas of overlap of the nondimensional

relationships which indicate areas of flexibility for the designer when choosing stacking sequence and plate

geometry to achieve a specific buckling load. Contour plots revealed the effects of plate geometry, material

properties, and boundary conditions on the buckled mode shape. The laminates having their stiff direction

oriented perpendicular to the loading direction had more half-waves in their buckled mode shape when

compared to laminates having their stiff direction oriented parallel to the loading direction. The clamped

boundary conditions were shown to both change the number of half-waves in the buckled mode shape and

compress the halfwaves toward the center of the plate. The anisotropic parameters were shown to skew the

buckled mode shapes

7.3 Conclusions Regarding the Experiments

A series of experiments were conducted to verify the semi-analytical predictions for a wide range of plate

geometries and stacking sequences of an AS4/3502 graphite/epoxy composite material. Intrinsic to these

experiments were test specimens, test fixtures, instrumentation, experimental technique, and determining

buckling load from the experimental data. The specimen fabrication process, in general, yielded specimens

having uniform thickness with fiat and parallel ends. Specialized test fixtures were required to provide the

necessary boundary conditions and provide uniform loading across the specimen width without causing any

out-of-plane bending. The instrumentation was required to verify uniform loading and provide adequate

information to accurately determine the buckling load. The experimental technique incorporated special

steps to ensure alignment to provide uniform loading and prevent out-of-plane bending. This combination of

special test fixtures and experimental technique provided reasonably uniform loading on the specimens. The

back-to-back strain gages revealed very little out-of-plane bending prior to buckling for all cases, while the

displacements measured by right and left DCDT's agreed within 2%, in general, and within 5% for the worst

cases. The experimental buckling loads were determined by finding the intersection point of straight lines fit

by hand through the prebuckling and postbuckling portions of the load vs. end-shortening relations. This

technique worked quite well for the majority of the cases. Some difficulties were encountered, however,

with the very stiff laminates because there was very little change in slope between the prebuckling and

postbuckling portions of the relations.
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The equation describing the prebuckling plate stiffness (slope of the prebuckling portion of the load vs. end

shortening curve) is slightly more complex for tapered plates than for rectangular plates because the width

varies with position along the length of the plate. In general, the prebuckling stiffness measured by the

experiments was within 7% of the analytical prediction. The only exceptions to this were the [0]2 4 laminates,

which had disagreements between 27% and 35%. With the exception of the [0]24 laminates, therefore, the

experiments verified that the analysis adequately predicts the prebuckling response of tapered composite

plates.

In the baseline comparison with aluminum test specimens, the difference between experimental and

analytical buckling coefficients were generally within 4%. This verifies that, when material issues are

excluded from the discussion, the semi-analytic analysis handles the tapered geometry quite well.

Investigating both [0]24 and [90]24 laminates as limiting cases for the orthotropic parameters showed

disagreements less than 8% for the [90]24 laminates, while the [0]24 laminate had disagreements as large as

32%. The angle-ply and quasi-isotropic specimens incorporated all of the orthotropic, anisotropic, and

geometric parameters. In 75% of these cases, the experimental buckling loads were within 13% of the

analytical predictions. In general there was better agreement between the analysis and the experiments for

composite plates having their stiff axis oriented perpendicular to the direction of loading. With the exception

of the [0]24 case, the experiments verify that the semi-analytic analysis adequately predicts the buckling load

for tapered composite plates.

Comparing the shadow moir6 fringe patterns with the calculated buckled mode shapes verified the skewed

buckled mode shapes due to anisotropy that is predicted by the analysis. However, the semi-analytic analysis

is not always able to correctly predict the number of halfwaves in the actual buckled mode shapes.

Finally, the potential sources of error that could possibly contribute to any discrepancy between the observed

and analytical results were outlined.

7.4 Recommendations for Future Work

This research is fairly complete. However, there are logical extensions that can be made. Specifically, a more

accurate prebuckling force resultant distribution can be incorporated into the analysis. This would require a

moderate amount of effort. This addition should enhance the results for highly orthotropic plates with large

tapers that have their stiff direction oriented parallel to the direction of load, and perhaps it would improve

the prediction of the number of halfwaves in the buckled mode shape. Additionally, this analysis could be

expanded to include a postbuckling analysis. This postbuckling analysis would require the previously

mentioned refined prebuckling analysis and would require a significant amount of effort. Finally, this
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approach could be expanded to incorporate additional geometries, such as plates having a tapered planform

area with cutouts. These cutouts could be typical, such as circles and rectangles, or could continue in the

spirit of some lack of symmetry, and be trapezoids, or perhaps even tapered ellipses.
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Appendix A

Evaluation of Boundary Integral

The boundary integral that results from integrating the coefficient of D66 by parts twice using Green's

theorem is

OA

(A.I)

The terms fix and fly are the x and y components of the inplane outward normal vector of the plate boundary.

Consider a parametric curve f(S) in a cartesian coordinate system.

Y

sx n_,,.,_ f(S )

v X

Each point on the curve has associated normal and tangent unit vectors fi and _ where

fix = n i fir = nyj

^ _ ^ A
"_x = Sx i Sy SyJ

n x -----Sy

ny = Sx .

(A.2)
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Appendix A." Evaluation of Boundary Integral

The chain rule for differentiation yields the following relations

0f

0x

of

0f0s Of On Of Of Of of

0s0x 0n0x 0s sx +ann nx a--nnx-igs ny

0figs Of On of Of Of Of
- 4 --- = b

Oy Osay Onay Os sy +an ny Os nx +---_ny

Of of Ox of _, Of Of of Of
-- + -- " + = ---- C

0s 0xas Oyas 0x sx _yynx _yynx Ox ny

Using part c of equation (A.3), the integrand of equation (A. 1) can be expressed as

(A.3)

aw__pw_
0x 0s_y J'

Expanding the integrand of (A. 1 ) using parts a and b of (A.3) yields

(A.4)

I___y 0w l a 0w 0w aw aw ra2w a2w +/)ny0w 1- _nnnq_ss {_ n_ + _nnn,} = [_ ny - _nnn_] 1--nas2 • + --_s n, + -asanXaW-as_ _ j

awa2w :oqwa2w an (aw'12 Onyawaw

=n_ny_ss_s2 +ny_ss_--_s+nyass _,_ss) +nyos asan

2awa 2 owa2w 0nx0w_w 0ny (Ow'_ 2

-n'anas 2 nxnya---nanigs nxas anas n_a_ %qj-

(A.5)

Using

awaw _ __pw__w]__a_waw
_n_nOs anLanasJ an2as '

The integrand can be expressed as

(A.6)

anxawaw
--n

Xas On as

a_aw a vawawl}+ _awa_w _awa_wan 2as an Lan as J ny_s _- nxan as 2

°Ony____)2 + anx (aw'_ 2 OnyOwaw

(A.7)

For constant w everywhere on the boundary,
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Appendix A: Evaluation of Boundary Integral

_w _ 2w
- o - 0 (A.8)

_s _s 2

along the boundary curve. For simply supported or clamped boundary conditions on all edges of the plate,

therefore, the integrand simplifies to

3nY (_w) 2 (A.9)
"

_ny

This will equal zero if/)w = 0, = 0, or n = 0.
an _ x

Consider a plate of arbitrary geometry having area A and boundary bA. Each point S on the boundary has an

associated infinitesimal arc length ds with outward normal fi (S) which is a function of position and has

components in the x and y directions fi (S) = nx (S) 1+ ny (S) ] . As the boundary of the plate is traversed,
bw

the orientation of fi changes, so 3ny _ 0. If the plate is clamped on all edges, _nn = 0, but for simplybs
supported edges, a_w _: 0. And finally, n _ 0, except for the two points at which fi is aligned with the y axis.

_n x

_(s)
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Appendix A: Evaluation of Boundary Integral

Now consider a polygonal plate with N sides having boundary 0A = _)A1 + _)A2+ ... + 0A n . The boundary

integral is now written in a piecewise continuous fashion

OAN

0A2 _

0A 3 _

k

_ 0ny(0w_2ds ____Nt' 0n (0w_2
nx_ss \_nnJ = _, J nx0--ssY\0nJ "

_A I = _c3Ai

(A. 10)

Consider a typical edge. Since each edge is a straight line, nx and ny are constant values. This results in

. fi = nxi + nyj

k th edge_ //_

OAk

0n x 0ny
-- -- 0.

0s Os
(A.11)

Therefore, for polygonal plates having simply supported or clamped edges,

0x LOxkOy ) y 0yk0y J J
3A

(A.12)
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Details of Integration

The out-of-plane deformation of the plate is expressed as

where

N N

i=lj=l

03.1)

_j = ¢os(_), 03.2)

Fj = sin (gj), 03.3)

fj = (2j-l) rtrl
2b (_)'

03.4)

and

jx_

gJ - b (_) '
03.5)

b(_) = l+e_, 03.6)

The derivatives of individual terms of eq. 03.1) are given by

afj _q
a_ e(2j- 1)--,

2b (_) 3

o_2f.

J - 2a 2 (2j - l) _--_-_-_
c_ 2 2b (_) 3'

03.7)

03.8)
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an
- (2j- 1)--

2b(_)
(B.9)

_2f,
J

_2
-0, (B.l0)

_2f.
J

- .E(2j-1)--

2b(_) 2'

(B.11)

bgj jnrl

_ b (_)2'
03.12)

03.13)

_gj jr;

oq b(_)'
(B.14)

2

3gJ - 0,

_2
(B.15)

02gj jrt

_ b (_) 2

03.16)

Making these substitutions into eqs. (2.88), (2.92), and (2.96) provides

c!E = _i (_) _ (2j - 1) n--_-_sin (fj) + _'i (_) cos (fj)
'J 2b 2 '

(B.17)

c '° -_ (_)Ejn_
ij = b 2 cos (gj) + (I)' i (_) sin (gj),

(B.18)

c2EIj = (I_"i (_) cos (fj) + e (2j- 1)_-_/t IcD'i (_) - _] rlsin (f j)

2

-tD i (_) e 2 (2j - 1124-_r12cos (fj) ,

(B.19)
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C_ ° = _"i (_) sin (gj) - 2e_-_2 _'i (_) - rlcos (g)

• 2 2

-_i (_) e2_'-4 _ 2sin (gi) ,

03.20)

N!'E = -_i (_) (2j - 1) _-_ sin (fj)
03.21)

NtO (i)i (_) jnij = --_COS(gj),
(B.22)

2

Ni_E = -_i (_) (2j - 1) 2 _-_--cos (fj)
4b 2

(B.23)

.2 2

03.24)

M2E =*i(_)_;(2j--1)--_-_ Fsin(fJ)+(2j-1)_rl 1 __x..,
lj 2b 2 t_ _ cos (fj) - (2j - 1) 2b i (_) sin (fj), 03.25)

and

°--* L
' b z I_

+Jnrlsin(gj)l+_i'_c°s(gJ)b
(B.26)

The total stiffness matrix given by eq. (2.1 I0) is expressed as

KT(W , _w)

N N N N

-- EO E . ..-- OO O. O

= E Z Z E { (KTEE wE + KTOE wO) _WEq + (1__ W.. + IN- W..) . (8.27)uPq s tJpq lijpq q lijpq U _Wpq}

i=lj=lp=lq=l

The first term is the series is given by

P __

K EE = iF_q(_)d_
Tijpq

03.28)
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EE
where Fijpq (_) contains the integrals performed across the width of the plate.

In order to simplify the equations so that the symbolic manipulator MACSYMA can be use most effectively

for performing the integrations, the equations will be broken down into small parts, the integrations will be

performed, and then the parts will be reconstructed. The first logical breakdown is to factor the equation into

the various combinations of the order of differentiation of _, namely

EE 22 ,, .O" + 20., fjlq2_,i(l),, + fjlq0.,i_ pfiq _ I p p
03.29)

+ (_q2,_,_" p+ _,_a,' p+ _i_p).

Note that the first superscript of _qrepresents the order of differentiation of _ while the second superscript

represents the order of differentiation of _p. The fjq are now factored according to the specific integrals over

1"1.The Ijq are the integrations over 11across the width of the plate. The first superscript on Ijq signifies which

of the four possible combinations of trig terms occurs in the integrand according to the following list: l=sin

sin, 2=sin cos, 3=cos sin, 4=cos cos. The second superscript signifies what power 1] is raised to, i.e. 0---_°=1,

1---rI, 2--rl 2, etc. The _q are given by

f22 2 4O 03.30)
jq = O_ Ijq,

f.21 _0_ I_ 131 30
jq = E jq-_- (2q - 1) [ -byIjq], 03.31)

_o_ n (2q 1)2.(x 2 2142_2(zE_,bi_+b2[_i_q] xot_ 30 03.32)
4b 4 - [ E jq - J,_- --- -_ (2q - 1) [o_eI_ - byIjq],

f12= _(X [(Xl_I31 b I 3°" f2t 03.33)
jq -b_-(2j--1) -- ]'qjl = qj,

f!l = 20t......_E [(XEi;q2-
Jq b4 (2j - l) (2q- 1) 2byI;_],

• 2. 3 3.23 2 2 22 ,._ b2131 3 30(2j-l)(2q-1) tOtE ljq-30_l_ b'yljq+ pE qj-b _Iqj]

7_20_E 2

b 5
---(2j-1) (2q- 1)[cteI]_-2byI]_]

03.34)

03.35)
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2
f°2 -
Jq 4b 4

.... b2Bi40 ` nccE "{x 131 b 130` f20
(2j 1)2[_2£2142jq - 2°cebyI4_ + " JqJ - T (2j- 1) l E qj- yqj] = qj

f° 1 3

jq = 40_b 6
--- (2q- I) (2j- I)2-[(x3e3123o3- 3°t2e2byI22 + (x_eb2I_ - b3_I3°'JqJ

b 5 (2j-1)(2q 1) qj

and finally

, 03.36)

03.37)

jf_q B
rc2etE3 " 112- 2byI]_ ]- -- -- [O_E jq

b 6 (2j-1)(2q 1)

'/_3E 23 23
+ -- (2j - | ) (2q - 1) { O_3E3 [ (2q -- | ) Ijq + (2j - 1) Iqj ] - 30_2eZby [ (2q - 1) I22Jq+ (2j - 1) 12.2]

4_b 7 03.38) "_

- 1"131" 30 flo 1
+ctl3eb2[ (2q - 1)13!+qj (2j ) jqj -b3_i[ (2q - I)Io3 + (2j- 1) jq. }

4
__ 1.2.54 4144 - 3 3- .43 2 2 2 42_40_E_b3ij4_ .414o.+ (2q- 1)2(2j- ) [ e jq -,_et e oyljq +2or I_ b I_Ijq +o jqJ
16txEb 8

Because the specific integrals over rl are now separated out, they can be easily recognized and computed

using the symbolic manipulator MACSYMA. The results are given as

---b(_) _ cos (2q-l) drl=0;j_:q

= 1;j =q'

I3_ = f_'(_)
Jq "-b (_)

b2(Zj- 1) (-1) j+q

(q -j) (q +j - 1)

b 2
- ;j =q,

_(2i- 1)

TI c°s I '2J - 1) 2_) ] sin [(2q - 1) 2_) ] d_

;j ¢q

03.39)

03.40)
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---b (_,)

2b 3 (2j- 1) (2q- 1) (-1) j+q .
= ;j_q

2(q_j)2(q+j_ 1)2

b 3 [x2(2j- 1)2-6]
= ;j = q,

3n2 (2j- 1) 2

03.41)

i::=f 1]2sin I (2j - 1) 2_) 1 sin I <2q - I) 2_) 1 d'
•'-b (_)

2b 312j (j- 1) +2q (q- 1) + 1] (-1) j+q .
= ;j _:q

x2 (q _j) 2 (q +j _ 1) 2

b3[n2(2j- 1)2+6] .
= ;j =q,

3n 2 (2j - 1) 2

n'q drl
I23='q 5_(_3 sin [ (2j- 1) 2bn1](_).Jlcos F(2q_ 1) 2b (_)3L

-b(_)

b4(2q - 1) {q(q- I) [x2(q (q- 1) -2j(j - 1) ) -6] } (--1 J+q)

g3 (q _j) 3 (q+j _ 1) 3

b4(2q - 1) {j(j- 1) [ 2j (j_ 1) - 18] -6} (-1J+q) ;jsq

x3(q-j)3 (q+j- 1) 3

b4[ 2(2j_1) 2-6]
= ;j = q,

rc3 (2j- 1) 3

03.42)

03.43)

I44Jq: '+b(_)41]COSI (2j- 1) _v','w_-'-ff'7-_--]_'q 7 COSI(2q-- 1) _ldTI

-b(_)

4b5 (2j - 1) (2q- 1) {q(q- 1) [rcZ(q (q- 1) -2j (j- 1) ) -- 12] } (--1 j+q)

4(q_j)4(q+j_l)4

+4b 5(2j-1) (2q-l) {j(j-1) [ 2j (j _ l) _12]_6]. (_l j+q) .
;JCq

n4(q_j)4(q+j_ 1)4

= b 5 {n2(2j- l)2(n2(2j- 1)2-20) + 120 }

5x 4 (2j - 1) 4
;j =q'

03.44)

,30jqJ cosE,2j_, " =
-b(r_)

03.45)
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I41jq = / rlcos (2j- 1) cos (2q - 1) dr I = O,

-b(_)

03.46)

['+b(_)

-b(_)

03.47)

Jq _ 2@_)1 7Vq d'l]I.Z2= +bC_2sin I(2 j - 1) cos I(2 q - 1)2b (_)1 =0,

-b(_)

03.48)

-b(_)

03.49)

Combining the evaluated integrals of eqs. 03.39) through 03.49) with the appropriate coefficients in eqs.

03.30) through 03.38) and substituting into eq. 03.29) yields

22fl...... 21fk,, 20"'11,a,,,
KTijpqEE (_) : Ciqjbq, iq I pd_ .Cjqj_, icl)'pd_ +Cjqj b i_pd_

o o o

21 fk .._.,, 1 1 1

-I-C!I f !{])'i(1)'

+Cqjdq_'iqJ/ pd_ JqJ b p JqJ, 2 P J b
pd_

0 0 0D 0

clofll ¢¢, - ooj "1 1

o o

03.50)

where

22 O,
Cjq = 03.51)

21
Cjq

cx2E(Zj- 1) (2q- 1) (-1) i+q

(q -j) (q +j - I)

03.52)

20

Cjq

ot2c2 (2j - 1) (2q- I) (-I-)i+q[2q (q- i)+ 2j (j- l) + l]

2(q-j)2(q+j- 1) 2

03.53)
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11

Cjq =

2012E2 (2j- 1) (2q- 1) (-1) j+q [2q (q- 1) + 2j (j - 1) + 1]

(q_j)2 (q +j_ 1)2

10 _012E3Cjq = (2j-l) (2q-l) (-1)J+q{q2(q-1)2[n2((2q-1)2-8j(j-1))-8]

+2j(j- 1) q (q- 1) Ire2 (2j2-2j- 1) -36]

-22q(q-1) +j(j-1) [(_-4) (n+4)j(j-1)-26] +-6}/(4(q-j) 3(q+j-1) 3)

-x213E(Zj- 1) (2q- 1)3(-l)J+q/(4(q-j) (q+j- 1)) ,

and

03.54)

03.55)

oo n2[_£2 (2j- 1) (2q- 1) (-1)J+q [2q (q- 1) + 2J (J - 1) + 11 2
Cjq =

4 (q -j) 2 (q +j - 1) 2

+aze 4 (2j- 1) (2q- 1) (--1) j+q [2q (q- 1) + 2j (j- 1) + 11 {q (q- 1)

[q(q-1) [n2(2q(q-1)-2j(j-1)+l]-4]

-2j(j-1) [g2(j2_j+l) +44]-241 +j(j-1) [j(j-1) [ 2(2j2_Zj+l)

-4 ] -24 ] -6 } / (4 (q -j) 4 (q +j - 1) 4) •

For the cases when j equals q then the Cqq terms become

03.56)

20

Cqq --

22 = 0[2,
Cqq

21
C = 012E,

qq

_0[2E2 2_ 2

12 [x2(2q- 1)2+6] - 4 - (2q- 1)

03.57)

03.58)

03.59)

-- --012E2
II [_2(2q_ 1)2+6] ,

Cqq 3
03.60)

-012d _213_ ) 2
CqqlO _ 12 [7x2(2q - 1)2+6] - T (2q - 1 ,

03.61)

and
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GC-2E 4 ) 2 /_2E213 ) 2 2oo_ {_;2 (2q_ 1 [3_2 (2q_ 1)2+ 140] + 120 } +-- (2q- 1 l/t2 (2q- 1) +6]
Cqq 240 24

03.62)
5n 4

+ -- (2q- 1) 4 .
80a z

The integrands in equation (B.50) are functions only of _ and will be different for the clamped or simply

supported end boundary conditions and will be considered later in this appendix. The K oo term can be
Tijpq

expanded, the integrations performed, and terms recombined in the same manner as the K WE term,
Tij pq

specifically

where

K oo = f'Foo
rijp q J __,jpq (_) d_

03.63)

Fo 0 (_) .22_,,i_,,p+h2_,, +h_(1),,i_p+.,2.,O,,p .,,_,O, .,0_,_uPq = njq i(I_'p njq i 4- lljq q_ i p + lljq qJ i p

+ h02*.* '' + h°_*i*'p + h_q*i*p -
Jq l p

03.64)

The hjq are given by

h_ 2.1o 03.65)
Jq m _, Jjq,

h2t _2xaq "a j21 b j20, 03.66)
iq = b2 l g jq- T jqJ ,

h 20 ff2q2 2 lO 2naeq [aeJ_ b j2o,
jq = b4 la"2e2.a2jjq_ 2aeTbji_ +b 13Jjq] + --b3 - _ jql ,

03.67)

h! 2 2xaj "0_ j21 20 h21
Jq = _-_ [ E qj -- bTJqj ] = qj,

03.68)

h! I - 4x2aEjq [ O_£jj4q2 - 2"19)'J41"jql,
Jq b4

03.69)
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h 10 _
Jq

2_3jq 2 . 3 3.33 2 2 32 ,._ -2.21 3 20

o_b 6 [o_ E Jjq-3O_ E byJjq+_pEI9 Jqj-b 8Jqj]

47_2OtE2jq Ot j42-2b'_j41]

b 5 [ _ jq _ jq '

03.70)

2r_otej "_x j21 b j2o. h2O
h_ = 2j2. 2 2.12 2_ bJ 11 +b2_jjq 0] +--[ E qj- T qjl =

Jq b 4 l s E Jjq - Ey jq b3 qj,

03.71)

and

h Ol _
Jq

27t3j2q _oc3 3j33 30_2 2 b j32+0_ -2.21 3 20

t_b6 l £ qj - e y qj p£o Jjq -b _Jjq]

4_2_e2jq [ot£J_ 2- 2by_] = hi°
b 5 qJ ,

(B.72)

00 4/_20_£3jq . j42 2byj4_ ]
hjq - b 6 [t_E jq --

2_3Ejq {_3E3_ j33.1_..33, 2 2 32+.j32,
tq jq JJqjJ -3et E by[qJjq J _J

o_b 7

• 21 , j2o+.j2o,+o_[_Eb2[qj2qi+JJjq]-b3_[q qj J jqJ }

4.2 2

+ _o_2b8J q l"O_4E`Jl4jq _ 4Ot31_3byJ]q 3 + 212t222E b BJjql2 - 4ctE_ib3j]_ + b4jjq].l°

The Jjq are the integrations over 11 across the width of the plate, given as

03.73)

j!o= f sin[Jnlq ]sinrqnrlqd
'q J Lb (_)_J Lb-? TJ_

-b(_)

b(_)

j2, f  sinr ] r qxrl]drl =
Jq= J Lb (_)J cos Lb (_)J

-b(_)

=O;j#q

=b;j=q,

2b2j (-1) i+q

x(j-q) (j+q)

b 2

_ ---;j = q,
2qx

;j_q

03.74)

03.75)
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12

Jjq =

b(_) 8b3jq (_l)J+q

I 2 • _- jr_rl _ sin V qnrl -] ._ ..___._._____l s'nLb-_j Lb---_juq = 2(q_j)2(q+j)2;J#q

-b (_,) b3 (2_2q 2 -- 3)
= ;j= q,

6r_2q 2

Ib_) 1 4b3 (q+ J)2 (-1)i+q ;JC:q42 I] 2 COS COS =
JJq = Lb (_)-1 2 (q _j) 2 (q +j) 2

-b (_)

= 83(2_2q 2+3)_ ;j= q,

692q 2

(B.76)

(]3.77)

33
Jjq =

b(_)

-b(E,) .2. 2.2 18)} (--1) j+q •

2b4q{q2[_2(qZ-2j 2)-6] +J !rtJ - - - _;j#q
= 3 3n (q-j) (q+j)3

b4 (2gZq 2 - 3)_ ;j = q ,

-- 4I%3q3

14

Jjq -----

jn_ . qnrl dsm _ rl

-b (_,)

16bSjq{qZ[ 2(q2_2j2)_12] +j2(_2J2-12)} (-l) J+ q;j_q

= 4(q_j)4(q+j)4

b5 [2n2q2 (2q2 _ 5) + 15_______];j = q'

10_4q 4

b(r)

_.o I ' [- jnT1 "7 [ qWq ldq = O,
= Slrl / ------'- I COS

JJq Lb (_)J Lb (_)J

-b (_)

b(_,)

" ._ n sin[ ¢"II l _in[ q_-_]aq = °'.ljq = Lb (_)3 Lb (_)J

-b (_)

b (T)

I [ J_ lc°s[q_'q I O,
4t = rlcos d_ =

-b(r)

03.78)

(B.79)

03.80)

03.81)

03.82)
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j32= .I  2cosrJ  qsin[ ]dq=0,Lb( )j  BS3)
-b (_)

and

b (_,)

-_- j-   sinrJ' 27 inrq" TdJJq Lb(g) j Lb- J11 = 0. 03.84)

-b (_)

Again, the first superscript on Jjq signifies which of the four possible combinations of trig terms occurs in the

integrand according to the following list: l=sin sin, 2=sin cos, 3=cos sin, 4=cos cos. The second superscript

signifies what power _ is raised to, i.e. 0=q°=l, l--q, 2---rl 2, etc.

Combining eqs. 03.65) through 03.84) and substituting into eq. 03.64) yields

' S' '21 ,,d22 i" tI_"
KTijpqOO (_) = jqJb i(I_"pd_+% ,t, ,,I,'pdg+d_°fj-l¢"'%dgb

0 0 0

+ nl 1 , , .+ 10 1 ,_ + 20
+ pd_ g_ i• pd_ djq _i_" pd_d_ _'i_" djq

0 0 0 0

+ d _Z_i(I)'pd _ + d cl)iCI_pd _
db 2 d b 3 ,

o o

03.85)

where

22
djq = O, (B.86)

21 40c2£jq (-1) j+q
= , (B.87)

djq (q-J) (q+J)

d2 0 =
Jq

d 11
jq =

40C2E2jq (q2+j2) (_l))+q

(q _j) 2 (q +j) 2

160_2E2jq (q2 +j2) (_l)j+q

(q_j)Z(q+j)2

03.88)

03.89)
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and

d} 0 =
Jq

4/ta_Ejq3 (-1) j+q

(q-j) (q+j)

_.2 4..4 2,4ot21z3jq{x2(q 6 zj q +J q ) +4j 4 18j2q 2- 10q 4} (-1) j+q

(q_j) 3 (q +j) 3

(B.90)

oo
djq =

+

4n2_jjq (q2 +j2) 2 (--1)J + q

(q_j)2 (q+j)2

•2 4 .4 2..6,
40t2E4jq (q2+j2) { 2(q6_j q _j q +j ) _2j4 44j2q2_2q 4} (_1) j+q

(q_j)4 (q+j)4

Ifj equals q then the dqq terms become

03.91)

22 = _2b, 03.92)
dqq

21 03.93)
dqq = _2E,

0t2_2 (2/t 2 + 3) - rc2l_q 2, 03.94)20

dqq = 6

11 2_2E2 (2x2q2 + 3)
dqq - "_-

03.95)

and finally

dl 0 _2E3- (2_2q 2 + 21) _l_/_2q 2 , 03.96)
qq 6

O_2E 4 4q4
[2n2q 2 (3_2q 2 + 35) + 15] + g2EZ_q 2 (27t2q 2 + 3) -4

d_- 30 _ oc2

03.97)

The K OE term can be expanded, the integrations performed, and terms recombined in the same manner,
Tijpq

namely

K OE = flFOE
Tijpq j ijpq (_) d_

0

03.98)
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where

FOE (_. 22.._,, ._,,
ijpq__ ) = rjq_ i_" p

+r_@,,i@,p+r_q@,,iO p 120, 0,, +r!l@,@, +r!°@'@+ rjq i p jq I p jq s p

o2_ _,, ol , oo
+rjq i p+rjq_i_ p+l'jq _I)itl_p "

03 •99)

The rjq are given by

22 2L2O
l'jq = O_ jq,

03.1oo)

rm b 2 (2q- 1) b_'Ljq ],

7tOtE

b 3

I1 b " Io.
--- (2q- 1) [ecELjq - 7Ljql,

03.1oi)

03.102)

,2 _2naj [txeLj_ - b_Lj_qI,
rjq = b2

03,103)

ii 2/_2t_E • 32 2b'/L]_ ]
rjq = b 4 j (2q- 1) [o_ELjq - ,

03.to4)

7_ 3 )2. 3 3. 43 2 2 42 ,, _2_41 3 40• -3_ E b_/Ljq + OtpEO Ljq- b _Ljq]m= (2q-1 lot E Gjq
rjq 20tb6J

27t2_E 2 , 32 2byLaW]+ _ (2q- 1) [cteLiq
b 5 J

2.2 .2,_L20" 21ttXE.. L41 L4O
02 _/t__j_j . 2 2_22_ 2o_eybLj2_ + + ---_-j [(xe jq - b_ jq]

rjq = b 4 [o_ E Ljq O p jql

03.105)

03.106)

01

Jq

3 . 3 3--13 3 2 2- --12 + _£b2L;_ 3 10jZ(2q-I) I._ c Ljq- Or, E D'_Ljq -b 15Liq]
orb 6"

2n2c_E 2 32 _ 2b'/L_ ] ,+ _j (2q - 1) [_ELjq
b 5

(8.1o7)
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and

oo 2K 2_E3
"5 " 32 31

j(2q-1) l eL.jq-2bTLjq]
rjq = b 6

3e "(2q 1) {c_3e 3 • 13 43 2 2 . 12 42
+--2ccb7J - [2jLja - (2q-1)Ljq] -3c_ E by[2jLjq- (2q- l)Ljq]

+ 0_131_b2,2.Lll L411 3 . io L4Ot J jq- (2q-l) jq_-b _[2jLjq-(2q-1) jq] }

4

"/_ .2 )2, 4 4--24 4 3 3- L23 +2 2 2-2n--22_ 4_E_Sb3Ljq21 D'4L2°'jq] .
+ a,.2hsj (2q- 1 lO_ e Ljq -- IX E D'_ jq O_ E D I)L,jq -4-

03.108)

The Ljq are the integrations over r I across the width of the plate, given as

b (D

L!°=jq f sin

-b (_)

I j_rl 1 sin [(2q - 1) 2_) ]drl =
b(_)l

8bj (--l)J+q

rc(2q-2j- l) (2q+2j- 1)

03.1o9)

b (_)

L'I = j" rlsinrJ_rllsin[(2q-1)2_)]drl=0Jq Lb (_) 1

-b (_)

03.110)

b (_,)

L'2=jq _ lq2sin[J/t_]sin[(2q-l)2_)]drl=Lb(_)_]

-b(_) 03.111)

-8b3j {8q (q- I) [_2(2q2-2q-4j2+ 1) - 12] +8j2 [_2 (2j 2- 1) -4] +r_2-24} (-1) j+q

n3(2q-2j- 1)3(2q+2j- 1) 3

b (_,)

L!3= f  sin[-jglJq Lb (_) J

-b (_)

sin[(2q-l)2_)]drl =0,

b (_,)

L 20 =Jq

-b(_)

sinrJnrl]cosE(2q-l)_]d'q :0,
Lb (_) J

b (_)

-b (_)

• nrl ] 32b2j (2q-1)(-1)J +qIcosF¢2q-1) ...........
Lb (_)J L _J n2 (2q-2j- 1)2 (2q + 2j- 1) 2,

03.1 12)

03.113)

03.114)
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I2_ f q2sinr:'a ] [ ]= cos 71:rl d'q = O, 03.115)
Jq Lb (_)_.l (2q- I) 2b(_)

-b(_)

b(_,)

:= j" n3sinr:,a]cos[_2q_,),-1] drl=
Jq Lb(_)J

-b (_,) 03.1 16)

96b4j (2q - I) {8q (q-I) [n2(2q2-2q-4j2+ I) -8] + 8j2[x2(2j 2- I) -8] +X 2- 16} (-I) j+q

7t4 (2q-2j- 1)4(2q+2j- 1) 4

b (_)

e2,, j'n,_inrJ_n]cos[(2q_,),_,a]Jq = Lb(,_)l _ dTl = O, 03.117)

-b (_)

L 31 =
Jq

b (_)

-b (_,)

8b2 [ (2q - 1)2+4j 2] (--1) j+q

n2(2q-2j - 1)2(2q+2j - 1) 2 , 03.118)

b (r.,)

Ljq = "q2COS sin (2q-- 1) dr1 = 0 03.119)
lb (_)_1

-b (_,)

b (_,)

f " [ 2_) ] 4b(2q- 1) (-1)J+qJq Lb(_)_1 _(2q -2j - 1) (2q2j - l)
-b (_1

b(_,)

L41=Jq _c°_VJ_n]c°s[<2q-1)2_(_)]dn=O'Lb<_)J 03.121)
-b (_)

b (_)

j ,
-b(_) 03.122)

4b3 (2q - 1) {8q (q- 1) [x2 (2q2-2q-4j2+ 1) -4] +Sj2[g2(2j 2- 1) - 12] +/t 2- 8} (-1) j+q

x 3(2q-2j- l)3(2q+2j- 1)3
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and

b(_)

I E= Lb(_)_jcos (2q-l) drl = 0.

-b(_,)

(B.123)

Combining eqs. (B.65) through 03.84) and substituting into eq. (B. 64) yields

K OE ) = 221"1-,, 2t I I- ...... 201"1I..,,
Tijp q (_ ejqJbq_ i_"pd_WejqJq _ i q3 pd_+ejqj _ it_pd_

o o o

_I 51 f_2 (_1i¢i)pd_ _qfl
12 , ,, 11 1 , , I0 1 , 1cI)i(I_" pd_

+ ejq ¢I_ i(I_ pd_ + ejq g¢I_ i(I_ pd_+ ejq + e d b

o o o o

ol I , +

+ ejq ¢_i(l _ pd_ e ,I b 3
o o

03.124)

where

22 _- 0,
ejq

03.125)

2t 8tx_'j(2q - I) (-I) j+q 12

ejq = (2q-2j-l) (2q+2j-l) = -ejq,
03.126)

2o 8ctyEj (2q- 1) [(2q- 1)2+4j 2] (-l) j+q 02

ejq = (2q-2j-1)2(2q+2j- 1) 2 = ejq,

!1
ejq =

32txyej (2q- I) [ (2q- I)2+4j 2] (--I) j+q

(2q-2j- 1)2(2q+2j- 1) 2

io 2_2_j (2q- 1) 3 (-1) j+q

ejq = ct (2q-2j- 1) (2q +2j- 1)

+2ctyE2j (2q- 1) {4q (q- 1) (4q (q- 1)[3x 2 (4q 2-4q- 8j 2+ 3) - 8]

+48j 2[/c 2(j-l) (j+l)-6] +9/t 2-16)

+8i212(37c2-16)i2-37t2-36] +3_2-8 } (-1)J+q/[(2Cl-2i -1)3(2c1+2i -1)3|,

03.127)

03.128)

03.129)
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OI 8/_2_j3(2q -1) (-1) j+q
ejq =

tx(2q-2j-1) (2q+2j-1)
03.130)

-8ctyc2j (2q- 1) {8q (8q- 1) (2q (q- 1) [3n2j 2-4]- 3j 2In 2(2j- 1) (2j + 1) + 12] -4 )

+j2(8j213n2(2f-1)-4] +3n2-72)-4 } (-1)J+q/[(2q-2j-1)3(2q+2j-1) 3] ,

and

0o 2_2_Ej3(2q- 1) (4q2-4q+4j2+ 1)2(-1) j+q
ejq=

ot(2q-2j- 1)2(2q+2j- 1) 2

-2_yE3j (2q- 1) ((2q- 1)2+4f) {4q (q- 1) (4q (q- 1)

[3n2(4q2-4q+4j2+3) -8]-8jz[3n22j2+ I +88] +9n 2- 16)

+4j2(4j2 [31t2(2j-1) (2j+ 1) -8] -31t 2- 176) + 3n2-8 } (-1) j+q

/ [ (2q -2j - 1) 4 (2q + 2j - 1) 4]

Because the integrals associated with these terms have no degenerate cases forj equals q, special

consideration need not be given for eqq terms.

Due to the symmetry of the total stiffness matrix the following relationship must be true

03.131)

KT E° (_) = K OE (_)
IPq Tpqij "

(B.132)

This implies that

where

K EO = f1FEO ,-, d_.Tijpq ijpq (q)

0

(B.133)

FEO (_) 22 .... 02 01_,=rqjO i• +rl?O".O ' + rqjO" +r2!O,O,, + 11....ijpq p qj t p i(I)p qj _ P rqj q_ iq_ P + rqj qJ iqJp

10 , 00

+ r_OiO" p+ rqj _i • p+ rqj _iOp.

03.134)

At this point the integrations over rl are complete and the integrations over _ must now be performed. The

integrands of these integrals have vastly different functional forms depending on the boundary conditions on

the ends of the plate. For simply supported boundary conditions on the ends of the plate, @iand t_p are given

by
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03.135)

Making this substitution, the integrands appearing in eqs. 03.50), 03.85), and 03.124) are given by

'b_3iCpd_ = _MI_ +M! °lp

0

ft_2 , ^ . M11+MtO. 2M22 21 M20
iOpd_ = 2£!,g ip ip ) +/tp(t; ip+2£Mip+ ip)

o

03.136)

, 03.137)

ffl_ . /t2p2 3 13 . 2M12+^ MII+MtO. 2 ll+MlO.i_pd_ = - (E Mip + 3E ip .SE ip ip ) + 21_ (EMip ip)

0

2 22 2 M 21 +M_)+47tEp(t_ Mip+ _; i_

03.138)

- - M" ,0 . 2..22 20iqbpd_ = Z£(_ ip+mip) +rci(E Mip+2£M +Mip) ,

o

03.139)

f' i ' 1o*pd_ = 4¢ 2 (EMI_ + Mip)

0

" " 2M22 2 M21+ M 20" . 2. 32+ 2_;M_ + 30+LrCE Lp (e ip+ E ip ip) +i(E Mip Mip)]

3 43 _ 2..42+^ ..41 + 40+/t2ip (E Mip + 3E Mip 3EMip Mip) ,

03.140)

fll , - II-2x Ep (e Mip+ ..$E ip ,.SE ip + ip) +4£3 (EMip Mip)
b__i_)pd _ = 2 2 3 13 ^ 2M12+^ M11 MlO. + 10

o

• 2M22+2 M21 20 (B.141)+ 8ne2P (¢ ip E ip +Mip)

/t3i 2. 4M34 4 3M33+- 2,.32 31 30 ^ 2.. 2M32 31 +M30,
OE Mip + 4£Mip + Z_E 1 {,8 ip + 2EMip- p (E ip + E ip + Mip) ip )

2 • 3 43 _ 2_ .42 + 3tzM41 MaO+4_ EIp(E Miv +3E Mio i_+ iv) '

_I_ 2.2• 3.,13 _ 2M12+3£MI_ +MtO. +2t_2 11 lO
(_pd_=-Tt I {E Mip+3E ip ip ) (EMip+Mip)

o
03.142)

• • . 2. 22 + 2eM_ M 2°"+4_EI(E Mip + ip) ,
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t,--/l_ . 3..13 +- 2MI2 + 3EMI _ + Mlo, , Mll lo_'pd_=--2/[2Ei2(E Mip .SE ip ip ) +4ES(E ip+Mip )

o

2 22 21 M2o, (B.143)+ 8_1;2i (E Mip + 2EMip + ip)

3.2 - 4..34 4E3M33 +- 2. 32 + 4 " 31 30 " 2M32 4- 2eM_ + Mi3p0)--/1; 1 p(E Mip 4. ip DE Mip EMip +Mip) + 2_E2P _,E ip

2 • 3 43 + 3£2M_2 + 41 40+4/t EIp(E Mip 3EMip +Mip ) '

and

f I lb-_@pd _ -- _4i2p2 "_E5_ "154"Mip 5E4MI 4 4. 10e3M_3 + 10e2M_p2 + 5_MI_ + M_°)
ill-

0

--2£2/g2 (i2 + p 2) re"3..13Mip 4" 3 E2MI2 +3ip EMII+M10"ip ip )

..M24+ M34. 3 4 • 23 33 .... 224. M 32"--4_3Eip[E41"t ip P ip) +4E e (xMip +PMip) +6E21,1tVlip p ip)

• 20 30

+4e(iM2_ + pMi3_) + (tMip +PMip) ]

22 • 32 . M21 • 31 . 2o . 30
+ 8/rE 3 [g2 (PMip 4" IMip) +2etp ip 4"lMip) 4" OPMip 4.1Mip) ]

+16 2e2ip(g3M_3+, 2. 424-. M41 M4o.5E Mip )E ip 4" ip )

03.144)

The Mip are the integrals over _ as given by

1

M!°,p =  sin (in_) sin (pTt_) d_ = O;i _p

o

1 .
=-;l=p,

2

(B. 145)

1

i+p
Mll -ip = _sin(i_)sin(p_)d{= 2ip((-1) -1) ;l#p

_2(p- i) 2(p+i)2
0

1
=-;i--p ,

4

4ip (_1)i+p
M!2,p = _2sin (ilt_) sin (pn_) d_ = _2 (p _ i) 2 (p + i) 2 ;i # p

_ 2"/t2p 2 - 3 .
- ;l=p ,

12n2p 2

03.146)

(B. 147)
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I

M!3'p = _3sin (ix_) sin (px_)d_

0

6ip [p2((x2(p2_2i2) -4) (-1)i+P+4) +i2((xi-2) (xi+2) (-1)i÷P+4)]
;i_p

03.148)

4(p_i) 4(p+04

2 2

= x'v-3;i"" =p ,

8x2p 2

1

M14ip= f_ 4sin (in_) sin (prt_) d_

0

8ip [p2 (x2 (p2 _ 2i 2) _ 12) + i2 (_2i2 - 12) ] (-1) i+p
= ;icp

X4 (p- i) 4 (p+i) 4

2 2p2 (_2p2_ 5) + 15 .
;l=p ,

20x4p 4

03.149)

1

M15ip = _5sin (ix_) sin (p_)d_

o

= lOip { [p4 ( 4p4 _ 24x2p2 + 72) + 4i2p 2 (- 4p4 + 692p2 + 60) + x2i4p2 (6x2p 2 - 4_2i 2 + 2,_. 150)

+ i4 (7t4i4_ 24rc2i2 +72) ] (_1) i+p _ 12 (6p2+2i 2) (p2+ 3i2) } / (/t6 (p-i) 6 (p+i) 6) ;i_p

2 2 15)x p (2_2p 2- +45 .
;l=p

24trap 4

M2°Sip = (sin (ix_) cos (pn_) d_) =
i((-1)i+P- 1) .

;l*:p
x (p- i) (p+i)

= O;i = p,

(B.151)

I

M21,p= f_ (sin (ink) cos (px_)d_) =

0

i(_l) i+p

x(p-i)(p+i)

1
- ---;i = p,

4rip

; (icp)

03.152)
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1

Mip = _2(sin (irt_) cos (pn_)d_)

0

i [p2((n2(p2-2i 2) -6) (-1)i+P+6) +i2((_2i2-2) (-l)i+P+2) ]

1
----;i =p

n3(p-i)3 (p+i) 3

;i*p
03.153)

I

M231p= f_s (sin (in_) cos (pn_) d_)

0

i[p2(n2(p2-2i 2) - 18) - 18 +i2(_2i2-6) ] (-1) i÷p

_3(p-i)S(p+i) 3

- 2n2p 2 - 3 .
;1 = p ,

8n3p 3

;i#p
03.154)

1

M24ip = _4 (sin (in_) cos (pn_) d_)

0

= i { [p4 (/g4p4 _ 36x2p2 + 120) + 4i2p 2 (- 4p4 + 15x2p2 + 60) + 27t2i4p 2 (3x2p 2 - 21t2i 2 - 6) 03.155)

+i4(_4i 4- 12x2i2+24) ] (-1)i+P-24(5p4+ lOi2p2i 4) }/(TtS(p-i)5(p+i) 5) ;i #p

--/t2p 2 -- 3 .
- ;l=p ,

4n3p 3

30 f M2o 03.156)
Mip = cos (ix_) sin (pn_)d_ = pi'J

M?!,p = _cos (i_)
21 03.157)sin (p_) d_ = Mpi ,

1

M 32 = f_2cos (ix_)sin (pTt_)d_ = M27ip pl '

0

03.158)
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M 33,p= f_3cos (ir_)
sin (pr_) d_ = M 23 (B. 159)

I

St 24M34ip = 4cos (ix_) sin (pn_) d_ = Mpi ,

o

1

Mip = cos (in k) cos (p_) d_ = 0;i #p

0

1 .
= -;l = p ,

2

I
p+i _

Mip = {cos(ig_)cos(p_)d_-- (p2+i2)((-1) 1)
g2(p-i)2(p+i) 2

0

1 .
=-;l=p

4

;i#p

(B.160)

(9.161)

03.162)

I

Mip = _2cos (i_) cos (pg_) d_ = 2 (p2 + i2) (-1) p+i
_2(p-i) 2 (p+i)2

o

_ 2_2p 2 + 3 .
;l=p ,

12_2p 2

;i;_p

1

43 _3cos (ilt_) cos (pTt_)d_Mip =

o

3 [_2 (i6- i4p2-i2p4+p 6) (-1)P+i-2 (i4+6i2p2+ P 4) ( (-1)P+i- 1)]

_ lt2p 2 + 3 .
;l=p

8/_2o 2

n4 (p-i)4 (p+ i) 4

;i;_p

03.163)

03.164)
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I

M_,p = f_4cos (in_) cos (pn_) d_

o

4 [ 2 (i 6 _ i4p2 _ i2p4 + p6) _ 6 (i 4 + 6i2p 2 + p4) ] (-1) p+i

4(p _i) 4(p +i)4

= 2_Zp2(n2p2+ 5) - 15..
,l=p ,

20n4p 4

;icp
03.165)

and finally,

!

M45ip = [_Scos (i/t_) COS (px_) d_

o

= 5 [x 4 01°- 3iSp 2 + 2i6p 4 + 2i4p 6 - 3i2p 8 + plO) (_l)P+i

-1 2g 2 (i s + 4i6p 2 - 10i4p 4 + 4i2p 6 + p8) (_ 1 ) p +i

+24(i6+ 15i4p2+ 15i2p4+p 6) ((-1) p+i- 1) ]/(n6(p-i)6(p+i) 6) ;i ¢:p

= _2p2 (27t2p2 + 15) - 45 .
;l=p

24,/t4p 4

03.166)

For clamped boundary conditions on the ends of the plate, ¢i and Op are given by

¢i = COS [ (i -- 1) n_] - cos [ (i + 1) n_]

Cp = cos [ (p- 1)/t_] -cos.[ (p+ 1)n_]

(B. 167)

Making this substitution, the integrands appearing in eqs. 03.50), 03.85), and 03.124) are given by

l_3i_pd _ = I_(M4_I_M.,I21_Ma31+M441. .M410 M420_M430+ 440Ip zp ip ) + _ ip -- ip ip Mip )'

o

03.168)

it_pd_ = _hE2 [ (p + 1) (Mip312 _ M332.ip) - (P- 1) (Mip'*322 _ M342.ip) ]

o

-2xe[ (p+ 1) "M 311 331. 321 341.{. ip -Mip ) - (P-1) (Mip -Mip )]

-n[ (p+ 1) (M 310 . 330. .. 320_M_p40)]. ,p -Mip ) . (p-- 1) [Mip

2 2 .M411 M 421 -M 431 + +2£M441. (MS10 M420_ M430 440
+ E [ ip -- ip ip ip ) - ip -- ip _p + Mip )'

03.169)
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ff l lb_ "i_bpd_ = -4_E 3 [ (p + 1) (Mi3_2 - M332"ip) -- (P - 1) .(M322ip _Mip342)]

0

331. (M321 M341)
-8r_J[(p+ 1) (Mi3pl -Mip ) - (p-l) . ip - ip - ]

-4rl: [ (p + 1) 310 330 ...320 M_)](Mip -Mip ) - (p 1)-- (Mip --

_2_3 [ (p+ 1)2 .M413 433 )2 .M423 443-- ( ip -Mip ) - (P- 1 ( ip - Mip ) ]

-3_2_: 2 [ (p + 1) 2 .M412 432 1" 2 .M422 442( ip -Mip ) - (P-) ( ip -Mip )]

_ (M 421 M 441-. 431. e[3x2(p_l)2_2e2], ip- ip )-c[3n2(p+ 1) 2 282] (Mi4_ ! -Mip )+

...410 M430. - ip ) '--[_:2(p+l)2--282](.Mip- ip)+[_:2(p-1)2-2E2](M_ M 44°

03.17o)

i_pd _ = _/_E2 [ (i + 1) ('M212ip - M222"ip) - (i - 1) c'M 232ip- M242)ip- ]

0

--2/I;E [ (i+ 1) (.'M TMip- M221')ip- - (i - 1) (.'M231ip - Mip241"')l

-n[(i+l) "M 21- . 220. (i-l) "M 22° M 23°"1" ip -- Mip ) -- {" ip -- ip ) ]

_ M441. . ..410 420 430 -.b 440
+ z£- 2...411[.Mip _ Mip.421 M43]+ip ip ) +2£(.Mip -Mip -Mip Mip )'

03.171)

_I_2, , 113 .M123.
i¢_pd_ = _2E3 [ (i+ 1) ((p+ 1)Mip - (p-l) ip ) - (i-l) ((P+ 1) M!33-tp (P - 1) Mi pl43) ]

0

+3n283[ (i+ 1) ((p+l)M! 12- (p 1) 122 ... 132 Mi pl42) ]- Mi p )- (i-l) ((p+l)Mip - (p-l)Jp

M12].+ 3_21_3 [ (i+l) ((P+ 1) Mlllip - (p.1) ip )- (i - 1) ((p+ 1) M TMip- (p - 1) Mip141) ]

1" M 13° 1" M 14°"
+ 2[(i+ 1) ((p+ 1).MipllO _ (p_ 1) M12°'ip) - (i- 1) ((p+ ) ip -(P- ) ip )]

_ _ M 242- .
-2/I:£310 +1) (-'M212ip - M222"ip) (i 1) (Mi 232 - ip )J 03.172)

--4n£ 2 [ (i + 1) I,'M TMip- M221"ip)- (i - 1) {.'M231ip - M241)ip ]

-2_E [ (i+ 1) " 210 =220. . .230 M240..(Mip --Mip ) - (i-l) tNlip -- ip )]

-2n83[(p+ 1)"" 312 . 332. .. 322 342..{Mip --Mip ) -- (p-- 1) (,Mip -Mip )]

--4/I:E 2 [ (p + 1) (Mi3¢ I .331. 321 _ M341) ]--Mip ) -- (p- 1) (Mip _p .

-2_:8 [ (p + 1) "M 310 . 330. _ _ (Mip320_t ip --Mip ) (P 1) M_)]

_ _ M 441- .M4tO M420 M430+ M44°) ,.M411 M42] M431+ +4E 2
+ 4£3 ( ip ip ip ip ) _ ip - ---ip - ip ip -
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_,33 143Opd_ = 4_2e 4 [ (i + 1) ( (p+ 1) MIJ3ip - (13 - l) M 123)ip- - (i - 1) ( (p + 1) Mip - (p - 1 ) Mip ) ]

0

. 132 .142, .

+ 12_2£3 [ (i+ 1) ((P + 1_MII2---ip - (P - 1) Mi0122")_ (i- 1) ( (p+ 1) Mip - (p-- 1) Mip )1

+lErc2e3[(i+l)((p+l)M_ 1-(p-1)M_E1)-(i-1)((p+l)'Mip131-(p-1)M141"ip )]

IlO . MI2o. .. 13o ) M:_) l+l)((p+l)Mip -(p-l) ito )--(i-l)((P+l)Mip --(p--1

1)2((i+ 1) 214 (i 234Mip - - 1)Mip ) - (P- 1)2(( i+ 1)M224-ip (i- 1)M_)]

+ 4n2e [ (i

+ n3E4 [ (P +

+ 4_3£ 3 [ (P +

+ 6n3£ 2 [ (P +

+4/t3£[(p+

+ 3[(p+

-8he2[

1" M 233"1)2((i+l)M 213- (i-) ip )ip

• ..212 232.
1)2((i+lJMito - (i- 1)Mip )

1) 2 ( (i + 1"M211)ip - (i - 1) Mip231)

-(p 1)2((i+l)M 223 (i 1) 243- - ito - - Mip )]

_ (p_ 1)2 ( (i + 1) Mito222_ (i _ 1)M242..ip ) ]

- (P-l)2(( i+ l)M221ip - (i-1)M241"- ito ) ]

230. 2 M 220 - (i - 1) M_p4°) ]1)2((i+l)Mi2_o-(i-1)Mip )-(p-I) ((i+l) 'to

. 232 242.

-2_4 [ (i+ 1) .(M 212ip- M222"ip) - (i- 1) (Mip -Mip J]

--4"/_ 3 [ (i + l) .(M 21lip-Mip221") _ (i - 1) .(M231ip_ Mip'241"j]

[ (i + |) 210 230. .. 220 M240,(Mip -Mip ) - (i- 1) [Mip -- ip )]

.M312 M332. 322 342.- (Mip -Mip )][ ip -- ip ) (p- 1)

-2_E 2

(p+1)

321 341.

(p+ 1) (Mi3_ 1 -Mi3p 31) - (p- 1) (Mip -Mip )]

320 340

(p+ l)(Mi3_O-Mi 330) - (p-l) (Mip -Mip )]

2 413 433 ...423 _ M4433 ]-2_2E4[ (p+l) (Mit o -Mip ) - (p- 1)2(Mito ip --

.. 2 ...412 432 .. 2 ...422 M442) ]-6n2e3[(P+U (Mip-Mito)-(P-l) [Mip- ip--

2 411 431 .. 2 ...421 441

-6_2e2[(p+l) (Mip -Mip ) - (p- 1) [Mip -Mip )]

..2 ...410 . .430, ,2 ...420 440
-2n2_[(p+ t) tNip -_ip )- (P-1) (iVlip -Mip )]

03.173)

_1_,, ...212 M222. . M232 _ M242) ]
i_pd_=-4/tg3[(i+I) (Mip - ip )-(i-l)[ ip ip --

0

...211 M221) 231 _ M241)
-8r_e2[ (i+ 1) (Mip - ip - - (i- 1) (Mip ip " ]

-4hE [ (i + I) .(M 210ip_ Mito220)_ (i- 1) -(M23°ito- M24°)ita- ]

...413 -- M423) _ (i I) 2 . =433 M4_3) ]--n2£ 3 [ (i 4- 1) 2 (Mip ip " -- (Mip - ip "

--3_2EE[(i4-1)2"'412--M422"(Mip iv )- (i-1)2(M 4n. ito -M442)]ip-

(M431 _ Mi4_l )- £ [3n2 ( i+1)2 - 2£2] (M411-ip -Mip421)+e [3n2 (i - I)2 - 2£2]" ,to

,..410 M420, 440- [_2(i+l) 2-2e2] I,mtto - ip ) + [_2(i-1)2-2e2] (M43° - Mip )" lp

03,174)
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and

_1_2' " . _.113 133 123 M143)
i_pd_ = 4/t2£4 [ (p+ 1)((i+ 1)Mip- (i- l) Mip ) - (p -1) ( (i + l)Mip - (i- 1) ip - ]

o

_ M 142" .
(i+l) MIlE (i-1)M!32) M!22-(i-1) ip )]ip -- . _p -(p 1)((i+l) ,p

(i+ I)M In (i 1) 131 121 141ip - - Mip)-(P-1)((i+l)Mip -(i-1)Mip )]

no (i 1) 130 ... 120(i+l)Mip - - Mip )- (p-l) ((i+l)Mip - (i-1)M_p40)]

..212 . 222, (i- 1) "M 232 M 242" "
Nlip --Mip ) -- [- ip -- ip ) ]

...231 _ M241) ]
(M TM M 221" -- (i- 1) {Nlip- ip -- ip ) ip --

M 1° M 22°" (i 1) "M 23° M 24°"
ip -- ip ) -- -- {" ip -- ip )]

.,2. 324 (i- 2 344
l)2M314ip - (i- 1)2M_p 34) - (p-l) ((i+ 1) Nlip -- 1) Mip ) ]

+ 12/_2£ 3 [ (p+ 1) (

+ 12/t2E 3 [ (p+ 1) (

+ 4/I;2E [ (p + 1) (

-8_e4 [ (i+ 1)

-16xe 3[ (i+ 1)

-87te2 [ (i+ 1)

+_3_;4 [ (p+ 1) ((i+

+4xae 3[(p+l) ((i+

+6x3£E[(p+l) ((i+

+493E [ (p+ l) ((i+

+_3[(p+ 1) ((i+

--2/i;£ 4

--41_£ 3

--2_J

-2n2e4 [ (i+ 1)2 (Mip413 _

-6/_2E 3 [ (i+ 1)2(M 412-
- ip

.2. 313 (i-l)
) Mip --

1)2M 312- (i- 1)
ip

.2..311 (i- 1)
) Mip --

1)2M 310 (i- 1)
" ip --

[ (p+ 1) (M. 312-
" Ip

[ (p + 1) 3n(Mip -

[ (p+ 1) "" 310(Mip --

M422.

ip )

_ 2 3432 333. 2M323 (i 1) ]Mip ) - (p- 1) ( (i + 1) _p - Mip )

.. 2M342. (B.175)
2 332 1)2M 322- (i-l) ip )]Mip )- (p-l) ((i+ . _p

2 "331 2M321 (i- 1)2M341"
Mip )- (p-l) ((i+l) ,p -- ip )]

2M_p3°) - (p- 1) ((i+ 1) 2M32°-ip (i- 1) 2M34°)]ip -

332 . M322 M342. •
Mip ) - (p- 1) ( ip - ip ) ]

331. (M321 _ M341. •
Mip ) - (p- 1) . ip ip ) ]

M?3°'_ - (p - l) (M_ - M_?) ]
tp "

(i 1) 2. M433 _ M443) ]-- -- (, ip ip - _

(i 1)2 .. 432 . 442.._ _ (Mip --Mip )]

.. 2.. 4u 421 2.M431 M_m
-6x2c 2 [ (i + l) (Mip -Mip ) - (i- 1) ( ip -- ,p ) ]

..2...410 M_p2O) (i- 2 430 M44o-2rc2e [ (i + 1) {,lip -- ip )- - 1) (Mip ] "

The Mip are the integrals over x, which have similar form to Eqs. B.145 - B.166.
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Appendix C

Details of Assembling Stiffness Matrices

The total and geometric stiffness matrices, [KT] and [K_], are each composed of four smaller

submatrices. Specifically,

Each element of a submatrix is the result of integrating a combination of derivatives of w, in the series

approximation for the out-of-plane displacement of the plate, over the surface area of the plate. As such,

each element is a function of the plate geometry, material properties, and the coefficients i, j, p, and q. The i

and p indices are from the sets of functions of x, the coordinate along the length of the plate

oo

( 0i 17= I, 2....' CPIp = I. 2.... ) for w and 8w, respectivelY. The j and q indices are from the sets of functions of y,

the coordinate across the width of the plate _j (f j)17 = 1,2, ...' Fj (gj)17 = 1,2.... '

Fq (gq) 17 = . Since ¢, _/and F are trigonometric functions, the resulting integrationsvq(q)lT:,,2.'
over the period of these functions yield different results that depend on the particular combination of (i,p)

and (j,q). Special cases occur because of the orthogonality of the trigonometric functions, and these special

cases are referred to as degenerate cases. As examples, consider the following cases for simply supported

ends:

1

_cos (irt_)cos (px_)d_ = [b° i=pi;ep
0

(C.2)

and
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Appendix C: Details of Assembling Stiffness Matrices

f ric°s I (2J - 1' 2b_) ] sin [(2q - 1) 2_) 1 drl

-b(_)

b2

(_(2j- I)) J = q

= (c.3)

-b2(2j - l) (--I) j+q

(qq:-i 

Thus, for simply supported cases there are four possibilities for combinations of i, j, p, and q: i = p and

j = q, i = p and j ¢ q, i _ p and j = q, and finally, i _: p and j g q. To demonstrate how this is handled in

EE
the computer code, the [ K 6 ] { w E } multiplication is expanded. Remember that in each row of the matrix,

p and q are fixed indices while i and j are free indices. The expression is

3 .J

K EE W E
E Gi,,_ { iJ } = ZZ {Aijpq_ip_Jq+BiJpq_ip+Cijpq_Jq'PSijpq }WE

i=lj--I

3 3 3 3 (C.4)

= A wE + Z BpjqWpj + Z Cipq wiq "b Z Z OipiqWijpq pq

j=l i=l i=lj=l

The Apq are coefficients resulting from integrations performed for i = p and j = q, the Bpjq are coefficients

resulting from integrations performed for i = p and j _: q, the Cip q are coefficients resulting from

integrations performed for i _ p and j = q, the Dijpq are coefficients resulting from integrations performed

for i _ p, and j ;_ q. The submatrices are constructed row-by-row in the computer program with p and q

being fixed values for each particular row. Four procedures are implemented to fill the columns of each row.

The first process computes the single term Apq, which is always on the diagonal. The second process

computes the terms Bpjq. To do this, a loop over j, j = 1, 2 ..... N, is initiated (N being the number of terms

in the series approximation for w). For each execution of this loop, as long as j ;_ q, Bpjq is computed and

loaded into the appropriate column. This appropriate column is computed according to:

column = row-q+ 1

column = column+ 1

first pass through loop

indexed for subsequent passes.
(c.5)

The third process computes the terms Cipq. To do this, a loop over i, i = 1, 2 ..... N, is initiated. For each

execution of this loop, as long as i _ p, Cipq is computed and loaded into the appropriate column. This

appropriate column is computed according to:
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Appendix C." Details of Assembling Stiffness Matrices

column = q first pass through loop (C.6)

column = column + N indexed for subsequent passes.

The fourth process computes the terms Dipjq. To do this, two nested loops over i and j, i = 1, 2 ..... Nand,

j = 1, 2 ..... N are initiated. For each execution of these loops, as long as i, p and j # q, Dipjq is computed

and loaded into the appropriate column. This appropriate column is computed according to

column = 1 first pass through loop
(C.7)

column = column + 1 indexed for subsequent passes.

For N=3, a completely filled submatrix having size N 2 x N 2 has the structure of equation (C.8).

p=! q=l

p=l q=2

p=l q--3

p=2 q=l

p=2 q=2

p=2 q=3

p=3 q=l

p=3 q=2

p=3 q=3

i=l i=i i=l i=2 i=2 i=2 i=3 i=3 i=3

j=l j=2 j=3 j=i j=2 j=3 j=l j=2 j=3

All BI21 B131 C211 D2121 D2131 C311 D3121 D3131

BII2 AI 2 B132 D2112 C212 D2131 D3112 C312 D3132

BII3 B123 AI3 D2113 D2123 C213 D3113 D3123 C313

CI21 DI221 D1231 A21 B221 B231 C321 D3221 D3231

Dl212 C122 Di232 B212 A22 B232 D3212 C322 D3232

d1213 D1223 C123 B213 B223 A23 D3213 D3223 C323

CI31 D1321 DI331 C231 D2321 D2331 A31 B321 B33]

DI312 C132 DI332 D2312 C232 D2332 B312 A32 B332

DI313 DI323 C133 D2313 D2323 C233 B313 B323 A33

F _

iWll

Wl2

Wl3

W21

W22

W23

W31

W32

W33

(c.8)
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