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Abstract

The focus of this work is the buckling response of symmetrically laminated composite plates having a
planform area in the shape of an isosceles trapezoid. The loading is assumed to be inplane and applied
perpendicular to the parallel ends of the plate. The tapered edges of the plate are assumed to have simply
supported boundary conditions, while the paraliel ends are assumed to have either simply supported or
clamped boundary conditions. A semi-analytic closed-form solution based on energy principles and the
Trefftz stability criterion is derived and solutions are obtained using the Rayleigh-Ritz method. Intrinsic in
this solution is a simplified prebuckling analysis which approximates the inplane force resultant distributions
by the forms Nx=P/W(x) and Ny=Nxy=0, where P is the applied load and W(x) is the plate width which, for
the trapezoidal planform, varies linearly with the lengthwise coordinate x. The out-of plane displacement is
approximated by a double trigonometric series. This analysis is posed in terms of four nondimensional
parameters representing orthotropic and anisotropic material properties, and two nondimensional parameters
representing geometric properties. For comparison purposes, a number of specific plate geometry, ply
orientation, and stacking sequence combinations are investigated using the general purpose finite element
code ABAQUS. Comparison of buckling coefficients calculated using the semi-analytical model and the
finite element model show agreement within 5%, in general, and within 15% for the worst cases. In order to
verify both the finite element and semi-analytical analyses, buckling loads are measured for graphite/epoxy
plates having a wide range of plate geometries and stacking sequences. Test fixtures, instrumentation
system, and experimental technique are described. Experimental results for the buckling load, the buckled
mode shape, and the prebuckling plate stiffness are presented and show good agreement with the analytical
results regarding the buckling load and the prebuckling plate stiffness. However, the experimental results
show that for some cases the analysis underpredicts the number of halfwaves in the buckled mode shape. In
the context of the definitions of taper ratio and aspect ratio used in this study, it is concluded that the
buckling load always increases as taper ratio increases for a given aspect ratio for plates having simply
supported boundary conditions on the parallel ends. There are combinations of plate geometry and ply
stacking sequences, however, that reverse this trend for plates having clamped boundary conditions on the
parallel ends such that an increase in the taper ratio causes a decrease in the buckling load. The clamped
boundary conditions on the parallel ends of the plate are shown to increase the buckling load compared to
simply supported boundary conditions. Also, anisotropy (the D16 and D26 terms) is shown to decrease the
buckling load and skew the buckled mode shape for both the simply supported and clamped boundary

conditions.
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Chapter 1

Introduction

1.1 Description of Problem

Thin plates are fundamental components of many engineering structures. The aerospace industry exploits
the high stiffness-to-weight and strength-to-weight ratios afforded by fiber reinforced composite plates by
using them as both primary and secondary structures to reduce the weight of high performance aircraft.
Many of these plates, particularly wing skins and fuselage panels, are used in stiffness critical applications.
Thus, for those plates loaded in compression, buckling must be considered as the primary mode of failure.
Many of the composite plates on aircraft, again notably wing skins, have a nonrectangular planform area; in
fact, many of the composite plates in aircraft applications have a planform area that is tapered along the
length. The purpose of this study is to investigate the buckling response of composite plates having planform

area in the shape of an isosceles trapezoid.

Figure 1.1 presents the planform geometry of an isosceles trapezoid considered in this study. The plate is
defined to have length L, widths W and W, and half-widths b; and b, on the narrow and wide ends,
respectively. The trapezoid is considered isosceles because the corner angle 8 is the same for both the right
and left halves of the plate. The coordinate system originates in the center of the narrow end of the plate. The

x axis coincides with the centerline of the plate, and the y axis traverses the narrow end.

1.1 Description of Problem 1
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Figure 1.1 Trapezoidal Plate Geometry

1.2 Survey of Literature

An investigation of the buckling response of plates having a tapered planform first appeared in the open
literature in 1956. Klein [1] presented design curves for determining the buckling loads of simply supported
isotropic plates having the shape of an isosceles trapezoid. Simply supported boundary conditions were
assumed on all four edges, axial compression loads were imposed on the parallel ends, and shear loads were
assumed to act along the tapered edges to allow the plate to remain in static equilibrium for any ratio of axial
loads on the ends of the plate. The analysis used the method of collocation in which a deflected shape is
assumed, appropriate derivatives are calculated, the derivatives are evaluated numerically at several discrete
collocation points, and these equations are then substituted into the governing differential equations to yield

an eigenvalue problem. The method of collocation does not required the assumed displacement functions to
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Chapter 1: Introduction

be integrable in closed form, form an orthogonal set, or even satisfy the boundary conditions exactly for the
entire plate. The method only requires the assumed shape to be reasonable at the collocation points. Klein
used a trigonometric function for the assumed deflected shape and developed a solution using three
collocation points distributed along the centerline of the plate. The results showed an increase in the
buckling load of a plate with a tapered planform as compared to the buckling load of a rectangular plate of
the same length and with the same width as the wide end of the trapezoidal plate. No experimental results

were included for verification.

In 1956 Klein [2] also investigated the buckling response of plates tapered in both planform and thickness.
The method of collocation was again used for the analysis. Many graphs were presented to show the effect
of plate geometry on buckling over a very wide range. Again, however, experimental verification was not

included.

In 1957 Klein [3] presented a method of solution for the shear buckling of simply supported isotropic plates
tapered in planform. The analysis was again based on the method of collocation using three points along the
centerline of the plate. The buckling load and deflected mode shape were presented for one specific

geometry. No experimental results were included for verification.

Pope [4], in 1962, studied the effects of different boundary conditions on the buckling loads of isotropic
plates having a planform area in the shape of an isosceles trapezoid. This analysis was developed using the
Rayleigh-Ritz method and assumed that the buckled shape across the width of a tapered plate differs little
from the buckled shape across a rectangular plate under uniform end load and with the same boundary
conditions along the sides. Results are presented graphically for plates with opposite pairs of edges either
simply supported or clamped. These results showed an increase in the buckling load when the planform is
tapered as compared to the buckling load of a rectangular plate of the same length and with the same width
as the wide end of the trapezoidal plate. Clamping the ends of the plate is also shown to increase the
buckling load. For comparison purposes, the buckling loads presented by Pope are usually lower than those
presented by Klein. It is somewhat disturbing, however, that Pope doesn’t obtain the classical solution for
the buckling loads for rectangular uniaxially loaded isotropic plates having simple supports on all four edges
[5], a festooned curve with the minimum value of 4 at aspect ratios 1, 2, 3 etc. (if the buckling parameter has
the classical definition of Nxbz/ nzD). The results presented by Pope have a minimum value of

approximately 3.7 at aspect ratios 1, 2, 3, and 4.

The buckling analyses for plates having tapered planform presented in the technical literature to date are
restricted to isotropic plates. There is a significant amount of information available regarding the buckling

response of composite plates, but this is limited to rectangular geometries. Of particular importance in a

1.2 Survey of Literature 3
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buckling analysis when considering composite plates is the effect of the anisotropic plate bending stiffness
terms D¢ and Dyg. These terms couple the out-of-plane bending and twisting of the plate. Because these
stiffness terms appear as coefficients of terms involving mixed partial derivatives of the displacement
functions, including these terms greatly increases the complexity of an analysis and hence they are often

neglected. Neglecting these terms, however, can yield significant errors for certain anisotropic plates

In 1969 Chamis [6] presented a criterion, based on experimental results, for determining when the
anisotropic bending stiffness can be neglected. Nemeth [7], in 1986, presented nondimensional parameters
that can be used to assess when the anisotropic bending stiffness can be neglected. These nondimensional
parameters resulted naturally from the nondimensionalization of the buckling equation. Finite element
results showed that a specially orthotropic analysis (Dg=D¢=0) can yield nonconservative errors as high as

25% in the predicted buckling loads for certain anisotropic cases.

Nemeth [8) used the same nondimensional formulation of the buckling equation in 1992 to study long
symmetrically laminated plates subjected to compression, shear, and inplane bending loads. Variational
methods were used to derive the buckling analysis in terms of nondimensional parameters that characterize
the plate bending orthotropy and plate bending anisotropy. Because the analysis is constructed in this
manner, it is well suited for parametric studies. Results are presented as families of parametric curves that

cover a wide range of material properties, plate geometries, and load combinations.

1.3 Obhjective and Scope

In general, the survey of literature shows that the buckling of plates tapered in planform is limited to
isotropic cases, while the buckling of composite plates is limited to rectangular geometries, often with the
influence of D¢ and Do¢ neglected. Therefore, the objective of this study is to determine the buckling
response of composite plates which have a trapezoidal planform area and which are subjected to uniform

end-shortening. The influence of D¢ and D are included. The investigation is conducted using three tools.

» A special purpose analysis is developed using variational energy methods and the Rayleigh-Ritz
method of solution. The analysis is posed in nondimensional parametric form, well suited for

isolating and investigating the effects of individual material and geometric properties.

A finite element analysis is performed to verify several assumptions made in developing the

Rayleigh-Ritz analysis, and to compare results for some specific plate geometries.

» Buckling loads are determined experimentally for a series of graphite/epoxy composite specimens

to verify both the finite element and Rayleigh-Ritz analyses.

1.3 Objective and Scope 4
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The scope of this study is limited to symmetrically laminated composite plates having simply supported
boundary conditions on the nonparallel edges, while the parallel edges have either simply supported or
clamped boundary conditions. Known inplane compressive loads applied perpendicular to the parallel edges

are assumed to represent the effects of uniform end shortening.

The question may be asked: “Why bother with a semi-analytic approach if solutions can be obtained using
the finite element method?” Because there is a wide range of materials, ply orientation angles, stacking
sequences, and plate geometries, it is useful to present buckling loads in the form of design charts consisting
of nondimensional parametric relationships. These relationships can present buckling coefficients over a
wide range of materials, geometries, and boundary conditions in relatively few graphs. Additionally, these
parametric relationships can be grouped into sets to reveal trends in the structural response governed by
certain parameters. Because results must be calculated over a wide range of combinations of design
parameters when generating these design charts, a special purpose analysis is preferred over a general
purpose finite element analysis due to the cost and effort involved in developing numerous finite element
models. Also, on a more philosophical level, developing the analysis using energy methods allows one to
“keep their fingers in the physics” and investigate the effects of various parameters at many stages

throughout the analysis before buckling loads are ever calculated.

In what follows, Chapter 2 presents the basic assumptions, develops the analysis based on variational energy
methods, presents the assumed shape for the out-of-plane displacement, and discusses the computer
implementation. Chapter 3 discusses the case of simply supported boundary conditions on the parallel ends
of the plate and presents figures comparing analytical results with finite element predictions. A series of
parametric curves is then presented for this set of boundary conditions. Chapter 4 discusses the case of
clamped boundary conditions on the parallel ends 6f the plate and presents figures comparing analytical
results with finite element predictions. A second series of parametric curves is then presented for this set of
boundary conditions. Chapter 5 describes the experimental method used to measure the buckling load and
Chapter 6 presents the experimental results for comparison with the analytical results. The appendices

contain much of the details of the mathematics involved in Chapter 2.

1.3 Objective and Scope 5



Chapter 2

Development of Analysis

2.1 Overview of Method

A nondimensional analysis for the buckling loads of symmetrically laminated plates having trapezoidal
planform and subjected to inplane uniaxial compression is developed in this chapter. The analysis is based
on the Rayleigh-Ritz method. This semi-analytic method assumes a series approximation for the out-of-
plane, or buckling, displacement of the plate. The analysis originates by formulating the total potential
energy of a plate subjected to inplane loading. Because the Trefftz criterion argues that a change in the
stability of a structure occurs when the first variation of the second variation of total potential energy of the
structure equals zero, the first variation of the second variation of total potential energy is computed and then
expressed in a nondimensional form suited for parametric studies. A series approximation satisfying the
kinematic, i.e., displacement, boundary conditions of the plate is substituted into the nondimensional
expression of the first variation of the second variation of the total potential energy. Assuming that the
resulting surface integrals can be performed on a term-by-term basis yields a symmetric general eigenvalue
problem that can be solved using standard routines on a computer. The prebuckling equilibrium conditions
are addressed directly by assuming an inplane force resultant distribution. The prebuckling equilibrium

equations are not solved explicitly.

2.2 Basic Assumptions

The development of the buckling analysis is based on the following basic assumptions:
(1) Each layer in the laminate is orthotropic, linear elastic, and of constant thickness.
(2) The plate thickness is small compared to its length and width.
(3) The plane-stress assumption is valid: the out-of-plane normal and shear stresses are zero.
(4) Kirchhoff’s assumption is valid: line elements normal to the reference surface of the plate

remain normal and inextensible during deformation.

2.1 Overview of Method 6
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(5) Von Karman nonlinear strain-displacement equations are applicable: strains are small
compared to unity, out-of-plane rotations are moderate, and rotations about the normal to the
reference surface are zero.

(6) No body forces exist.

(7) The plates are initially flat.

Nonlinear strain-displacement equations are necessary because when an initially flat plate loses stability, the
out-of-plane displacements are no longer linearly proportional to the applied inplane loading. The von
Karman plate theory accounts for this by allowing moderate transverse rotations during displacement. This
yields a geometrically nonlinear relationship between the inplane forces and out-of-plane displacements

because the plate membrane forces are contributing to the out-of-plane equilibrium of the plate.

2.3 Total Potential Energy
The total potential energy of a plate is defined as

H/2
1
IT (u°’ vo’ w') = EJJ j {o.&, + O &, +GC,E,+T Y, +1.,Y,,t Tyzsz} dzdA

A -H/2

2.1

o o© o
+I, (0, v, W)

where TT, . is the potential energy due to the tractions on the surfaces of the plate, and the superscript

Joad
indicates quantities defined at the reference surface of the plate. With the plane-stress assumption, Eq. (2.1)

can be simplified to

H/2
o o oy _ 1 o o o
Mu,v,w) = 5 {°x€x+°y€y+"xy7xy}dZdA+n|oad(“ SV, W) . 2.2)

A -H/2

Using Kirchhoff’s assumption, the strains throughout the thickness of the plate can be expressed in terms of

the reference surface strains and curvatures as

_ [+ [s]
£ =€, +1K,
[+] 0
- 23
€, =€, +2K (2.3)

_ 0 o
Ty = Yoy ¥ 255y -
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Substituting Eq. (2.3) into Eq. (2.1) yields

H/2

() 0 1 o o] (4] [+
H(u°’ V,W) = 5_”._‘- {cx(e:+21<x) +oy(ey+z1c;) +Txy('ny+Zny) }dzdA (2.4)

A —-H/2

+I, .4 (uo, v, wo) .
Integrating through the thickness and using the following standard definitions for the inplane force and out-

of-plane bending moment resultants,

H/2 H/2
- o
N = c,dz M = 0,zdz
o o
-H/2 -H/2
H/2 H/2
] o
Ny = oydz My = Gyzdz 2.5)
L o
-H/2 -H/2
H/2 H/2
'3 o~
ny = ‘txydz Mxy = ‘rxyzdz ,
o o
—H/2 -H/2

yields

Xy xy

1
ne’, v, w) = EJJ(Nx€:+Ny8;+nyY:y+MxK:+MyK;+M k. )dA
A (2.6)

(o] o 0
+I1 (v, w) -

2.4 Variation of Total Potential Energy

As indicated by the notation of Eq. (2.6), the total potential energy of a plate is a function of the kinematic
variables u®, v°, and w®. To develop the stability equations, the variation of the total potential energy with
respect to arbitrary but infinitesimal variations in these kinematic variables must be investigated. The total
potential energy of a plate computed with arbitrary infinitesimal variations in the displacements u®, v°, and

w® can be written as

2.4 Variation of Total Potential Energy 8
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l o] a o o]
I+ A = EIJ{ (N, +AN,) (g, +4¢)) + (Ny+ANy) (ay+A£y) .7

A

+ (N, +AN, ) (15, +47,,) + (M +8M,) (K +AK)
[ 0 0 )
(M +AM,) (€ +AK) + (M, +AM,) (], +AK],) }dA

+II+ Al (uc +A0, Vv + AV, w'+ Awo) ’

where the notation A ( ) represents an increment in ( ) due to the increments Au®, Av®, and Aw°. At this
point it is necessary to express the right hand side of Eq. (2.7) completely in terms of the displacements u’,
v°, and w® and their increments. It is important to note that both the displacements and their increments
satisfy the kinematic boundary conditions of the plate. The strains in Eq. (2.7) are calculated by substituting
the displacements into the strain-displacement equations, and the stress resultants are computed by

substituting the strains into the constitutive equations and integrating with respect to z, as specified by Eq.

2.5).

Using the von Karman assumption of moderate rotations, the reference surface strains and curvatures are

defined as
0o 1( )
& ox 2
N 1( ) 2.8)
y ay 2
¥ _a_uo_‘_al+(8w 8w°)
Y 9y 9 ox v/’
and
[} azw°
X, =
ox?
2 o
X, = a‘: (2.9)
dy
2 o
X =—2aW .
*y oxdy

Using these strain-displacement relationships, the (e: + Ae:) term in Eq. (2.7), for example, can be

expanded as follows:

2.4 Variation of Total Potential Energy
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2
0 o g ,.0° o Ira o o
e +Ae = L(u +Au)+—|:——(w +Aw)J . (2.10

* * ax( 2 Lax )
It is more convenient to express the variations, or increments, in the displacement field using small

parameter notation, namely,

Au = eu(l)

AV = EVT (2.11)
o [v]

Aw = EwW, -

Using this notation, the displacements u(,), v?, w? are functions of x and y which must satisfy the same
kinematic boundary conditions as u®, v°, and w°. The subscript 1 indicates that these are displacements in
the neighborhood of the equilibrium displacement field, and the scalar parameter € is assumed to carry the
infinitesimal smallness of the variation. Consequently, the first, second, third, and fourth variations of the
responses may be determined by grouping terms with like power of g, i.e., €, %, 3, e*. Using the notation of

Eq. (2.11), Eq. (2.10) can be expressed as follows:

o ° o Ira 0 0.7?
ex+Aex=aa—x(u +€uy) +5[5;(w +£W|)J

) 2
ou’ 1 (aw°) (au‘; aw°aw‘,’) 21 [BWT (2.12)
= —+-|— | +e| —+— +& - —
Jox 2Vox ox odx ox 2\ 9x
_ .0 o 20
=g, +EE, +EE, -
Therefore,
0 o 2 o
Ag, = eexl+£ exz , (2.13)
where

o au? ow’ 8w?
g = 14— 1
ogdx  9x 0x

2
K iy
Y2 2N 9x

In a similar fashion, the (8; + AE;’) term can be expanded as

(2.14)
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€+ A€y =5;(v +Av)+2[a (W + Aw )J

-9 d
—ay(v +ev)+2[ (w +Eew )]

) (2.15)
2
v’ 1 (8w°) (av‘; ow’ awf) 21 (aw‘;)
=t | — | +e| L+ — +e - |4
dy 2\dy dy dy oy 2oy
0 o 2 o
= Ey+ eeyl+ € 8y1
Then,
o [+] 2 0
Asy = esyl+e ey;’ (2.16)
where
o av? ow’ Bw‘,)
" oy oy
y y
) 2.17)
eo (aw J
Y2 ay
Finally, the shear strain term can be expanded as
1, + AT, = i(u°+Au°) +—a—(v°+Av°) +i(w°+Aw°)i(w°+Aw°)
(u +Eu ) +——(v +EV ) +5—(w +Ew ) 8 (w +EW )
(] (4] Q (4] o o] (]
_u 9wt awtawt (% dvy , oW’ dw; 9w dw )+ 2.18)
ay gx ox dy dy 8x ox dy Ox Ody
2(8w“’ Bw‘]’)
€ —
ox dy
_ .0 [ 20
= Yoy + €y, TE Yy,
As aresult,
[+ 0 2 0
Any = ery,“'E nyz’ 2.19)
where
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o _du] dvj] ow’ow N a_wj’ ow’

Rt FELAS DFEALERaAS |
Ty, dy ox odx dy ox dy
2 9x ady

The curvatures can be handled in like fashion. Specifically:

2
K, +AK, = —iz(w0 +EW))

ox
2
aw’ azw‘,’
=——— —¢
ox® ox?
_ 0 0
= Kx + El(x1 ,
which yields
o [+
AKX = €K,

In the same manner,

2
K;’ + AK: = —iz(w0 +Ew))

dy
_ a2wo_eazw?
ay’ dy?
_ 0+ (]
= Ky EK)" ’
and
o (]
AKy = €K,
and finally
[ A o _ ) az o o
Ky TAK,, =- Ww +EW))
2 2
= —28 Wo —-2EM
dxdy dxdy
_ o o
=Ky TR,y
with
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(2.23)

(2.24)

(2.25)
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AK:y = EK:y, , (2.26)
where
o _ 32W?
e ox?
2 0
K =9 ¥ @27
1
dy
2
Ko =_28 W(; .
™ axdy

The constitutive equation relating the inplane force and out-of-plane bending moment resultants to the

inplane reference surface strains and the out-of-plane reference surface curvatures is well known and is

given by
N, - ‘ ¢ €1
* Ay A, A By, By, By :
N £
y A Ay Ay By, B, By y
N A A A B B B! Y
J R 16 26 66 16 26 s | Ty 2.28)
Mx Bu B12 B16 Dn D12 D16 K:
M B, By, By D,, Dy, Dy °
y ¥
| Bis By Bge Dyg Dy Del |
‘M’ i
The Aj;, Bjj, and Dj; are defined as follows:
H/2 H/2 H/2
o = —~ 2
Ai.i = J- Qijdz Bij = j Qijzdz Dij = J Qijz‘ dz . (2.29)
-H/2 -H/2 “H/?2

The Gi ; are the reduced ply stiffnesses, defined for a state of plane stress, transformed into global
coordinates. The A matrix relates the force resultants to the reference surface strains; the D matrix relates the
bending moment resultants to the reference surface curvatures; while the B matrix couples the force
resultants with the reference curvatures and couples the bending moment resultants with the reference

surface strains. The variations in the stress resultants in terms of the variations in strains and curvatures

become
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AN_, _ _ ( Ag,
A A, A B, B, B .
AN A€
y A, Ay A By, B, By y
[+]
AN, L A A Ags B B Bgg | | AYyy (2.30)
AM,_ B, B12 B Dy, sz Dig AK:
AM B, B, By D,, D,, Dy AK®
y y
[ Bis By B Dy Dy Dy | o
*AM Ax

For symmetric laminates the B matrix is zero, providing no coupling between the inplane and out-of-plane
responses of the plate. Assuming symmetric laminatcs and substituting the expressions from Egs. (2.13),
(2.16), (2.19) into Eq. (2.30) yields the following expression for AN :
o 20 0 2 2
AN, = A (e, +€€, ) + A, (eey +€ E;z) +A16(e~{:yl +€ y:yz)
o [} 2
=g (A”ex| + A128y1 + Ale:y,) +€ (A”e:2 + Aut»:;z + A167:y2) 2.3

2
= sNx‘ +€ Nxz ,
where

[ [ 0
Nx‘ = Allex‘ + P‘IZE)'l + AIGny,
(2.32)

_ o 0 o
Nx2 - Allexz + A128y2 + A16.ny2 .

Similar expressions are obtained in Eqs. (2.33) through (2.42) for ANy, Any, AM,, AMy, and AMXy ,

namely,
o 2 o 0 20 20
ANy =A, ((»:sxl +€ exz) +A, (sey] +& EYz) + A, (EY:y, +€ nyz)
o 0 o 2 [ 0 o
=g (Al2£xl + Azzx-:yl + A26nyl) +€ (Alz.sx2 + Azzeyz + A26yxy2) (2.33)

2
ANy=aNyl+s Nyz’

0 2 o 0 2 0 o 20
AN“ =Ag (EExl +€ exz) + Ay (EEY. +¢& EYz) + Ay (syxy] +€ nyz)
o 0 0 2 o o 0
=g (A16€x| + A%eyl + A“yxyl) +€ (Al6exz + Azﬁxzyz + A“yxyz) (2.34)

2
AN” = Enyl +& nyz,
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0 (¢] (]
AM, = D”EKXI + Dns\cy1 + Dmmcxyl
(o] (] a
= S(DIIKX‘+D12KYI +D‘6K’W|) (2.35)

AM, =M,
1

(¢} [+ [v]
AMy = Dl2£le + Dnercy] + D26£ny‘
= E(Dul(:l +D221<:‘y’l +D26x§yl) (2.36)

AMy = sMy] )

_ 0 o 0
AMKy = Dmt;}cxl + DZGSKY‘ + De,,(,,t.:vcxy1

(¢} (] (]
=g (Dmlcxl + D%Kyl + D“ny]) (2.37)

AM, =M,

where

_ o] o (]
NyI = Alzexl + Azzﬁyl + AZGny.

(2.38)
(] [«] o
Nyz = AnexZ + Azzey2 + A%y,‘y2
- © o o
nyl = Alﬁexl + Ameyl + A“ny‘ 239
] (4] ]
ny2 = A16£x2 + A26“:y2 + IAG(S'ny2
(] o 0
Mx] = D”Kx‘ + Dnlcy] +D16ny| (2.40)
o] (¢} (]
My‘ = Dlzlcxl + Dzzxy‘ +D26nyl (2.41)
(] (o] ()
Mxy‘ = Dlﬁle + D26Kyl + D66nyl' (2.42)

As stated previously, interest centers on the variation of the total potential energy with respect to variations

in the displacement field. That is,

2.4 Variation of Total Potential Energy 15



Chapter 2: Development of Analysis

ATl = (I1+ AIT) ~11. (2.43)

Substituting Egs. (2.6) and (2.7) into Eq. (2.43) yields the desired result, which can be written as

1
ATl = EJ‘J‘ {[N,€2+ N, A€l + AN €2+ AN _A¢’]
A .
o o o [
+ [N+ N A€) + AN €0 + AN Ae7]

0
+ [N, +N, A7) +AN, 12 +AN, A ]
+ [M, k2 + M,AK] + AM, K° + AM_ Ax (2.44)
+ [M,K0+ M AK) + AM K° + AM Ax?]

0 0 0 0
+ [M,, 12 + M AK] +AM, X0, +AM, AK?,]

o o o ] 0 0
- [Ne7+ Nl + N ¥ + M+ MK+ M, x° ] } dA
] 0 [} o (] 0 [+] o (+]
+1I1 g (0" + Au”, vV + AV®, W' + Aw®) = 4, v, W)

where, until more is said about the specific loading, I, ,4 must remain in symbolic form. Expanding Egs.
(2.44) according to Egs. (2.12), (2.15), (2.18), (2.21), (2.23), (2.25), (2.31), (2.33), (2.34), (2.35), (2.36), and
(2.37) yields

1 ° 20 2 0 2 0 20
All = EII{N’(EE"‘+£ e,z) + (ele+e N,z) g + (ele+e Nxz) (zr:x-:,(l +€ sz)

A

o 20 2 o 2 o 20
+Ny(€£yl +¢& eyz) + (z;Nyl +€ NYz) € + (eNyl +€ Nyz) (tzt:yl +€ Eyz)
o 2.0 2 0
+ny(37xyl +E Yyy,) + (Enyl +&' Ny ) Yy,
2 o 2.0
+ (N, +&Nyy) (Y, +€y,) (2.45)
M ex® +eM_k +€eM. ex°
+Mex, +eM, x +e x €Ky
+M ex? +eM_x +€eM, ex°
Yy Uy, Y, Y Yoy,
o (4]
+ MWEKXYI + EMxlexy + eMxy,Enyl }dA

o ] a [+ (+] () Q o o]
+I1 4 (U + €U, v tev,wo+ew)) =TI (u,v,w)

Combining terms with like powers of € produces
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_ o o o o 0 o
ATl = J:[ {e [N,‘exl +N, e;+Ngy +N, )+ N, Yoy, + Nay Yoy

A

1

2
0 (] o o o 0

+ Mxle + Mlex + My:cyl + My,‘(y + Mxyvcxy] + M,‘yltcxy ]

2 o o o o [} [
+€ |:Nxt—:x2 +N € +N, € +Nygg +N, €7+ N, €

+ nyyiyz + nyﬂ:y + nybly:yl + MXIK:l + Mylrc;" + Mxle:yl ] (2.46)
+e [leezz +N, €] + NylE;z + Nyzz-:;'l +N A, + nyzy‘:y;l
+€' [Nxf:z +N €] + nyly:yj }dA
+T0 (0 + guj, v +EV], wiew)) =TI 4 (u° vo,wo) -
Equation (2.46) can be expressed as
AIl = eIl + szl'l2 + 53113 + e4rI4, 2.47)

where €11, is the first variation, which is linear with respect to the variations in the displacements, .221'12 is

the second variation, which is quadratic with respect to the variations in the displacements, etc.

If the displacement field (u°, v®, w°) is a solution that renders the total potential energy II of a structure to
be at a minimum, then the change in total potential energy AIT must be positive for all kinematically
admissible variations in the displacement field (gu}, €v{, éw}) . The first variation of total potential energy
is sign-dependent because it is linear with respect to displacement variations. Hence it is possible to have a
decrease in total potential energy for at least one variation of the displacement field. Therefore, a necessary
condition for the total potential energy of a structure to have a minimum value in the neighborhood of an
equilibrium displacement field is for the first variation, €I1, , to be zero for all kinematically admissible
variations in the displacement field. Setting €I, equal to zero leads to the equilibrium conditions for the

structure.

The next higher order term, SZHZ, must be investigated to determine if a minimum of the total potential
energy exists (as opposed to a maximum or an inflection point). The second variation of total potential
energy is quadratic with respect to the variations in the displacements. Thus it is sufficient to use this term in
determining the conditions for which a minimum exists. If 821'12 equals zero for even one nontrivial

variation in the displacement field, then e3H3 must be investigated.
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The second variation of total potential energy of the plate is a function of the displacement field of the plate.
The displacement field is, in turn, a function of a loading parameter p. When p = 0, the plate is in stable
equilibrium in its unloaded state and the equilibrium displacement field has the trivial solution

u® = v° = w’ = 0. Increasing p by sufficiently small amounts will normally yield nontrivial equilibrium
solutions such that £°I1, > O (positive definite). The loading parameter p is said to have a critical value p o
at the smallest value of p that renders E2H2 2 0 (positive semi-definite). In general, determining the
conditions which cause a functional to change from positive definite to positive semi-definite can be
accomplished using calculus of variations by setting the first variation of the functional equal to zero.

Accordingly, the value of p., can be determined by setting the first variation of the second variation of total

potential energy equal to zero. This approach is known as the Trefftz stability criterion.

Expanding the second variation of the stress resultants in the second variation of the total potential energy by

using Egs. (2.32), (2.38), and (2.39) produces

2 1 0 4 (] o [
e'Tl, = EJI{NXE*1+ (A|l£x2+Alzey2+Aléyxyz)ax

A
(¢] o o] 0 (4]
+ (Nyzr:y2 + (Auexl + Aney2 + AZGnyZ) £)

(2.48)
o (] o
+ {nynyz + (A16E(x’2 + A26€yz + A66‘ny2) Y:y
o ] o
+ leex] + Nylsyl + NXY.Yxh
(] o [ .

+ Mx,“x, + Myllcyl + MUIKWI }dA

Using the definitions of Eq. (2.28), (2.48) becomes
2 - 1 o 4 0 o 0 0
e’ll, = EJJ {2Nx.sx2 + 2Nysyz + 2Nw~yxy2 + leexl + Nhsyn + ny]yxyl
(2.49)

A
(] (¢] o .
+ Mlexl + Myllcyl + Mxlexy, }dA

The variations in strains and curvature are now expanded by Egs. (2.14), (2.17), (2.20), and (2.27) to
produce

2.4 Variation of Total Potential Energy 18
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2 2
82H2=1J.-[{N (M) +N (Q&) +2N (awla_w_l)
2 *\ ox Y\ Y\ ox dy

y

a®  owlow’ v  ow’ow
) 1,50
NG T ax /T n\ay By oy (2.50)

dul  9v)  owjow’  dw’ow]
+N, (—+—+— +
$7"\9y dx ox dy oOx dy
0 o o .
+ Mx,"x, + Mnyyl + Mxy,nyl }dA
For initially flat plates w® = 0. For this analysis, it is assumed that the plate is loaded inplane to the
buckling condition by specifying the inplane force resultants N, Ny, and Ny, Furthermore, to study stability
with respect to out-of-plane displacements, it is necessary that the variation occur only in the out-of-plane

component, wT. These conditions imply the following relations are true:

awo_awo_
ox dy

u=vi=0
w)=w’

£ _9 g (2.51)

! X

o _ OVy

£ =—h=0

n Ty

-Yo =§V_‘; a_u_(;:() f
ioo9x oy

where, as indicated in the 3rd relation, the subscript 1 has been dropped from the out-of-plane displacement

to simplify notation. Using Eq. (2.51), Eq. (2.50) reduces to

o2 oN2 [ o
2o ) o ) o, ()
2 *\ 9x Y\ 9y YNox dy

A

(2.52)

0 (o] (]
+ Mx]le + MyIKyI + Mxylxxy‘ }dA -

Expanding the variations in the moments by using Egs. (2.40) - (2.42) yields
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2 oN2 o o
Jon, (5 ) o, (505)
Y ay ¥\ 9x ay

2 1 (aw°
I, =- N
£ ZJ._[{ *\ ox
A

+ (DHKx + Dlz'(;, + Dlﬁszl) Ky, (2.53)

0 (] (4]
+ (D,zrcx1 + DzzlcyI + D261cxyl) Ky,

0 0
+ (DlGK:I +D26Ky,+D66K:y|)nyl }dA -

Substituting Eq. (2.27) for the variations in the curvatures (no subscripts on w) results in
1 aw®)’ aw’)’ ow’ ow’°
82H2=—J-I{Nx(—) +N (—j +2N, (——— )
2 ax Y\ oy YNox dy
A
2 0)? 2 0)? 2 0?2
+D, (aw] +2D,2[ﬂ][aw)+nn[a“:] +4D a—w—) (2.54)
ox* 0 oy* dy xdy
2 o 2 (1] 2 o
+4D,, o'w @W )+4D26 oW (gw )}dA-
lox ax? xoy dy? xdy
Integrating the coefficient of 4D, by parts twice using Green’s theorem yields

CERR 111 N 2 (GO 3 N

Figure 2.1 depicts an arbitrary plate having area A enclosed by a smooth boundary dA with an inplane

outward normal vector fi. The outward normal vector is composed of the components fi_ and fi y as used in
the boundary integral of Eq. (2.55). The term ds appearing in Eq. (2.55) is an infinitesimal arc length along

boundary dA traversing the plate in a counterclockwise direction.
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- N

Figure 2.1 Arbitrary Plate Geometry

For polygonal plates which have w = 0 along the boundary, the boundary integral appearing in Eq. (2.55)
is zero (see appendix A). Making this substitution into (2.54) yields

2 o\2 2 0 2 0 2 0\2
eI, = 1”{D“(a_‘; ] +2(D,,+2D) (9—‘” ][a—w ]+D22{§—w ]
2 ox ax® Ny’ 3y’
A
2 [} 2 [+ 2 0 2 o
+4D16(3_Y }@W )+4D26(9_“’ ]@W ) (2.56)
oax? xay ay? xay
[+] 2 0‘2 (s (1]
+N (aw ) +N (al) +2N (Bw gw )}dA-
*\ 9x Y\ 9y ¥\ ox dy

2.5 Nondimensional Form

The development to this point has been for a polygonal plate of arbitrary geometry. The second variation of
total potential energy is now nondimensionalized for the case of a plate with a planform geometry of an
isosceles trapezoid. This geometry was first presented as Fig. 1.1, and is repeated here for convenience in the

nondimensional coordinate system.
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W
ft— b,
"
w L
0 {e
e — bz

\f

W,

Figure 2.2 Trapezoidal Plate Geometry

Referring to Fig. 2.2, the geometric nondimensional parameters aspect ratio and taper ratio are defined as

aspectratio AR. = L
W,
2.57
. W, 2.57)
taper ratio TR. = — -
WV,
The x and y coordinates are nondimensionalized according to the following relationships:

X y

== == (2.58)
S=1 M b

22
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The differential area dA appearing in Eq. (2.56) equals dxdy in the coordinate system of Figure 2.2 which,

when nondimensionalized, equals Lb,d{dn . Using the chain rule of differentiation for the derivatives of w

yields the relationships

ow® 1low® ax*  L7ag

ax Lot 20 W°

awo _ i_a—‘zo ayZ b‘28n2

ay blaﬂ 82W° _ _1_82“/0 .
axdy _ Lb,atam

Substituting Egs. (2.59) into Eq. (2.56) yields
2 1 Dll 82w° 2 2(D12+2D66) azwo azwo D22 aZWO 2
LR | R il b e berdl | bl Riewl P
A L\ L, at” J\an b, \dn
4D 20 4D 2 0 2 o
+ 16[aw]aw )+_26(aw]aw ) .60
oL’ Ean Lb? on’ Ean

L2 (3§ bf (Bﬂo 2

Equation (2.60) can now be divided into two parts, one dependent only on the bending stiffnesses Dy, Dyg,

(a }Lb d&dn -

etc., and the other dependent only on the inplane force resultants. The division takes the form

€', = Ug+ U, (2.61)
where
) )
Poa)) | e ae? w2 g Jan? ) b an?

A (2.62)

416 4D [a w ](3 4D26 (a J@zwo ) }Lb,d&dn -

L’b, \d &om Lb? an? J 9&an ’

23
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and

N oN2 N o\ 2 2N o o
U;s=1” __*(“';_“V)+_y(<5)’_“')+ xy _)@_WJ}Lb]dgdn | 263)
0 ) ) T, G
A

To nondimensionﬁlli)ze the material properties in the fashion of Nemeth [7], Egs. (2.62) and (2.63) are first

1
multiplied by ————
"J Dl 1 D22

B 5 )
Ly =-|{= it e U AL | A R 2 L
D, D,, 2 A Dy, 98 D,D,, ‘o0& J\an® ) biNDylon?

, Tesulting in

bx D,; Dy [Qi‘l’ J w° )
224/1) D,, 2
L D,, Dy (azw ] ?w° )
} d&dn (2.64)
114/1) D o’

<2l {J— (aa )

22

8° ow’
+2 4—24F_DD W)(a—:)}didn

The nondimensional coefficients appearing in Eq. (2.64) can be defined:

Y
L {D,, N b?
R =— 21
b8
B = D), + Dy n*JD,,D,,
DDy, ‘ Nyb?
Y= - Dy & 1r2D 269
[3
4Dy, Dy, . nybl

D s 2
8= —no 7t4'\JD11D22

This results in nondimensional forms of the two components for the second variation of total potential

energy. These components are
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Lb, a1 2(3%° ) ow’||a 1 (3%
N I R B e
W 45(0 2w
+4ay[5§— }(a ) ( ] §81‘|) } d&dn

and

. - 1 2 (0w . (ow BW
- UlS=UIS=5Jj'{1th(a—§)+?ky(a (a (a }d&dn
A

2.6 First Variation of Second Variation of Total Potential Energy

The nondimensional functional for the second variation of total potential energy is given by

fl2 = ij + {JIS)

(2.66)

(2.67)

(2.68)

where I_JB and ﬁ,s are given by Egs. (2.66) and (2.67). The buckling condition is determined by setting the

variation of this functional equal to zero, i.e.,

Sf]z = 8{]8'}'6[—][5 =0

(2.69)

This equation will be referred to as the stability equation. Interchange of the variational and differential

operators and standard steps in variational calculus provides the following relationships:

5 [&"T oW oW’

oL’ o8’ o8’
2 o 2 2 o [
8[a_w ] _ 2w dow
an? o o’

aE? an? ) & % & an’
5 (iv!°a2w° _ a_zyalsw“ . Fow® a’w

g2 okan ) ge? dkan  gg? o%dn
5 {_8&°82w° _ 92_w°828w° . Fow’ Fow’

an? 3&M ) on? Fdn  an? &

5 [azw°a2w° dwe o Fow’ 3%w°

2.6 First Variation of Second Variation of Total Potential Energy

(2.70)
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Applying Eq. (2.70) to Eqgs. (2.66) and (2.67) yields

o 0 2 0 o 02 o
SUB_J‘J'{(IZB_WGZS B[a_w Fow +828w B_WJ

a§2 agz aT'Z a§2 an2
123 w°828w
+ —
o’an’ an’ Q.71

{a’w°azaw° Fow® 3%w® ]
+207 — +
og? d&on. ge? d&on

. g[&"azsw , Fowe 32w°:| }dgdn ,
an? %M | an? dEom

and

ow’adbw 1’ (ow°odw®
U= | | {=n k +—k, (= 2.72)
s ” 3t aa) o? 7 \om an)
ow°adw’ BSW ow’®
—k % o af, n )} d&dn -

Note that these functionals are symmetric and bilinear with respect to w and éw.

2.7 Out-of-Plane Displacement Approximation

At this point, it is necessary to know w and 8w as functions of § and 1. The Rayleigh-Ritz method assumes

w(x,y) to be an infinite series of the form

wixy) = 3 Y Wi ()Q(xy)- @.73)

i=1j=1

The Wij are to-be-determined weighting functions; ¢, and .Qj are functions that must match the kinematic
(displacement) boundary conditions at the ends and side edges of the plate, respectively. The kinematic
boundary condition to be met for a simply supported boundary is that the displacement must be equal to zero
at the boundary. The displacement and the slope, or derivative of the displacement, must equal zero to meet

the kinematic boundary condition at a clamped boundary. The bending-twisting coupling terms (D¢ and
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D,) included in this analysis cause the buckled mode shape to be skewed (like a rectangular plate under a
shear load) if these terms are of the same order of magnitude as Dy, Dy;, Dy, and Dgg. This skewed mode
shape can be represented by combinations of symmetric and antisymmetric functions of x and y in Eq.
(2.73). Because of this, the functional form of ¢; and ; must contain complete sets of symmetric and
antisymmetric functions of x and y. For a plate having the geometry of Fig. 2.2, the series along the length

the plate is very straightforward, namely,

. Timx]™
%= Sml:—f:l i=1,2..
s (2.74)

ol

i=1,2..

simple supports

clamped supports.

These functions contain the complete set of symmetric and antisymmetric functions. The functional forms in
y, across the width of the plate, however, are not as straightforward because the width of the plate varies as a
function of x. Thus, the Qj , as indicated in Eq. (2.73) must be functions of both x and y. To develop the

functional form of the £, (x, y) , consider first a more simple geometry shown in Fig. 2.3.

-t
O

D
h (x)
A B
Y . -
- X -

Figure 2.3 Simple Geometry
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In this figure, h (X) represents a variation in the geometry. For simple supports along AB and CD, an

admissible set of functions is

(2.75)

sinl: iry }
h(x)

This same function can be used for the isosceles trapezoid of Fig. 2.2 by introducing the simple coordinate

i=1,2, ...

transformation

=y+b(x), (2.76)

]

where

b2_bl
b(x) = bl+( 3 )x, 2.77)

as illustrated in Figure 2.4.

P <

cpj—‘— )

!

y b(x)

ve |

Figure 2.4 Coordinate Transformation Illustration
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Equation(2.75) then becomes
sin| iry |- sin (o b@)]
h (x) 2b (x)
= sin[ iny +j—“] (2.78)
2b(x) 2

sin |:]_1:] cos [ jmy J + cos [E} sin [_Jﬂ_}’_jl .
2 2b(x) 2 2b (x)

Investigating individual terms of Eq. 2.77 for specific values of j reveals a pattern identifying the sets of

symmetric and antisymmetric basis functions. Consider the following terms:

j=1- cos{ Ty } first symmetric function
(x)
j=2--sin [ :l ﬁrst antisymmetric function
2.79)
j=3—>—cos |: J second symmetric function
2b(x)
. 2my . . .
j=4—> sin b(x) second antisymmetric function.
The complete set of symmetric and antisymmetric functions is thus,
symmetric set: cos [(2] -1 ny ]
26(x) 15242,
(2.80)
. : . [ ny } ‘"’
antisymmetric set: sin | j
b(x)Jli-ia, ..
The kinematically admissible form for w(x,y) can now be written as
i . ny o. |. Ty
w (X, = (x Wgcos[ 2j-1 }+W.‘sm\:——]}, 2.81
oy = 3, 30,00 [Wheos| 251 22 |+ Wisin i @81)

i=1j=1

where Wf} and Wg correspond to the to-be-determined constants associated with the even and odd, i.e.,
symmetric and antisymmetric, respectively, functions of x and y. Remember that ¢, (x) is the complete set
of symmetric and antisymmetric functions of x, and takes the different forms of Eq. (2.74) depending on the

boundary conditions at the ends of the plate.
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It is now necessary to write the out-of-plane displacement approximation in terms of the nondimensional

variables according to Eq. (2.58). Using the definition of b(x),

y _ y
b (x) b,-b
b1+x(2 1]

y/b,

(2.82)

where
(2.83)

Equation (2.81) can then be written as
(2.84)

n J+W?sin|:j dll :H
) 1+€€

w(gmn) = zz¢i(§) [Wichos[(Zi— I)g1+!-:

i=1j=1

Making the following substitutions,
n

n
f£(Em) = (2j-1)=
;(6m) = (2) )21+£§

=-—_——nn
g (&) ITTet

‘Vj (f_,) = Cos (fj)
ri(gi) = sin (gl) g

(2.85)

yields the series approximation for the buckled shape of the plate in terms of the nondimensional variables,

namely,
(2.86)

w(Em) = 3 Y 6,(8) [Woy [f (&) ] + Wi, [g;(§,m1] .

i=lj=1

The variational of w, dw, has the same functional form, specifically

30
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§§}§¢(®[8wmw [f, (& M)] +3W,,T, g, (8 )]

p=Ilq=1

(2.87)

where the series indices are chosen to be different so the product of terms in Eqs. (2.71) and (2.72), which

are now represented by series, are properly computed.

2.8 Derivatives of Out-of-Plane Displacement

To proceed further it is necessary to compute the first and second derivatives of w (€, 1) and dw (§, )

appearing in Ug and Uy of Egs. (2.71) and (2.72). These derivatives are:

where

f—¢(®[

cl0=0,0 (

53 cfuecioud)

i=1j=1

)+¢ Qv

)
2l

- 3 (W cioud,

i=lj=1

vy 3
Ml RIX

)+¢ ®T;

QU

8] e )
)} G

- 3 N NP

i=lj=1

2.8 Derivatives of Out-of-Plane Displacement

L

8

QU

E_)_j

&

)+¢ (8 v

)+

¢ BT,

]

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)
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where
-0 (2)Z)
N =0,0 (%) (%)
= ZZ{N2EW +NOWD,
i=1j=1
where
N2E ¢.(§){(%)[$J+[%J(%)z}
N3 = 6,8 { @—2)(5—%} [%)(g_il)z}
aaan .Z.,Z,{M Wi+ MWl
where

88w = ZZ{C'ESW +CIo5WO Y

p=1lq=1

N

828w zZ{c“aw +CRWOY

p=1lg=1]

2.8 Derivatives of Out-of-Plane Displacement

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)
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N

N
0dw” 1EswE |, NI10SWO 1 .
an B 2 2 N BW + N OW, b (2.100)
p=1lg=1
Fow’ S 2E gy sE 20 ¢+, 0
an? = 2 Z {NpqSqu+Npq swpq} ; (2.101)
p=1q=1
and
(2.102)

oW’ _ - < MZESWE + M225wW©
3t ZZ{ pa®Wpq * Mpg Wy} -

p=1gq=1

2.9 Matrix Form of the Stability Equations
Substituting Eqgs. (2.88), (2.90), (2.92), (2.94), (2.96), (2.98) - (2.102) for individual terms appearing in the

equations for I~JB and I~J,s yields the following important relationships:

[0 | (dow® 2NNN c 2E 2B /E | (20 ~2Eqy,0 E
*lae ( % ):a D22 D LG Cog Wi+ Gy Cog Wil 3Wyq 2.103)
i=lj=1p=1g=1 )

+ [CFCIIWL + CIOCIOWP1 W, ¥

2 0 o ° 2 0
(5% -

N N N N
YT T LN W N W aws,
i=1j=1p=1q=1
+ [(CIPNGY + NZECIO) Wi + (CIONZD + NZ°C2y Wi SWo. b
I [GZWOJ (BZSW" ) _ Lii i i { [NEN2EWE + NZON2FWO] SWE
o anz anz a2i=lj=lp=lq=l i Tpe i i pq i) Pq (2.105)
+ [NIEN2OWE + NZONZOWD) SW. 1
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[ [azw"J [BZSWO ) (828w° ) @2\»" )}
oyl | — + =
9E? )\ o&an oE? / \9&an

N N N N (2.106)
20737 3 >, D LLCH Mg + MEECLD Wi+ (CLOMt+ MIPCoE) W SW '

i=lj=lp=1lq=1

2E, .20 2E~20 E 20, 20 20,20 0] (0] ;
+ [(CM + MFCL Wi (CEOML 0+ MECCE) WO 3WO

q
o o ° 2 o
22[@ ]@&San ) (82:.12 )G )J )

25 - e {[(NZEM2E+M2EN2E)WE+(N2°M25+M2°N2E)W°] SWE (2.107)
azzzz ij "'pq ij pa’ T ij "'pq ij ' pg/ Vi pq
i=lj=lp=1lg=1
2E, 420 2E4 120, +5/E 20, £20 . 3 ;203,20 15,0 04 :
+ [(Nij Mpq +Mij Npq)wij+ (Nij Mpq +Mij Npq)wijlswpq}
) (36w° N N N N
w wo 1E1E g /E , 10 ~1Eqg,0 E
k"(a_g J( € )_k*z_zz Z { [Cij Cpqwij+cij Cpqwij] 8qu (2.108)
i=lj=lp=1q=1 )
1E~1053,E | 10,-104,0 E ..
+ [CFC, oW +COCIOWD 1 6WE )5
T\ (3w N N N N
w wo) 1Epy1Exg/E . 7y10371EqsO E
ky(ﬁ ]( an )_kyzzz 2 [N Ny Wi+ NN W T 8W (2.109)

i=lj=1p=1q=1
1Ea ;104 /E 105,110+,0 E .
+ NN OWE + NONOWD) BWE, ) 5

and

) 36
ks — — |+ —_ =
§ /% on o /\am
N N N N
kD D D Y L HCINGE +NFC P WE + (CONJE+N.OCLY) WD) BWE,

i=lj=lp=1q=1

(2.110)

1E\;10 1E~10 E 10,410 10410 0 0
+ LGNS + NFC ) WE+ (CIONI2+ NIy WD SWO, b

Substituting Egs. (2.103) - (2.107) into Eq. (2.71) and assuming that the integrations can be performed on a

term-by- term basis, SI-JB can be expressed as follows:

N N N N

8Us =3 3 3 ¥ {(KefE Wi+ K 2E wi)swy,

i=lj=lp=1lq=1 (2.111)

EO ywE 00 /0 )
+ (KTiquW.j + KTiquWij) 8qu 1,
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where
(€3]
K{-_Eq: f j {alcffczsw(c N +N2F‘C2£)+—N2£N
(X
0 -b(&) (2.112)
+ 207 (CPM5e + MITCL0) £ 2 (N“M’E +M{°N2%) }dndg -
b (§)
OE _ 20 ~2E 20 20, ,2E
Kriqu-JL_‘- {o*C2OCEE +B(CION] E+NOCID) + 2Nij Noe
o -b(&) @ 2.113)
+ 2007 (CIOME + M{OCo0) 420 (N2°MZE +MON2D) }dndg
b (&)
K"fupq'Jlj {o C25C2°+B(C2F‘N2°+N Co) += N’EN
(!
D (2.114)
+20y(C°M; o+M; yel )+ (N’EM2°+MZEN2°) } dndg
and
b (E)
KTSI‘;:JIJ. {0*C20C2 + B(CION2D + NLOC) )+—N2°N
o (2.115)

0 -b(g)

+207(CIOMES + M;OCo0) + = (N2°M2° +MIONZ) }dndg.

Substituting Egs. (2.108) - (2.110) into (2.72) and assuming that the integrations can be performed on a

term-by-term basis, 8I~J,S can be expressed as follows:

N N N

SU,S_ZZZZ{(KGﬁE KOEw)

i=lj=lp=1q=1 (2116)

EO wE 00 /0 o
+ (KGiquWij+ Kciquwu) 8qu }o

where
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®) 2 5
EE _ 2 1E~IE T 1EyIE, T 1E41E 1E~1E .
Kgre, = j j {n’k,C} Cpq+ékyNij Nog * —k,y (CFN I+ NIFCLD) JdndE s 2.117)
0 -b(&)
b(E) 1!2 2
OE _ 2, ~10IE 10, ;1E 10431E | 3,10 ~1E .
Kaijpg = J1 f {mkGy Cpq+§kyNiJ NPQ+;kxy(Cij N +N;°C,) }dndg; (2.118)
o -b&)
(&) 1£2 "2
EO _ 2, ~1EAIO0 1E,,10 1Epj10 | a;1E~10 .
KGiJ’Pq a {mCy G + EkyNij Npg + ;kxy (Cij Npg +N;;°Cpg) }dndt (2.119)
0 -b(&)
b(&) 1!2 1t2
00 _ 2, 1010 10,410 105,10 |, 271010
KGiqu - J1 J. {n°k,C; Chq +§kyNij Neq +_a—kxy(cij N, +N;°C..) HdndE. (2.120)
0 -5

Combining Eqs. (2.111) and (2.116) yields the series form of the stability equation as

N N N N
_ EE E_ -~ EE E OE 0_" OE O E
SH—ZZZZ{[(KT“NWU PKg, Wi + (K” Wi -pKg® W) |8W,,
i=lj=1p=1lq=1
EO E ~-EO E 00 0o ~,,00 O 0 _
+ [(KT“NWU -pKg, Wi + (Kp’ Wi - pKGimWij)] W, =0 -

pq

(2.121)

The p appearing in the equation is the loading parameter associated with the inplane force resultants which
can be factored out of the geometric stiffness matrix. Note that a negative sign is factored out with p. The

load factor p is defined such that in Eq. (2.65),
N, =pN, N, =K, (2.122)

where N, N, and N, are the inplane force resultants caused by a load much smaller than the buckling
load. These quantities are referred to as the prebuckling force resultants. Buckling occurs when Nx, Ny. and
ny are multiplied by f)cr. Since the variational displacements SW:;.Eq and SW;)q are arbitrary, their
coefficients must vanish. This results in an eigenvalue problem for loading p = p . that can be expressed in

matrix form as
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! i
EEi ,OE E EE(,OF E
KKy {W‘j} =p K iKg {Wii} (2.123)
-—— - _ i alintodl B iy N ‘
EQ, 1O 0o EO, 00 o
K Ky | (W K 'Kg | (Wi

EE EO LOE .00
The terms , are elements of the so-called total stiffness matrix [K] and the terms
KTHN K’rilm’ KTUN KTIJN [ T]

KgE , Kgo . KgE s Kgo are elements of the so-called geometric stiffness matrix [Kg] where
iipq iipg ijpq ijpq

' |
EEl +,OE EE OE
K 'K
(K] = |° 'rKT (K] = _-,_-- (2.124)
Kr O K? Kg1Kg

See appendix B for further detail in developing [K ] and [K].

2.10 Prebuckling Inplane Force Resultant Distribution

As stated previously, the equilibrium equations are obtained by setting the first variation of total potential
energy equal to zero. The resulting equilibrium equations are then solved for the spatial distributions of the
force resultants Ny, Ny, and Ny, In order to simplify this analysis, however, a relatively simple prebuckling
inplane force resultant distribution is assumed for the plate rather than solving the equilibrium equations.
The prebuckling inplane force resultant distribution is assumed to be caused by a known shortening of the

plate in the x direction and is of the form

_ P

*7 W(x)

N, =0 (2.125)
N._.=0-.

xy

In Egs. (2.125), Pis the applied load required on the ends of the plate to produce a given end shortening, and
W(x) is the width of the plate, the width varying linearly with x (see Fig. 2.2). This simplification of the
force resultant distribution is based on finite element results obtained using the general purpose finite
element program ABAQUS [9] showing that N, is significantly greater than Ny and N, for the range of
geometries under consideration. ABAQUS is well suited to analysis of composite structures because it
handles anisotropic material properties quite easily. In this case, the ABD matrix of a particular stacking

sequence is computed using a separate analysis and is entered as input data to ABAQUS. Table 2.1 presents
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stacking sequences.The results in Table 2.1 are taken from the finite element studies. The material properties

used here and throughout are given in Table 2.2. The graphite/epoxy properties represent AS4/3502 [7}, the

material used in the experiments. Aluminum is used to represent the isotropic case and these properties are

also given in Table 2.2.

Table 2.1 Maximum Inplane Force Resultants for Various Cases

Isotropic

1.0 [+30/-304), 0 0
. Isotropic. - 0.084 0.118
| w30g300, | 0075 0.117
1.0 30 Isotropic 0.148 0.213
[+30¢/-304) 0.127 0216
0082 0.134

Note that for a given plate geometry there is very little difference in the ratios of N,/N, and N, /N, between

an isotropic and a highly anisotropic material, indicating that the geometry plays a much stronger role than

material properties in the force resultant distributions. Also note that for the most severe taper ratio, N, and

N, are but 20% the magnitude of N,.

Table 2.2 Material Properties for AS4/3502 Graphite Epoxy and Aluminum

E; 127 GPa 72.0 GPa
E, 11.0GPa | = -
G2 5.73 GPa ————--
v 0.35 0.32
Ply Thickness 0.127mm | = -

2.10 Prebuckling Inplane Force Resultant Distribution
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The simple assumption in Eq. (2.125) for N, was made because it agrees fairly well with finite element
results and is straightforward to incorporate into the computer code written for this analysis. The assumed

form of N, must be nondimensionalized as well. From Eq. (2.125),

P P
W (x) 2b,-2b,
2oy (222,
L
P/2b,
= ——bz‘—— (2.126)
1+ (— - 1)—-
bl
N,
T 1+t
where
N! = P
¥ 2b,
2.127
b, ( )
ge=—-1

Figure 2.5 is a plot of the assumed distribution of N, along the length of the plate for various geometries.

Note that the relation N, vs. x is independent of stacking sequence.
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Figure 2.5 N,/N! vs. x/L for Various Plate Geometries

Implicit in Egs. (2.125) is the assumption that N, is uniform across the width of the plate. Figures 2.6 and

2.7 compare the assumed values for N, with finite element results across the width of the plate at several

locations along the length for isotropic and [90],4 composite plates having aspect ratio of 1.0 and taper ratios

1.5 and 3.0, respectively. The solid lines show normalized finite element results, while the dashed lines show

normalized assumed values for N,, both of which are normalized with respect to N,l( . The highly orthotropic

{90],4 laminate is chosen as a contrast to the isotropic plate. Figures 2.8 -2.11 show finite element results,

again normalized with respect to N,{ » revealing the spatial distribution of N and N,y in the plate.

Remember that these quantities are assumed to equal zero in this analysis. For comparison, Figs. 2.12 - 2.17

show results for the same geometries for isotropic and [0],4 composite plates, plates with an extreme in

orthotropy.
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Figure 2.7 Assumed vs. Finite Element Values for N,/N! : AR. = 1.0, T.R. = 3.0; Isotropic, [90]4
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Figure 2.9 Finite Element Results for N,./N,I( : A.R.=1.0, T.R.=3.0; Isotropic, [90],4
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Figure 2.11 Finite Element Results for ny/N,l‘ : A.R.=1.0, T.R.=3.0; Isotropic, [90]y4
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Figure 2.13 Finite Element Results for Nx/N,l‘ : A.R.=1.0, T.R.=3.0; Isotropic, [0],4
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By examining these figures, it is seen that for the isotropic plate N, is least uniform near the narrow end. The
largest error in assuming N, is zero is at the narrow end. Assuming N,, is zero in an isotropic plate also
results in the most error at the narrow end. For the [90],4 plate, the error in N, is similar to the isotropic case.
The error in Ny is greater than for the isotropic case and the spatial distribution is different. For the isotropic
case, the errors in N, are both positive and negative, while for the [90],4 laminate, the errors are all positive.
For the [90],4 laminate, the errors in N, are very similar to the errors in N,y for the isotropic case. For the
[0],4 case, the errors in N, are exaggerated relative to the errors in N for the isotropic case. Oddly enough,
the errors in N, for the [0]y4 case are considerably less than those of the isotropic case, as is the case for N,
The accuracy, or the lack of it, in the prebuckling force resultant distributions has an impact on the buckling
predictions. Unfortunately, it is not possible to make general statements regarding whether the error is
always conservative or always nonconservative. Falsely adding inplane compressive forces to the problem
will result in the buckling loads being predicted lower than is actually the case. Falsely adding inplane
tensile forces to the problem will result in the buckling loads being predicted higher than is actually the case.
In addition, the sign of the falsely assumed shear is important. As can be seen from the figures, the sign of
the error in representing the inplane force resultant distribution varies from location to location in the panel,
and it varies with panel orthotropy and, to some degree, panel geometry. Figures 2.6 - 2.17 are considered
quite important to this study, and will help put the buckling predictions obtained from the semi-analytic

analysis into context when compared to results obtained from the finite element analysis.

With the prebuckling stress resultants specified, ky, ky. and kyy of Eq. (2.65) can be rewritten as

N
" /DD, (1+¢€E) 2.128)
k,=0
k=0

These specific expressions greatly simplify the components of the geometric stiffness matrix [Kg).

Referring to Egs. (2.117)-(2.120),

N b?. b (E)

K.EE = _ _‘4E 1E , (2.129)
Gijpq D D
n nn
0 -b(®)
b (&)
N.b 2

Koiipa = ___L_f .[ {lfegci’f’cli}dnd% ' (2.130)

Gij 2
P n DnDzzO

-b(&)
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N'p2 (&) 2
K.EC = —;‘J‘ j {(—— C]EC'O}dndE_, (2.131)
Gijpq 2 ij :
n°JD,,D,, 1+€§
0 -b(&)
and
N'b (&)
K.%° = ——"—j j { CoCld ydnde . (2.132)
Gijpq 25 5 ij )
n DnDzzO o I+eg

With the geometric stiffness matrix posed in this form, the loading parameter p will then have the form

N!b2
x1
1 (2.133)
2
n° Dy Dy

Note that the negative sign has been removed. Recall, it was factored out in posing the problem in the form

of Eq. (2.121)

2.11 Computer Implementation

The stability equation is posed as a generalized eigenvalue problem having the form
K] {x} = p[Kg] {x}. (2.134)

The eigenvector {x} is an arbitrary arrangement of the unknown constants WET and Wicj), while the loading
parameter p constitutes the eigenvalue. Obviously, there are multiple eigenvalues and associated
eigenvectors. The matrices [K1] and [Kg] are symmetric because the functionals 863 and S(JIS are
symmetric with respect to w and dw. The symmetry of the stiffness matrices results in real-valued
eigenvalues. An additional important property to note is that [Ky] is positive definite because the strain
energy of a plate is a positive quantity. These special properties of the stiffness matrices allow the use of
simple eigenvalue extraction routines on the computer, resulting in much shorter run times than general

eigenvalue extraction routines.

The elements in [K1] and [Kg] are functions of plate geometry, material properties, and the indices i, j, p,

and q in the series for w(x,y) and 8w(x,y) (see egs. 2.85 and 2.86). An important factor in developing the
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computer code is defining the order in which the unknown constants are included in {x} because the i and
indices define a specific position within the eigenvector, and hence, a specific column in the stiffness

matrices. In this analysis, the following pattern is used:

E

- Wi

wE wE ... wE wE wE

_ E E E
{x} ={W L, W ... W 210 VY22 N YN YN -

1 TN (2.135)

0 (o} 0 10} 0 ¢] (o} o 0
WO, WO, ., WO, Wo, W, .., W, Wi, Wiy, . Wiy b

Once the order of the Wj; in the eigenvectors is determined, the structure of the computer program is
relatively straightforward. Both matrices [Ky] and [Kg] are composed of four submatrices each having size
N% x N2, namely, ( [KEE], (K], [KE°], [K®°]) which are be computed concurrently. The
bookkeeping to keep track of position in the eigenvector is handled by two arrays having length N? which

are constructed as follows:

{P}={1,1,1,..,2,2,2,..,N,N, ..., N}

(2.136)
{Q}=1{1,2,3.,N,1,23,..N,..,1,2,3,..,N}L

An outer loop in initiated to step through the N? rows of the submatrices. For a specific row, the fixed values
of p and q are determined from the {P} and {Q} arrays (p=P(k) and q=Q(k) for the kth row) while i and j are
free indices, each ranging from 1 to N. Once p and'q are determined for the specific row, two nested loops
are initiated to step from 1 to N for both i and j indices, each combination of i and j defining a specific
column within the row under consideration. After the two nested loops are complete and all of the columns
are accounted for, the outer loop updates to the next row and the process is then repeated until all rows are
complete. When the outer loop is finished, the four submatrices comprising [K1] and [Kg] are combined and
a standard eigenvalue extraction routine is used to solve for the eigenvalues and eigenvectors. The critical
value of the loading parameter, i.e., the buckling load, is then given by the lowest eigenvalue. See Appendix

C for a more detailed discussion of the procedure used to construct the submatrices.

2.12 Convergence and Efficiency of Analysis

Because a series approximation is used for the out-of-plane displacement of the plate, the accuracy of this
analysis is dependent on the number of terms used in the approximating series. Table 2.3 presents results
showing the convergence of this analysis over a variety of geometries for both isotropic and highly

anisotropic plates with clamped end conditions. In each row of the table analytical results for buckling
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coefficient are normalized by finite element results for buckling coefficient for a specific material and plate

geometry. The general purpose finite element code ABAQUS is used.

Table 2.3 Convergence of Analysis for Clamped End Conditions

Isotropic 1.00 | 1.00 | 1.00 | 1.00
[+304/-30g] 1.00 | 1.00 | 1.00 | 1.00
Isotropic ‘v 098 0981 0. : {
(+304/-30g]; g 91099 | 098 | 098
Isotropic 0.95 _O-T95

[+30¢/-30¢], M 091 | 091 | 091 | 0.91
Isotropic 101 | 101 | 101 | 01| 1.01
[+30g/-30g]; e 1.01 | 101 | 1.00 | 1.00
Isotropic 0.99 { 0.99 | 0.99 | 0.99
[+30¢/-30g], 20 098 | 0.98 | 0.98 | 0.98
Isotropic 4| 103 |0 9 1 0.99 | 0.99 | 0.99 | 099 | 0.99
[+30g/-306]; 20130 M2s [ 112 | 099 0.96 | 096 | 0.96 | 0.96 | 095 | 0.95 | 0.95
Isotropic 2.09 | 1.07 | 1.07 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
[+30¢/-30¢]; YO S Tias | 105 [ 102 | 102 | 101 | 101 | 101 | to1 | 1ot
Isotropic 3.03 {130 103|101 | 100 100|099 | 099|099 |09
[+30¢/-30¢], 201 29 s {120 108 | 101 | 100 | 100 | 099 | 09 099 | 0.99
Isotropic 331 | 141 | 1.06 | 1.01 | 1.00 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
(+30¢/-30g] Y03 T2 [ 110 [ 101 | 099 | 099 | 098 | 098 | 098 | 098

Note that the solution converges more quickly for the isotropic material than for the composite material
because more terms are required to accurately model the skewed buckled mode shapes associated with
highly anisotropic material. For the highly anisotropic case, there is less than 1% difference for successive

solutions between 5 and 6 terms in the series and the series is assumed to have converged.

While increasing the number of terms used in the approximating series has a positive effect on the accuracy
of the solution, it has a profoundly negative effect on the computer run time. For N terms in the

approximating series, the resulting stiffness matrices have size 2NZ. Doubling the number of terms in the
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series has the result of quadrupling the size of the stiffness matrices. This has a significant effect on both the
number of individual stiffness terms that must be calculated and the eigenvalue extraction routine. Table 2.4
shows the resulting stiffness matrix size and run times for various numbers of terms in the approximating

series. The run times are reported for a CRAY YMP. .

Table 2.4 Matrix Size and Run Time for Number of Terms in Series Approximation
for Clamped End Conditions

1 2 0.005
2 8 0.015
3 18 0.058
4 32 0.187
5 50 0.482
6 72 1.049
7 98 2.020
8 128 3.568
9 162 5.879
10 200 9.165

2.13 Prebuckling Plate Stiffness

An additional item of interest in the analysis of structures is the slope of the load vs. end-shortening curve
prior to the onset of buckling. This quantity is referred to as the prebuckling stiffness of the structure.
Because the prebuckling inplane force resultant distribution is a function of location along the length of the
plate for tapered plates (rather than a constant as it is for rectangular plates), the calculations for the
prebuckling stiffness are more involved than those for rectangular plates. Using the assumed inplane force

resultant distributions shown in Eq. (2.125) yields the following constitutive equations:

N =A g+ Ansy

0=AE + Aney (2.137)
0= Aﬁﬁyxy )

Solving for N, yields
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2
N =|A A1‘2
= [ Aum (2.138)

Assuming there is no out-of-plane displacement, substituting in for N, and €, yields

P ALla

= |A, -2, (2.139)

W,-W, A,, |dx

Wl + X
L
Multiplying through by dx yields
2

Pdx A
= [A, - —2|du, (2.140)
A2

WZ_WI
W|+ (*)x
L

which can be integrated along the length of the plate to obtain the following equation for end-shortening as a

function of load P

(2.141)

A w

L n (—2)
W,

Note that Eq. (2.141) is undefined for rectangular plates, i.e., W, = W/. For rectangular plates, Eq. (2.141)

simplifies to
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2
Pdx Al
TV_ =I[A” —X— du
1 2
0 0
A2
PL_ |, Aal (2.142)
wl ! AZZ

Using Egs. (2.141) and (2.142) yield the following definitions for the prebuckling stiffness of tapered and

rectangular plates:

l: A?z} (Wz_Wx) W
n- T T . #
Ay v, : 2
Lin|—
W, (2.143)
2
w A
—L—I‘: 11'22] W, =W,
7

The next chapter presents numerically predicted buckling coefficients and mode shapes for plates with
simply supported ends. The results based on calculations from the series solution are verified by further
comparisons with finite element results. The chapter following the next chapter presents similar calculations
for plates with clamped end conditions. Extremes in laminate arrangement, as well as the case of an isotropic

plate, are investigated to provide insight into the buckling response of plates with trapezoidal planform.
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Chapter 3
Results for Simply Supported Ends

3.1 Overview of Simply Supported Boundary Condition

As mentioned in the previous chapter, the nondimensional out-of-plane displacement of the plate is assumed

to have the form

wEm) = )Y 6,(8) Wy [f, (5, m) ] + WT,[g; (&, m)11, 3.1

i=lj=1

where ¢, () [ i = 1,2, .. N contains the complete set of symmetric and antisymmetric functions of x which
must meet the kinematic boundary conditions at the ends of the plate. For simply supported boundary
conditions, the displacement must equal zero at the boundary. The form used in this analysis to satisfy this

condition is

0,;(§) = (1+€&)sin(inE) |7, , . (3.2)

The (1+€&) ? term appearing in Eq. (3.2) is included to factor out identical terms that appear in the
denominator of the integrand resulting from the integrations with respect to 1 in the expression for the total
potential energy (see Appendix B). If this term is not removed from the denominator, the resulting

integrations with respect to & can not be calculated in closed form.

3.2 Description of Finite Element Model

To evaluate the accuracy of the Rayleigh-Ritz analysis, the buckling response of trapezoidal plates is also

investigated using the general purpose finite element program ABAQUS for a limited number of conditions.
The finite element model consists of a 10 by 10 mesh of 8-node shell elements having 5 degrees of freedom
per node. A convergence study shows that a model of this size has converged for the aspect and taper ratios
considered in this study. Because of the tapered geometry and skewed buckled mode shapes, no symmetry of

the model can be assumed.
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3.3 Effect of Fiber Orientation on Nondimensional Parameters

The material properties that directly affect the stability of laminated plates are the elements of the D matrix.
The elements of the D matrix are governed by the stacking sequence of the laminate and are accounted for in
the analysis via the non-dimensional parameters o, f, ¥, and 5 (see Eq. 2.64). Because o is a function of both
plate geometry and material properties, to simplify future discussions it is redefined as

o= (3.3)

b
—0
L
where,

D
& = JJ G4

Figure 3.1 shows how the four parameters &, B, , and 8 vary with ply orientation and stacking sequence for
a typical graphite/epoxy composite. Two stacking sequences, [+8¢/-66); and [+6]¢,, are considered, with 0

ranging from O to 90 degrees.
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From the definitions in Ch. 2, it is seen that the parameters & and P are functions only of Dy, D5, D,,, and
Dgg. Thus they have the same value for both stacking sequences. The parameters y and 8, on the other hand,
are functions of D¢ and Dy4. These two terms are greatly different for the two stacking sequences. Hence,
for certain laminates the bending-twisting coupling terms D¢ and D,4 can have a dramatic effect on the
buckling load of plates. Typically, plates having plies with a specific orientation grouped together, the [+6/-
6¢] laminates, have higher D¢ and D¢ terms than plates having plies of the same orientation interspersed,

the [£8]¢; laminate. These effects are the motivation for studying two different stacking sequences.

3.4 Comparison of Analysis with Finite Element Results

This section compares analytical results with finite element results. The first case considered for comparison
is an isotropic material. Analyzing an isotropic material removes the effects of orthotropy and anisotropy,
revealing how well the analysis handles the tapered geometry. For the isotropic case the parameters ¥ and §
equal zero, B equals 1, while & and € vary as functions of the aspect and taper ratio. Considering an isotropic
case, additionally, provides a means of comparison with classical solutions for rectangular plates. In this
analysis, results are presented in the form of a buckling coefficient, k., defined as

PW,
k = —2 (3.5)

[+ 2 4
n° Dy Dy,

where P is the applied load, W, is the plate width at the wide end as shown in Fig. 2.2, and D; and D,, are
plate bending stiffnesses as defined by Eq. (2.29). Note that the buckling coefficient, as defined by Eq. (3.5)
is slightly different than the loading parameter f)“ that appears naturally as a result of nondimensionalizing
the first variation of the second variation of total potential energy. The results are presented in terms of k,
rather than in terms of f)“. because the form of the buckling coefficient is similar to that used by Brush and
Almroth [10], Timoshenko [11] and Nemeth [7] [8] and allows direct comparison with their resuits for

rectangular plates.

Figure 3.2 presents buckling coefficients as a function of plate aspect ratio for various plate taper ratios for
an isotropic plate. Analytical results are represented by lines and finite element results are represented by
symbols. The analytical results presented are for four terms in the series approximation for the out-of-plane
displacement. Finite element results are computed for a number of aspect ratios between 1.0 and 2.0, and for

aspect ratio of 3.0. Taper ratios of 1.0, 1.5, 2.0, and 3.0 are considered.
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Figure 3.2 Buckling Coefficients for Isotropic Plates: Simply Supported Ends
As can be seen in Fig. 3.2, there is less than 1% difference between the analysis and the finite element results
for all of the aspect and taper ratios considered with the finite element analysis, the analytic results
predicting slightly greater buckling coefficients than the finite element results. The relationship for the
rectangular plate (T.R.=1.0) matches the classical solution exactly, a festooned shape with a minimum at
k=4 [5] [10]. This festooned shape is the result of mode shape changes, specifically a change in the number
of half waves along the length of the plate. As the taper ratio increases, the critical buckling coefficient
increases and the mode changes occur at smaller aspect ratios. This can be interpreted as the taper creating a
narrower average plate width, causing a stiffening effect in the plate, and decreasing the critical length of the
buckling half-wave. Note also that the relationships are smoother for plates having higher taper ratios, there

not being as much sharpness to the cusps in the festooned shapes.

Buckling coefficients, as a function of plate aspect ratio, are shown for various plate taper ratios of graphite/
epoxy composite plates having stacking sequences {0154 and [90],4, respectively, in Figs. 3.3 and 3.4. These

stacking sequences are limiting cases for investigating how well the analysis handles orthotropy. The
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parameters Y and & equal zero, however, B now equals 0.405 for AS4/3502 graphite/epoxy. The results in
Figs. 3.3 and 3.4 for [0],4 and [90],4 laminates, respectively, are for five terms in the series for the out-of-
plane displacement approximation, and show the same trends as the isotropic case, specifically, an increase
in buckling coefficient due to an increase in the taper ratio of the plate. However, there are greater
differences between the analytical and finite element results for these composite cases than the isotropic
case. Again, the analytic results are greater than the finite element results. For the [0],4 laminate, the analytic
solution yields nonconservative results 12% higher than the finite element solution for taper ratio 3.0, 10%
higher for taper ratio 2.0, and 5% higher for taper ratio 1.5. For the [90],4 laminate the analytic solution
yields results 6%, 4%, and 2% higher, respectively, than finite element results. This closer agreement
between the analytic and finite element results for the tapered geometries of the [90],4 laminate compared to
the [0],4 laminate can be attributed to the more accurate approximation of the prebuckling inplane force
resultant distribution for the “softer” laminate, as was shown in Figs. 2.6 - 2.17. For both the [0],4 and [90],4

laminates, the analysis again yields exact agreement between the analytic and finite element solutions for

rectangular plates
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Figure 3.3 Buckling Coefficients for [0],4 Laminate: Simply Supported Ends
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Figure 3.4 Buckling Coefficients for [90],4 Laminate: Simply Supported Ends

Buckling coefficients as a function of plate aspect ratio for various plate taper ratios of graphite/epoxy plates
having stacking sequences of [£30]¢s and [+30¢/-30];, respectively, are presented in Figs. 3.5 and 3.6. The
analytic results are shown for a five term displacement approximation, and include the effects of geometry,
orthotropy, and anisotropy. Notice that the sets of relationships for the two different laminates have nearly
identical shapes, but the buckling coefficients for the [+30¢/-30¢]; laminate are approximately 20% lower
than those for the [+30]¢, laminate. This is a direct result of the large values of Dy and D56 for the [+30¢/-
30¢]; laminate with the grouped plys relative to the values for the [£30]¢ laminate with the dispersed plys.
Figures 3.5 and 3.6 show excellent agreement between than analytical and finite element results for taper
ratios up to 1.5. The analytical results are approximately 5% lower than finite element results for taper ratio
2.0 and approximately 11% lower than finite element results for taper ratio 3.0. Note that for the higher taper
ratios the analytical results are less than those obtained using finite element analysis for the 30 degree
laminates, while the analytical results are greater than the finite element results for the 0 and 90 degree

laminates.
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Figure 3.5 Buckling Coefficients for [+30]¢; Laminate: Simply Supported Ends
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The four preceding figures provide a general measure of accuracy of the analysis over the range of
geometries considered for plates with simply supported ends. Based on comparison with finite element
results, it appears safe to say that, for laminates of practical interest, this analysis can predict buckling
coefficients accurate to within 11% for taper ratio 3.0, 6% for taper ratio 2.0, 3% for taper ratio 1.5, and
0.5% for taper ratio 1.0. These errors are significantly smaller at higher aspect ratios and are accurate to
within 5%, 2%, and 1% for taper ratios 3.0, 2.0, and 1.5 at aspect ratios greater than 1.5. Nothing, in general,

can be stated regarding whether the errors are conservative or non-conservative.

Before proceeding, a comment is in order regarding the semi-analytical predictions of the buckling
coefficient sometimes being greater than the predictions based on finite elements and sometimes being less.
Generally the semi-analytical predictions with 5 to 10 terms in the series should be greater than the finite
element predictions. This is because the number of degrees of freedom in the finite element model would be
larger and the semi-analytical prediction should approach the finite element prediction from above as the
number of terms in the series is increased. However, this assumes that the prebuckling equilibrium solution
is the same in the finite element model as in the semi-analytical model. We have seen that this is not the case.
It is believed that using the assumed simplified form of the prebuckling stress distributions is the primary
cause of the discrepancies between the analytical and finite element results shown in the previous figures,
and the lack of consistency in the semi-analytic solution approaching the finite element calculations from

above.

3.5 Dimensional Relationships

This section presents analytical results of buckling coefficient over a wide range of ply orientations, stacking
sequences, and plate geometries for the case of simply supported ends. Because of the demonstrated
accuracy of the analysis, comparisons are not made with finite element results. The following figures show
the effect of ply orientation, stacking sequence, and plate taper ratio for AS4/3502 graphite/epoxy composite

plates.

Figure 3.7 presents buckling coefficients as a function of ply orientation for (+0) laminates for several plate
taper ratios and the two different stacking sequences [+6]¢ and [+8¢/-8¢]. The solid lines are results for the
[£6]¢s stacking sequence and the dashed lines are results for the [+8¢/-8¢], stacking sequence. Different

taper ratios are indicated by various symbols, and the aspect ratio is maintained at 1.0 for all cases. For Fig.

3.7, and similar figures, calculations are performed in 1 degree increments, while symbols are shown only
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every 15 degrees. Note the significant change in slope that occurs near 6=60 degrees for the relationships

having T.R. =1.0.
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Figure 3.7 Buckling Coefficients for (:0) Laminates: Simply Supported Ends; A.R. = 1.0

Again note the significant effect the large D¢ and D,¢ terms, resulting from the grouped plies, has on the
buckling load. This effect is least for @ near 0 and 90 degrees and greatest for 8 between 40 and 50 degrees.

The ply orientation angles for which the buckling load is maximum are given in Table 3.1.

Table 3.1 Ply Orientation Angle 6 for Maximum Buckling Load: Simply Supported Ends

1.5 46 44
2.0 44 42
3.0 42 42
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The effect of an increase in plate taper ratio causing an increase in buckling coefficient appears to be most
significant as the plate taper ratio is first increased from 1.0, i.e., there is a larger increase in buckling
coefficient between taper ratios 1.0 and 1.5 than between 2.0 and 3.0. To demonstrate this more clearly,
buckling coefficients, as a function of taper ratio, for several different graphite/epoxy laminates are shown in

Fig. 3.8.
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Figure 3.8 Buckling Coefficient vs. Plate Taper Ratio: Simply Supported Ends
Note that for all of the cases shown in Fig. 3.8, with the notable exception of the [0]4 laminate, the slope of
the curve is greater near taper ratio 1.0 and asymptotically approaches a maximum value near taper ratio 3.0.
The curve for the [0],4 laminate, however, actually has a negative slope near taper ratio 1.0 and does not

appear to be converging to a maximum near taper ratio 3.0.

3.6 Buckled Mode Shapes

An item of interest, in addition to the critical buckling load, is the buckled mode shape. The buckied mode
shape can be calculated for a specific eigenvalue by using the elements of the corresponding eigenvector as
the weighting factors in the assumed series for the out-of-plane defiection of the plate. Figures 3.9 through

3.20 show buckled mode shapes calculated for a wide range of plate geometries, ply orientations, and
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stacking sequences by using the eigenvector corresponding to the lowest eigenvalue. The mode shape
calculated using the lowest eigenvalue is often referred to as the fundamental or primary mode. Comparing
Figs. 3.9 and 3.10 shows the skewing of the mode shape resulting from the large D4 and D,¢ terms of the
[+30¢/-30¢] laminate. Figures 3.11 and 3.12 show mode shapes for the same pair of stacking sequences as

Figs. 3.9 and 3.10 but for plates having tapered geometries.
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Figure 3.11 Buckled Mode Shape for [+30]¢, Laminate: Simply Supported Ends;
AR.=10,TR.=2.0

X
Figure 3.12 Buckled Mode Shape for [+30¢/-304]; Laminate:
Simply Supported Ends; A.R. = 1.0, TR. = 2.0

3.6 Buckled Mode Shapes 66






Chapter 3: Results for Simply Supported Ends

-4.
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Figure 3.16 Buckled Mode Shape for [0],4 Laminate: Simply Supported Ends;
AR.=20,TR.=15
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3.17 Buckled Mode Shape for [90],4 Laminate: Simply Supported Ends;
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Figure 3.18 Buckled Mode Shape for [90],4 Laminate: Simply Supported Ends;
AR.=20,TR. =15
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Figure 3.19 Buckled Mode Shape for [+45]¢; Laminate: Simply Supported Ends;
AR.=1.0, Tj{. =3.0

Figure 3.20 Buckled Mode Shape for [+45¢/-454]; Laminate: Simply Supported Ends;
AR.=10,TR.=3.0
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It is clear that the D ¢ and Dy¢ have a significant influence on the buckled shape of the plate. Figures 3.13
and 3.14 show the same plate geometry as Figs. 3.11 and 3.12 but for [+60]s and [+60¢/-60¢]; laminates,
respectively. Note that these laminates, because they are softer in the loading direction than the (+30)
laminates, buckle with two half waves in the loading direction. Figures 3.15 through 3.18 contrast the mode
shapes of a very “stiff” laminate with a very “soft” laminate. Note again the laminate that is softer in the
loading direction buckles in multiple half waves. Figures 3.19 and 3.20 show the mode shapes for two

different stacking sequences, one highly anisotropic, of a highly tapered geometry.

This survey of buckled shapes provides insight into the character of the buckling of tapered plates, and the

important role of laminate stacking arrangement

3.7 Nondimensional Relationships

Up to this point, buckling coefficients have been presented for plates with specific geometries, ply
orientations, and stacking sequences. This section, however will present a series of generic relationships
showing the effect of individual nondimensional parameters on the buckling coefficients. This series of
relationships, based on nondimensional parameters, covers a wide range of material properties and plate
geometries in relatively few graphs. Reference points showing specific stacking sequences are included for
an isotropic material and ply orientation angles 6 (almost 0), 45, and 84 (almost 90) degrees. Refer to Fig.

3.1 for nondimensional parameter values at other ply orientation angles.

Figures 3.21 - 3.23 show the buckling coefficient as a function of the parameter & for various combinations
of B, v, and 3 for aspect ratio 1.0 and taper ratios 1.0, 1.5, and 2.0 respectively. Recall from the definitions of
Egs. (2.64), (3.3), and (3.4), that & and B are measures of bending orthotropy, i.e., & is a measure of the
bending stiffness in the longitudinal direction relative to the bending stiffness in the transverse direction.
Unfortunately, there is not a corresponding simple physical meaning for the quantity f because itis a
combination of all of the orthotropic terms in the bending stiffness matrix. It is a measure of the curvature
effects (anticlastic curvature and twisting curvature) relative to the average bending stiffness. The quantities
v and & provide a measure of bending anisotropy, i.e., D1 and Dy, respectively. It is clear that an increase in
the anisotropic parameters y and 8 causes a decrease in the buckling coefficient. This was shown in previous
figures comparing stacking sequences with grouped versus interspersed plies and it is also illustrated in these
nondimensional relations. It is also clear that an increase in the orthotropic parameter [3 causes an increase in
the buckling coefficient. The orthotropic parameter & appears to have the smallest effect on the buckling
coefficient, though for values of & > 0.9, buckling coefficients increase more or less monotonically at a very
slow rate. The cusps due to a changes in mode shape are noteworthy. As observed before in the dimensional

plots, the relations become.smoother for plates with higher taper ratios. Note the general increase in
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buckling loads as the taper ratio increases, i.e., comparing Fig. 3.21 for taper ratio 1.0 as opposed to Fig.

3.23 for taper ratio 2.0.
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To demonstrate more clearly the effect of B, Figs. 3.24 - 3.26 show the buckling coefficient as a function of
the parameter [ for various combinations of &, ¥, and 8 for the same geometries shown in Figs. 3.21 - 3.23.
Again it is clear that an increase in the anisotropic parameter y and § causes a decrease in the buckling
coefficient. These figures also demonstrate that the parameter P has a larger effect on the buckling coefficient
than the parameter &, especially at values of & between 0.5 and 1.0. Note that the relations become spaced
closer together as B increases. This indicates that the decrease in buckling load due to anisotropy decreases
for higher values of B. As the taper ratio of the plate increases, the sets of curves generated by the three
different values for & tend to overlap each other more. This implies that as the taper ratio of the plate
increases, the effect of the plate geometry on the buckling coefficient is as significant as the ratio of
longitudinal and transverse bending stiffnesses. These areas of overlap are significant from a design
perspective because they provide flexibility when choosing geometry and material properties to achieve a

specific buckling coefficient
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Figure 3.24 Effects of B, v, and 3 for several values of & on Buckling Coefficient:
Simply Supported Ends: A.R.=1.0,T.R. = 1.0
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The next chapter presents results for plates with clamped ends. Buckling coefficients as functions of plate
geometry and laminate arrangement will again be discussed. These results will be compare with the results

of simply supported plate to provide further insight into the buckling response of plate with tapered

planform.
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Chapter 4
Results for Clamped Ends

4.1 Overview of Clamped Boundary Condition

For convenience, the assumed form of the nondimensional out-of-plane displacement of the plate is repeated

here. The assumed form is

w(Em) = > D 6,(8) [Why, If, (5, m)] + WiT; [g,(§, m)1], @.1)

i=1j=1

where ¢, (§) |, _ .2, ..., N contains the complete set of symmetric and antisymmetric functions of x which
must meet the kinematic boundary conditions at the ends of the plate. For clamped boundary conditions, the
displacement and the slope in the & direction, or derivative of the displacement, with respect to §, must equal

zero at the boundary. The form used in this analysis to satisfy these conditions is

0,(8) = (1+€8)* {cos [(i-1)mE] —cos [(i+ )TEI}|7., , . (4.2)

The term (1 +&€£) 2 appearing in Eq. (4.2) is included to factor out identical terms that appear in the
denominator of the integrand resulting from the integrations with respect to 1 in the expression for the total
potential energy (see Appendix B). If this term is not removed from the denominator, the resulting integrals

over £ can not be calculated in closed-form.

4.2 Comparison of Analysis with Finite Element Results

As was done for plates with simply supported ends, this section compares analytical results with finite
element results from ABAQUS.The first case considered is an isotropic material. As was stated previously,
analyzing an isotropic material removes the effects of orthotropy and anisotropy, revealing how well the
analysis handles the tapered geometry for clamped ends and simply supported side edges. Recall for the
isotropic case the parameters 'y and 8 equal zero, B equals 1, while o and € vary as functions of the plate

aspect and plate taper ratios. Buckling coefficients as a function of plate aspect ratio for various plate taper
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ratios for an isotropic plate are shown in Fig. 4.1. Analytical results are represented by lines and the finite
element results are represented by symbols. The analytical results shown are obtained using five terms in the

series approximation for the out-of-plane displacement approximation.
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Figure 4.1 Buckling Coefficients for Isotropic Plates: Clamped Ends

There is less than 2 percent difference between the analysis and the finite element results for plate taper
ratios less than 2. Differences of approximately 4.5% occur at aspect ratios less than 1.3 for taper ratio 3.0.
Note that for the isotropic clamped case, the analytic results are slightly less than the finite element results.
This is opposite to the situation for the isotropic simply supported case, Fig. 3.2. Comparisons with Fig 3.2
show that the clamped boundary conditions have a significant stiffening effect on the plate. Buckling
coefficients can be twice as large for a plate with clamped ends as those for a plate having the identical
geometry but with simple supports on the ends. Similar trends are exhibited in Fig 4.1 that were noted in Fig.
3.2, specifically, as the taper ratio increases the buckling coefficients increase, the mode changes occur at
smaller aspect ratios, and the relationships become more smooth, the cusps not being as distinct. The
relationship for the rectangular plate, (T.R. = 1.0) again matches the classical solution exactly. To be noted in

the clamped case, for aspect ratios between 0.5 and 1.0, the buckling coefficient relations for the various
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taper ratios cross over each other, reversing the effect of taper ratio. This was not the case for the simply

supported case in Fig. 3.2

Buckling coefficients, as a function of plate aspect ratio, for various plate taper ratios of graphite/epoxy
composite plates having stacking sequences [0],4 and [90],4, respectively, are shown in Figs. 4.2 and 4.3.
The parameters vy and 8 equal zero, however, B now equals 0.405 for AS4/3502 graphite/epoxy material. The

ply properties for this material are as given in Table 2.2
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Figure 4.2 Buckling Coefficients for [0],4 Laminate: Clamped Ends
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Figure 4.3 Buckling Coefficients for [90],4 Laminate: Clamped ends

These relationships for the [90],4 laminate have the same trends as the isotropic case, specifically, an
increase in buckling coefficient due to an increase in the taper ratio of the plate. Note, however, that Fig. 4.2
reveals a decrease in the buckling coefficient due to an increase in the plate taper ratio for [0],4 laminates
having plate aspect ratios less than 1.7. As seen in Fig. 3.3, this phenomenon is not exhibited in [0],4
laminates with the same geometries but with simple supports on the ends. This is a further exaggeration of

the aforementioned reversal effect seen in Fig. 4.1 relative to Fig. 3.2.

Note that for the [0],4 and [90],4 laminates, the buckling coefficients predicted by the analysis are greater
than the buckling coefficients predicted by the finite element approach. This is similar to the simply
supported case for [0],4 and [90],4 laminates. There is better agreement between the analytical and finite
element results for the [90],4 laminate than for the [0],4 laminate. This is consistent with the observation, in
Ch. 2, that the assumed N, distribution is closer to the actual prebuckling stress resultant distribution for the
[90},4 composite plates than for the {0],4 composite plates (see Figs. 2-6 -2.11 vs. Figs 2.12 - 2.17). For the
[90],4 laminate, the analytic solution yields nonconservative results 3% higher than the finite element
solution for taper ratio 3.0, 1.5% higher for taper ratio 2.0, and less than 1% higher for taper ratio 1.5. For

plate aspect ratios less than 1.4, the analytic solution for the [0],4 laminate yields results 9% higher than the
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finite element solution for taper ratio 3.0, 7% higher for taper ratio 2.0, and 5% higher for taper ratio 1.5. The

analysis yields the same solution as finite elements for the rectangular case of both laminates.

Buckling coefficients as a function of plate aspect ratio for various plate taper ratios of graphite/epoxy plates
having stacking sequences of [£30]s, and [+30¢/-30¢]s, respectively, are presented in Figs. 4.4 and 4.5.
These cases include all of the effects of geometry, orthotropy, and anisotropy in the analysis. Notice that the
sets of relationships for the two different laminates have nearly identical shapes, but the buckling loads for
the [+304/-30¢]) laminate are approximately 16% lower than those for the {+30]¢, laminate. The same trend
is visible in Figs. 3.5 and 3.6 for plates having the same stacking sequences but with simply supported ends.
Figures 4.4 and 4.5 show excellent agreement between the analytical and finite element results for taper
ratios up to 1.5. The analytical results are approximately 5% lower than finite element results for taper ratio
2.0 and approximately 11% lower than finite element results for taper ratio 3.0. Note again the reversal of

trends with respect to taper ratio as the aspect ratio increases past 1.1 - 1.2
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Figure 4.4 Buckling Coefficients for [+30]¢, Laminate: Clamped Ends
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Figure 4.5 Buckling Coefficients for [+304/-304]; Laminate: Clamped Ends

The four preceding figures provide a general measure of the accuracy of the analysis over the range of
geometries studied for plates having clamped ends. Based on comparison with finite element results, it
appears safe to say that for all laminates of practical interest, the analysis can predict buckling coefficients
accurate to within 11% for taper ratio 3.0, 7% for taper ratio 2.0, 4% for taper ratio 1.5, and 0.5% for taper
ratio 1.0 for plates having simple supports on the side edges and clamped supports on the ends. Note that this
is the same level of accuracy observed for the plates having simply supported boundary conditions on all

four edges.

4.3 Dimensional Relationships

This section presents analytical results of buckling coefficient over a wide range of ply orientations, stacking
sequences, and plate geometries for the case of clamped ends. Comparisons are not made with finite element
results. The following figures show the effect of ply orientation, stacking sequence and plate taper ratio for
AS4/3502 graphite/epoxy composite plates. Figure 4.6 presents buckling coefficient as a function of ply
orientation for (+ 6) laminates for several plate taper ratios and the two different stacking sequences [16]¢,

and [+6¢/-6¢].. The solid lines are results for the [+8]¢ stacking sequence and the dashed lines are results for
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the [+6¢/-8¢]; stacking sequence. Different taper ratios are indicated by symbols, while the aspect ratio is

maintained at 1.0 for all cases.
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Figure 4.6 Buckling Coefficients for ¢6) Laminates: Clamped Ends; A.R.=1.0

Comparison with Fig 3.7, which shows the same geometries and stacking sequences for @0) laminates
having simple supports on the ends, shows that boundary conditions have very significant effects on the
buckling response of the plate other than causing an increase in the buckling load. A simple comparison
between Figs. 3.7 and 4.6 is that for the clamped ends the buckling coefficient more or less decreases
monotonically with increasing fiber orientation angle, while for the simply supported ends the buckling
coefficient increases with increasing fiber orientation angle and then decreases. However, perhaps the most
significant characteristic to notice in Fig. 4.6 is that for each of the two stacking sequences there is a unique
fiber orientation angle at which increasing the plate taper ratio has no effect on the buckling coefficient of
the plate. This angle will be referred to as 6. For stacking sequences having fiber orientation angle less
than 8, the buckling coefficient decreases for an increase in taper ratio. If the fiber orientation angle is
greater than 8, the buckling coefficient increases for an increase in taper ratio. This phenomenon ofa
unique combination of plate aspect ratio and ply orientation, either side of which the effect of plate taper
ratio has drastically different effects, was referred to in discussion of Figs. 4.2, 4.4, and 4.5. It should be

noted that 8, is different for various plate aspect ratios and stacking sequences. As an example of this, Fig.
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4.7 presents the buckling coefficient, as a function of ply orientation angle, for the same geometries and
stacking sequences as shown in Fig. 4.6, but with a plate aspect ratio of 2.0 rather than 1.0. The relationships
shown in Fig. 4.7 look more like the relationships of Fig. 3.7. Note that there is no critical angle in the

stacking sequence for this plate aspect ratio.
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Figure 4.7 Buckling Coefficients for 40) Laminates: Clamped Ends; A.R.=2.0

Figure 4.8 presents results for plate aspect ratio 1.5. Note that although the relationships for the two

laminates cross each other, a clearly defined critical angle does not exist.
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Figure 4.8 Buckling Coefficients for (10) Laminates: Clamped Ends; A.R.=1.5

4.4 Buckled Mode Shapes

An item of interest, in addition to the critical buckling load, is the buckled mode shape. The buckled mode
shape can be calculated for a specific eigenvalue by using the elements of the corresponding eigenvector as
the weighting factors in the assumed series for the out-of-plane deflection of the plate. Figures 4.9 through
4.20 show buckled mode shapes calculated using the eigenvector corresponding to the lowest eigenvalue for
a wide range of plate geometries, ply orientations, and stacking sequences. Comparing Figs. 4.9 and 4.10
shows the skewing of the mode shape resulting from the large D, g and D,¢ terms of the [+30g/-304],
laminate. Figures 4.11 and 4.12 show mode shapes for the same pair of stacking sequences as Figs. 4.9 and
4.10 but for plates having tapered geometries. Figures 4.13 and 4.14 show the same plate geometry as Figs.
4.11 and 4.12 but for [+60], and [+604/-604]; 1aminates, respectively. Figures 4.15 through 4.18 contrast the
mode shapes of a very “stiff” laminate with a very “soft” laminate. Figures 4.19 and 4.20 show the mode

shapes for two different stacking sequences, one highly anisotropic, of a highly tapered geometry.
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Comparing Figs. 3.9 with Figs. 4.9 shows that the clamped end conditions force greater curvature for the
clamped plate because the plate mode shape is moved in towards the center of the plate, although the
longitudinal location of maximum out-of-plane displacement is the same for the two different sets of end
conditions. Figures 3.9 and 4.9 show the same trend. Additionally, as seen when comparing Figs. 3.10 with
4.10, the skewing effects due to material anisotropy are amplified by the clamped end conditions.
Comparing Figs. 3.11 - 3.14 with Figs. 4.11 - 4.14 shows that the clamped end conditions cause the peak of
the out-of-plane displacement to shift toward the narrow end of the plate. Comparing Figs. 3.18 and 4.18
shows that the simply supported boundary conditions cause the [90],4 laminate to buckle into three half
waves with a relatively large area in the narrow end having very little out-of-plane displacement, while the

clamped boundary conditions cause this laminate the buckle into 4 half waves.

4.5 Nondimensional Relationships

As in Ch. 3, this section presents a series of generic relationships showing the effect of individual
nondimensional parameters on the buckling coefficients. This series of relationships, based on
nondimensional parameters, covers a wide range of material properties and plate geometries in relatively
few graphs. When possible, points showing a specific ply orientation or stacking sequence are included for
reference. Figures 4.21 - 4.23 show the buckling coefficient as a function of the parameter & for various
combinations of B, y, and & for aspect ratio 1.0 and taper ratios 1.0, 1.5, and 2.0 respectively. It is clear that
an increase in the anisotropic parameters y and & causes a decrease in the buckling coefficient. This was also
shown in previous figures comparing stacking sequences with grouped versus interspersed plies. It is also
clear that an increase in the orthotropic parameter 3 causes a decrease in the buckling coefficient. Unlike
Figs. 3.21 - 3.23 for the case of simply supported ends in Ch. 3, however, the orthotropic parameter &
appears to have a significant effect on the buckling coefficient. Specifically, the buckling coefficient
increases almost monotonically with an increase in &. There is one cusp due to a changes in mode shape
and, as observed before regarding the plots of dimensional relations, the nondimensional relations become

smoother for plates with higher taper ratios.
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Figure 4.23 Effects of &, Y, and 8 for several values of B on Buckling Coefficient:
Clamped Ends; A.R. = 1.0, T.R. = 2.0

To demonstrate the effect of P, Figs. 4.24 - 4.26 show the buckling coefficient as a function of the parameter
B for various combinations of &, ¥y, and 8 for the same geometries shown in Figs. 4.21 - 4.23. Again it is
clear that an increase in the anisotropic parameters y and 8 causes a decrease in the buckling coefficient,
however, in Figs. 4.24 - 4.26 changes in 7y or & cause significant changes in the curvature of the relations in
addition to shifting them downward, whereas the curvature does not change significantly due to increased y
and 8 in Figs. 3.24 - 3.26. As shown in Figs. 4.24 - 4.26, the relations become spaced closer together as 3
increases, indicating the detrimental effects of anisotropy on the buckling coefficient decrease for higher
values of . Note that there are significant areas of overlap between the three sets of relations shown in each
figure, and this area of overlap becomes larger for increased taper ratios. This overlap area implies that a
designer should have a moderate amount of flexibility when choosing ply orientation on stacking sequence

to achieve a specific buckling coefficient.
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Clamped Ends; A.R.= 1.0, TR.=2.0

It is clear by comparing Figs. 4.21 - 4.26 with Figs 3.21 - 3.26 that clamped boundary conditions on the ends
can have a significant effect on the buckling load through interaction with material properties. Specifically,
the ratio of longitudinal bending stiffness to transverse bending stiffness represented by the parameter & has

a much more significant effect for clamped plates than it does for simply supported plates.

With the characteristics of the buckling response of plates with trapezoidal planform having been thoroughly
discussed for plates having either clamped or simply supported ends, and with insight into the influence of
the various paramctérs on the response established, attention turns to the experimental investigation. The

next chapter describes the experiments conducted as part of this study
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Experimental Approach

5.1 Overview of Experimental Program

In order for analytical results to be credible and useful, they should be verified experimentally. To
complement the numerical predictions, experiments were conducted to measure the buckling characteristics
of laminated composite plates with a trapezoidal planform area over a range of stacking sequences and plate
geometries. This chapter presents the plate geometries and stacking sequences investigated; describes the
specialized test fixtures used to provide the required boundary conditions for the specimens; discusses the
various instrumentation techniques used to measure end-shortening, inplane strain, out-of-plane deflection,
and buckled mode shape; and defines the specific experimental procedure used to conduct the experiments

and reduce the data.

5.2 Test Specimen Geometries and Stacking Sequences

The variables of interest for this problem can be divided into two categories, specimen geometry and
material properties. In the specimen geometry category the two variables of interest are the taper ratio and

aspect ratio. For convenience these definitions are repeated here, namely,

TR.= — (5.1a)
W,
and
L
AR = — 5.1b
W (5.1b)

Figure 5.1 is a schematic diagram which shows the test specimen geometry. As in Fig. 1.1, the dimensions
W, and W, are the unsupported plate width at the narrow and wide (top and bottom) ends, respectively, and
L is the unsupported plate length. The term unsupported is used because in order to provide the appropriate
boundary conditions for the experiments, the specimens are oversize to accommodate fixturing. The gray

areas, with associated dimensions, in Fig. 5.1 represent areas of the specimen held within the test fixture.
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The dimensions \?_Vl , W.z, and L are the dimensions of the test specimens required to obtain the necessary

fixturing areas and unsupported lengths.

W
W,

|

W,

W

Figure 5.1 Test Specimen Geometry

Table 5.1 presents the specific aspect ratio and taper ratio combinations investigated and the corresponding

values for dimensions W , W, and L.
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1.0 1.0 368 368 375
1.5 1.0 247 372 375
LS 2.0 248 370 730
3.0 1.0 125.6 375 375

The effects that material fiber orientation angle and plate stacking sequence have on the nondimensional

parameters were discussed in connection with Fig. 3.1. To investigate these effects, specimens for the

experiments have ply orientations ranging from 0 to 90 degrees at 0, 30, 45, 60, and 90 degrees. To assess

the effect of D¢ and D¢, both clustered and interspersed stacking sequences are studied for each value of 8.

As limiting cases to bound the problem, the [0],4 and [90],4 plates are studied. And finally, a quasi-isotropic

laminate [+45/0/-45/90]; is studied because it is a laminate of interest. Aluminum specimens are also tested.

Table 5.2 presents the matrix of the specific ply orientation and stacking sequence combinations

investigated.

Table 5.2 Laminates Investigated

0 (0124
30 [+30/-30]
30 {+30¢/-30g]1¢
45 {+45/-45]¢,
60 [+60/-60]¢s
60 [+604/-60g]1,
90 [90]24
Quasi- [+45/0/-45/90]55
Isotropic
Isotropic aluminum
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5.3 Specimen Fabrication

Test panels are laid up by hand from Hercules AS4/3502 graphite/epoxy prepreg and cured in an autoclave
using the manufacturers recommended cure cycle. A single test specimen is machined from each test panel
using a diamond abrasive cutting wheel with flood coolant. Special care is taken to ensure that the ends
remain as flat, parallel, and undamaged as possible. The Micro-Measurements CEA-125UR-350 {11] strain
gages are applied using M-Bond 200 strain gage adhesive [12]. To enhance the shadow moiré images, the
front of the specimen is painted white. The sections outside of the unsupported area are masked off before
painting to ensure that the test fixture contacts only unpainted surfaces. Prior to testing, thickness
measurements are made at three locations along each of the four edges of the specimen. The average
specimen thickness for each edge, and the resulting average ply thickness for the specimen are reported in

Table 5.3. Recall from Table 2.2 that the analysis assumed a ply thickness of .127 mm.

Table 5.3 Average Specimen Thickness

1.0 | 1.0 [0)4 2.95 3.00 2.97 2.97 124
1.0 | 10 [90]4 2.79 2.84 2.87 2.87 119
10 | 10 (+30/-30]¢ 2.87 2.90 2.90 2.87 119
10 | 1.0 | [+30g-30g] 2.87 2.84 2.90 2.87 119
10 | 10 [+45/-45] 6, 2.90 2.92 2.90 2.90 122
10 | 1.0 | [(+45/0/-45/90)5, | 2.95 2.90 2.87 2.92 122
1.0 | 10 [+60/-60]¢s 2.95 2.95 2.97 297 122
10 | 1.0 | [+604-60g]; 2.84 2.84 2.87 119
10 | 1s ©Ohs | 279 284 2.84 119
10 | 15 {904 | 282 | 2.84 2.84 119
10 | 15 (430130}, | 290 2.90 2.92 122
10 | 15| [+304-300, .| 282 2.87 2.84 119
10 | 15 [+45/-45]¢, 292 | 290 292 122
1.0 | 1.5 | [+45/0045/90)5, | 300 - 2.87 2.90 122
10 | 1.5 [+60/-60] ¢ 287 2.84 2.87 2.90 119
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Table 5.3 Average Specimen Thickness

————

1.0 3.0 [0)24 2.87 2.90 2.90 2.87
10 | 30 | [+30/-30] 287 2.90 2.90 2.90 119
1.0 3.0 [+30¢/-304]5 2.84 2.84 2.79 2.82 117
10 | 30 | [+45/45l 287 2.90 2.90 2.90 122
10 | 30 | (es/0r4590) | 302 3.05 3.05 3.02 127
10 | 30 | [+60g-60g]; 290 292 292 295 122
20 [ 15| ton, 287 290 287 292 122
20 | 15| 10 292 | 295 | 2% | 285 |
20 | 15 [+30/-30]¢s 295 | 295 295 | '25'? 122
20 [ 15| m3oga0g, | 260 | 267 2.62; 262 109
20 _115 | asasig _l 292 | 292 287 | 290 122
20 | 15 | (4504500, | 318 | 323 320 | 323 135
;.f._z._ov,;u;s {+6—&;60}63- 297 295 292 | 295 122
20 | 15| e0g60, | 279 284 274 | 219 7

5.4 Test Fixture

Specialized test fixtures are used to provide the required boundary conditions on the wide variety of tapered

specimens, and to ensure uniform loading of the specimen. The main components of the test fixture are: top

and bottom clamping blocks with sliding plates to enforce the clamped boundary at the top and bottom of

the plate, knife edge rails to provide simple supports along the sides of the plate, knife edge restraints to

keep the knife edge rails from moving out-of-plane during the test, and a top loading platen loaded through a

semi-spherical ball to provide uniform loading by accommodating any lack of parallelism of the ends of the

specimens. Figure 5.2 is an isometric drawing showing the major components of the test fixture and a cross

section of the knife edge rails.
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Specimen
\ Sliding Bar

Knife Edge Rail

Top Clamping Block

Top Sliding Plate

Knife Edge Rail

Knife Edge Restraint

3.2 mmspacer

Bottom Clamping Block

Bottom Sliding Plate
Knife Edge Restraint

Figure 5.2 Schematic of Test Fixture

Figure 5.3 is a photograph from the front of the test fixture with a specimen. The taper ratio of the specimen
is 1.5 and the aspect ratio is 1.0. Visible are the top and bottom clamping blocks, the right and left knife edge
rails, top and bottom loading platens, and the right and left DCDT mounts, to be discussed shortly. The top

loading platen and the semi-spherical loading ball, which will also be discussed shortly, are visible as well.
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The specimen is painted white to enhance the shadow moiré patterns, and strain gage lead wires running

vertically are visible on the face of the specimen.

Hemispherical Ball

Top Loading Platen

DCDT Mount

Top Clamping
Block
Knife Edge Rail

E.
3
3

Bottom Clamping
Block

Bottom Loading
Platen

X

Figure 5.3 Front View of Test Fixture
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Figure 5.4 is a close-up photograph showing the lower left-hand corner of the test fixture.Visible are the

interactions of the bottom clamping block and sliding plate, knife edge rail, and knife edge restraints.

Knife Edge Rail

Knife Edge Restraint

Bottom Clamping
Block

‘Bottom Sliding Plate

Knife Edge Restraint

Figure 5.4 Detail of Test Fixture

The bottom clamping mechanism consists of the bottom clamping block and a bottom sliding plate. The
bottom 9.53 mm of the specimen is clamped between the clamping block and the sliding plate. The sliding
plate is in the foreground of Fig. 5.4 and the gap due to the specimen thickness is visible as a dark vertical
line. The gap between the knife edge rail and bottom clamping block/bottom sliding plate assembly due to
the 3.18 mm spacer is also visible. Before testing the spacer is removed and this gap allows for end-
shortening of the specimen during application of the compressive load. The knife edge rails grip the outer
6.35 mm of the specimen, and one knife edge restraint bolts to the clamping block while the other bolts to
the sliding plate. As can be seen in Fig. 5.2, the specimen is squeezed between knife edges on the knife edge
rail and the sliding bar. The interaction between fixture components shown in Fig. 5.4 occurs at all four

corners of the specimen.
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Figure 5.5 shows the detail of the semi-spherical ball arrangement used to allow the loading platen to

accommodate any lack of parallelism between the top and bottom edges of the specimen

Top Crosshead of
Load Frame

Rectangular
Block

Dowel Pin
(1 0of4)

Convex Half of

Semi-Spherical
Ball

Concave Half of
Semi-Spherical
Ball

Top Loading
Platen

Figure 5.5 Detail of Semi-Spherical Loading Ball

The rectangular block is indexed in the center of the load frame crosshead with small blocks that fit into a
square opening normally used for tensile wedge grips. The convex half of the semi-spherical ball is aligned
in the center of this block with four dowel pins. The concave half of the ball fixture is indexed to the center
of the 38.1 mm thick top loading platen by two other dowel pins (not visible in Fig. 5.5). The four long bolts
visible in the upper portion of Fig. 5.3 are designed to hold the loading platen up when the specimen is
unloaded. The entire test fixture is centered front to back in the load frame with mechanical stops on the top
and bottom loading platens. All of this alignment is to ensure that the load is transmitted from the center of

the crosshead through the center of the top loading platen, through the center of the test fixture, and
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therefore, through the center of the specimen. This alignment is critical. The front to back alignment is

especially critical for preventing bending, an event which would seriously affect the buckling loads.

5.5 Instrumentation

A variety of sensors are used to measure the response of the plates. Load is measured using the standard load
cells of the Tinius Olsen load frame. Specimen end-shortening is measured, relative to the crosshead support
columns of the load frame, on both sides of the specimen with direct current displacement transducers
(DCDTs). End-shortening measurements on both the left and right sides of the specimen reveal any side to
side nonuniformities in the loading of the specimen. The barrels of the DCDT’s clamp to the support
columns with blocks that are adjusted up/down and in/out to accommodate specimens of varying length. The
cores of the DCDTs attach to the top loading platen with swivel joints that allow the core to remain vertical
even if the loading platen should rotate slightly dué to a specimen with non-parallel ends. Coarse zero
adjustment for each DCDT is provided by sliding the clamping block up or down on the support column,
and fine zero adjustment is provided by turning the threaded rod connecting the core to the loading platen.
Figure 5.6 shows the detail of the DCDT mount.
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Crosshead Support Column

Swivel Joint

Top Loading Plate:

Figure 5.6 Detail of DCDT Mount

Out-of-plane deflection of the specimen is measured by a third DCDT. This DCDT is oriented horizontally
and is spring loaded to maintain contact with the center of the plate. Inplane strains are measured with 350
ohm foil-gage strain gages adhesively bonded to the specimen. Back-to-back strain measurements are taken
at all four corners and the center of the plate. The strain measurements at the corners of the plate are useful
to determine if any undesirable bending due to nonuniform loading occurs prior to buckling. The strain
measurements at the center of the plate provide additional data to help determine the buckling load. All data
is acquired using an Orion Solartron data logger controlled by an IBM PC. Shadow moir€ is used to
visualize the buckled mode shapes. The specimen grating has a frequency of 1.968 lines/mm and the lines
are aligned vertically. The angle of incidence of the light is 45 degrees, and the angle of observation is zero
degrees. A Sony video camera and U-Matic video recorder are used to record this video data. Figure 5.7

shows the location of the 10 strain gages and the out-of-plane DCDT. The rectangles signify the location of
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the strain gages. The odd numbered strain gages are on the front (painted white) of the specimen, while the
even numbered strain gages are in the same location on the back (unpainted) of the specimen. The solid

circle represents the location of the out-of-plane DCDT.

incident light

out-of-plane DCDT q
viewing location

r ]
7’8!.4

Figure 5.7 Shadow Moiré Setup, Strain Gage and Out-of-Plane DCDT Locations

5.6 Experimental Procedure

The following is the list of steps used to load the specimen in the test fixture, ensure alignment and

uniformity of loading, and test the specimen:

1. Clamp the bottom 9.53 mm of the specimen loosely in the bottom clamping block and sliding plate

mechanism using a bar clamp near the left and right edges of the specimen. (A bar clamp is similar to

a ‘C’ clamp.)

5.6 Experimental Procedure 108



10.

11.
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13.

14.

15.
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Adjust the specimen until the distance from the bottom edge of the specimen to the edge of the bottom
clamping block is the same, to within 0.25 mm, on both the right and left edges of the specimen. This

measurement is made by using a steel rule.

Tighten the bar clamps to firmly grip the specimen. Tighten the bolts holding the bottom sliding plate
to the bottom clamping block.

Place the 3.18 mm spacing pads next to both the left and right bottom edges of the specimen.

Rest the bottoms of the knife edge rails on the spacing pads and clamp them loosely to the edges of
the specimen using the sliding bar shown in Fig. 5.2. Inspect to make sure that the specimen is fully
inserted into the knife edge rails.

Firmly clamp the bottom knife edge restraints against the knife edge rails using the bar clamps.

Tighten all of the bolts on the knife edge rails and the bolts that secure the bottom knife edge restraints
to the bottom clamping block and bottom sliding plate.

Place the top clamping block and sliding plate assembly on the top of the specimen and loosely clamp
the specimen in the assembly using the bar clamps. Measure the space between the top specimen edge
and the top clamping block edge on both the left and right edges of the specimen, and adjust until
there is less than 0.25 mm difference between the right and left edges, as was done for the bottom
clamping block. Firmly clamp the specimen, and tighten the bolts holding the top sliding plate to the

top clamping block.

Clamp the top knife edge restraints against the knife edge rails and tighten the bolts that secure the top

knife edge restraints to the top clamping block and top sliding plate.

Position the fully assembled fixture against the alignment stops on the top and bottom loading platens.
Align the marked center of the fixture with the marked centerline of the bottom loading platen.

Load the specimen to 1334 Newtons.

Loosen and then retighten finger tight the four nuts on the bolts holding up the top loading platen.

Ensure that the knife edge rails are perpendicular (front to back) with the top and bottom clamping
blocks.

Unload the specimen.
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16.  Attach all of the strain gage leadwires to the data acquisition system.

17.  Start the data acquisition system, slowly load the specimen to 2220 Newtons, then unload the

specimen.

18. Examine the response of the left and right DCDT’s for uniformity of end-shortening from left to right

on the specimen (This checks for misalignment of the top loading platen).

19. Examine the response of the four strain gages mounted at the top of the plate. Again check for
uniformity of loading right to left. Also check for front to back bending.

20. Make adjustments to fixture and specimen, if necessary, to attain uniformity of loading.
21. Place the shadow moiré grating in front of the specimen
22.  Start the video recorder and data acquisition system.

23.  Slowly load the specimen to a load level approximately 30% greater than the load at which a
significant number of shadow moir€ fringes first start to appear.

24. Unload the specimen.

5.7 Determining Buckling Load

Buckling is characterized experimentally by a change in slope of the load vs. end-shortening curve. This
change of slope of the load vs. end-shortening curve occurs after the plate buckles because the out-of-plane
deflection of the plate has a softening effect on the structure. This results in significantly more end-
shortening for a given increase in load. The experimental buckling load is determined by the intersection
point of straight lines fit through the prebuckling and postbuckling portions of the load vs. end shortening
relations. Figure 5.8 presents typical load vs. end-shortening relations as measured by the left and right
DCDTs. The particular specimen for which the data are presented has aspect ratio 1.0, taper ratio 1.5, and
stacking sequence [+60¢/-60¢];. The straight lines through the prebuckling and postbuckling portions of the
relations shown in Fig. 5.8 are faired in by hand. While this technique seems quite arbitrary, using the
computer to calculate a linear least-squares fit would also require arbitrary choices for locations to begin and
end the fits to both the prebuckling and postbuckling portions of the relations. Drawing the lines by hand
also allows for judgement to avoid the initial portions of the curves when the fixtures are taking up slack.

Figures 5.9 - 5.12 present load vs. strain and load vs. out-of-plane relations for the same specimen.
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Figure 5.12 Typical Load vs. Out-of-Plane Displacement Relation, Center of Specimen

Note that in Fig. 5.8 there is very little difference between the load vs. end shortening relations obtained
from the left and right DCDTs, indicating that the specimen was loaded uniformly across its width. The load
vs. strain relations in Figs. 5.9 -5.10 also indicate a uniform load across the specimen width, in addition to
revealing minimal bending of the specimen before buckling. Finally, note that the load at which the back-to-
back strain gages in Figs. 5.9 - 5.11 begin to diverge and the load at which the out-of-plane displacement
begins to have a large increase are approximately the same as the buckling load determined using the

outlined procedure in connection with Fig. 5.8.

It must be stated that the process of fitting a line through the prebuckling and postbuckling portions of the
load vs. end-shortening relationships is not always as clear as the case shown in Fig. 5.8. For the stiffer
laminates the change in slope between the prebuckling and postbuckling stiffness is not as great. Figures
5.13 and 5.14 demonstrate this point by presenting load vs. end shortening curves for a [£30]¢, laminate and
a [0],4 laminate, respectively. Comparing Figs. 5.8 and 5.13 reveals that the difference between prebuckling
and postbuckling slopes is less for the [+30]¢ laminate. Comparing Fig. 5.8 with Fig. 5.14 shows that this

trend continues for the [0],, laminate. Note also that the uncertainty is amplified further for this laminate
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because the total end shortening is much smaller due to its high stiffness parallel to the loading direction

compared to both the 30 degree and 60 degree laminates.
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Figure 5.13 Load vs. End-Shortening Relations: [+30]¢; Laminate
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Figure 5.14 Load vs. End-Shortening Relations: [0],4 Laminate

5.8 Calculating Experimental Buckling Coefficient

Due to the definition of the buckling coefficient in Ch.3, there is a subtle difference in calculating the
buckling coefficient for experimental results compared to calculating the buckling coefficient for the
analytical results. As shown in Egs. 2.128 -2.131, the eigenvalue computed by the semi-analytic approach is

the loading parameter p which has the form

2

1
p= _EIL (5.2)
2 ’ ’
n"JD;, Dy
where
P
N' = . (5.3)
X WI
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Remember that W| and b; are the unsupported plate width and plate half-width, respectively, at the narrow

end of the plate. In order to pose the analytical results in the form of Eq. 3.5, p is modified according to

1 b2

analysis

-~ X
P ——F—
2 |
n°JDy Dy,
1 w2

(5.4)

This yields

(W,
ko=p(457) 5.5)

When computing the experimental buckling coefficient, however, the plate width at the narrow end of the

plate has dimension W—l , which is wider than the unsupported plate width W, as shown in Fig. 5.1. This
changes the above derivation according to

(5.6)
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w w
This shows that the measured buckling loads must be multiplied by the quantity S :1) to
2 w
n°/D,,D,, 1
provide correct buckling coefficients for comparison with the buckling coefficients calculated by the semi-

analytic approach.

The next chapter describes experimental results and offers a comparison with semi-analytical predictions.
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Experimental Results and Comparison with Analysis

In this chapter, comparisons between the measured and predicted prebuckling stiffnesses are made for the
ranges of plates tested. Buckling loads are compared, as are buckled mode shapes. As will be seen, the
agreement between predictions and observation is generally quite good. However, for selected cases the
agreement is not quite as good. The final section of this chapter offers possible explanations for the

discrepancies that do occur.

6.1 Comparison of Experimental and Analytical Prebuckling Plate Stiffness

The formula for prebuckling plate stiffness, i.e., the slope of the prebuckling load vs. end-shortening
relationship, was developed in Ch. 2 based on the assumed prebuckling inplane force resultant distribution,
and is given by Eq. 2.141. Table 6.1 compares the calculated and experimentally determined prebuckling
plate stiffness values for all of the plate geometry and stacking sequence combinations tested. The
experimental stiffness values reported are the slopes of the lines fit by hand through the prebuckling portion
of the load vs. end-shortening relationships, as described in Ch. 5. With the exception of the [0],4 laminates,
there is very good agreement between the calculated and experimental values. To a large degree the table
speaks for itself. Typically the calculated values and experimental results are within 9%. However, there is
between 27% and 35% difference for the [0],4 laminates. Furthermore, the differences for all cases
considered seem to be random in that the calculated results are neither always greater nor always less than

the experimental results.
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Table 6.1 Calculated and Experimental Prebuckling Plate Stiffness Values

(0124
(0124 2.51E5
(0124 1.75E5
[+30/-30]¢ 1.56E5
[+301301c; u 1.23E5
- [+30/-30], 9.02E4
L [+30/300gs 120 6.58E4
[+30¢/-30g], 1.0 1.0 " 1.50ES 1.56E5
[+30¢/-30g] 1.5 1.0 1.24E5 1.24E5
[+30¢/-30g], 3.0 1.0 9.13E4 9.34E4
[+30¢/-30g], 1.5 2.0 6.18E4 6.31E4
’ 6.59E4

—

5.57E4
39684
_ | 2.60E4
(+45/0/-45/90)5, | 1.0 1.0 1.55E5 1.46E5
+45/0/-45/90]5, | 1.5 1.0 1.27E5 1.19E5
+45/0/-45/90);, | 3.0 1.0 9.39E4 8.32E4
+45/0/-45/9015 6.36E4 6.48E4
1460601, | 10 3.84E4 3.85E4
[+60/-60] ¢ 3.15E4 3.33E4
[+60/-60] ¢ | 1.57E4 1.69E4
[+60¢/-60¢]; 1.0 1.0 3.84E4 3.85E4
[+60¢/-60g) 15 1.0 3.15E4 3.15E4
[+60¢/-60g] 3.0 1.0 2.33E4 2.29E4
[+60¢/-60g] 1.5 2.0 1.57E4 1.79E4
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Table 6.1 Calculated and Experimental Prebuckling Plate Stiffness Values

6.2 Comparison of Experimental and Analytical Buckling Loads

As mentioned in Ch. 5, several aluminum plates were tested to provide a baseline comparison. The buckling
coefficients from the experiments with aluminum plates are given in Table 6.2 along with the buckling
coefficients for the aluminum plates as computed by the semi-analytical analysis. In Table 6.2, and in similar
tables to follow, finite element results are included because not all of the experimental cases are considered
in the figures of Ch. 4. In this way, future comparisons between the semi-analytic approach and the finite
element results are available. Discussion in this chapter, however, will be limited to comparing experimental
results to results from the semi-analytic analysis. Additionally in Table 6.2, the number of halfwaves in the
buckled mode shape is given by numbers in parentheses in the Experimental and Analysis columns.The
fundamental case for a baseline comparison is a square (A.R. = 1.0, TR. =0) isotropic (aluminum) plate
because it simplifies all of the material and geometric parameters in the analysis. Table 6.2 shows
approximately 1.5% disagreement for this important case. The other two rectangular cases (A.R. = 1.0) have
disagreements of 10% and 2.2%. As the taper ratio increases, the effect of the geometric parameters in the
analysis is investigated, while the material parameters are still simplified. The moderately tapered geometry
(A.R. = 1.0, TR. = 1.5) shows a 4.1% disagreement and the extremely tapered geometry (A.R. = 1.0,

T.R. = 1.5) shows a 1.2% disagreement. Nothing can be stated regarding the sign of these disagreements, in
some cases the analytical results are conservative and in other cases they are nonconservative. In all cases

the number of half waves observed is correctly predicted.
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Table 6.2 Experimental Buckling Loads for Aluminum Plates

% o0 et

Aluminum 1.0 1.0 6.6 (1)’ 6.7 (1) 6.8
Aluminum 1.0 1.5 49 (1) 5.4(1) 54
Aluminum 1.0 3.0 45(3) 44(3) 45
Aluminum 1.5 1.0 73 (1) 7.0(1) 7.0
Aluminum 3.0 1.0 7.8 (1) 7.7Q1) 8.2

" The number of halfwaves in the buckled mode shape is indicated by the number in parentheses.

The next logical step, after investigating the baseline aluminum material, is to investigate the effects of the
orthotropic parameters independently from the effects of the anisotropic parameters. Table 6.3 presents
analytical and experimental results for {0],4 and [90],4 composite plates. As mentioned in Ch. 3, these
laminates are limiting cases for the orthotropic parameters in this analysis. As can be seen from Table 6.3,
there is much better agreement, in general, between the calculated and measured buckling coefficients for
the [90],4 composite plates than for the [0],4 plates. Some difficulties due to initial imperfections were
encountered while conducting the experiments on the [0],4 laminates. The disagreements between the
experimental and analytical results range from 22% to 32% for the [0],4 laminate, compared to a range from

0% to 7.8% for the [90],4 laminate.

Unidirectional composites have inherent difficulties as test specimens due to the large difference in stiffness
between the two principal directions. Unidirectional plates can be less flat than angle ply or cross ply
laminates due to a high sensitivity to fiber misalignment as the individual plies are laid down during
fabrication. Indeed, one of the [0],4 specimens was completely discarded because the specimen showed
significant shadow moire fringe patterns in the unloaded state and exhibited large out-of-plane
displacements immediately upon application of the load. Also, not having the 0 degree direction perfectly
perpendicular to the loaded edges can be a problem, i.e., the laminate could actually be a [3],4 instead of a
[0],4 laminate. Additionally, it would appear that the difficulties associated with testing unidirectional
specimens are more severe when the specimens are loaded in the stiff direction than when they are loaded
perpendicular to the stiff direction. Recall from Ch. 2 that the assumed prebuckling inplane stress
distribution is more accurate for the specimens loaded perpendicular to the stiff direction. Note the

disagreement in the number of halfwaves predicted by the analysis for the long [90],4 laminate.
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Table 6.3 Experimental Buckling Loads for Unidirectional Composite Laminates

oo R — prER

11.0(1) 14.6 (1)

8.7(1) 10.6 (1) 9.2

The final step in the investigation is including all of the effects of the geometric, orthotropic, and anisotropic
parameters. To that end, buckling coefficients for angle-ply composite plates are presented in Table 6.4. As
in Table 6.3, there is better agreement between the measured and calculated buckling coefficients for
specimens loaded perpendicular to their stiff direction. The [+30/-30]¢ and [+30¢/-30¢], have differences up
to 32% between the measured and calculated buckling coefficients, while the largest difference for the [+60/
-60] and [+604/-60); laminates is 13%. For 75% of the cases shown in Table 6.3 there is less than 12%
difference between the measured and calculated buckling coefficients. In only 4 of the 19 cases shown is the
difference greater than 20%. Note that for the long plates, A.R. = 2.0, the analysis underpredicts the number
of halfwaves by 1. It is also worth noting, however, that the cases in which there is greatest disagreement
between analytical and experimental buckling coefficients are not always those in which there is

disagreement in the number of halfwaves in the buckled mode shape.

Table 6.4 Experimental Buckling Loads for Angle-Ply Laminates

o 7 g

[£30]¢s 10 1.0 9.1(1) 12.1 (1) 12.1
[£30], 1.5 1.0 9.1(1) 11.7 (1) 11.6
[£30]¢s 3.0 1.0 10.6 (1) 11.2 (1) 12.2

9.1(1) 9.1

6.2 Comparison of Experimental and Analytical Buckling Loads
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Table 6.4 Experimental Buckling Loads for Angle-Ply Laminates

( [+45]¢s 1.0 1.0 8.7(1) 9.2(1) 9.2
[£45]¢s 1.5 1.0 9.0(1) 9.8 (1) 10.0
[+45]6s 3.0 1.0 114 (2) 10.6 (1) 12.1
[+45) 65 8.9 (3) 9.3 (2) 8.9
(60, 9@ | sam ||

60l | 8.6 (1) ‘gg(l)

w0l | 15 | 20 18(4) 883 b R1

[+604/-60¢] 1.0 1.0 6.4 (1) 6.9 (1) 68

[+604/-6061 1.5 1.0 6.0(2) 6.8 (1) 6.8

(+604/-60¢]; 3.0 1.0 6.6 (2) 75(2) 7.7

[+60¢/-60¢]¢ 1.5 20 5.7(@4) 5.8(3) 5.7

Table 6.5 presents analytical and experimental results for quasi-isotropic composite plates. The
disagreements associated with these laminates are comparable to those of the [+45]¢ laminates shown in

Table 6.4. In all cases the number of half waves predicted was observed.

Table 6.5 Experimental Buckling Loads for Quasi-Isotropic Laminates

[*'45/0)‘45/90]35 1.0 1.0 7.1(1) 74(1) 74
+45/0/-45/90] 35 15 1.0 - 82() 7.7(1) 7.5
+45/0/-45/90} 35 3.0 1.0 9.6 (1) 8.1(1) 9.9
+45/0/-45/90]3 1.5 2.0 7.1(2) 6.3(2) 6.3

6.3 Comparison of Experimental and Analytical Buckled Mode Shapes

This section presents representative fringe patterns to demonstrate the effects of plate geometry and ply
stacking sequence on the buckled mode shape. The drastic effect the direction of orientation of the principal

direction having the greater stiffness has for laminates that are highly orthotropic is shown in Fig. 6.1. The
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specimen on the left has a [0],4 stacking sequence while the specimen on the right has a [90],,4 stacking

sequence. Both specimens have aspect ratio 2.0 and aspect ratio 1.5. Notice that because the [90],4 laminate
is relatively soft in the direction of the applied load, it buckled into 5 half-waves along the length. The [0],4
specimen, on the other hand, is very stiff in the direction of the applied load so it buckled into only a single
half wave. Because neither of these specimens has a D¢ or Do component in the bending stiffness matrix,

the buckled mode shapes are not skewed.

e - . s g w -

Figure 6.1 Experimental Buckled Mode Shapes for [0],4 (Ieft) and [90],4 (right) Laminates:
AR.=20,TR.=15
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The effect of the D, and D,¢ terms skewing the buckled mode shape is visible in Fig. 6.2. The specimen on
the left has stacking sequence [+60/-60]4 and the specimen on the right has stacking sequence [+60¢/-60¢];.
The specimens both have aspect ratio 2.0 and aspect ratio 1.5. Note that both specimens buckled into the
same number of half-waves, but the waves are not symmetric from left to right for the specimen on the right.
As was seen in Fig. 3.1, the [+604/-604]; laminate has much larger values for D¢ and Dyg. However, D¢
and D¢ are not zero for the [+60]¢; laminate and close inspection of the left portion of Fig. 6.2 shows very

mild skewing for this specimen also.

Figure 6.2 Experimental Buckled Mode Shapes for [+60]¢, (left) and [+604/-60¢] (right) Laminates:
AR.=2.0,TR.=15
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Figure 6.3 shows a similar effect for [+30/-30]¢s and [+30¢/-30g], laminates having aspect ratio 2.0 and
aspect ratio 1.5. Note that for this case, the [+30¢/-304]; laminate buckles into 3 half-waves while the [+30/-

30}, laminate buckles into only 2 half-waves. The skewing for the [+30¢/-30g]; laminate is quite extreme.

Figure 6.3 Experimental Buckled Mode Shapds for [+30]¢; (left) and [+304/-30¢], (right) Laminates:
AR.=20,TR.=15

>
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Figure 6.4 shows a specimen with stacking sequence [+30¢/-30¢ls, but with plate taper ratio 3.0 and aspect
ratio 1.0. It is important to note the large effect the combination of an extremely tapered geometry and a
highly anisotropic material have on the buckled mode shape. There is clearly a high lack of symmetry for

this case.

Figure 6.4 Experimental Buckled Mode Shape [+304/-30¢]; Laminate: A.R.= 1.0, T.R. = 3.0

Although the number of halfwaves calculated by the analysis are presented in Tables 6.1 through 6.4, for
comparison purposes Figs. 6.5 through 6.8 present contour plots of the buckled mode shape calculated by
the semi-analytic analysis for the same plate geometries and stacking sequences shown in Figs. 6.1 through
6.4. Comparing the two sets of mode shapes reinforces what was shown in Tables 6.1 through 6.4 regarding
the number halfwaves in the buckled mode shape computed by the analysis compared to the number of
halfwaves exhibited by the specimens during testing. Specifically, for the longer aspect ratios the analysis
underpredicts the number of halfwaves in the fundamental buckling mode. What is not apparent from the
tables, however, is that the amount of skewing in the calculated buckled mode shapes is very similar to that

shown in the experiments.
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Figure 6.6 Calculated Buckled Mode Shapes for [+60]¢ (left) and [+604/-60], (right) Laminates:
A.R. = 2.0, T.R. = 1.5 (compare with Fig. 6.2)
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Figure 6.8 Calculated Buckled Mode Shape [+304/-30¢]; Laminate: A.R. = 1.0, TR. =3.0
(compare with Fig. 6.4)

6.4 Summary of Sources of Disagreemént between Experiments and Analysis

Many possible sources of disagreement have been discussed throughout this chapter and throughout this
investigation. The ones believed to have the greatest influence on the experimental and analytical results are

summarized in this section.

Recall from Ch. 2 the discussion associated with Figs. 2.6 - 2.17 regarding the assumed form of the
prebuckling inplane force resultant distribution. In that discussion it was pointed out that the discrepancy
between the assumed form and the finite element results appeared to be a strong function of the degree of
orthotropy and the degree of taper. This discrepancy in prebuckling force resultant distribution appears to be
a major contributor to the disagreement. Recall the isotropic cases show much better agreement than the
composite laminates, and the composite laminates that have their stiff axis oriented perpendicular to the
loading direction show better agreement than the composite laminates that have their stiff axis oriented
parallel to the direction of loading. This dependence of the orientation of the stiff axis was also evident when
comparing buckling predictions from the semi-analytic analysis with buckling predictions from the finite
element analysis. It can be expected, then, that for those cases where the prebuckling assumptions in error,

differences between experiments and analysis will occur.
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Recall from Ch. 5 that the straight lines through the prebuckling and postbuckling portions of the load vs.
end-shortening relationships were fit by hand. For some experimental cases this was very straightforward
while others required quite a bit more judgement. For those requiring more judgement, deviations between

experiments and analysis can be expected.

Recall from Ch. 2 that the material properties reported in Table 2.2 are typical values. Implicit in these
values is a specified fiber volume fraction and resulting ply thickness. If the actual ply thickness is less than
the specified ply thickness, the resulting laminate will have both a higher fiber volume fraction and a smaller
plate thickness. The higher fiber volume fraction enhances the laminate stiffness and will contribute to a
higher buckling load. The smaller plate thickness degrades the plate stiffness and will contribute to a lower

buckling load. The opposite is true if the actual ply thickness is greater than the specified ply thickness.

Any manufacturing errors involved in machining the ends of the specimens flat and parallel will manifest
themselves in the experimental results. This is a much more important factor for the laminates that have their

stiff direction oriented parallel to the direction of load.

Finally, although the experimental fixtures appeared to do a good job providing uniform loading, there is no
way the ensure a perfectly clamped boundary conditions on the ends or simply supported boundary
condition on the edges. Unfortunately, is also no way to measure how well the fixture is providing the

clamped or simply supported boundary conditions.

In spite of difficulties and possible error sources, there is excellent agreement between the experiments and
analysis regarding the prebuckling plate stiffness. There is also an acceptable level of agreement between the
experiments and analysis to verify that the semi-analytic analysis is accurately predicting the buckling loads.

The [0],4 laminate, however, is the obvious exception to both of these statements.
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Summary, Conclusions, and Recommendations

7.1 Summary

This research has used three different tools to investigate the buckling response of symmetrically laminated
composite plates having a planform area in the shape of an isosceles trapezoid. The nonparallel edges of the
plate were assumed to have simply supported boundary conditions, while the parallel edges of the plate were
assumed to be either simply supported or clamped pairs. The loading was assumed to be an inplane
unidirectional force perpendicular to the parallel edges of the plate. First, a semi-analytic closed-form
solution based on energy principles and the Trefftz stability criterion was derived in terms of six
nondimensional parameters. Two of these parameters were measures of material orthotropy, two were
measures of material anisotropy, and two were measures of plate geometry. Standard classical lamination
theory, based on Kirchhoff’s plate theory, was used in conjunction with the von Karman nonlinear strain-
displacement relations. A simplified prebuckling force resultant distribution was assumed to simplify the
analysis, and the out-of-plane displacement was approximated by a double trigonometric series. The
Rayleigh-Ritz method of solution provided a symmetric eigenvalue problem that can be implemented on any
computer. The second tool used in this investigation was a finite element analysis to compare buckling loads
for several specific material and plate geometry combinations. Models consisting of a 10 by 10 mesh of 8-
node shell elements were constructed using PATRAN and buckling loads were computed using the general
purpose finite element code ABAQUS. The third tool used in this research was an experimental
investigation. Special test fixtures were designed, and an experimental technique developed to verify the

results obtained from the semi-analytic analysis.

7.2 Conclusions Regarding the Analysis

Intrinsic elements of the semi-analytic analysis were the inclusion of the effects of the anisotropic material
terms (D¢ and Dyg), the simplified prebuckling inplane force resultant distribution, and the series
approximation for the out-of-plane displacement of the buckled mode shape. Including the anisotropic terms

added complexity to the analysis because these terms were coefficients of mixed partial derivatives of the
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out-of-plane displacement. Including these terms, however, was important because they were shown to
decrease the buckling load, and cause the buckled mode shapes to be skewed.

Rather than solving the first variation of total potential energy, the prebuckling force resultant distribution

was assumed to have the simplified form N, =

™ and Ny = ny = 0, where P is the applied load
and W(x) is the plate width. Comparison with finite element results showed that this was a very accurate
approximation for isotropic material, and was more accurate for composite plates if the stiff material axis is
oriented perpendicular to the loading direction compared to if the stiff material axis was oriented parallel to
the loading direction. In general, the assumed force resultant values were within 7% of the finite element

results, and in the worst case, the results were within 25%. No general trend existed as to whether the

assumed force resultant distribution was conservative, or nonconservative.

The series approximation for the out-of-plane displacement is more complex for tapered plates when
compared to approximations for rectangular plates because the width of the plate is a function of position
along the length of the plate. Including the anisotropic material terms added to this complexity, also, because
the resulting skewed mode shapes prevented assuming any symmetry. The out-of-plane displacement was
approximated by a double trigonometric series comprised of products of odd and even functions (i.e.,
symmetric and antisymmetric functions) that were assumed to have different forms for the two different sets
of boundary conditions on the parallel edges of the plate. For the plate geometries considered, this series
converged using 4 terms for isotropic materials. Including 5 terms in the series resulted in a 50 by 50
eigenvalue problem that ran in less than 1/2 second on a Cray YMP. Because of the fast convergence rate,
and the fact that this analysis can run on any computer capable of supporting FORTRAN, this analysis can

be a valuable design tool for the preliminary design of tapered composite plates.

Based on comparison with finite element results, it appears safe to say that, for laminates of practical
interest, this analysis can predict buckling coefficients accurate to within 11% for highly tapered plates and
within 3% for moderately tapered plates. For more traditional rectangular plates, the analysis is within 0.5%.
For simply supported boundary conditions on the parallel ends, the parametric relationships showed that
increasing the taper of a plate always increased the buckling load when compared to a rectangular plate
having the same width as the wide end of the tapered plate. There was an interesting interaction between
boundary conditions and material properties for the plates having clamped ends, however, that caused this
trend to reverse for certain plate aspect ratios. The clamped end conditions always yielded higher buckling
loads when compared to plates with the same geometry but with simply supported end conditions. The
anisotropic parameters were shown to severely decrease the buckling load, and the nondimensional

parameter B, which includes all of the orthotropic material terms, was shown to have a large effect on the
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buckling load. Increasing B caused a significant increase in the buckling load, and the decrease in buckling
load due to anisotropy was shown to be less for higher values of B. The nondimensional parameter &, which
is the ratio of the longitudinal bending stiffness to transverse bending stiffness, was shown to have a greater
effect on the buckling load for plates with clamped end conditions when compared to plates with simply
supported end conditions. For both sets of end conditions there were areas of overlap of the nondimensional
relationships which indicate areas of flexibility for the designer when choosing stacking sequence and plate
geometry to achieve a specific buckling load. Contour plots revealed the effects of plate geometry, material
properties, and boundary conditions on the buckled mode shape. The laminates having their stiff direction
oriented perpendicular to the loading direction had more half-waves in their buckled mode shape when
compared to laminates having their stiff direction oriented parallel to the loading direction. The clamped
boundary conditions were shown to both change the number of half-waves in the buckled mode shape and
compress the halfwaves toward the center of the plate. The anisotropic parameters were shown to skew the

buckled mode shapes

7.3 Conclusions Regarding the Experiments

A series of experiments were conducted to verify the semi-analytical predictions for a wide range of plate
geometries and stacking sequences of an AS4/3502 graphite/epoxy composite material. Intrinsic to these
experiments were test specimens, test fixtures, instrumentation, experimental technique, and determining
buckling load from the experimental data. The specimen fabrication process, in general, yielded specimens
having uniform thickness with flat and parallel ends. Specialized test fixtures were required to provide the
necessary boundary conditions and provide uniform loading across the specimen width without causing any
out-of-plane bending. The instrumentation was required to verify uniform loading and provide adequate
information to accurately determine the buckling load. The experimental technique incorporated special
steps to ensure alignment to provide uniform loading and prevent out-of-plane bending. This combination of
special test fixtures and experimental technique provided reasonably uniform loading on the specimens. The
back-to-back strain gages revealed very little out-of-plane bending prior to buckling for all cases, while the
displacements measured by right and left DCDT’s agreed within 2%, in general, and within 5% for the worst
cases. The experimental buckling loads were determined by finding the intersection point of straight lines fit
by hand through the prebuckling and postbuckling portions of the load vs. end-shortening relations. This
technique worked quite well for the majority of the cases. Some difficulties were encountered, however,
with the very stiff laminates because there was very little change in slope between the prebuckling and

postbuckling portions of the relations.
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The equation describing the prebuckling plate stiffness (slope of the prebuckling portion of the load vs. end
shortening curve) is slightly more complex for tapered plates than for rectangular plates because the width
varies with position along the length of the plate. In general, the prebuckling stiffness measured by the
experiments was within 7% of the analytical prediction. The only exceptions to this were the [0],4 laminates,
which had disagreements between 27% and 35%. With the exception of the [0],,4 laminates, therefore, the
experiments verified that the analysis adequately predicts the prebuckling response of tapered composite

plates.

In the baseline comparison with aluminum test specimens, the difference between experimental and
analytical buckling coefficients were generally within 4%. This verifies that, when material issues are
excluded from the discussion, the semi-analytic analysis handles the tapered geometry quite well.
Investigating both [0],4 and [90],4 laminates as limiting cases for the orthotropic parameters showed
disagreements less than 8% for the [90],4 laminates, while the [0],4 laminate had disagreements as large as
32%. The angle-ply and quasi-isotropic specimens incorporated all of the orthotropic, anisotropic, and
geometric parameters. In 75% of these cases, the experimental buckling loads were within 13% of the
analytical predictions. In general there was better agreement between the analysis and the experiments for
composite plates having their stiff axis oriented perpendicular to the direction of loading. With the exception
of the [0],4 case, the experiments verify that the semi-analytic analysis adequately predicts the buckling load

for tapered composite plates.

Comparing the shadow moiré fringe patterns with the calculated buckled mode shapes verified the skewed
buckled mode shapes due to anisotropy that is predicted by the analysis. However, the semi-analytic analysis

is not always able to correctly predict the number of halfwaves in the actual buckled mode shapes.

Finally, the potential sources of error that could possibly contribute to any discrepancy between the observed

and analytical results were outlined.

7.4 Recommendations for Future Work

This research is fairly complete. However, there are logical extensions that can be made. Specifically, a more
accurate prebuckling force resultant distribution can be incorporated into the analysis. This would require a
moderate amount of effort. This addition should enhance the results for highly orthotropic plates with large
tapers that have their stiff direction oriented parallel to the direction of load, and perhaps it would improve
the prediction of the number of halfwaves in the buckled mode shape. Additionally, this analysis could be
expanded to include a postbuckling analysis. This postbuckling analysis would require the previously

mentioned refined prebuckling analysis and would require a significant amount of effort. Finally, this
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approach could be expanded to incorporate additional geometries, such as plates having a tapered planform

area with cutouts. These cutouts could be typical, such as circles and rectangles, or could continue in the

spirit of some lack of symmetry, and be trapezoids, or perhaps even tapered ellipses.
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Appendix A

Evaluation of Boundary Integral

The boundary integral that results from integrating the coefficient of Dgg by parts twice using Green’s

theorem is

§{a_‘”[i@_‘”)ﬁ _2 a_w)ﬁ]}ds. (A1)
ox Llox\ay/ ¥ oy\dy/ *

dA

The terms fi, and ﬁy are the x and y components of the inplane outward normal vector of the plate boundary.

Consider a parametric curve f(S) in a cartesian coordinate system.

Each point on the curve has associated normal and tangent unit vectors fi and § where

fii =ni fi, = nyj

§, =8, §, =8, A2)
n, =s,
n, =$,
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The chain rule for differentiation yields the following relations

of _ Jfds af on af of i of

+—n_ n
ox  dsdx anax as on* on* 9s?
o _3fds ofon _af A o o | 3

Using part c of equation (A.3), the integrand of equation (A.1) can be expressed as

o g o) s
dx ds

Expanding the integrand of (A.1) using parts a and b of (A.3) yields

F_\_ﬂ w }a ow }_[awn _g»_vn} dw  dw  9ndw dngw
s ' on E)sas"any ds ’ on* 32"anasyasas "3 an
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Using

2
owdw 5 [awaw} d'wow (A6)

dndnds dnldnds —ﬁg

The integrand can be expressed as

3n?ds on Y3s ands  *an 9s?

0 awaw awaw 9 I:awaw} +nzaw82w B 28waw
x| 3s Js? anzas dnldnds
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For constant w everywhere on the boundary,
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(A.8)

|

|
v ls
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along the boundary curve. For simply supported or clamped boundary conditions on all edges of the plate,

therefore, the integrand simplifies to

on 2
_nx_,(a_w) : (A9)
ds \dn
on
This will equal zero it = 0.2 = 0,0r n =0.
an as

Consider a plate of arbitrary geometry having area A and boundary dA . Each point S on the boundary has an
associated infinitesimal arc length ds with outward normal fi (S) which is a function of position and has
components in the x and y directié)rrlls fi(S) = n, (S) i+ n, (S)j .As the boum‘iNary of the plate is traversed,
the orientation of fi changes, so gy # 0. If the plate is clamped on all edges, 3 = 0, but for simply

supported edges, g_w #0. And finally, n_# 0, except for the two points at which fi is aligned with the y axis.
n

fi(s)

0A
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Appendix A: Evaluation of Boundary Integral

Now consider a polygonal plate with N sides having boundary 0A = 0A| +dA, + ... + dA . The boundary

integral is now written in a piecewise continuous fashion

(A.10)

[l
ey
;.P
QJI QU
7] =]
-
6|Q)
s ls
N—
~

on 2
§ nx-—y (QV—V) ds
ds \dn

3A i=15a

Consider a typical edge. Since each edge is a straight line, n, and ny are constant values. This results in

i =ni+nj

k th edge

dn_  dn
x_Ty_p (A.11)
ds ds

Therefore, for polygonal plates having simply supported or clamped edges,

ow _a_(a_w), _i@!’)} ds = 0 A2
§{8x|:axay ty dy \dy fiy |} ds ’ (A.12)

9A
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Details of Integration

The out-of-plane deformation of the plate is expressed as

N N
wEm = Y Y @ (why[f (6] +wiT, (g &1},

i=lj=1

where
y; = cos (fj) ,
I, = sin(g).
. n
f. = (2)-1) ——
;= (2 )2b(§)
_ Jm
Y
and
b(E) = 1+¢k,

The derivatives of individual terms of eq. (B.1) are given by

of.
J = e2j-1)
E3 G
azf

= 28 2;-1) il ,
a8 2b (&)

B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

B.7)

(B.8)
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SRR ._1)_1t_
m - P V%
o
-,
m
o’f
L= _g(2j-1)—
d&a 2b (&)
% _ _ im
3 b (&)’
2 ,
agj ¢2 j'n
aE? b(&)’
o9 _ _jm_
m b’
Bzg.
=
an
2
oy _
9&am b (E)>

Making these substitutions into eqs. (2.88), (2.92), and (2.96) provides

Cif = @,(B)e(2j-1) N gin (£) + @', (8) cos (£,
' 22 :

Clo = @, (&)™ cos (g) + @', (B sin (g))
b

2E ” R b1 E(Di )
Ci =@ i (8) cos (f)) +€(2_|—1)——2[<I)'i(E_,) - — |nsin (f)
b b

2
-0, () e (2j-1) ZE—T]zcos (f) ,
4p* )

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)
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; e,
Ci2jO = ®” (&) sin (g)— 2ejb—1; [‘I"; & - T‘}ncos (g)

2 2
-, (&)™ el *sin (g;)

1

T
NL© = (Di(é)'-'gcos(gj),

2

. T
NIF = -, (8) (2- 1)2;—b;cos (f,

2 2

N2 = —a, (&)L sin (g).
b

N'E = —, (8) (2j-1) %sin (f).

)

Appendix B: Details of Integration

2E . T . . n . T, .
M;" = ®,(5)e(2j-1) i-;z[sm (f) + (2j- I)Z—bcos (fj)} -(25-1) E(bi (§) sin (f) .

and

M = o, 56l - cos (g,) + 120 m(g)]+ I ./ cos (g;)
i i b b b ]

The total stiffness matrix given by eq. (2.110) is expressed as
N N N N

Kp(w,dw) = ZZZZ{U(TJPQ 5 Tl(::q ‘(1))8 ;

i=lj=1p=1q=1
The first term is the series is given by

K_EE —J'EE(E,)d&

Tijpq 11pq

+ (K.E

TJpq ij

+K 0Owo)ﬁw } .

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)
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Appendix B: Details of Integration

where Fﬁfsq (E) contains the integrals performed across the width of the plate.

In order to simplify the equations so that the symbolic manipulator MACSYMA can be use most effectively
for performing the integrations, the equations will be broken down into small parts, the integrations will be
performed, and then the parts will be reconstructed. The first logical breakdown is to factor the equation into

the various combinations of the order of differentiation of ¢, namely

EE _ 2 3 g 2l 3y oy 20 gy 12 401 gy H g 10 x.
Fio (8) =07 0"+ 0" &' + 00" @ +£ 00"+ & & +f ¢

, 1 (B.29)
+ (o +E DD +EIDD) .

Note that the first superscript of fijrepresents the order of differentiation of ¢; while the second superscript

represents the order of differentiation of ¢, The f;; are now factored according to the specific integrals over
M. The L are the integrations over 1 across the width of the plate. The first superscript on Ijg signifies which
of the four possible combinations of trig terms occurs in the integrand according to the following list: 1=sin
sin, 2=sin cos, 3=cos sin, 4=cos cos. The second superscript signifies what power 1 is raised to, i.e. O=110=1,

1=n, 2=1]2, etc. The fig are given by

£ = oL, (B.30)

2 = 7:)—(21(2q— 1.) el —by?], B.31)

j;’ = —4"—; (2q- l)z[azezl;:—ZaeybI;: +b2ﬁ1jf] - %E (2q-1) [aelj.{: —bylfg], (B.32)
fJ]: = ’;—‘: (2j-1) [aelzj‘—bylz‘j’] = fﬁj, (B.33)

il = “:?E(zj- 1) (2q-1) [oel)? - 2091)), (B.34)

3

10
qu

. 2.3 3.3 2.2y 122 231 330
2j-1) (2q-1) [aequ—3aebyqu+aﬁeb I,-b SIqj]

4ob°
° (B.35)

1t2(1€2
b5

. 12 11
(21-1) (29— 1) [ael;} - 2byl}]

’
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2

2 _ X, C 1327202192 _ 41, 200407
f?q——?g‘(% 1)*[o’e’L, - 20ebyl;, + b°BIL]

noeE . 31 30, _ 20

5 @D [oer? ~bYIX] = £, B.36)
3

=T (2q-1) 2j- 1) (0’1} - 3aebA; + oBeb”Ly, — bS]

4ab® Y q -
nlae’ " h e (B.37)
S (2j-1) (2q-1) [oely —2byL, 1 = £ |
and finally
nloe’ . I
f‘,f = o (2j-1) (29— 1) [oel;g - 2by ]
3
€ .. . ‘
+ 5 05-1) 2a- D' [a= DI+ Q1= DIJ] -3’29 D g+ (3 D]
“ (B.38)

+apeb’[(2q- DI+ (2j~ D1 -b*8 [ (29— DI + (2~ DI }

4
T

+

2 : 2 4 484 3.3, 143 2.2, 2142 3041, | 4140
= (2q-1)"(2j- )" [o'e L —4ore byl +20°e’d Bqu —40edb L, +bT]
16a’b
Because the specific integrals over 1 are now separated out, they can be easily recognized and computed

using the symbolic manipulator MACSYMA. The results are given as

(&)
I;‘;’=J cos[(Zj—l) il }cos[(zq-l)ﬂJdnﬂ;j:&q

bee) 2b (&) 2b (&) (B.39)
=1;j=q'
13‘=r’m [2'-1 ’"‘]'[2—1—-’"‘ ]d
W)L e @51 3 |sin| 2a=D g Jan
b2 (2j— 1) (=1)’*%
T@-) (@+j-D"
b2
“raien TV
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1?‘2=J‘+b© 2 [2'—1 nn} [2—1—’"‘ }d
ne) el o0 g e aamn g Jen

2b°(2j-1) (2¢-1) (-=1)'*9
= ;1#9
nt(q-j) (g+j-1)? ®4D
b’ [nf(2j-1)2-6] .
3n’(2j-1)

1.‘2=j'*b‘§) 2 [2'-1 dl } i {2 _p_n ]d'
iq o nsin| (2j )2b(§) sin| (2q )2b(§)

_20°[2§(i-1) +2g(g-1) + 11 (=D'*? .

n(q-j)2(q+j-1)° o B4
B tej-nie6l
T T aRai-nt
2= r(%sin[(zj -1 2:&)] cos[(zq- 1) %:Idn
-b(%)
_b*(2q-1) {q(q-1) [x*(q (g-1) -2§(G-1) ) =6} (1'%
©(q-j)>(q+j-1° (B.43)

LPRa-D GG-D [FG-1) -181 -6} (<19
©’(q-j)’(q+j-1°

bt j-nl-61 .

T Pej-n? B

#q

+(§)
1= j n‘cos[(zj -1 2:&)} cos[(Zq— 1) %]dn
-b(&)
_4b*(2j-1) (29-1) {q(a- D [P (g (a-1) =2j(j=1) ) =121} (-1'*9

't (q-p*@+j-n* (B.44)

+4b°(2j-1) (2q-1) (G- D (=5 G=1) - 12]-6} (1'% G #q

N CEMCESE N
_ b {n? (2j- D2 (n*(2j-1)%-20) +120 } =g

set(2j-1)*
+b(§) . i . nn
10 = [2—1 ] [2 —1—}1 =0, 45
. cos| (2j=1) 7o Jsin| (2= D) 2 fdn (B.45)

-b(&}
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+b(E)
- I [2'-1 ““} [ -1 nn} = 0, .
i ncos| (2j )2b(§) cos| (2q )2b(§) dn (B.46)
~-b(&)
+b(E)
M= J '[2'-1 “"}‘[2-1 m} =0, )
i Nsin| (2j )2b(§) sin| (2q )2b(f;) dn (B.47)
-b(&)
(8)
2= j 2'[2'—1 ’”‘] [2—1—“—"—Jd = 0, 48
" N“sin| (2j )2b(§) cos| (2q )2b(§) M (B.48)
b
+b(&) 1
™= 3 [2'-1ﬂ] [ —1ﬂ_} = 0. 49
iq J_b(g cos| (2] )2b(§) cos| (2q )2b(§) dn (B.49)

Combining the evaluated integrals of eqs. (B.39) through (B.49) with the appropriate coefficients in egs.
(B.30) through (B.38) and substituting into eq. (B. 29) yields

1 1 1
EE _» " 11 PR w0f 1.,
KTiqu(E_,) —chj.bd) @D pd§+chJ.d) K pd§+chj’ Etb 0,48
0 0

.l 1 1 1
20 [ e g uf 1., ., wof 1 ., 20| 1 "
+qu (11 id) pd§+chj Bd) i(p pd§+ quj;)—z(b i¢Pd§+quJ‘ Bd)'d) pdé (BSO)
0 0 0

rl 1
10 1 \ 00 1
+ey | 520 pd§+chJ- S P, dE |
o b b
0 0
where
2=, (B.51)

)9

2o @e2i=1) (2q-1) (1)’

21 _ , (B.52)
i (q-j) (@+j-1)

® _e’e?(2-1) (29-1) (-1)’"*[2q(a- D +2jG-D + 1] B.53)

2(q-j)*(q+j-1)?
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0 207 (2= 1) (2q-1) (=1)'"9[2q(q-1) +2j(j=1) +1]

e (B.54)
. (@-)q+j-1°
el = o’ (2j-1) (29-1) (-1 {q’ (- D’ [* ((24-1)" - 8j (= 1)) - 8]
+2§(G-Da(a=1) [ (2 ~2j 1) - 36] B.55)
—2q(q-1) +j(-1) [(m-4) (+4)j(j-1)-261+-61/(4(a-)) (g+j- 17
~m*Be(2j-1) (2q-1)> (-1)’*Y/(4(q-)) (q+j-1)) -
and
oo _ wBE’(2i-1) 29-1) (=)' [2q(q-1) +2jG-1) + 1)
. 4(q-(g+j-1)?
+o’e* (2j-1) (29-1) (1)’ [2q(g-1) +2j (G- 1) +1] {q(q—1) ®.56)
[q(q-1) [T (2q(q—1) =2j(j-1) +1]-4]
25 -1) [REGP-j+1) +44] =241 +j (- D [[G-1) [F*(2)*=2j+1)
-41-241-61}/(4(q-)*(a+j-1Y-
For the cases when j equals g then the Cqq terms become
cﬁz = o, (B.57)
c::] = o’e, (B.58)
2.2 2
20 —0€E 2 2 B 2
Coo = 5 (M (20-1)7+6] -—=(2q-1)7 (B.59)
2.2
cpo = [T (20-D7+6) (B.60)
2.3 2
10 -QaE 2 2 " Be 2
%= [77* (2q-1)*+6] ——4—(2q—1) (B.61)

and
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2.4 2.2
0w _OE 2 2 2 2 e 2,2 2
=_—_{n"(2q-1 3" (2q—-1)"+ 140} + 120 } + 2q-1 n°(2g-1)"+6
Can = 35 (% (2a= D7 (377 (29— 1) ] b+ (2a- D[ (20- D7 +6]
4
+ 2% 2q-1)*,
80

(B.62)

The integrands in equation (B.50) are functions only of £ and will be different for the clamped or simply

supported end boundary conditions and will be considered later in this appendix. The KTS:«; term can be

expanded, the integrations performed, and terms recombined in the same manner as the KTF‘Eq term,

specifically

1

00 _ 00

KTiqu - J Fiqu (g) dé
0

where

00 —_ L22& B 2l gyt 20 21 12 50 a4yt e 10 g
FOO (8) = h2@" @ +hl " @' +hi®" @ +h @ @"  +h @' +h DD

024 " Ol g 00
+h ®®" +h OO pH 0 P2,

The h;q are given by
2 _ 210
hjq =« qu'
B2 =~ 2% e )
e T T ia el
b
R0 = g’ » 2512 _ 5 oevbI! 4+ 52671 2MOEQ 2ty 120
i _—7[0‘5 jq ~ 2O€YDq * qu]+ b3 [aeljy - i
12 _ _2m0j A 1200 _ 2
hjq = o [ochqj bquj] —hqj,
2
n _ 4n’agjq 4 a1
hjq = T[aerq 2b'ijq],

(B.63)

(B.64)

(B.65)

(B.66)

B.67)

(B.68)

(B.69)
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hjq -

7[2j2
b4

02
hjq

ol
hjq -

[azezlj

Appendix B: Details of Integration

3. 2

2n

19 reles? - 3ae2byl > + ofeb’sZ - b°812%)
ob® i ia aj aj

2 2.
4n ae’]q ) !
— [ael’ —2byJ)]

(B.70)

2TOE]
b3

12 11, 420,10 21 20, _ .20
. —2a£yb1jq +b Bqu] + [aquJ. —by]qj] = hqj, (B.71)

2n’j?
213 91636217 - 30e byl 2 + aPebI? - b8
abﬁ q q Jjq 19

(B.72)

41t2a82jq

42 1, _ 410
- [Ty~ 2byT ] =h;,

and

00 _ 4n2ae3jq

h. =

] 6

b

e
ob

+ aBeb2
4.2 2

s a9

o’b

j 3.3, (33 ..33 22 32 .32
jq {’€’ [q1s +j10] - 30%e by [T, +i031]

bS

42 41
[aEqu —2bijq]

(B.73)

[q1% +i1%1 - b8 [qI2) +i}0] }

4 414 33, .13 2.2, 20112 3.11, 4,10
[a'e qu —-40°¢e b'ijq +20°ed Bqu—4a£8b qu +b qu]-

The J;q are the integrations over 1 across the width of the plate, given as

b (E)

10 _ [} [ gnn —0-
qu— j sm[—b(é)]sm[b(g)]dn 0;j#4q (B.74)

-b (&)
=b;j=q ,

b (&)

: 2. itq
o J' . 1:17"1:1 [qﬂﬂ]d _ 2b%j(-1) e
ia R YT R LYY R T NI T R

-b (&)

(B.75)

=——;j=q,
T
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b (&)
. 3. _1yita
ji- | el io2 | [ SBEN
T (q—] +]
e (g-j)"(a+)) (B.76)
b° (2n’q®-3) .
=27 T
6n°q
b® 3 2 i+
. . IRRYAL:!
ij‘:= j HZCOS[;?QJCOS[:Z?)]M=4b2 (q+J)2( 1) g
n(q—j +j
56 (-7 (q+]) B.77)
b (2n’q* +3) .
T e
6n°q
b (&)
. J 1’ cos [——”"‘ Jsin [—q’"‘Jdn
h b (&) b (E)
-b (&)
__ (@ -2 6]+ (@ -1 D (B.78)
©’ (=i’ @q+j)’
b* (2n’q*-3) .
=T ITe,
4n7q
b (&)
M= J n“sin[———”‘"}sin [—q’"‘]dn
’q b (&) b (&)
-b (&)
_leb'iafa’(n’(q?-2") - 1)+ (@ -1y (D BI9)
EACEINCESN
b [2n°q (n’q® - 5) +15] .
= 4 4 =9
10n'q
b (&)
7 = J' sin[ﬂm ]cos[qnn}dn =0, (B.80)
. b (&) b (&)
-b (&)
b (&)
) pg. I nsin[ﬂm ]sin[gﬂjldn = 0, (B.81)
1 b (&) b (&)
-b (%)
b (&)
) palie J ncos[ﬂm Jcos[qnn}dn = 0, (B.82)
) b(E) b (&)
b ()
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b (&)

12 = J' nzcos[—j"“]sin [ﬂﬂ]d =0, (B.83)
i b(© " Lo )"
-b (§)

and

b (£)

L J 3. [jﬂﬂ] . [qﬂ'ﬂ}i
ia n’sin b6 sin ——b(é) n

-b (&)

(B.84)

Again, the first superscript on Jjq signifies which of the four possible combinations of trig terms occurs in the
integrand according to the following list: 1=sin sin, 2=sin cos, 3=cos sin, 4=cos cos. The second superscript

signifies what power 1 is raised to, i.e. 0=1'10=1’ 1=m, 2=’n2, etc.

Combining egs. (B.65) through (B.84) and substituting into eq. (B. 64) yields

1 1 ]

00 _mn o afl. .. w01,

KTiqu(g) ‘dqu'bd) i@ pdE’+dqu¢' P pdé*’dNJ. E‘D i¢pd§
0 0

]

1 ! 1 1
20 | nf 1., ., of 1 ., | 1 "
+dqjjd> @ pd§+djq.[ L pd§+dqu.E¢ id>pd§+dqjj o0 (BES)
0 0 0

1 1
IR . oof 1
+dqu‘—2¢>id> pd§+djq.[ — 9,045 |
b b
0 0
where

2 _
d, =0, (B.86)

n __4c’ejg(-1)"1

i . —, (B.87)
1 (q-j) (g+])

2.2, 2., .2 j+q
4 —
g® - _AoEjala+i) =D 7 (B.88)

. (@-12(q+j)’

16 2.2, Y NWEREYAL
g o 6o £jq(q"+j) (1) , (B.89)

8 (@-i)*(q+i)?
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0 _ _4n’Beig’ (-1)"**
9T (=) (g+))
_ao’eiq {n’ (o~ 2j’q* +i'q)) +4j* - 18i%" - 104"} (=1)’"*
(a-i)°(q+i)’

and

o _ 4wBelig (@’ +i) (-1’
(a-p*@+p?

J

L Ao’etia @+ (' (o'’ '’ +)) ~2)* - 4i'a’ - 2q) ()T

@-p*@+p*
If j equals q then the d 4 terms become

2 _ 2
dqq—ab,
21 _ 2
dqq—ae,
2.2
o
ay = - 25 ant+3) -w'pq’,
222
Qg = —— (g +3),
2.3
10 _ OE 2 2 2.2
dg = —6—(2nq +21) —Ben"q”,
and finally
2.4 2.2 4 4
e 22 22 neP o 2 2 nq
d® = =~ [2n°q* (3n°q* +35) +15] + 2n2q7 +3) + —.
a9 30[q(q)]3q(q)m2

(B.50)

(B.91)

(B.92)

(B.93)

(B.94)

(B.95)

(B.96)

B.97)

The KT.(]_):q term can be expanded, the integrations performed, and terms recombined in the same manner,
1

namely

Kyt = _[IFOE (&) dg

Tijpq iipa
0

(B.9R)
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where

OE 2 21 20 12 1 10
= = ‘ ¢Il<¢" ‘ "‘ * ‘ l|‘ X l‘ 1" . V. + h I.
Fupq(é) ra®" p+rJq(I> l(I)p+rthil) l‘ZI>p+rm<I)l<I> p+rjqd)]d)p+rjq<bld>

02 " 0l ) 00
+rjq¢j<b p+rjq‘2l>i<1> p+rjq(l>id>p .

P (B.99)

The r;q are given by

2 220
I = © qu, (B.100)
21 _ O 1 10
Mg = n; (2q-1) [asqu —bijq], (B.101)
20 n’ 20,2 2. 22 21 2ny 20
L9 =—;b—4 (2q-1)“[a’e qu —2aeybqu+b Bqu]
(B.102)
TOE 1t 10
—? (2q-1) [aequ —b'ijq] ,
12 _ 2mayj 4 n
o= Leelg-brLg). (B.103)
1 21’0 £y 31
@ =" o j(2q-1) [ou—:qu—Zbijq], (B.104)
10 o 2..3.3.43 22 2 25 41 3. 40
r. = j(2g-1) " [o’e’ LT —30°e"byL. " + afeb’L, —b L. ]
=, bt iq ia ja iq (B.105)
21t20£€2. 32 31
+ o j(2q-1) [aequ—Zbijq] ,
02 A PP 2 20p 20, , 2TOIE 41 40
g =~ ? [a'e qu —2aeybqu +b Bqu] + o j[(XEqu —bijq] , (B.106)
01 7552 3.3, 13 2.2 12 2, 1 gy 10
L =_;i)—6J (2q-1) [a'e qu -3a’e bijq + apeb qu -b 5qu]
- (B.107)
2n ",
+ j(29-1) [@eL) -2byL ]

bS
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and

2 3
00 2n°oE

. 32 31
fq = 5 j(2g-1) [(IEqu —ZbYqu]
3
+ = e7j(2q— 1) {’¢’ [2jL]; - (29-1)L;.] ~30%e’by[2L}; - (29- 1) Lj7]
2ab (B.108)
2n.y 1 41 3g rnay 10 40
+aPeb’ [2jL, - (2q- 1)L ] -b°8[2jL, )~ (29~ L] }
.2 2, 4 4524 3.3, 223 22,20y 22 3,21 | 420
+A"2h8J (2q-1)"[oe Ly -4 e byl +20°e’b Bqu—4(X£8b L +b' L],
The L;q are the integrations over 1| across the width of the plate, given as
b (&) .
: co_1yita
L;£= I sin[ﬂm:|sin[(2q—l) il :|d'q = - S.b"( D - , (B.109)
b (&) 2b (8) n(2q-2j-1) (2q+2j-1)
-b (&)
b(§)
L = j nsin[‘mn]sin[aq—l) dl! :Idn =0 (B.110)
1 b (&) 2b (&)
-b (&)
b (&)
L2 = j nzsin[ﬂ}sin[(zq—l)—’tﬂ-—Jdn=
9 b (&) 2b(E)
—b(é) (Blll)

—8b% {8q(q—1) [7* (22 -2q-4j>+1) - 12] +8j2[n? (2" — 1) —4] +n° - 24} (-1)’*9
n(2q-2j-1)%(2q+2j-1)°

b(®)
Lo J’ 3 [jnn] [2_1 ﬂ}d -0, B.112
i n’sin 3 sin| (2q )2b(§) n ( )
-b (&)
b (&) ]
L J‘ . [J’"\] [2 -1 .ﬂ}d =0, 113
i sin b &) cos| (2q )2b(§) n (B.113)
)
L = h]?nsi"[jnn}cos[(m—l) a Jan = 2% (29-1) ()" (B.114)
Ja b (&) 2b (&) n(29-2j- 1) (2q+2j- 1) % '
-b (%)
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b (E) .
L2 = 24 [J“"J [ ] =0, B.11
ia J N °sin b(E) 2b(§) n ( 5)
b(®)
b (&)
23 N
= —— |dn =
i [t Jeee a0 g Jon-
) (B.116)

96b%j (29— 1) {8q(q—1) (7" (29" —2q - 4j*+1) —8] +8j’[n* (2’ = 1) =8] +n’ - 16} (-1)'*7
*(2q-2j-1)*(2q+2j-1)*

b (&)
L2 = J’ 3'[”“} [2_1_7‘1_}, -0, 1
. e FYGE e ATyl (B.117)
-b(8)
Li: = j 'qcos|:J n:|sm|i(2q—1)—}dn = — q : 3] :
-5 (&) b® 26(8) n(2q-2j-1)*(2q+2j-1?*  (B.11¥)
b (&)
32 2 jnn
e = "Dy |dn =0 119
Liq _[ n cos[b(g)} I:( q )2b(§)} n (B.119)
-b (&)
b (&) .
M I 4b2q-1) (1!
s - dn = B.120
B .[ °°{b(§)J [( 1 ’zb(é)J "= a2 Qe <) (B.120)
-b (&)
b (&)
41 jnn
O =0, B.121
i Jncos[b(é)} [ 2b(§)} N (B.121)
-b (&)
b (&)
42 _ 2 jnn i )
Lig = jﬂ Cos[b(&)] [( q )—Zb(g):'dn
o (B.122)

_4b’(2q-1) {8q(q-1) [%*(2q°~2q—4j’+1) —4] +8j’[x* (2j°~ 1) = 12] +n’ -8} (1)’ "¢
(2q-2j-1) (2q+2j-1)°
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and
b (&)
- ralmeor oo
fo [ e Y i RO
-b(&)

Combining egs. (B.65) through (B.84) and substituting into eq. (B. 64) yields

1
Tup (E") = e J- @ d)" d&+e21‘[d)" 4 d§+ J. B®"id’pd§

0 0 0

o1 1
12 f e aon 1 . 10 . nfl "
+e DD pd§+°qu‘ ~@', @' dite; J.—(I)id)pd§+chj Bd)iq) o4&
0 0

]
+e! -I—<I> @' dE+e; I loo dg
q | b b3 iTp »
0 0

where

22

€jq = 0,
a_ Boyi(2q-1) (=D
T (29-2j-1) (2q+2j-1)

o _ 8arej(2q-1)[(29-D*+41 -D'"° _ o
; (2q-2j-1D*(2q+2j-1)° "

no_ 320yej(2q-1) [(2q~1)2+4j%) (=1)’*9
"‘ (2q-2j-1)2(2q+2j-1)°

10 _ 2128 (29 - 1) (1) *¢

T w(2q-2j-1) (2q+2j-1) |
+20ve% (29— 1) {4q(q—1) (4q(q-1) [3n* (4q" — 4q - 8]’ +3) - 8]
+a82 [R2(j—1) (j+ 1) —6) +97° - 16)

+8i212(37% = 16) i =312 =361 +3n° -8 } (-1)' "9/ [(2a-2i- 1D’ (2a+2i - 1)’1»

(B.123)

(B.124)

(B.125)

(B.126)

(B.127)

(B.128)

(B.129)
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O 818 (2q-1) (-1)’"°
197 o(29-2j-1) (2g+2j-1)
2. 2.2 .2 2 . . (B13O)
—8ayej(2q-1) {8q(8q—-1) (2q(q—1) [3n"j"—4] -3} [n"(2j-1) (2j+ 1) +12] - 4)
+i2 (82 377 (2j7 - 1) 4] 4302 =72) -4} (=) [(2q-2j- 1)} (2q+2j- 1] >

and
% = _2ﬂ25€j3(2q— 1) (492 —4q+4j%+ 1) (~1)I*9
" a(2g-2j-1)3(2q+2j-1)*
201§ (20 - 1) ((2q-1)2+4j%) {4q(q-1) (4q(q-1)

(B.131)
[3n%(4q> —4q+4j° +3) - 8] -8j2[3n72j% + 1 + 88] +9n>—16)
+4i% (412 130 (2j - 1) (2j+1) —8] =37%-176) +3n° -8 } (-1)!*9
/1(2q-2j-1)*(2q+2j-1)*
Because the integrals associated with these terms have no degenerate cases for j equals q, special
consideration need not be given for €qq terms. »
Due to the symmetry of the total stiffness matrix the following relationship must be true
EO — w OE
Kting &) = Koo &) . (B.132)
This implies that
K2 = [F 5z (B.133)
Tijpg - ijpq - !
0
where
EO _ 224 aw 1250 a0 021, P} [ N, Ol
Fiqu(é) = 0" 0" 410D+ DD +r DD p T @D 1 DD, B.134)

20 " 10 , 00
+ Tgi (Did) b + Tyi (Di(b ot Taj (IJi(DP.

At this point the integrations over 1 are complete and the integrations over  must now be performed. The
integrands of these integrals have vastly different functional forms depending on the boundary conditions on
the ends of the plate. For simply supported boundary conditions on the ends of the plate, ¢; and ¢y, are given
by
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¢, = sin (ing)
(B.135)
p = sin (pm&)
Making this substitution, the integrands appearing in eqs. (B.50), (B.85), and (B.124) are given by
Lo0.de = e + M (B.136)
b3 itp - ip ip :
0

tp - 1 10 24,22 21 3,20

J gzcbiq)pd& = 2e(eM;, + M, ) +np (€ M/ +2eM + M) (B.137)
0
11 ”
J- 0,07dE = —n’p” (E°M]> + 3€7M,7 + 3eM) + M) +2€” (M + M)
0 b , (B.138)
+4nep (°M2 + 2eM]) + M)

- _ 1 10 VI ) 21 20

J. ;ﬂ)iq)pdé = 2e (eM; + M) + i (e'M +2eM + M) (B.139)
0
' ‘0 dE = 4e” (eM!! + M%)
_bq)i p - ip ip
0 (B.140)
23,22 20 4420y g o20 432 3 30
+2ne{p(e Mip + ZsMip + Mip) +i(€ Mip + ?.sMip + Mip)]
+ nzip (e3M?p3 + 3£2Mf§ + BeM?; + M?::) )
1. «
J El;pi«ppdr; = —2n%ep’ (M + 3’M[2 + 3eM,) + M}) +4€” (M) + M)
0

(B.141)

+ 8ne2p (t':zM.lzp2 + 2sMi2; + Mizg)
—mlip? (M2 + 46™M + 66TM2 + 4eMj) + Myy) +2me’i (€M), + 2eM{; + M)

+an’eip (€MD +3e’M2 + 3eM + M)

.
I £¢i¢pd§ = % (M) + 36PM,” + 3eM) + ML) +2€7 (M + M)

0

(B.142)

. 1
+ 4mei (ezM?: + 2.<5Mi2p + M?E) ,
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..
J El>¢i 0,d& = - 2n’ei” (€'M]) + 36’M,” + 3eM, + M) +4¢€” (eM, + M, )

(B.143)

0
2., 254022 21 20
+8ne’i (€ Mip + 2€M,-p + Mjp)
- ni’p (e'M;,) + 46 M) + 6€’M, + 4eM) + M,)) +2me’p (€'M]) + 2eM + M)
+ 4n2€ip (£3M?s + 382pr2 + 3er; + Mf:) »
and

ll " 4.2 2, 5,415 4, 414 3,413 23412 11 10
J‘ gpiq)pdé =nip (€M + 56 M, '+ 106"M; '+ 10e"M; + 5eM; ) + M, )
0
2.2 ,.2 2 3,413 2, 412 11 10
=2e"n" (i"+p°) (e Mip + 3¢ Mip+355Mip +Mip)
—an’eip [€! (ML, + pM}y) +4€’e* (iM[y +pM,)) +6€ (iM], + pM_)
+4e(iM, +pM;) + (iMJ)+pM,) ]
3,2 22 . a2 21 aa3ly s wg20, -q 430
+ 8me” [e (pMip +1Mip) +2e(pMip +1Mip) + (1pMip +1Mip)]
+ 16n232ip (e3M?§ + 3£2M?: + 3£Mf; + M?g) )

The M;,, are the integrals over § as given by
1
10 . . . .
M, = Jsm (ir&) sin (prE) dE = O;i=p

0

1
3 _1yitp _
M =J§sin(in§) sin (pn&) d§ = Z;P(( 1)2 1)2;i¢p
0 T (p-i)"(p+i)
1.
- 2’ =p,
1
B _ i+p
M:‘f:‘[&ZSin (ink) sin (pn&) d§ = g 4ip ( 21) 2;i¢p
0 n°(p—i) (p+i)
2.2
=.2np——3,|=p ,
121t2p2

(B.144)

(B.145)

(B.146)

(B.147)
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Mi]s = J‘§35in (ink) sin (prE) dE
0

_ 6ip[p (( (p7-2i") —4) (=1)""P+4) +i’((Ri=2) (mi+2) (-1)'*P+4)) iep B148)
nt(p-i)*(p+D)°

xpl-3
= 12 TP
8n°p

1
M, = J'g“sin (in€) sin (pnk) d§
0

_ 8ip [p* (r? (p2-2i%) —12) +i’ (n%i* - 12)] (-1)”";i ‘p (B.149)
m (- (p+i)’
_ 2n’pt (nPp*-5) + 15 .
20m°p* ’

*

1
M, = J.issin (ink) sin (pn&) d&
0

= 10ip { [p* (n*p* — 24n?p + 72) +4i’p* (- n’p* + 61°p” + 60) +nki'p? (6n’p? —4antit+ 24% 150)
+ ittt = 2422 4 72) 1 (<1) PP - 12(6p2 +2i%) (p*+31) 1/ (% (p-1) S (p+D)®);i#p

_apren’p’ ) +45 . _

247t4p4 ’

1
H _ i+p _
M?: = J.(Si“(iﬂﬁ) cos (pnk) dE) = ey "-n L
0

n(p-i) (p+i)’ P (B.151)

Y i+p
D 7 ep)

& (sin (i) cos (pr&) d&) = == s
p—i) (p (B.152)

21
M. =
ip

© Gy —

1.
=-—;i=p,

4np
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M;” = Ir;z (sin (ink) cos (pnE) d&)
0
_ i[p2((n? (p2-2iY) —6) (=1)*P+6) +i2 (%2 -2) (1)1 *P+2) ] . (B.153)
w*(p-i)’ (p+i)’ ’
- Lo
" 4o’ P
1
My, = Jﬁ (sin (in€) cos (pnE) d&)
0
_ilp? (e’ (p*-2i) - 18) 18 +i*(w'i’-6) ] (-1)'*° iep (B.154)
© (p-i) (p+i)? ’
—2n?pi—3
.y M B
8n'p

1

M _[E,“ (sin (in€) cos (pn&) d&)
]

=i { [p* (n*p* - 36m7p? +120) +4i%p* (- n'p* + 157°p” + 60) + 2n°i*p? (3n’p* - 21*i® - 6) (B.155)
+if(ntit - 12072+ 24) ] (1) PP 24 (5p* + 10%%% 1/ (7P (p-1) P (p+i) )i #p
3 —nzpz— 3.

’1 = p ’
41t3p3

1

M, = Icos (in€) sin (prE)dE = M, (B.156)
0
1

M?; = jf,cos (in€) sin (pn€) d§ = M3, (B.157)
0
1

M) = J-fgzcos (ink) sin (png) d§ = ML, (B.158)
0
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1

M;, = j€3cos (ing) sin (pnE) 4§ = M7 .
0
1

M;, = Jé‘cos (in€) sin (pnE) d§ = M3}
0

1
M?: = jcos (in&) cos (pnE)d§ = 0;i#p

0

B =

2 .2 _ p+i_
M =J§cos(in§) cos (prE) dE = (p_+1) (1) Dizp
0

n (p-i)* (p+D)*

i=p

Sl

2(p2+ i2) (_1)p+i.i

2 2 2’ #Pp
n(p-i) (p+1i)

1
M2 = J.E_,Zcos (ink) cos (pnk) df =
) ,
_2mpiH3
121t2p2

1
M, = j§3cos (ink) cos (pnk) d&
0

3P —itp-itpt ) ()P -2t 6i% 4 pY) (-DPY'-1] .

w(p-i) e+

n2p2+3 .

= ;l=p s
81’

(B.159)

(B.160)

(B.161)

(B.162)

(B.163)

(B.164)
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1
M?: = j&“cos (ir&) cos (pnk) dE
0

_4 [n? (i®-i'p? = i’p*+p%) -6 (i*+6i%p +pH) ] (-1) P”;i ‘p (B.165)
wt(p-i)*(p+i)°
_2n’p’(n’p’+5) - 15, _
20m°p* ’

and finally,

M?: = I&scos (in&) cos (pn&) dE
0

=5 [1:4 (i10_3i8p2+2i6p4+2i4p6_3i2p8+p10) (_1)p+i

—120% (i + 4i%p® - 10i*p* + 4i%p° + p*) (-1)P*

+24 (I8 +15i'p2+ 1514+ %) (D = 1) 1/ (7 (p-D) ¢ (p+1)®);i#p
_n’p(2n’pl+15) - 45
- 24n’p*

(B.166)

For clamped boundary conditions on the ends of the plate, ¢; and ¢, are given by

¢, = cos [ (i-1)mE] — cos [ (i +1)nE]

(B.167)
¢, = cos [ (p—1)ng] —cos [ (p+1) nE]

Making this substitution, the integrands appearing in eqs. (B.50), (B.85), and (B.124) are given by

1 411 421 431 441 410 420 430 440
J-b—;mpdg = e(M ' - M -MP M + (M0 - MY - M0 M) (B.168)
0

1.
J. ;2¢1¢pd§ =-me’ [(p+ 1) (M = M%) = (p—1) (M) =M1 ]
0

“2mel(p+ 1) (M =M = (p=1) (M =M (B.169)
—n((p+1) (M°-M") - (p-1) (M} -M )]
+2e" (M - M - MO M) +2e (M0 - M - M0+ M)
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.
J 10,670 = —ane’ [(p+ 1) (M3 =M =~ (p= 1) (M =MI)
0

-gne? [(p+ 1) (MY =MD - (p- 1) (M =MD
—an[(p+1) (M0 =M% = (p- 1) (M~ M) B.170)
el [(p+ DA ML -ME) - (p- 1P (M - M)
S [(p+ 1) (M =M = (p— 1) (M7 = M)
—e[3n% (p+ D2-26") (ME - MDY +e (307 (p— 1) - 2€7) M - M
(=P (p+ 1)2-267) (ME0 - M) + [P (p- 1) 7 - 267 (M - M)
- . .
J' gpi¢pd§=—ne2[(x+ 1 MEP =M - (i- D) (M? = M)
0
- 211 221 . 231 241 '
—ame[(i+1) (M, -MP) - (- 1) (M7 -M)] (B.171)
—x[ G+ 1) M5~ -M2%) - (i-1) M2 -M29)]
2 411 421 431 441 410 420 430 440
+2¢ (Mip —Mip —Mip +Mip ) +2.€(Mip —Mip —Mip +Mip )
133 143

LB N 23, . 113 123 .
J;}Pi¢pd§=“5 [G+1) ((p+ DM - (p~ DM, )= (i-1) ((p+ )M, -(p-HM; )]
0

#3 [(+1) ((p+ DM = (p=DMP) - (1= 1) ((p+ DM’ =~ (p= DMD)]
IR [G+ D) (p+ DM = (p- M) = (=D ((e+ DM = (- DM
# LG+ D) ((p+ DM = (p- 1M = (=D ((p+ DM’ = (P~ DM
2 [+ 1) (M2 -MID) - (i- 1) (M - M)
2 : 21t 221 . 231 241 (B'172)
—ane’ [+ 1) (M, =M = (1= 1) (M7 - MD)]

Same[(i+ 1) (MEO-M2%) — (i-1) (M -M)]

—ame[(p+ 1) (M -MD) - (p= 1) (M - M)
_ane® [(p+ 1) (M =MLY = (p—1) (Mp' =MD
“ame[(p+1) (M0 -M") — (p—1) (M° = M0)]
+4g’ (M - M - MP M) +4e? (MB0 - M2 - M0+ M)
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f’w‘z 0,48 =4m’ [ +1) ((p+ DML = (p- M) = (1= 1) ((p+ DM = (0= DM}
b
0
+120% [+ 1) ((p+ DM - (p- M) = (i-1) ((p+ 1M}~ (p~ DM

+120%° [+ 1) ((p+ DM - (=DM = (1= 1) ((p+ DM = (p- ) M/*)]

+are [+ 1) ((p+ DML~ (p- M) = (i 1) ((p+ DM~ (p- ) M}™))]
+re L+ D+ DML - (- DMDY) = (=12 (G+ DME = (i- ) M2
+4e [ (p+ 1)2((i+1)Mi2;3— (i-l)pr”) - (p—l)z((i+1)Mi2:3— (G~ 1)Mi2:3)]
+6ne’ [(p+ 1) ((i+1)Mp’ = (i-1) ML) - (p- DG+ DML = (i- )M ]

+41t3£[(p+1)2((i+1)Mi2;1— (i-1)M?§‘) - (p-DI((+ DM - (i—l)M?:’)]

ip
+0 [P+ D G+ DM’ = (-1DME") — (p- D ((i+ DM~ (i - MM ]
“2met [(i+ 1) (M2 - M) = (= 1) (ML - M2 ] (B.173)

—4me [ (i+1) (Mf;‘ -Mf:‘) - (-1 (ij‘ -Mh]

—2me? [+ 1) (M0 - ME%) - (i= 1) (M2 - M2))
-8re' [ (p+ 1) (Mp"-MYY) - (p- 1) (M) - M) ]
—16me’ [(p+ 1) (M3 =Mp) = (p-1) (M2 = M) ]

—8me’ [ (p+1) (Myy* ~ M) - (p~ 1) (M} - M%) ]
-—27!284[ (p+1)2(M:‘;3_M:1:3) _ (p_ I)Z(M?:S—MT:B)]
—6m%e> [ (p+ 1)2(M:;2_M?§2) —(p- 1)2(Mf§2—Mf:2)]
—61'[282[ (P+ 1)2(M411 _M43l) _ (p_ 1)2(M421 —'M:‘:l)]

ip ip ip
20’ [ (p+ D2 (ML’ - M) - (p— 1) (M - M) )

11 .
J- épi 0,48 = —4ne’ [ (i+ 1) (M7 - M) = (i—1) (ML’ -M7)]
0

—8me’ [ (i+1) (MA' - M) - (i-1) (M2 - M2 )
. 210 220 . 230 240

—Ane[(i+1) (M7 =MP") - (i-1) (M° =M )] (B.174)

- [+ )P MG - M) - (- 1) (ME - M) )

SE [+ 1) (MY - M) - (- 1) 2 (M2 - M) |

—e[3n?(i+ 1) -2} (M?;:l _M?:l)+€[37t2(i— 1)?-2¢7] (M?:l _M?:])

- ["*(G+1)2-2¢} (M’ - Mj'j“) + [ (i-1)%-2¢Y (M;‘:‘}— Mf:")
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and

f’;lg;¢;d§=4n2e‘[(p+ DG+ DML = (= DMP) = (p= 1) ((+ DM = (= DM
0

120 [(p+ 1) ((+ DM - (- DM = (p- D) (G+ DM = (- DM

+120% [(p+ 1) (G+DMP - (-DM) - (p-1) (G+ DM = (=DM

+ane[(p+ 1) ((+ DM = (=DM - (p- 1) (G(+ DML’ - (i-DM)]
“Bmet [ i+ 1) (M22 M) — (- 1) (M2 - M2
—16me’ [(i+1) (ME'=MEY) - (i=1) (M - M)

~8me’ [(i+1) (MD° =MLY = (i-1) (M’ -MJ9)]

R [(p+ D) (G+D™MY - (=1)MPY - (p-1) ((+1)’MY* - (- D’MPH]
+4me [(p+1) ((i+ DM - (=DM = (p= 1) (G+ 1M’ - (i - 1M ]
+6m%E [ (p+1) ((+1) M- (- 1)°M) - (p-1) ((i+ DM = (i- 1) M7 @173

+am’e [ (p+1) ((+ )M} - (i—l)2Mi3:') - (p-1) ((i+ DM = (i-1)’M)D)]
+0[(p+1) ((+ D M- (- 1)PMR) = (p- 1) ((i+ DML = (i- 1) 'M)]

“2met [(p+ 1) (MU2 M) - (p—1) (M - M) ]
~ame® [(p+1) (M =M — (p-1) (M2 - M)
—ame? [(p+1) (M- M) = (p—1) (Mpr' ~ M)

et [+ D) (M - M) - (- DM -MEH)

—6m’e’ [ (i+ 1) (M7 - M) - (i- 1) P -M )
~eme? [(i+ 1) (M - M) - (i - 1)° (M M)

—an’e [(i+ D2 (ME-MP%) - (- 1) (P’ -MED)) -

The M;,, are the integrals over x, which have similar form to Eqs. B.145 - B.166.
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Details of Assembling Stiffness Matrices

The total and geometric stiffness matrices, [K;] and [K], are each composed of four smaller

submatrices. Specifically,

| )
LEE| | OF ]VEE OE
(K] = {_T_Ik_T_ [Kg) = ks tka_ _ (C.1)
Lkgo: k(T)o Lkgo: kgo

Each element of a submatrix is the result of integrating a combination of derivatives of w, in the series
approximation for the out-of-plane displacement of the plate, over the surface area of the plate. As such,
each element is a function of the plate geometry, material properties, and the coefficients i, j, p, and q. The i
and p indices are from the sets of functions of x, the coordinate along the length of the plate

(q>i|;"’= L2 ¢p|:= L2 ...) for w and dw, respectively. The j and q indices are from the sets of functions of y,
the coordinate across the width of the plate v, (fj) I; . l"j (g) |J°"= L2

v, (f) [;’: g r,(g) L": Lo Since ¢, ¥ and T are trigonometric functions, the resulting integrations
over the period of these functions yield different results that depend on the particular combination of (i,p)
and (j,q). Special cases occur because of the orthogonality of the trigonometric functions, and these special

cases are referred to as degenerate cases. As examples, consider the following cases for simply supported

ends:

1

J-cos (in&) cos (prE)dE = {b _= P (C.2)
0 izp
0

and
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b2
b (&) - J =q
*(2-1)
. 41| n
I ncos[(z } [( q- )——}in - ©3)
25 &) 26 (6) - "
b (&) -b*(2j-1) (-9 ieq

n(q-j) (g+i-1)

Thus, for simply supported cases there are four possibilities for combinations of i, j, p, and q: i = p and
j=q,i=pandj#q,i#pandj = q,and finally, i #p and j # q. To demonstrate how this is handled in
the computer code, the [KgE] {wE} multiplication is expanded. Remember that in each row of the matrix,

p and q are fixed indices while i and j are free indices. The expression is

3 3
_ wE
upa] {WU} 2 2 {A iqualszq * Bupqa + Cupquq + Dupq W ij

i=1lj=1

3 3 3 3
_ E
- quwpq + zBquij + Zcipqwiq + 2 zDiqule
j=1 i=1 i=lj=1

iza izn izniza

(C4)

The A,q are coefficients resulting from integrations performed for i = p and j = g, the By, are coefficients
resulting from integrations performed for i = p and j #q, the Cjpq are coefficients resulting from
integrations performed for i # p and j = q, the Djjp, are coefficients resulting from integrations performed
for i # p, and j # q. The submatrices are constructed row-by-row in the computer program with p and g
being fixed values for each particular row. Four procedures are implemented to fill the columns of each row.
The first process computes the single term Apg, which is always on the diagonal. The second process
computes the terms By,;,. To do this, a loopoverj,j = 1,2, ..., N, is initiated (N being the number of terms
in the series approximation for w). For each execution of this loop, as long as j #q, Byq is computed and

loaded into the appropriate column. This appropriate column is computed according to:

column =row—q+ 1 first pass through loop

column = column+1  indexed for subsequent passes.

(C.5)

The third process computes the terms Cjjq. To do this, a loop overi, i = 1,2, ..., N, is initiated. For each
execution of this loop, as long as i #p, Cjpq is computed and loaded into the appropriate column. This

appropriate column is computed according to:
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column = q

column = column + N

The fourth process computes the terms D;

piq’

first pass through loop

Appendix C: Details of Assembling Stiffness Matrices

(C.6)

indexed for subsequent passes.

To do this, two nested loops overiandj, i = 1,2, ..., Nand,

j = 1,2,..., N are initiated. For each execution of these loops, aslongas i # p and j # q, Djpjq is computed

and loaded into the appropriate column. This appropriate column is computed according to

column =1

column = column + 1

first pass through loop

(C.7

indexed for subsequent passes.

For N=3, a completely filled submatrix having size N% x N? has the structure of equation (C.8).

-
——

pola=t Ay
p=la=2 B,
p=14=3 B,
p=2 g=1|Cp
p=2 q=2 Dy
p=2 q=3 |dyy;
p=3 q=1|Cyy
p=3 q=2 Dl312
p=3 q=3_D1313
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