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PREFACE 

The Third International workshop on Squeezed States and Uncertainty Relations was held at the 
University of Maryland Baltimore County on August 10-13, 1993. This workshop was jointly 
organized by the University of Maryland and the Lebedev Physical Institute of the Russian 
Republic. These workshops were initiated by Y. S. Kim of the University of Maryland, College 
Park. The first of these workshops was held in 1991 at the University of Maryland, College Park 
and the second in Moscow in 1992. 

The purpose of these workshops is to bring ational selection of scientists to 
discuss the latest developments in branches of physics, and in the 
understanding of the foundations third Workshop special attention 
was given to the influence that quantum optics is having on our understanding of quantum 
measurement theory. 

The fourth meeting in this series will be held in the People's Republic of China. The principal 
organizer will be Q. C. Peng of the Shanxi University at Taiyun, P.R.C. 
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PROPERTIES OF TWO-MODE SQUEEZED NUMBER STATES 
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Abstract 

Photon statistics and phase properties of two-mode squeezed number states are stud- 
ied. It is shown that photon number distribution and Pegg-Barnett phase distributioil for 
such states have similar (AT + 1)-peak st.ructure f o ~  nonzero value of the &fference in the 
number of photons between modes. Exact analytical formulas for phase distributions based 
on different phase approaches are derived. The Pegg-Barnett phase distribution and the 
phase quasiprobability distribution associated with the Wigner function are close to each 
other, while the phase quasiprobability distribution associated with the Q function carries 
less phase information. 

1 Introduction 
Recent developments in quantum optics have led to  new proposals t.o generate nunlher states 

of the electromagnetic field using conditioned measurements teclll~iques [l] or the properties of 
atom-field int.era.ctions in micro~vave cavities in the micronlaser [2]. The precisely defined two- 
lnode photon number state I:lr + q, N) can he used as an input field in a squeezing device, such 
as a parametric amplifier. The model involves a signal and an idler modes driven by a. classical 
pump. The Hamiltonian for the two coupled nlodes is taken to be  [3, 11 (we set tl = 1) 

- t - t  fi = wa&t& .+wait& - i{g6&exp(iwt) - g'b a exp(-id)},  

where w is the pump frequency and g is the effective interrnode coupling constant. If we consider 
exact resonance w = w, +wb then the Hamiltonian may be transformed into the interaction picture 

In this picture the time-evolution opera.tor is 

exp(-iHrt) = esp{-gtbi + g=t9bt}. 

'and is immediately identifiable as a time-dependent two-mode squeezed opera.t.or: 

with squeezing parameter < = gt. The output  state a t  time t will be the two-nlo(le squeezed 
number state 



The properties of this state are phase dependent and it should be interesting to study them. 
The problem of the quantum description of the optical field phase has been the subject of 

considerable study for many years [5]. This is connected with the difficulty in constructing a 
Hermitian phase operator. Within the past few years the notion of phase variables in quantum 
systems has been greatly clarified. Pegg and Barnett [GI-[S] have shown how such an operator can 
be defined for quantized electromagnetic fields. This new formalism makes it possible to describe 
the quantum properties of optical phase in a direct way within quantum mechanics on the basis 
of the Hermitian phase operator and its eigenstates. 

A quite different approach to  the concepts of the phase variable has also been widely used 
in quantum optics [9]-[11] and which involves quantum quasiprobability distributions such as 
the Q function and the IVigner function rather than Hermitian operators and their eigenstates. 
These quasiprobability distributions depend upon the complex eigenvalue a of the non-Hermitian 
annihilation operator, which can be expressed in terms of a radial variable lcvl and a "phase" 0 
both of which are real. If we integrate over the radius, the resulting distributions are periodic 
in the phase angle and, for the most of states they satisfy all properties required by a proper 
phase distribution. In recent papers, the Pegg-Barnett phase distribution have been compared 
with those distributions obtained from the \Yigner and Q functions by integrating them over the 
radius for the multi-photon down-conversion [12], displaced number states and displaced thermal 
states [13], squeezed number states and squeezed thermal states [li]. In this paper we  extend 
such comparison onto two-mode case. 

The purpose of this paper is to study photon statistics and phase properties of the two- 
mode squeezed number states which can be considered as a natural generalizat ion of a two-mode 
squeezed vacuum state. 

2 Photon number statistics 

Consider two modes of the electromagnetic field, which have annihilation operators 6 and 
9. A two-mode squeezed number state (TMSNS) is defined by acting with the squeeze operator 
S(r ,  9) on the two-mode number state IN + q, M), that is 

where q is the difference in the number of photons between two modes and 

In problems in which photons are either created in pairs or destroyed in pairs the \:slue of q remains 
constant. N0t.e that in many applica.tions where pair creation occurs starting from vacuum, the 
parameter q will be zero. The number state decon~position of TMSNS can be writ.t,en as 



where 

(tanh r)N+n 
b, = (N!(N + q)!n!(n + q)!)'I2 

(cosh r)l+q 

and 

with y being a phase of squeezing. The above amplitude is obtained by using the factored form 
of the two-mode squeeze operator [15] 

$(r, y )  = (cosh r)" exp[-ltite2" tanh r] 

x exp[-(ltb + it&) ln(cosh r ) ]  e ~ ~ [ h k - ~ ' "  tan11 r]. ( 6 )  

' The mean number of photons in the TMSNS is 

The joint probability to find n, photons in mode a and nb photons in mode b is given by  

Using (3) and (4), we get 

where 

As we can see in Fig. 1, photon number distribution Pq(n) has an oscillatory behaviour. Such a 
behaviour is a consequence of interference in four-dimensional phase space [lti]. \Ve \vould like t.o 
emphasize a presence of ( N  + 1) peaks in the photon number distribution. The sinlilar behaviour 
of the photon number distribution was observed for the displaced number states [IT]. It should 
be stressed that such a peak structure for TMSNS can be revealed only for those values of the 
parameter q greater than a certain number. This number depends on the value of .rV and for large 
i'V we ought to  choose large values for such a number. Otherwise, some adjacent peaks in the 
photon number dist.ribution might overlap and thus ( N  + 1)-peak structure cannot be certainly 
discerned. 



FIG. 1. Photon number distribution for the two-mode squeezed number state with r = 0.5, q = 50 
and (a) N = 0, (b) N = 1, (c) N = 2. 



3 Quasiprobability distributions 
In this section we exanline the representation of ThlSNS by quasiprobability phase-space 

distributions. For convenience we choose the squeezing parameter to be real, [ = r. The two-mode 
quasiprobability distributions are formed by a natural generalization of those for the single-mode 
fields [IS]. The Glauber-Sudarshan ?' function, the \I1igner function and the (2 function are 
obtained by evaluating t.he Fourier transforms 

from the characteristic functions 

where s = 1 if V = P, s = 0 if k' = 11- and s = -1 if I/' = Q. \\e \vould like t.o llotice that 
there no exists well-defined Glauber-Sudarshan 'P function for states under consideration owing 

. t.o t.heir nonclassical nat.ure [IS, 191. 
According to ref. PO], the Q function can alternatively be defined as 

From this definition we see that the Q function is always non-negative. Using the definition of 
t.he density ma.trix of TMSNS 

and the fact.ored form of the squeeze operator ( 6 ) ,  we obtain 

10 129 
Q(Q,@) = K2(Cosh r)4.V+29+2 esp[-(a3 + ~ ' 3 ' )  tanh r] exp[-(la 1' + 1312)] 

.?I .v (i sinh r ) n + k . ~ ! ( ~  + q)!(ax,.j=)"-n(a J)-\'-' 

n!k!(N - n)!(N - k ) ! ( N  + - n)!(:\' + - k)!. 
n=O k=O 

As to t.he \Viper funct.ion. it can also be represellted as [20] 

khere D,(y) and Db(y) are the displacement operators for modes a and b respectively. I t  is 
straightfor\vard to evaluate the \Viper function using eq. (14) and the operator tralisfornia- 
tions (151 



and their Hermitian conjugates. We find a quite simple analytical form for the Wigner function 

4 
= -(-l)q exp[-2 cosh 2r(laI2 + 1/312) - 2 sinh 2r(cra + a*Pa)] w(%/3) r, 

x LN ( (2  sinh r l ~ l ) ~  + ( I  cosh ~181)~ + 2 sinh 2 r ( o 3  + oap')) 

X E . ~ + ~  ((2cosh rial)* + (2sinh ~ 1 ~ 1 ) ~  + 2 sinh 2r(aB + asp))  . (19) 

where L,(x)  is the Laguerre polynomial of order n. From eqs. (15) and (19) one can see that the 
Q function and the Wigner function depend on the sum of the phases 8, + Bb only. This fact clearly 
exhibits the correlated nature of the two-mode squeezed number states. In the next section we 
will employ the quasiprobability functions in consideration of phase properties of these states. 

4 Phase distributions 

Now we employ the two-mode Pegg-Barnett phase formalism ['21], [2'2] to find the phase 
distribution function for such states. This formalism is based on the observation that the Hermitian 
phase operator can be defined in a finite-dimensional state space, spanned by the number states. 
The main idea of the Pegg-Barnett formalism is to evaluate all necessary expectation values on 
this finite-dimensional state space, and only after that the dimension of the space is allowed to  
tend to infinity. Having the number state decomposition (3) of T3ISSS we can determine the 
continuous joint phase probability distribution for the continuous phase variables 8, and Ob, which 
is given by 

where b, are given by Eq. (4). The distribution (20) is normalized such that 

One important phase property of TMSNS is seen directly from the form of formula (20). It is 
clear that the joint probabi1it.y distribution depends on the sum of the two phases only 

This means the strong correlations of the two modes. Integrating P(8,: O b )  over one of the phases 
gives a marginal phase distribution P(8, )  or P(Ob) for the phases 8, or Ob.  which are uniformly 
distributed 



Thus the phases 8, or eb of the individual modes are unifor~nly distributed, and the only nonuni- 
formly distributed phase quantity is the phase sum O+ = 8,+Ob. In Fig. 3 n7e plot. the Pegg-Barnet to 
phase distribution for TMSNS in polar coordinates for different values of parameter q. For nonzero 
values of q the phase distribution shows ( N  + 1)-lobe structure, and the greater q the nlore dis- 
tinct lobes become. However, when q = 0 the phase distributioll has only onc lobe for all .IT. It 
is important to notice a remarkable resemblance in a behaviour of the phase distribution and the 
photon number distribution for TMSNS: they both display the (N + 1)-peak structure. Another 
significant feature of the joint phase distribution is a property of the phase locking - the phase 
sum is locked to the argument of the squeezing parameter in the limit of large squeezing [21, 231. 

Now consider phase quasiprobability distributions which can be obtained by integrating 
quasiprobability distribution functions (11) over the radial variables [9], [lo]. As we have noticed 
above, P function is not well-defined function for the states under corlsideration and therefore 
it is impossible to  determine corresponding phase quasiprobability distribution. As a result of 
integration of Q(cr, p)  and IV(a, ,d) over la1 and !PI ,  we arrive to the following formula: 

where the coefficients G(")(n, k) distinguish between two distributions. a.nd they are: 

(i) for the Q function 

(ii) for the Wigner function 

where X = min(n, k), v = max(n, k). All the coefficients G(")(n, k) are symmetrical, G(")(n, k) = 
G(")(k, n), and G(")(n, 12) = 1. Note, that such expressions (20), (25) for the phase distributions 
are valid for all two-mode states with the number state decomposition like in (3). In Fig. 3, 
we show the plots of the three phase distributions in polar coordinates for Th4SNS calculated 
according to formulas (20) and (25) with the coefficients (26) and (27) for different values of AT 
and nonzero q. It is seen that the Pegg-Barnett phase distribution and P("')(O+) are similar 
and have the N + 1 lobes, while P(Q)(O+) is much broader and has only one lobe. In the case 
q = 0 all three distributions have the same form of one lobe. So, as in the case of displaced 
number states [13], there is an essential difference in the phase information carried by P(Q)(O+) and 
P(lV)(O+). Because of the averaging procedure with the "prol~al~ilities" C;(Q)(n, k ) G ' ( Q ) ( ~ j  +(I, k+q)  



FIG. 2. Phase distribution P( '~ ) (B+)  for the two-mode squeezed number state with r = 0.5, 
N = 2 and q = 0 (solid line), q = 3 (long-dashed line) and q = 6 (short-dashed line). 



FIG. 3. Phase distribution P ( ' ~ ) ( B + )  (solid line) and phase quasiprobability distributions 
P("')(O+) (short-dashed line) and P ( Q ) ( B + )  (long-dashed line) for the two-mode squeezed number 
state with r = 0.5, q = 6 and (a) N = 0, (b) .\r = 1, (c) N = 2. 



some phase information is lost in p(Q)(B+). The Pegg-Barnett phase distribution is very close 
to the distribution P ( ~ ) ( B + ) ,  although it is not identical to it. The phase peaks of P("')(B+) are 
slightly na.rro\x7er than those of P('~)(B+). The grea.ter the difference in iiulnbes of photons q the 
closer these two distributions. Basically they carry the same phase information. This similarity 
is in agreement with the area of overlap in phase space arguments, which are that the Mfigner 
function represents quantum states in the phase space [lo]. However, the Wigner function can 
take on negative values and the positive definiteness of P ( ~ ) ( O + )  is not automatically guaranteed, 
while there are no such problems with the Pegg-Barnett phase distribution. 

We have discussed photon statistics and phase properties of the two-mode squeezed num- 
ber states showing that the photon number distribution and the Pegg-Barnett phase distribution 
for such states exhibit the similar N + 1-peak structure for nonzero values of the difference in 
the number of photons q between modes. We have compared the Pegg-Barnett phase distribu- 
tion with the phase quasiprobability distributions P(Q)(B+) and P(")(B+ ) obtained by integrating 
the Q function and the Wigner function over the radial coordinates. \Are have shown that the 
Pegg-Barnett phase distribution and the distribution P(W)(B+) carry basically the same phase 
information, while the distribution P(Q)(B+) loses an essential part of the phase information. 
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Atomic supersymmetry provides an analytical effective-potential model useful for 
describing certain aspects of Rydberg atoms. Experiments have recently demon- 
strated the existence of Rydberg wave packets localized in the radial coordinates 
with p-state angular distribution. This talk shows how atomic supersymmetry can 
be used to treat radial Rydberg wave packets via a particular analytical type of 
squeezed state, called a radial squeezed state. 

1. Introduction 

Irradiation of a Rydberg atom with a short laser pulse can produce a radially 
localized wave packet with a p-state angular distribution. The time evolution of such 
a state initially exhibits some attributes of the classical radial motion, including the 
Kepler period [I, 2, 3, 41. After several radial oscillations, the packet disperses. At 
various later times, the quantum wave recombines into single- or multiple-coniponent 
packets called revivals [5, 6, 7, 8, 91. 

The localization of the initial packet suggests a theoretical description via a co- 
herent or squeezed state [lo]. However, a direct approacli meets technical obstacles 
[ll] or generates quantum packets that do not describe the characteristics of radial 
p-state excitations of Rydberg atoms in the absence of external fields. 

This talk provides a summary of our recently developed framework for the an- 
alytical study of Rydberg wave packets [12, 131. Our approach incorporates non- 
hydrogenic aspects of the packets using atomic supersymmetry [14,15]. This provides 
an effective central potential along with analytical wavefunctions ktIt and exact Ry- 
dberg eigenenergies E,2t for a Rydberg electron, expressed in terms of shifted quantum 
numbers n* and I * .  Recent summaries of the methods and results of atomic super- 
symmetry and references to the literature can be found in Ref. [16]. 
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PAGE @ & A M  m M B  



We use the analytical wavefunctions of atomic supersymmetry to construct a fam- 
ily of analytical squeezed states, called radial squeezed states, that form representa- 
tions of radial Rydberg wave packets. The procedure begins by mapping the classical 
physics associated with the effective potential into the form of a harmonic oscillator. 
After the conversion to quantum physics, squeezed states can be derived for the re- 
sulting uncertainty relation. The method is based on an extension of the approach of 
Ref. [17] for cirular states of hydrogen. Tbe procedure is outlined in sections 2 and 3 
below. The time evolution of the resulting radial squeezed states is briefly discussed 
in section 4. In what follows, we use atomic units with tL = e = me = 1. 

The reader is referred to Refs. [12,13] for more details about the subjects presented 
in this talk and for more references to the background material. 

2. Classical Physics 

The classical theory corresponding to atomic supersymmetry uses a central po- 
tential that leads to the effective one-particle radial hamiltonian 

where p, = 7: is the radial momentum. The classical continuous variable I* is a 
shifted value of the classical angular momentum I, arising from the incorporation of 
the effects of the central potential. At the quantum level, Z*2 becomes the quantized 
quantity 1*(1" + 1) of atomic supersymmetry. The energy E* has for convenience 
been expressed in terms of a continuous classical variable n*, which at the level of 
quantum physics converts to the quantized, shifted principal quantum number of 
atomic supersymmetry. 

When E* is negative, the particle is bound and oscillates between outer and inner 
apsidal points, 1.1 and 1.2, say. The classical orbital period T:, which is the time taken 
to move from rl to r2 and back, is given via Eq. (1) as 

The classical orbit can be shown from Eq. (1) to be a precessing ellipse, obeying 
the equation 

Here, e = J-, do is a constant of the integration, and f = 1*/1. For the 
radial Rydberg wave packets we discuss below, l*/n* is small and so the corresponding 
classical orbits are highly elliptical. For simplicity in what follows, we impose fOo = $. 



Direct efforts to obtain coherent or squeezed states based on this model face 
technical obstacles. Instead, we map the theory into a harmonic-oscillator formalism. 
We convert to a new set of classical variables, R and P, chosen to have sinusoidal 
variation with the angle 0 and given by 

1 1  e r2 el R - - - - =  -sinf0 , p - -R  = -- 
f 1*2 

cos f 0 . 
r 1*2 

In terms of these variables, the classical equations of motion become 

Equation (1) then takes the form of the energy equation for a simple harmonic oscil- 
lator of frequency I and energy e2/2 f 2: 

3. Quantum Physics 

At the quantum level, the new classical variables R, P become quantum operators 

obeying the comrnut ation relation 

The uncertainty product A RAP is 

1 1  
ARAP 2 - - 

zf ( r2)  . 

At a given time, any minimum-uncertainty wavefunctions must therefore obey the 
equation 

( R  - (R))1C, = iA(P - (P))1C, , (10) 

where the real constant A is given by 



For convenience in what follows, we introduce the quantities 

In terms of these quantities, the normalized minimum-uncert ainty solutions to Eq. 

These wavefunctions form a three-parameter family of squeezed states, called radial 
squeezed states. Their construction shows they are suitable candidates for radial 
Rydberg wave packets in any atom correctly modeled by atomic supersymmetry. 

The relatively simple analytical form of the radial squeezed states permits the 
derivation of a number of useful results. Among these are the following expectation 
values: 

2 a  + 3 
(r) = - 

270 ( P T )  = -71 , 
and 

702 (2702~*(1* + 1) + a + 1) - - 70 712 

(H) = 2(a  + 1)(2a + 1) 
+- a + l  2 (15) 

Requiring finiteness of these expressions and the separate normalizability of the ki- 
netic and potential energies of the radial squeezed states restrict the parameters to 

1 a,> -5 and yo > O .  
The uncertainty relation for the usual variables r and pT can be calculated for the 

radial squeezed states. It is 

As expected, this is not a minimum-uncertainty product. However, a relatively large 
value of a is needed to reproduce the experimental situation as the wave packet makes 
its first pass through the outer apsidal point, so the uncertainty product is close to 5 
at that time. 

4. Time Evolution 

The analytical nature of the radial squeezed states has made it possible for us 
to study their time evolution both analytically and numerically. Here, we restrict 
ourselves to describing briefly some results and providing a few representative figures 
to illustrate the key features. 

Specifying a ,particular radial squeezed state means selecting values for the three 
quantities a, yo, and 71 at some initialization time. Since the uncertainty product 



ArAp, is expected to be minimized at the first pass through the outer turning point [I] 
we choose this as the initialization time and define it as t = 0. The three parameters 
a, 70, and 71 are determined by imposing conditions on the three physical quantities 
(p , ) ,  (r), and (H) at t = 0: 

Here, r:ut is the outer apsidal point of the quantum orbit, and Eii+ = -1/2ii*2 is the 
energy expectation of the central state ii excited by the short laser pulse. 

In the context of radial squeezed states for atomic supersymmetry, our analysis 
shows that the radial squeezed state initially oscillates with the classical orbital period 
Tz and gradually disperses. For a radial squeezed state dominated by shifted principal 
quantum number ii* and including a range of shifted principal quantum numbers 6n*, 
the packet is effectively dispersed at an interference time tLt E fi*T;l/36n*. Much 
later, near the revival time tt$, E fi*T;/3, the radial squeezed state recombines into a 
packet called a full revival that is similar to the initial one and that orbits with a period 
Ti. At times t: = t;rk,/r between t:nt and t:e,, the radial squeezed state combines 
into r spatially separated packets called fractional revivals, with wavefunction period 
T; = ST;. 

Some of these behaviors are illustrated in Figure 1, which plots the unnormalized 
radial probability density f (r) = r2 l$ii,I,l (r) l 2  at different times, for a hydrogenic 
radial squeezed state with ii* = ii = 85 and I* = 1 = 1. In this case, the initialization 
parameters are a E 168.225, yo E 0.01 17465, and yl = 0. This corresponds to a 
classical orbit of high eccentricity, e Î 1, and periodicity TA E 93.3 psec. 

Figure l a  displays the radial squeezed state at t = 0. It is situated near the 
outer quantum apsidal point r:ut 14450 a.u. The initial uncertainty product is 
ArAp, E 0.501, which is close to the minimum of 0.5, as expected for a smooth packet. 
Initially, the packet moves towards the origin. Figure l b  shows its shape at t = T;/4, 
while Figure l c  shows it at t = T,*1/2. As the packet approaches the origin it spreads 
and develops oscillations in the radial probability distribution, thereby indicating the 
transition from a classical to a quantum object. The uncertainty product halfway 
through the first classical period is ArAp, E 59.5. 

After reflection off the inner apsidal point, the packet recombines into a more 
classical object as it moves towards the outer apsidal point. Figures Id and l e  show 
the packet at t = 3T34 and t = T;, respectively. Some decoherence is visible, but the 
packet is still well defined. The amount of dispersion increases with successive orbits, 
until a time of order ti,, E 4T:. Subsequently, the probability distribution no longer 
exhibits a unique and well-defined peak at any point in the orbit. For illustration, 
the situation at t = 5T; is displayed in Figure If. 
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At later times, fractional and full revivals appear. The fractional revival consisting 
of two separate peaks, which appears at t,* = t:e,/2 = 1.3 nsec., is shown in Figure 
lg, while the full revival appearing at t:e, 21 2.6 nsec. is shown in Figure lh. These 
revivals exhibit all the features expected from the classical analysis, including, for 
example, the expected values for the wavefunction periodicity. 

Along with the additional analysis contained in Refs. [12,13], these results indicate 
that radial squeezed states are useful models for radial Rydberg wave packets. 
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Abstract 
We report exact results concerni~lg the effect of dipole-dipole interaction (dispersion 

forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent 
field from two identical coherently <lriven two-level atoms. The atomic system is subjected to 
three different damping baths in particl~lar the nor~nal vacuum, a broad band thermal field 
and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible 
experiments are most likely to agree with theory when performed on systems of Rydberg 
atoms making microwave transitions. The presence of dipole-dipole interaction can enhance 
squeezing for realisable values of the various para~neters involved. 

The fundamental importance of squeezecl light aild its interaction with matter as well as potential 
applications have become the focus of considerable attention in the last few years both theoretically 
and experimentally. Indeed, the coupling of a two-level atomic system to squeezed light for example 
can lead to interesting new phenonlena as reported by a numnber of authors [1,2,3]. In this paper we 
consider the possibility of generating squeezing in the enlitted fluorescent field from two identical 
coherently driven two-level atoms with dipole-dipole interaction (dispersion forces). The atomic 

. system is subjected to three different datnping baths in particular, the normal vacuum, a broad 
band squeezed vacuuln and a broad band thermal bath. We report exact results concerning the 
time evolution as well as steady-state emitted field quadratures which may lead to squeezing. It 
is shown that squeezing n ~ a y  be enhanced for certain realisable values of the system parameters. 

The dipole-dipole coupling is expected to play a significant role especially in the high atomic 
density limit [4]. It is especially i~nporta~lt  because it generally breaks the pernlutation symmetry 
of the atom-field coupling [5] whicll is the basic assumption of the collective spontaneous emission 
process (superradiant) involvix~g NA-atom system. As a consequence, the S2 conservation (where 
S is the total 'spin' of NA two-level atoms) \\fllic.h appear inherently in the point like Dicke model 
[6] is affected significantly. Since the atomic llloclel is the coherintly driven two-atom Dicke model, 
possible experiments ?re most likely to agsee ivit.11 theory \\?lien performed on systeins of Rydberg 
atoms making micro\vave transitions - see e.g. [7] and referc.l~c.es therein. 



2 Description of the model 

Our starting point is the inaster equation for the reduced atoinic density operator in a frame 
rotating at WL, the laser frequency - see equation (5) of ref. [8]: 

where Sf, Sz are the usual collective atoinic operators; 2R is the Rabi frequency characterizing 
the strength of the driving field, y is the single at0111 Einstein A coefficient, a+ is the static 
dipole-dipole interaction potential such. that 

and A = w~ - WL - a+ (wA is the atoinic trailsitioil frequency). 
Note that A = -a+ represeilts the on-resonant case. AT and A 4  are pa.rameters of the squeezed 

vacuum describiilg squeezing with IA!l" l V ( M  + 1) holding for llliniilluill uncertainty squeezed 
state. @ is the rela.tive pl~ase between the squeezed vacuum and tlle laser. In what follows we 
set IMI2 = N(N + 1). Note that if N = 0, then the atoills are dainped by the normal vacuum 
whilst the case N # 0, A4 = 0 corresl>onds to the-atoms dainped by a broad band thermal field 
such that N -, ii which is the mean occul>ation iiulllber of the resonant field mode. The master 
equation is solved using the fourth order Runge-I<utta method. 

3 Squeezing in resonance fluorescence 

We now discuss the possibility of gellera.ti~lg squeezing in the elllitted fluorescent radiation field 
and the effect of a+ on it. The "in l~hase" and "phase quadrature" components of the emitted 
fluorescence field denoted by F' and F, are respectively 

with 
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as there is a linear functional relation between the atolnic operators and the field operators [9]. 
Squeezing occurs whenever F, or F, < 0. 

Fig. 1 shows the time evolution of F' and F, for the atonlic system danlped by the normal 
vacuum ( N  = 0) and driven by an off-resonant weak laser with weak dipole-dipole interaction: " = 0.5; 7 = 1.0. In transient, both F, and F, display squeezing but do not occur at the same 
7 
time due to Heisenberg Uncertainty relation, with nlaxilnuln squeezing occurring in F,. In this 
case steady-state squeezing is only predicted in F,. Increasing a+ further suppresses the squeezing 
in F, while F, is positive in the steady-state. In Fig. 2 all the parameters are the same as in 
Fig. 1 but now the atoins are driven by a resonant laser (A = -a+). There the steady-state 
F, is plotted against 7. Clearly, squeezing is obtained when 7 > 1.7 and the squeezing keep 
increasing with a+ and reaches its m a x i ~ ~ ~ u m  value at 7 z 2.5. But it is reduced when a+ is 
increased further. 

The effects of an off-resonant strong laser (: = 10) on steady-state squeezing in Fz for the three 
damping baths are sho~vn in Fig. 3. The role of the dispersion forces (dipole-dipole interaction) 
to produce optilnu~n squeezing is best seen for the nor~nal vacuum, thermal field and squeezed 
vacuum ( Q  = n/2, N = 0.05) cases. In Fig. 4 we plot the the components of F, and F, as 
functions of dimensionless time (r = ~ t )  for a detuoed weak laser (: = 0.1, = 0.5) driving 
the atomic system and dainped by a broad band squeezed vacuum ( N  = 0.05, Q  = 0). Here, 
squeezing is evident in F, in the transient as well as in the steady-state since it satisfies the 
squeezing condition < $ I (S') I. The steady-state squeezing achieved is estimated about 
12%. 

In conclusion, the dipole-dipole interaction proves to be important in the analysis of squeezing 
in the emitted fluoresce~lt field from a cooperative systenl coherently driven and damped either 
by a normal vacuum, broad band thermal fielcl or a broad band squeezed vacuum. 
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It is found that the two-mode output quantum electromagnetic ficld in two-mode squeezed 
states exhibits higher-order squeezing to  all even orders. And the generalized uncertdnv 
relations are also presented for the first time. 

The concept of higher-order squeezing of the single-mode quantum electromagnetic field 
was first introduced and applied to  severd processes by Hong and Mandel in 1985113. Lately 

. Li Xizeng and Shan Ying have calculated the higher-order squeezing in the process of degen- 
erate four-wave mixing8 and presented the higher-order uncertainty relations of the fields in 
single-mode squeezed states4. In this paper we generalize the above work to the higher-order 
squeezing in two-mode squeezed states. The generalized uncertainty relations are also presented 
for the first time. 

1 Definition of higher -order squeezing in two-mode 

squeezed states 

The definition of two-mode squeezed states was given by Caves and Schurnakers: 

Where ~ ( $ 1  is the two-mode squeezed operator 

(CY+,CU- > is the two-mode coherent state, ii* are two-mode annihilation operators, o* are 
eigenvalues of ii* in ]a+, a- >. 

Define the two-mode squeezed annihilation operators by &, 

where 
p = coehr, v = eibeinhr, 

= re" is the squeeze parameter. 



Then the two-mode squeezed states are the eigenstates of dr, 

and a* are the eigemalues of A+. 
The red  two-mode output field k can be decomposed into two quadrature components 

and &, which are canonical conjugates. The ontput field k! exhibits higher-order squeezing to  
any higher-order (Nth order) in E ~ ,  if there exists such a phase angle 4 that the higher-order 
moment < (A E ~ ) ~  > in a two-mode squeezed state is smaller than its value in a completely 
tow-mode coherent state, viz., 

This is the definition of higher-ordet squeezing in two-mode squeezed states. 

2 The quadrature components of the two-mode output 
field I!? 

The electric field operator for the two-mode output field has the form of 

E (z, 1 )  = E(+)(z, t )  + D'-'(2, t ) .  (6) 

Where 

We now introduce two Hermitian quadrature components and E$ of the electric field 
defined by 

j?~~ (x, t )  = ~(i) eilWt-=)-4 + E ( - I ~ - ~ I w : - ~ - ~ I  (9) 

Then, E(X, t) can be decomposed into two quadrature components E] and E$, which are 
canonical comjugates 

Where fl is the carrier frequency 
w+ + w- n = 

2 '  
and q4 is an arbitrary phase angle that may be chosen a t  will. 



The units are chosen so that h = c = 1. 
Substituting Eqs. (7) and (8) into (9), we obtain 

where 

and 
€ = W + - i I = i l - w -  (14) 

is the modulation frequency. 
From Eq.(3), we get 

B* = p*B* - vA$. 
Substituting (15) to  (12), we obtain bl in terms of 

Where 

Define 

Then 

3 Higher-order noise moment < > and 

Higher -order squeezing 

By using the Campbell-Baker-Hausdorff formula, we get 

+ . . + (IV - l)!!c,N/'. (Pi is even) (20) 

where N ( ~ )  = N(N - 1) . . . (N - r + 1), 4 = &[E,, E ~ ]  = [B, B+], ' :: " denotes normal ordering 
with respect to  B and B+. 

Now we take the two-mode squeezed states, then 



€3 a = IS, B+I = lhli2 + ~ ~ 1 '  = (ls+la + ls-ia)(lrla + IYI') - - 3 ( ~ * f i - a i d  + ai4 + pv e ). (22) 

h o r n  (20), (4 )  and (13), we get 

If 4 is chosen to satisfy cos(8 - 24) = 1 ,  then Eq(23) leads to  the result 

when coshr < !, the right hand side is smaller than ( N  - l)!!flN/', which is the corresponding 
Nth order moment for two-mode coherent states. 

It follows that the two-inode output field exhibits higher-order squeezing to all even orders. 

4 The generalized uncertainty relations 

[A]. Higher-order noise moment < (A&)" > 

E* can be regarded as a special case of E,, in which if 4 is replaced by 9 + x/2 ,  then from 
(23) it follows that 

If 4 is chosen to satisfy co8(8 - 24) = 1, then 
(I 

When corhr < 0, the right hand side is greater than ( X  - l)!!flN/'. 

[B). Generalized uncertainty relations 

Rorn (24) and (261, we obtain 

6' < > < (A&)" >= {(Ar - 1)!!]'nN[1 + --st'nh'(2r)lN. n = 



Equation (27) shows that < > and < > in two-mode squeezed states 
can not be made arbitraily small simultaneously. We call Eq.(27) the generalized uncertainty 
relations in two-mode squeezed states, and the right hand side (constant) is dependent, on 
N, r ,  52, and s. 

Since 
r" 

1 + -crinh"2r) > 1 
0' 

SO 

< ( ~ 4 ) ~  > < ( A E ~ ~ N  > > [(N - l)!!J2n" 

If r = 0, the two-mode squeezed states become two-mode coherent states, then 

< (AEI)" >,,. . < >c,8= [ ( N  - I)!!]' . fly. 

This is the generalized uncertainty relations in two-mode coherent states. 
If c = O ? N  = 2, we obtain 

This is just the usual Heisenberg uncertainty relations in relevant  reference^^^^^^^^. 

5 Application 

As an application of the above result, we calculate the generation of higher-order squeezing 
by non-degenerate four-wave mixing (NDFWM). It can be shown that the field of the com- 
bined mode of the probe wave and the phase-conjugate wave exhibits higher-order squeezing 
to all even orders, and the generalzied uncertainty relations still hold in NDFWM process. 
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Abstract 
We show that the q-deformation of the Weyl-Heisenberg (q-WH) algebra naturally arises 

in discretized systems, coherent states, squeezed states and systems with periodic potential 
on the lattice. We incorporate the q-WH algebra into the theory of (entire) analytical 
functions, with applications to theta and Bloch functions. 

1 Introduction 

The general properties of q-algebras [I] [2] have been widely studied, in particular in connection 
with specific physical models. In this paper we will show [3] that the q-deformation of the Weyl- 
Heisenberg (q-WH) algebra naturally arises in discretized quantum systems, coherent states, 
squeezed coherent states and systems with periodic potential on the lattice. 

q-algebras are deformations of enveloping algebras of Lie algebras and, like the latter, they 
have Hopf algebras properties. The q-deformation of the Weyl-Heisenberg algebra Cq-WH), 
as well as the WH algebra, is not even a Hopf algebra; it has only the properties of a Hopf 
superalgebra 141. 

In our study of q-deformations we want to preserve the analytic structure of the correspond- 
ing Lie algebras and therefore we need to operate in a frame where analyticity is ensured: this 
is guaranteed by working in the Fock-Bargmann representation (FBR). In this representation 
it is immediate to  show that finite difference operators possess the algebraic structure of q-WH 
algebra: As a result we recognize that a q-deformation of the algebra occurs whenever a finite 
length is involved in a physical system, the q-parameter being related with the finite spacing. 
The q-deformation is also expected in the presence of periodic conditions, since periodicity is a 
special form of invariance under finite difference operators. 

We use the well known mapping of the q-algebra into the universal enveloping algebra of 
a corresponding Lie structure; to be specific, the mapping of finite difference operators into 
functions of differential operators, which can be indeed achieved only by operating on COO 

functions, namely by working in the FBR. 
We would like to stress that we succeed into incorporating q-deformation of the WH algebra 

into the theory of (entire) analytical functions, with specific applications to theta functions and 
to Bloch functions, a result which may deserve by itself much attention. 



In this paper we will use dimensionless units for all physical quantities. 

2 Finite difference operators 

The FBR operators, solution of the WH commutation relations [a ,  at] = 1, [ N ,  a ]  = -a, [ N ,  at] = 
at , are [5]:  

d  
a + + . ,  

d  
N + z - ,  a +  - .  

dz  dz (2.1) 

The Hilbert space 3' is identified with the space of the entire analytical functions. Wave- 
- " ( n ~  Z+) . The functions are expressed as +(z )  = Zz=o c ~ u ~ ( z ) ,  Ez=o 1 ~ ~ 1 ~  = 1, u ~ ( z )  - 

set { u n ( z ) )  provides an orthonormal basis in 7. The finite difference operator D, 

with q  = et,  E C,  may be written on F as D, = ((q- l ) ~ ) - ' ( ~ ' &  - 1). D, is the well known [B] 
[7] [8] [9] q-derivative operator and, for q -, 1 (i.e. < -t 0) , it reduces to the standard derivative. 
We have the algebra 

and observe that it is nothing but the q-deformation of the WH algebra. In fact, this can be 
seen by introducing the following operators in the space 3 

where clearly &, = = at and liq,l a, = a.  The quantum version of the Weyl- 
Heisenberg algebra is thus realized in terms of these operators {a , ,  i?,, N ;  q E C )  with relations 

111 [21: 
N [ N , a , ] = - a , ,  [N , i t , ]= i i ,  , [ a , , & , ] = a q i t q - & , a , = q  . (2-5)  

Equivalently, by introducing a, - iid-*12 , the q-WH algebra eq. (2.5) is rewritten in the more 
familiarformas [N ,a , ]  = -a, , [N,n, ]  = %  , a,a, - q - : ~ , a ,  = q t N .  

The finite difference operator algebra (2.3) in the FBR thus provides a realization of the 
q-WH algebra (2.5). 

The notion of hermiticity associated with (2.5) has been studied in ref. [ lo]  in connection 
with the discussion of the squeezing of the generalized coherent states ( G C S ) , ,  defined in the 
usual Fock space 3. 

We note that the commutator [a,,  iiq] acts in 3 as follows 

In conclusion, the strict relation of the q-WH algebra with the finite difference operator 
Dq (q # 1) suggests. that whenever one deals with some lattice or discrete structure, then a 
deformation of the operator algebra acting on 3 should arise. 



3 Coherent states, theta functions and squeezing 

We summarize now the relation of q- WH algebra with the customary coherent states (CS) )z > 
[ 5 ] ,  with theta functions and with squeezing. Eq.(2.6) is the key relation to establish our results. 

For sake of shortness we only report the relevant relations [3]: 

where D (z) denotes the usual CS generator. 
We observe that [a,,&,] acts as mapping operator from lz > to Iqz > up to a phase 

factor. On the other hand, it acts the z-dilatation operator (z -, qz) in the space of entire 
analytic functions. When q = ef , with I pure imaginary, = i d ,  then [a,, d,] : z -, eiez , 
generates the U(1) group of phase transformations in the z-plane. We also observe that eqs. 
(3.2) and (3.3) provide a non linear realization of the quantum algebra (2.5) in terms of a and 
at. Vice-versa, the nonlinear operator D (2) is represented by the linear form [a,, a,] .  

In the framework of the formalism of CS on the von Neumann lattice L the defining functional 
equation for the theta function is 151 

0, (z + z,) = exp (irF, (-m)) exp ( )  exp(zmz) 6, (2) , 

with z, = mlwl + mzwz an arbitrary lattice vector and F,(m) = mlm2 + m ~ e l  + mzez . A 
solution of (3.5) can be expressed as 

0, (r) = e - ' r ~ c ( m )  exp (- y) exp (- zm r) f (r) , 
m 

where f (z) is an arbitrary entire function such that the series (3.6) is converging. 
To establish the relation between q-WH algebra and theta functions, we write q = qm = e*vlL , 

with cm a vector on the lattice L and, by setting zm = (qm - l )z ,  we have 131 



Eqs. (3.7-9) show that theta functions span indeed a space of representations for the q- 
algebra (2.5). 

Finally, we study the relation of q-WH algebra with squeezing. Let fi, = -i& and [i,fi.] = i, 
over a Hilbert space of states $(z) identified with the space of entire analytic functions 7. 

I Introduce the operators a = ?(i + ifi.) , a = ( 2  - i )  [a, at] = I. It is immediate to  
observe that 

with S ( c )  denoting the squeezing generator [ll], < = log q the squeezing parameter and $s (z) 
the squeezed state. We therefore conclude that the operator [a,, a,] is the squeezing generator 
for CS in the FBR, thus confirming the conjecture previously [lo] formulated whereby q-groups 
are the natural candidates to study the squeezed CS. 

4 Quantum mechanics on the lattice 

Our purpose is now to show that q-WH algebra is underlying the physics of lattice quantum 
systems. Lattice Quantum Mechanics (LQM) is characterized by the E(2) commutator algebra, 
which in the momentum space is written as [3] 1121 

d 
[2,, cos(kc)] = [i- , cos(kc)] = - ic  sin(kc) . 

dk (4.1) 

[fie, cos(kc)] = [c-' sin(kc), cos(kc)] = 0 . 
where 2, and fi,, denote the (one-dimensional) lattice position operator and the lattice momen- 
tum operator, respectively (extension to higher dimensions is straightforward). The correspond- 
ing uncertainty relations are 

where A2(d) = (A2) - with = (A) = J d k q * ( k ) A ~ ( k ) .  We observe that these relations 
go, in the continuum limit c -+ 0, to the usual ones. In this connection we observe that the 
continuum limit is, in fact, an isometric and conformal mapping of the torus on the plane. 

Following the usual procedure [13], the states minimizing the uncertainties (4.2) and (4.3) 
are found to be, in momentum space 

Q(k) = G-i exp [7cos(tk) - i ~ r k ]  . (4.4) 



The normalization constant G is given by G = $4(27) , lo denoting the modified Bessel function 
of the first kind of order 0. We adopted the notation: X = A€-',  7 = X = (0,) + i7(ii,) , 
and 7 is connected with the mean square roots of position and momentum. 

In the continuum limit, i.e. for small E, one recovers in the space of configurations, 
1 

$(x) = ( 7 ~ ) - 2  exp {- [(z7)-l(x - (2))l+ i(@)(x - ($))I } , which is the minimum uncertainty 
wave-function given by Schrodinger [14]. The \E(k)'s are the lattice coherent states. 

In order to see the relation with the q-algebra we consider the conformal image # of the 
Hilbert space obtained upon introducing the variable z = eid (9 = kc , -gr 5 9 5 A),  such that 

. d d -%a = -215s = sz$ . The functions in # are assumed to be entire squareintegrable analytic 
functions. We have 

f(9 + r) = ei4"(9) = qNf(z) = j ( q ~ )  , (4-6) 

with q = e". The realization (2.4) has been adopted in the FBR, with z restricted t6 the unit 
. circle. The E(2) algebra (4.1) is realized by 

with f E #, and the identifications 

z + 2  z - f  
L1 = - , L2=- d 

2 
, L3=z- ,  L + = z ,  L - = X .  

23 dz 

One can see that [aq,$] is nothing but the group element eitL3 of E(2). The algebraic 
structure of LQM is thus intimately related with the q-WH algebra, the deformation parameter 
q being determined by the discrete lattice length E = -i log q. 

We finally note that zn = eind, n integer, is the eigenfunction of L3 associated with the 
eigenvalue n of the number operator in the FBR: L3zn = Nzn = nzn . 

The functions z = ei4 play also a r61e in the Bloch functions theory. Suppose we have a 
periodic potential V(x,) = V(xn + E) on the lattice. Bloch theorem ensures the existence of 
solutions of the related Schriidinger equation of the form $(xn) = efikZnvk(xn), with vk(xn) = 
vk(xn + E). $(xn) is the Bloch function. Let us limit ourself to consider for simplicity the plus 
sign in the exponentials. +(xn) has the property 

The choice of the variable z = eik"urns out .to be natural in the case of periodic potentials: 

Since zn = (zn) and qN (%)k = (qZ,)k = @(n+l) = c+l 9 

which shows that the Bloch functions provide indeed a representation for the q-WH algebra. 
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Abstract 

We investigate the quantum fluctuations of the fields produced in sum-frequency (SF) 
generation from light initially in the photon number squeezed state. It is found that, to the 
fourth power term, the output SF light is sub-Poissonian whereas the quantum fluctuations 
of the input beams increase. Quantum anticorrelation also exists in SF generation. 

1 Introduction 

In recent years squeezed states of light have been successfully produced in several laboratories 
and certain applications also demonstrated.' In future applications it may be desirable to change 
the frequency of a light beam already in the squeezed state, for example by frequency doubling, 
parametric down conversion or four wave mixing. Three wave processes are preferable since the 
second order nonlinear susceptibility is much larger than the third order susceptibility. Second 
harmonic generation from a pump beam initially in a squeezed state has been diicussed2n3 as 
well as SF/DF generation and degenerate parametric down conversion of quadrature squeezed 
light?** In this paper we shall consider SF generation from input fields initially in the photon 
number squeezed or sub-Poissonian state. 

2 Sum-frequency generation 

As shown in Fig. 1 we take both input fields, of frequency wl and w2, and the sum-frequency 
ws field (w3 = wz + wl)  to be in a collinear geometry. The input beams are incident on a 
nonlinear medium such as a crystal with an effective second order nonlinear coefficient x'. The 
field Hamiltonian for ideal SF generation ignoring losses is 

where al ,  a2 and a3 are the annihilation operators for the two input beams and the resultant 
SF beam, respectively. 



FIG. 1 Sum-frequency generation in a nonlinear crystal. 

We introduce the slowly varying operators 

where the subscript j = 1,2 or 3 refers to the two input or SF waves, respectively, as throughout 
our paper. For propagation along the z-axis at a velocity u in a lossless medium we make the 
conversion z = ut. Since w3 = w l  + w2 and substituting x = X ' / U  we deduce the equations of 
motion for the slowly varying operators from Eq. (1) to be 

In the short path approximation for xz c;:= 1 we assume the solution of Eq. (3) to take the form 

where cj(0) denotes the incident fundamental field at t = 0. It may be seen that cj(z) still 
satisfies the commutation relation 

[c~(z),c:(z)] = 4,. ( 5 )  

Substituting into Eq. (3) we obtain the solutions for cl (z), c2 (z) and c3(z). 
To discuss the photon number fluctuations of the quantized fields we consider the variance 

(An: (2)) or the Fano factor 

aj = (An; (2)) 
(ni (2)) 

where nj(z) = ci(z)cj(z), and (An:(z)) E (n: (2)) - (nj(z))l. To obtain the above expressions 
t 3  3 we need to solve for the factors tick, ef2c: and ck ck, where ck = ck(0) and k = 1 or 2, then find 

their expectation values. If the input fields are in a photon number squeezed state we adopt the 
formalism given by Kitagawa and Yamamoto5, that is, 

Here nk = alak is the number operator and ~ k ,  r)k are constants chosen to maximise the squeezing 
for a given input field intensity proportional to IakJ2. Using Eqs. (7) and after some tedious 
calculations we may obtain the expectation values (c:ck) and higher terms with respect to the 



eigenstates of ak, noting that cs(0) is a vacuum field. The Fano factors may thus be computed 
numerically for explicit values of a k ,  7 k  and qk. It is evident that the expressions for the Fano 
factors of the two input beams are identical if the subscripts k = 1 and 2 are interchanged. 

Another quantity that reflects the quantum fluctuations of the light fields is the quantum 
correlation between the sum of the input photon numbers, nl(z) + n2(z), and the SF photon 
number ns (z) . That is, if we define (n(z)) = (nl (2) + n2 (z) + ns (z)) , then 

and we define the Fano factor for the total sum of the photon numbers as 

The Fano factors for different pairs of the two input beam intensities are plotted against the 
effective interaction length xz in Figs. 2 to 4. It can be seen that as becomes less than 1 in 
all three cases, that is, the SF produced becomes sub-Poissonian. Moeover, as the interaction 
length increases the photon number fluctuations are reduced even further but at the expense of 
the input fields. 

FIG. 2 Fano factors of the input and SF beams versus effective interaction length 
for sub-Poissonian inputs of equal intensity. Subscripts 1,2 and 3 denote the two 
inputs and the SF beam, respectively. a is the Fano factor for the total photon 
number of the three beams. 

As shown in Fig. 2, when the two input beams are of the same intensity, that is, lal l2 = la2 l2 
and assuming that their initial statistical properties are identical, then a1 and a* are always 
the same, as may be expected. However, when one frequency e.g. w2 has a greater number of 
photo& than the other, its Fano factor is less affected (see Fig. 3) since there is a greater number 
of unconverted photons left. The Fano factor a for the sum of all three intensities also increases 
with interaction length, but it is always better i.e. less than that for the individual beams. This 
can be understood from the correlation between the three beams, since the creation of one SF 
photon is always associated with the annihilation of two input photons, one from each input 
beam. 



FIG. 3 Fano factors of the input and SF beams versus effective interaction length 
for sub-Poissonian inputs of different intensities. Subscripts 1,2 and 3 denote the 
two inputs and the SF beam, respectively. a is the Fano factor for the total photon 
number of the three beams. 

In Fig. 4 we have taken one input beam w2 to be sub-Poissonian whilst the other wl is in a 
coherent state, with both having the same intensity. It can be seen'that the curves of 02 and 03 

behave similarly to those in the previous figure, but al remains constant at 1. This implies that 
the coherent input beam remains coherent throughout the interaction, with only the originally 
squeezed beam suffering increased quantum fluctuations. The physical reason for this is yet to 
be fully understood. 

2 = 1 . ~ ~ 6  coherent - I E: 1 2-l. 0E6 squeezed 

- /' 

i 
- 

- 

I 

a1 :=i.0~6 coherent 
- =1.OE6 squeezed 

O1 

-- 

- 

- 

I I I I t I 

FIG. 4 Fano factors of the input and SF beams versus effective interaction length 
for inputs of equal intensities but different statistical nature. Subscripts 1,2 and 3 
denote the two inputs and the DF beam, with wl in a coherent state and wz in a 
sub-Poissonian state. a is the Fano factor for the total photon number of the three 
beams. 



We have investigated the photon number fluctuations in SF generation with sub-Poissonian light 
as input and small effective interaction length. We find that the generated SF beam becomes sub- 
Poissonian and the quantum fluctuations decrease as the effective interaction length increases, 
but at the expense of the two input beams which become noisier. The Fano factor of the sum 
of the intensities of the three beams increases also with interaction length, but it will always 
be less than that of the other beams. This can be understood on the grounds of the quantum 
correlation between the input and SF fields. When one of the input beams is coherent and the 
other sub-Poissonian, the coherent beam remains coherent throughout the interaction, whilst 
the other becomes noisier. The generated SF beam, however, still becomes sub-Poissonian. 
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SPECTRAL, NOISE ANWCORKtSLATIOEJ FIKZPERT lR:i OF j.N'ITXNSH SqEEZKi:i 

LIGHT GENEMTED B'f A COUPLING Ifi3 LASER Ff%i,DS 

I n s t i t u t e  fur Pf2ys.ic-aZ Resear -c f2 ,  N t .~ t . i o>~t~Z . .~lctrdemy o f  Sc.iet?c:.i-~i-~s 

A s h t a r a k -  2, 37i3Li.IO9 Repub1  it: t> f Ar.}>?enitr 

Two scheme= af foa.r-wave mixing olcci.f.l~.t~or~: w i t k t  ~tc~i-i<.J.~~gc.rirr:i.-utc$ 

Fmmps are proposed for above-t,Prr.e~Pio id  geri~:rist5.urt of ~qut::ezciQ .t i phi, 

with nu-nzero mneiwi-f-ield acpl-it,~xdf:~- Hoi.~e arid co-r-~r-,j.atiof~. yrycjy;~t,i~%s 

arnd opt-ical spect~a of squf=ezed-light; e m s  cjcnerated .L:ri " t, TLG ---- .  b~.: 

schenies are diseuesed - 

1, Introduction 

The squeezed li&t generated t o  date  has been i n  the main e i t h e r  

squeezed vacuum o r  squeezed l i g h t  with an extremely m a l l  mean f i e l d  

amplitude, Therefore there  is much current  intierest; i n  searct.rirtg cjf 

new schemes t o  generate squeezed l i g h t  with a large coherent c o m p o  

nent of the f i e l d ,  

In  t h i s  report  w e  would l i k e  t o  present nome nonlinear optical 

schemes fo r  generation of intense squeezed f igh t  with nanzeru mean 

amplitude- 3%; t type of coherent squeezed--state i is ca l led  

sometimes bright squeezed l i g h t -  

One of the  important schemes f o r  the generation a squeezed 

l i g h t ,  realized experimentally, is based the process of nondegene 

rate four-w,i;?e mixing (FWF3) i n  a cavi ty-  In  t h i s  process an intense 

p a p  f i e l d  wiLh frequency (*\D { f o r  cer ta in ty)  in t e rac t s  v ia  a noali- 

near. medium with t w o  .rriu&es af radiated f i e l d  with r e  w 1 ? 

w such that 2L t> * -k" *  +dl2 
2 '  

I n  contras t  with t h i s  stm~dapd scl~eme af W M ,  we propose f,u eon- 

s ider  the  process of FWF3 under the pumping by kwo la se r  f i e l d s  of 

d i f fe rent  frequencies cai, (2.2 - AS a r e s u l t  of ccriuplirrg i n  rronlinear 



m e d i u m ,  i% p a i ~  uf ptiot~XiE3 of ~ W U  pus~i~1 f L e f e Z s  I-(: . tr i%~i~f  c.,Z%i %c> ; i  
IT 2 

pair of ptrotc>rks of spon.tar~eous1y ge~iieratcd signs L f i.e I c.3 with dt>gz~zic: 

rate freq-ilericy ia such tPiak, ct: -ti9 -k-%b:, _ 
0' i 2 0 

. i ' l  We st;udg twa di f  f ere-rrt I'rju~-w;~ve mi-x-ing cot-if' igi.xrilr.;it; icir-i ~5 . 'f'hi-t f i. r-<-• * 

of them ( aee P i g  - 1 ) corisis-bs csf a ncir-il inear medi iem i r t  a ?:in$< i:ijv i t, Y , 

! . P;. -' which cou-zslef; two ~10rioet-~.ro1yiat ic capruyagat, ing yi'iinJT:+ beams u f i A  .i f '' --. 

pen% colors ifivi~x3encies LC, 1.0 1 with c+n ini;x%ai:avii;y c X @ ~ n !  nladc nt.  
1 -  2 

the tialf -=urn freque.rk~y LI;D= (~ i )  .j+3 f / Z  - W e  ~ ~ r ~ ~ i . d f j y  f j -  , .ie . i.: - S-LJF; t---- 0 i- f:; p : 3  f.i l ,  /i 
1 2  

n e w s  excitation of a sing1 e c;.avi.i;y.--r.esonant mode - S o  w e  i ~ 3 ~ < +  

dealing w i t h  a nearly cnl l inear wave-vectar matching crmiii.t.ie>n 

Fig-$-  Scheme of the double-cnXur-pumped FWM crerri l faktrr  w i  t t ~  

single cavity-mode excitaliion, 

In the first part ojF our report (nee Seczlon 2) we sJ1;111 pr'esm~t 

the resul t s ,  related t o  the configuration af F i g - 1 -  At; the  begirlning 

o f  t h i s  part we  wuuld l ike  t o  describe brief f y same af the Be l a w -  

threshold ~ e s u l t s  [1 ,23-  

2-1, Squeezing af the central line of the resonance f lucir>escunce 

in a bichromatic f i e l d  in  a cavity 

W e  consider an ensr?mbIe of two-level atanln S.ntcrni:t;ing Sn at1 up-- 

t i c a l  cavity with a biclrromatir: pump f i e l d  and w i t h  a cavity  mode of 

radiation f i e l d -  This pump f i e l d  is treated c las s i ca l ly  and chosexi 



We have calculated the cavity-output, intensity ia the process of 

resonance fl~xorescence f 13 - At this we do not require the execution 

o f  any phase-matching condikions, TIfe result  for the inelastic part 

of the intensity is showx~  in Fig-2 as a function of the detuning of 

the rsavit:y Pesrsnarscrs f reqlienc y o:; f ram %he atomic trmsi t ion f re-- 

~)k~er~ey 0.3 . The curve is plot ted  for particula~ values of the pwp 
5% 

i.n tt.:nsit y parametex- % ='W Jh a r d  yara~tete~e. T f 6 ,  d h  f br ie. t t t~:  m a t ~ t x  

e lcrrien t of dim 1.e %ra:nsit iuri , c? .'E the at;ornlc a b ~ % u ~ y t  iwfs cuef -- 

cw, - 0,)/r 
Fi.n.2. Cavity output intensity vergus (wc-wo )/I. : < =5, b / y = 6 ,  

We see that the intensity consist of a series &f peaks with a 

eaxif;i;ant spacing 6 ,  They are symmetrically located about a central 

ye&, coFric:idi_ng w i t h  the atfrwic trmaitfori frequency wO - in- 

tensity spectruai w a s  experimentally studied by Y-Zhu et al, f31 for 



two-level- l i k e  Ba a tow driven g7y two strong, equa.3-~inp.ti.t;ude f i e l d s  

with frequency separat ion 2E.- Note t h a t  the  r e s u l t s  of our calcula- 

t ions are 2x1 agreement w i t h  the f:xperi~teri%ajt r:uUFves- 

Let us t m  riow t o  the results , r e  lateb t o  %tie qua-r~-t,urci f lus t~~a-  

t ions i n  -the process uf FWH- We consider a ~ei-~.era'tir~ri of the ~ i - o c i f :  

with frequency equal t o  the resonarice ffuuresceni~e i a  line 

w =((.I:$ w2 )/2 The ca lcu la t ion  of the  quadrature-phase f l~xctuatioiis 
0 1 

show t h a t  this wO-msde is excited i n  a squeezed state, The opt;j.ma'l 

value of t h e  squeezing spectfum S f LC' 1 is realized a% zero f ~ e q u e r f c y  

and the maximal sqaeezirm may reach 35%- The deperide~l~ of t,he q-uwi--- 

tity S Iu=O) on the pump -Lnt,epit;y ya~m-tier P -zWfij is pfot,ted 3.n 
m L r 7  

Fig-3 t23, 

Pig-3- Peak squeezing Srnlr,(0) verms 5 fur rpL"=O,f. - (a), 

r l & = O  -0% - f b )  - The squeezing - i ; ~  absent far: v a l ~ e s  of f . 
for which the yrubabilitles af one and twin ccao -&sotun 

radiation prmesses cancell each utherr, 

In order t o  interpret t h i s  r e s u l k ,  note that tkir: exaitatiwn WE 

the ~c,~-mode i n  a cav i ty  is caused by a nonlinear spcmt;anecl.l~s process 

of two-photon rad ia t ion  by an a t o m  in a bichrmatic field, f n a :Low 

order  of i n t e r ac t ion  it may be represented by the fallowing grxpkis 

(see Fig-43, f t is e s s e n t i a l  thae  there  is a stmng pair corpelatiun 

between tiie photons 0% freqaeiscy c c k ,  This eorrekatiori has a super-- 

bunching behavior a-nd manifestis i t se l f  i r i  tkr: reduction uf quad~;ltu- 

r e  fluctuations belaw the shut-noise ie-vel- 



f?ig _ 4, 1l~u.stsatiosrr of %Pie 'procese 0% two-phmtorr ab~orwtion at  

frequencies G) -13 56 of the pump  field^ with the 
1,2 0 

emiosion of two photons at f requer~ciy wo= ( w , u 2  )/?. 

2-2. Above thr.e~tiu.ld r c ~ u l t s  iri a parmetric model of EWf 

irr t'tre presence of pkrase mucfulation 

Now w e  consider a simple parametric model of four-wave mixing 

-under tichroma-t.i.c, pumping i r r  order t o  obtain the  ~queezkrrg r e ~ u l t c  

above -the generation thre~kiold, Irr our. analys3.s 'we irrclucle -the ef - 
f ects of self -phac~, ~~:mdula.tiun and cross-yt.l..izae mudulatiun- 

W e  d.essrihe the nonlinear medium y~re~~~urnemlogically by the t h i rd  
(3) 

order susceptibility ,y - So we start from the following Hamilto- 

n i a l  

where a+,u are creation ond annihilatiorl operatorrr of the intracavi- 

t y  mode, c+ is the cravi2;y resonant fmq3rency- e second term in 
C 

Eq. (2 ) describes; ' tkte f a~x~..-vave interaction w i t h  cuuplli-m! cufi~tar~t; x , 
p~oyortionnl to xt3' - 'The th ird and forth term d e g ~ ~ i b e  the self- 

phase modulatiorl arid cruris-phase modulation, The f i f t h  term accounts 

far the coupling of the cavity mode with reservoir, which w i l l  give 

rise to -the cavity dan~pkrig ~ o n ~ ~ a x l ;  y - The q'uaritities E,  , E2 a ~ s  the 



cortiplex amplitudes of the pmiy f i e ld s  st, f.r=ti,qxis.fici.~<:< c+ tcr; - At, iic: 
9 ' ;? 

arly coliirrear phase matching cunditicrjri tf-iesc . r ; r 3 ~ ~  f i ~ f . d s  gentirate 

an in.t+.ac:avi.ty signal m d e  w i t h  f requf:rtc:y 1t!, -- ti.+ 4 . i ~ ~  'j/2 - 1-51 th if; c:iiri-. 
0 i 

f ikwrat ion the p ~ ~ ~ i p  fie l& travel  ti-iru-acl,')ri -Lfte niedj:mi or.i 1.y c~ai':.e . 3 J 

i-t, is possible tu neglect % Y e  pmip depsletiiuri a r d  treat 21%, E 2 ~ 3 . z  

f i xed constants - 
With use of standard methods, we obtain the f o I . l o w i n g  di f ferc?r~t i  - 

af. equations for t h e  stuctta~tij-c a~ipll.T.xibe of the slgcie i a w d c  ;.L, Is  :: 

w h e r e  - 4 3  is ttxe csxv-ity betwriir~g paraniet.er - "iltie noit:= t;~-r+rn K 
0 c 0 

has the f o l. luwirig cox-re latur 

Nate  tha t  w i t f i o u t  t h e  phase-.-mdu la% .icm t e r a t ~  eq-uat i orrs 13f P ~ L C ' ~  t i  i ~ . i  FI  

would be the same as for- the degerierste paraate-dp-Lc osci .f.l;i-txir a i d  

degenerate f our-wave ~ii.xing be l m  threshul.d - 'The nuve ii f ~+I~,IZP~!:E mid 

resu l t s  iri our ~y stem are co-naected. .with the i.ncr_lr.pcjrxL -j un - t  $;tic: 

self -phase mdultiticm term- ?%is temi rm2.%~- 3.n %ire atsxw----t. , , k s e c t  .. -.; t i c j  t t! 

generatiori o f  %he signal. f ieid- k t ,  t~s curiaider the  s-L~ib1.e sLeady.--. 

state solution f u r  the out.put, intensiky , I t  is eq-uaf to 

In F i g ,  5 w e  plot  the nomnaliaed output interisitg an a f a c t  l ~ r *  r ~ f '  

the parameter s 2 = S 2 ~ / p  for L h e  case of equal ampli.tuber; of t;krc_t jXiEip 

f i e ld s  iE51=lf2/=E. 

T'he zero intensity so lu t ion  is stable below tbe gencsat.isn thrc-- 
2 2 2 2 

s h l d  a t  E <s andt well above.-tkme~Pioid at, c k-, , whex-c 
A 

The r.~urizeru-ir~tencity sohxbiun given by Eq, f 5 ) -is stat lr. 5x3. the x -e  
2 2 

giun 3<s <& and h a ~ e  a mari2-n~ fur B less *,,han yl/z .. W e  see .t;hn.t; 5 
B 

2 2 
bistable khaviour of the  output if; realized in %tie rr- . ,g<.r~~~ 3 . e  - 5 : ~  A 

Now let us turn out t o  the pr~blern of sqa.eezl.rrg. T h e  S;F~:C%~WI 0 f  

tfie uutpat field a k v e  tbesf-ruld is ol%aiwied i n  a ~tar~dr'~.rd line-.- 

arized treatment a£ q-uantmi f luct-aa%iuris <=i;ix.we:.; fox-- sqxreezi~r~ spec - 

t r a  S[~c).f V~TE;US a id the spectrami value S ( c 3  ) a-f; t . f . 1~  ~ T n t s  of 
c-pi. 



opti~lal  frequency i ~ ~ = i . i ~ ~ ~  YRPSUS the prmp field i r l t s r l r i  i ty pi\~'a~i-i<?i;i?~. 

c Z ~ " x f ; ~ ,  ( E = l E  I = [ E  ) ) are plotted i n  P i g . 5 - - ( a ) , ( t l ) .  
1 2 

Fig. 5 ,  Cutput intensiey uf k h c  EWM u s c i  l latex. VC?T':;~Z:S tali<? i ~ i t . ~ ~ l  

5;it.y of the yui.xi fieldti:: Af'j rS, 

L 

Fig - 6 - f a j -- Squeezrirg apJct~-wn -JeyEilfi c,~2h/ f cjp A J;. - -- r- . > .+: :: 1. . 8 
2 

(dotked line? ar14 -E =4.8 Csililid l i n e ) ;  (b) dependeslcc i s f  
2 

-the quaat ity S f~.i ) on. E -far A ,Q, ::s - 
opt 

It slxx.~ld be noted that %he expex*iruental mcnourc?mczrt. of i.1u.n r r i l  i:;c 

on tlie qudrature component in  a s i m i l a r  €%@I r x > r r f i g i s r a t i b r ~  has 2~ccttt 

carpied out by D-Grandclemeni; et a1 [45 - They d id  rlczL efjnd kha sqic 

ezed noise reduction- This is not so surpr-icing because, as fo  I l own 

f r o m  our analysis, squeezing is realizi?d for properly cl~osr?n ~alut?:i 
2 

of parameters AJy and K - 



3 - Intracavity gmrarcetr-ic EWM with noricfegerre-pa LC: yLiEiyG. 

Abave--t.iireshuld results on bright ~qtreez i r ig  of . tkii? tfiree 

intracavity m c ~ r k s  

This part of our r*ewr.t is devoted t c j  ttir: resuttrs oft. i:~r:i.gtit, sq:ii:- 

ezing in the configur-ation uf W M .  wfie-re the two  Lasex.- d.r.i.vj.rrg 

f ielde pro-pagate in tf ie  direction of the cavity axis {see F i g - 7  3 - 
These driving fields f eed  t w o  i n t r a c w i t y  puaip ~f~t3de:r; aii the frcq-i~c5:l.- 

cies o:~ t o  , The pump inodes generate a signal mode at. t h e i r  ha:! f.--:sum 
i Z  2 

f x>equsr~~y LO - ( w  f t z t  ) / 2  and the wave-vccf;ctr matching ci>t~d i ti un  i - ~ . r ~ ?  
0 i z  

exscutc?d exactly (%*-.+k2=-2%). So the configuration of I33JM w i t h  tvei: 

intracav'rt;y resunant ~ i ~ d e , c  of f r.eq-uei.cle~ CLi it? 3rd I :  :i?t::.t i L ~ z c , c L . ~ .  
2 I:> 

In this cunfigurat.3.on the ef fects  of ~ixxtual inf Lac:-ice ~ : t :  --Lire p-t.;rrrlp 

and signal modes are esse:.ti-al, So we take 2rrt.o zic:eutll'ri.t, the pcimp 

depletion- The cunsideratiun is s i m p l i  f iecS tiowever. irk t h e i t  w e  ignore 

the phase mdmlati.on terms- 

Note that t f r e  advantages of Chis scheme af BVM, a s  c ~ r u ; ~ r c d  I.o 

the standard nondegenerate FlM with a s i r - t g ~ l e  pxmp mc>de,  are caused 

by the following, As shown b e l o w  the effect uf phase di.f.f-uni.o:n is 

absent here- A s  a result, the output f i e l d  for  each of t.he flki.t+ee 



modes have nonzero mean lltudes with a definite phases, 

Thus w e  start from the folluwing Hamiltonian 
2 

-% H = ), i i ~ . a . a .  + it) 4-2 

J J 3  1 2 0  1 2 0  

A s  compared t o  the previous model, nuw w e  take into account the 

quantization of the z m m ~  modes and incornrate: (i ) the coupling of 

the pump modes with two external coherent driving f ie lds  of amplitu- 

des El, E2 and ($5 ) the decay of the three cavity modes due t o  the 

coupling with reservoirs, 

With use of standard arethods, a FokkerPlanck equation i n  positi- 

ve P-representation for. the system is found, from which stochastic 

differential  equations f o r  the complex f i e ld  amplitudes are ob- 

tained 

H e r e  yo, y=yl-=u, are the dampi- constants for  the modes w, and %, 
o respectively, E is the amplitude of the driving fields 

2 

E e x i 2  # ape aPbitrary phases of the drivine 
1,2 

fields, R. are Gaussian noise terms wlth the fof lowing nonzero cor- 
J 

relations 

&,(t )Ro(ig )> = ka a 6(t-t' ). CRl(t)R2(tg )> = - $ <6ft-t* 3 -  
1 2  (93 

In order t o  analyze the puantum fluctuations of the modes w e  ap- 

ply a linearized treatment of fluctuations about the stable steady- 

state solutions- I t  is wurth noting that,  as pppoeed t o  the standard 

scheme of PWM, for  the present system there exist three types of 

stable steady-state mlutione, They correspond to the three possible 

regimes of oscillation: one belcrw the generation threshold E<E, and 

two different above-threshold reg-s at Ei <E <ZEt and E .<ZEt, The 

threshold value of the amplitude E is EL= y ( y d x  lLR - 



The n-esults for the cavity-output int~xis i t , ies  &""' girt phrjf,cisi 
J 

number uni ts  per unit t % ~ i e )  for the anodes ~ 3 )  i n  %tie abuve- t,fir.e::f ii: J d 

r e g i m e  are f u l lowi rrg - Fxi the regiun ]t-:.5 1;2 {z r E / E  j w e  i i i * ~ t <  i,: t: , 6 i : 
L 

The skeady-state phases y )  of a l l  the Lhree modes a.= i.fitf irleri 
J 

above threshold ancf equal t u  

Y;=+* 7 ~ ' ~ = 4 ~  ' "*=t@i*2)/2 { : l l :  

So, they a.re determined by the phases of t P t e  dri.-gi.-r~g f i e l d s  4,. I +*. 
W e  calculate the qua.c;frat;ur-e Eluctwt iuwt va~j-avrce for n.11 i , R e  

three irntraca.vity mucks arid currespunctirr6 ecyuaezing spectra for t,he 

cavity-outpt f ields,  We would like t o  pointti out at mice *.,hat r7.n 

effective squeezing occurs for. each of kiie tPtr.ee ~fiodes iltmve thr-e 

shold E5,61, 'l'his is an ext~emely intereeing f ea-ture of t;he buublr-,- 

color-pumped IWM oscil lator-  

The maximal squeezing is realized for the phase of the locsn.i 

oscillakor equal t o  -3 =ay and is determined by the f luet.uation:; of 
3 3 2  

phase variables 

s (w)  = 1 r- 8 y n  6 ~ )  ( - - t . ~ ~ ) 6 ~ 1  ( ~ 3 ) >  , ( 3 2 )  
3 J J J J 

w h e r e  n is the intracavity steady-state phatun number cxf the 
J 

w . -mode , 
3 
Examples of the tswves of the squeezfng spectrun~ for the cigriaJ 

mode are plotted in Fig-8 -~WP dlf f erent values c ~ f  ya,rxie%en.e .:' arid 

r- y o / y  - 
Our analysis show that  a noise  bucki ion 'below tke shot;--noise I.u- 

vel may reach approximately 100% in the w h o l e  abcwe--threshrs3_d rcgicxr 

e>f. and for  r-2 10.. The higher y u f i  the better the squcea+rig- ifuw~-i?er, 

the intensity of t h i s  f i e ld  5s limited by Ckie velue Jv =* ~,/.u. G:fi~2 
0 O 

ration of more inten- l ight in the squeezed state ucc-ura ;l't LFje 



p~lmp f i t3.I €1. f req-acnc-:ies - Tfre curx-csparidix-ig a-utgu% irite=--=: L ~ D  A. + td 3-e~i ' WFO-+Z 

.w i . L h  i ncrr:a se uf the i.m: ide.nt fie lds , Himever the ma;*=%~gr l squesz i'rrg 

rtrzry r,a;icrlk approxjxii;it,f: iy 5G% f OF certain va iue~  sf the fati3 2 .o/?, . 

-, . I! 1-g. 8 - Sc~uee~ixw.  S ~ ~ C ~ P U T T ~  S o ( ~ 3  ) V~Y.SUS ~ 3 f p  o : E= 1-1, I-- --2 -- ( sul id 

line); --4, r L = l f )  - (dot;Cecll. line), 

We r e s C ~ i c l ;  ouu~ie2ves by representation of the squeezing spclrum 

S (LL- ) a% the pui.n%~ of miriirria ~ t l = c 3  Tkie depzridence of t h P ~  
L , 2  crpi c.pi 

quiwrtity on the yzrame.tr,~ r.. k f ;  plotted TFrr Plg.9- 

'l%txs we find tha% the duuble-color-pumped FWH osciXlatars is 

extreme 1 y pi-om1 sing for %he above- thx-eshuld generation of onc-mode 

briglrt squeezed light- 



Now w e  sfml.X present the results or1 %,he sub G ~ I T S ~ - - X I Q P . F ; E  c0e.r-aLa%i --. 

ons in the above-threstiufd ~egime- W e  coriei&e.r the C O F T C ~ E ~ - ~ , ~ C ~ T L E  tie-- 

t w e e n  both the intensities arid t h e  phases c ~ f  the i:r~.te.pr.ac t, kt~g m~fitider;;. 

In the well-known processes of riundegenerate L;WM arid -paraie2tx j.c 

dm-conversion, the pfrotoris of t w o  gerierated ziade8 ape CZ-eated I r i  

pairs arid a positive correlation <Sn 6t-r >Xi betweeri. %he pkicjtwi .riuni 
1 2  

ber f fuctuations of t h e ~ e  ~ ~ ~ d e s  occurs- 2-L result,s in the x * = d . u ~ t i ~ z l  

of qzlantwn f luctuatio'ns b e l o w  the shat-riu5.se level. ixi ttic: i n L e a s i b y  
I 

dif f  erence of the modes, T h i s  yhencmena has heen ~ L f ~ e r v e d  far. t i i ~  

f irst  t h e  i n  2-ntraczavity -riundf;?generate parmett.i.t. osci 1.. 1.n Lc-r. t, y 

A-Heidmann et a l  C71- 

1x1 our n o n f i n e a ~  system we have f'uund another manifest;ai;jurr c>f-' 

such an effect, I t  cons is t s  of the raeductiun of qt.xant;um n ~ i ~ i ~  in i;-lic-t 

inkensity swn of the pump m o d e s  E87 - The cxp2anaticx1 ui this  phi?^^<> 

mena is following, The photoz-rs of two pump mtlldes are axu;~i.hilat;ed i n  

p a i r s  and the pump modes acquire correlated skatisticaf yro~c?rtriez, 

which are charac te r i s t i c  f o r  two-phu%on &sox-ptiarr- A 3  a r e su l t ; ,  tik~t? 

correla t ion between i n i t i a l l y  uncorrelatcd coherent pump f ri.i:lltiu be --. 

comes negative da.r16n2><0, And this f a c t  rcesults .in .the sub s53ot-- 

noise f luctuat ions  i n  the in tens i ty  sum of the cavity tx&.p~rt beams- 

W e  s h a l l  not  dwell 013 the par t icu lar  quant i ta t ive resu3ts- N o t e  (3111.3r 

that the maximal noise -duetion may reach appraximat;ely iUO% irli Lhe 

l i m i t  E-42, &en the pump depletion is maximal ,  

A m o r e  in te res t ing  f e a t u ~  of our FWH configuralitm is ~antrei.:~ed 

with the cor re la t ions  between the phases uf t,hc pump maden- T%iay are 

studied i n  terms of the q.uadratum phase operatars, as applied to 

the t w i n  hamsdying experimentaJ measurements- 

In  general the variance of the stxu o r  difference 0.f the q~i+dr;lit;~r-- 

re component operator 

contains the coritribut ions froxi bath the ixitensiky and pkiase var i :J.- 

ble fluctuations of the mudes, 

In  our system we can select; properly the phases a£ &he locia1 on.- 



: ; 1 t a t ~ j r s  to get %he vapixzice as expressed "in temm of the phase 

f-l~rc.:t;ust-ionf; o r t L y ,  The T-esutt, cwi witteri as fulfows 

Ni-jt,~?, t i ~ a C  slick a prsssibi l i ty  do no% exist; in parrnetpic praeesses 

w i t,Et p h a s e  di ffusicrn ef feet. The nonclassical correlations between 

Lti i :  phase f Itrct-r~atit~ris ape ztm~ifezted iri t ; P e  va~imce t' ( 2  ) 
12 

ctnc3 so w2 obtain a reduction sf quantum f fuctuations below the c11ot- 

nc~i  r;e t eve l 'I_n the d l f  rererice <c,f the quad~a.t.ure ykiaaes: I/',, <Z , 

A s impLr ,  axial-ytica2. r.r,fn;tf% is obta-i+ed aim a tihe ~iie~~-iz.retf 

. cavf ty - oLtZ;put fields, Tkie cu-~respuwiding spectrum of the quad~ature 

phase dif f e~eriee f luctuat-ions in  the regicsri I&- <2 is f u l h w i ~ i g  

W e  see Lho.t. the rioise reduetion up to 100% i~ yu~sitfe Ln the lZmit  

r-+2 at  zeru frequency, In the region s32 the 8fiape uf the s~ctr.iwr 

is ccrrqplicated arid the noise level is i~icreaeed- 

Final Ly .we preserit come rewlts concernirjg the op%ical spectra of 

t,he cavri.tiy-ox~tyut squeezed light, W e  consider the intensity spectra 

of each of tb: tt~ree nuwlasslcal light Plrt;tms aromd ttie f~eg-~eric ies  

to (.i-3, I,Z), IB~ese spectra contain a delta-function peak correswn- 
J 

ding t,o cc3heren.f; part of radiat;ion and a bruadened noxicukerent part- 

'f%e broadened parts of spectra are caused by the quant;~ fluctuati- 

ons af &he field, In the lowes% order in quantm fluctuations they 

contain kwo conkrib~itions, arising from the tempuraf correlations of 

~ r s t g l  f ttr 1 6 ~ ~  j t f 3. Depending o~ %he contribution strength, a two- or 
3 J 

four--paked s%r~uctux+e uf noncohex-err% part of spectra arise in the 

case nf oseill at ins c11arac.i;er of these correlations - 
At1 excm$ple of f our-peaked spectrum for the pump TiePd is repre- 

sented in Fig-IO- Here the one pair of %he peaks is caused by the 



phase flur:tuat,,ions arid the otk~er one - kg t,hc Lrrt,c:rieit-y ~ ~ i i : ~ : L i . j ~ i L i -  

ons- Ttie fact, that is interesting here, 3-R t , # ~ ~ f  s(rjp;ir;it;iiiti i r t  f'r*i:qtt 

eney of  4,heee t w o  corktriht, icsris-  Su i t  sf:esis Lo P3e p a ~ s i b i ~ +  :,I) i i i i e r -  

t h e  information about the pkiase f ltrct~xatioti:~ f rsom t,i.i+: u c r ~ ~ i  i C J F ~ ,  j 4 : :A i 

spc tm - 

F i g  - f 0 ,  122x3 r-iorrcoheront part aT t k t e  kr?iLenr.; i ty spec t n x m  c;i tJre 

pmp m a d e  .5-=2,2, t-=O.Q!j.  
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MULTIMODE SQUEEZING, BPPHBTONS AND UNCERTAINTY 
RELATIONS IN POLARIZATION QUANTUM OPTICS 
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Abstract 

The concept of squeezing and uncertainty relations are discussed for multimode quantum 
light with the consideration of polarization. Using the polarization gauge SU(2)  invariance 
of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom 
from other ones, and consider uncertainty relations characterizing polarization and biphoton 
observables. As a consequence, we obtain a new classification of states of unpolarized (and 
partially polarized) light within quantum optics. We also discuss briefly some interrelations of 
our analysis with experiments connected with solving some fundamental problems of physics. 

'J1 Introduction 
Polarization properties of light were widely investigated long ago when examining some funda- 
mental problems of quantum mechanics including "hidden" variable theories, Bell's inequalities 
and Einstein-Podolsky-Rosen (EPR) paradox, different topological phases etc. (see, e.g., [I-81 and 
references therein). Herewith, as a rule, the polarization structure of light has been described 
in terms of the field correlation functions, associated Stokes parameters and the Poincare sphere 
which are well adapted to classical optics experiments [7,9] but are not quite adequate to spe- 
cific quantum ones (photon counting)[3]. Such a description also ignores a polarization SU(2) 
symmetry[lO-121 of light fields though it has been widely used implicitly - through the Stokes 

2 1/2 parameters sd which determine, in particular, the polarization degre degP = [s: + si + s,] /so 
of monochromatic plane wave light beams[1,3,9,313]. 

But recently a new formalism[lO-121 was proposed for a description of polarization structure 
of multimode quantum light fields using the polarization SU(2) symmetry and a related concept 
of the P-quasispin which generalizes the Stokes vector notion at the quantum level and is closely 
related to the Stokes operators defined in [13]. This approach enabled us to gain a new insight 
into the polarization structure of light and quantum mechanisms of its depolarization[l2,13]. 

At the same time, so-called squeezed states of light are intensively examined now within quan- 
tum optics (see, e.g.,[10,14-171 and references therein) since these states have attractive properties 
of the "noise reduction" in measurements of some quantum mechanical observables. However, we 
note that squeezed states have been studied sufficiently well only for' the single-mode fields[15,14] 
whereas for multimode fields it is not the case since even the definition of the concept of multimode 
squeezing is not unique that is due to a lot of the choices of measurable quantities[l6,17]. 



The aim of this report is to give an analysis of the concept of squeezing of the multimode light 
related to polarization degrees of freedom by using the above mentioned formalism of P-quasispin. 
Specifically, we will show that there exist new quantum states of light beams exhibiting , in a sense, 
an absolute squeezing in polarization degrees of freedom. Such states are generated by specific 
unpolarized biphoton clusters and have all characteristics of usual unpolarized light, but unlike the 
latter, new quantum states of unpolarized light are "polarizationally noiseless" [lo-12,181. Besides 
we discuss briefly some generalizations and applications of new non-classical states of light to 
setting up new optical experiments related to some fundamental problems of physics. 

2 Polarization P-quasispin of electromagnetic fields and 
unpolarized biphotons 

In quantum optics the free transverse electromagnetic(em) field with "m" spatiotemporal modes 
is described by the vector potential[l,3,12,13] 

where a,(j)/a;f;(j) are destruction/creation operators for j-th spatiotemporal and a-th polar- 
ization modes of the field, &(j) are the polarization unit vectors adapted to the helicity basis, 
Z3(j) = &/wj, V is a quantization volume, etc. With the help of Eq. (2.1) one determines corre- 
lation tensors [3] 

G!::~!~;~~..~~~({F~, ta}; {G, t:}) = TT[~E~L) (F~  , tl)-..Ej8-)(Fs7 ts) E:;)(c9 t ~ ) . . . ~ : ~ ) ( ~ ,  ti)], 

which correspond to different physical quantities, measurable in optical experiments, and are 
expressed in terms of quantum expectations of ordered polynomials in operators aa(j) and a:(j)[6]. 
We note that quantum expectations of any physical quantities are calculated by averaging on the 
space Lphys = LF(m) spanned by basis vectors 

which are generated by the creation operators a;f;(i) of photons with transverse (a = +, -) polar- 
izations (helicities) only (that corresponds to a standard form of the gauge condition for transverse 
radiation fields in quantum electrodynamics[l2,13]). 

The most important of such measurable quantities is the field Hamiltonian 



which determines the time-evolution of other field observables[3]. But in polarization quantum 
optics there are specific observables which characterize proper polarization properties of light 
beams and correspond to to the group U(2) of a specific polarization gauge invariance of the 
Narniltonian (2.4)[10-121. This continious polarization group U(2) is closely related to discrete 

4 4 

symmetries of em fields(rnirror reflection B : af (j) a$(j), 6 = -kj and the spatial inversion 
fi) since all these (chiral) symmetries act in a natural manner on a 2-dimensional "polarization 
spinor" {e',(i), a! = f) spaces[ll,l3]. 

The generators of the polarization group U(2) are of the form 

Pi = x a: ((i)ai (i) = x P* (i), N = x x a:(i)a,(i) = x N(i) 

where N is the total photon number operator and operators Pa are generators of the SU(2) 
subgroup defining the polarization (P)  (quasi)spin [lo-121. The operators Pp and N satisfy com- 

' mutation relations 
[N,Pa]=O, [Po,P*]=fP*, [ P + , P - ] = ~ P o  (2.6) 

and in the case m = 1 coincide up to the factor 1/2 with Stokes operators C, : C1 = 2P2, C2 = 
-2Po, C3 = -2 PI [13]. As is clear from Eqs (2.5) the total P-quasispin of the em field is obtained 
by adding of the appropriate quasispin quantities for single spatiotemporal modes. However, 
from the experimental viewpoint the total P-quasispin of the em field enable us to examine new 
interesting physical phenomena connected with correlations of different modes, in particular, with 
so-called "entangled states" which are widely discussed in multiparticle interferometry [2,5,19]. 

Note that the operators Pa do not commute with + components S, of the gauge non-invariant 
(and hence locally non-observable) ordinary spin S = (S*, S2, S3) of the em field wich define the 
field transformations with respect to the SO(3) c SL(2C) group of rotations in the usual 3- 
dimensional space and are expressed in terms of the i ( i ( i  t )  Fourier components Ai*)(j) as follows 

where cabc is the fully antisymmetric tensor ( €123 = 1). Specifically, from Eqs.(2.1),(2.7) one easily 
finds relations specifying "rotation" properties of different physical operators[l2]. For example, 
in the case of plane wave beams, when in (2.1) esa(j) = S3a, a = 1,2,3, e*3(j) = 0 (e,,(i) is the 
projection (directing cosine) of &(i) on the "a"-th axis of a fixed spatial frame of reference with 
the axe 0k3 being parallel to all zj) and S3 = 2Po, one finds a relation 

defining transformations of P-spin components under rotations around the light beam axis. 
From Eqs (2.5), (2.7) it follows that the 9-quasispin formalism has evident advantages in 

comparison with the ordinary spin for describing properly polarization properties of light since 
its components have a clear physical meaning and are measurable in quantum optics polarization 
experiments related to counting photons with definite polarizations[l2]. In particular, the total 



Figure 1: Scheme of the measurement of P-quasispin components 

helicity 2 Po of the field is the difference (N+ - N-) of the right- and left- handed photon numbers 
and Hermitian operators 2P1 = (P+ + P-) and 2P2 = i(P+ - P-) determine (cf.[9,6]) differences 
of photon numbers for two pairs of orthogonal linear polarizations which are connected with the 
helicity basis by the linear transformations[l2] 

1 1 
6) if (j) = -{a$ (j) + a$(j)), &t(j) = -{-a? ( j )  + a t ( j ) )  & 4 

(2.9b) 

implemented, for example, with the help of phase plates and polarization rotators [9,6,7]. (From 
the formal viewpoint components PI and P2 correspond to the choice of different subgroups 
SO(2) c SU(2) unlike the helicity subgroup U(1) for Po. Moreover, basis wave functions with 
linear polarization defined by Eqs (2.9) are eigenstates of operators describing the abovementioned 
discrete symmetries 8, f' of light fields.) 

A typical principal scheme[l8] of the measurement of components P, of P-quasispin is pre- 
sented on Fig. 1, where we use the following notations: PP denotes phase plates, P L S  stands 
for polarization light beam splitters, PA, and PD, are, respectively, polarization analyzers and 
photodetectors for polarization modes "aN. We note that this scheme can be realized in both 
singlemode (m = 1) and multimode (m > 1) regimes. However, as it will be seen later, the use 
of multimode regimes enables us to reveal new interesting physical phenomena, in particular, an 
absolutely unpolarized quant um light [lo- 121. 

Since in the case of the monochromatic plane waves quantum expectations < P, > are pro- 
portional to the Stokes parameters s, =< C, >, a = 1,2,3; so =< N > [13], then in general cases 
one can consider that quantities < P, >, < N > determine the polarization degree degP of light 
beams with arbitrary wave fronts and frequencies by the relation 

2 1/2 degP = 2[ (< P, >) ] / < N > (2.10) 
a=0,1,2 

generalizing the appropriate definition for one-mode light beams[3]. At the same time the quantum 
averages < lP21 >= P ( P  + 1) of the SU(2),,[ Casimir operator P2 = (1/2)(P+ P- + P- P+) + Po2 



are connected by the relation 

with the variances a, =< I Pa > -(< lP, 1 >)2 determining "polarization noises" [3,12,18] and 
different uncertainty measures for operators P, (cf. [20-221). 

Therefore, one may use P-spin (Pa) as an adequate tool for studying proper polarization 
properties of quantum light fields in parallel to the usual apparatus of the correlation functions 
and Stokes vector s' = (sl/so,s2/so,s3/so) running on the Poincare sphere[3]. But unlike the 
latter, the use of the P-spin formalism allows us to gain a more deep insight into the inner nature 
of the polarization struture of light beams with arbitrary wave fronts. 

Indeed,as it was shown in [lo-121, one can decompose the Fock space LF(m) spanned by the 
vectors (2.3) into the direct sum 

L F ( ~ )  = C L(Pn) (2.12) 
P,r 

of infinite-dimensional subspaces L(Pn) which are specified by eigenvalues P, ?r of the P-spin and 
Po respectively and spanned by basis vectors IP?r; n, X > of the form 

where C a; = 2l?rl, C /Iij = (P - I?rl), -yi j  = n/2 - P. For example, in the cases rn = 1 and 
m = 2 we have the following expressions[23] 

a) ~ P T  >= [(P - ?r)!(P + ~)!]-'l~(a:(l))I~l+?(af(l))ld-~(~)~-~~II~ >, (2.14~) 

b)(P?r  = f P ;  n , t  >= [(n + l)!(n - 2P)!(P - t)!(P + t)!/(2P + I)!]-'I2 

( ~ f ( 1 ) ) ~ "  (af (2))P-t(~&)n12-P10 >, 2t = n(1) - n(2) (2.14b) 

for some of such vectors. In general, the coefficients C( ...) in (2.13) are determined from the 
defining equations 

and some equations for fixing an extra (vector) label X (see [12,11] and references therein). Oper- 
ators 

1 
Y+ = -(a:(i)af(j) + af(i)a:(j)),x,$ = a:(i)af(j) - af(i)a:(j) 

t3 2 
(2.16) 

in (2.13), (2.14) are the solutions of the operator equations 

and may be interpreted as creation operators of Po-scalar and P-scalar biphoton kinematic clusters, 
respectively. 



From Eqs(2.16), (2.17) one easily obtains that < Pa >= O,CY = 0,1,2, in states generated by 
actions on the vacuum vectors 10 > of operators (x$)'(~T)' only ( and spanned by vectors (2.13) 
with n = 0); these states are examples of entangled states of multiparticle interferometry[5,19]. In 
general, t i e  states (2.13) describe light beams representing a mixture of both usual (uncoupled) 
photons a:(j) and unpolarized P- and Po-scalar biphoton clusters Xi:, k;: 110-12). As it follows 
from (2.13), the total number operators Nph, NX , NY , respectively, of uncoupled photons and 
X-and Y-type biphotons are given as follows, 

We, however, note that biphotons 5; exist for any number "m" of spatiotemporalal modes whereas 
X.$ # 0 only for "mN 2 2. We also emphasize that in contrast to the usual photon operators 
a$(j), aa(j) the operators X, = (Xi:)+, Xi:, Yjj = (l$)+,xr satisfy not the canonical commu- 
tation relations but trilinear commutation relations for quanta of generalized parastatistical fields 
(these operators, however, can be transformed in some "particle-like" quanta ones)[ll]. 

Further, the decomposition (2.12) is invariant with respect to the Lie algebra so*(2m) generated 
by biphoton operators XG,X$ and commuting with the polarization invariance algebra su(2) = 
Span{P,}[12,11]. Therefore, states > belonging to a subspace L(Pn) with given P, n at 
initial time will be in it for the time evolution governed by the interaction Hamiltonians Hint = 
H: ({xi,, X$ }) what is similar to the situationin the theories with spontaneosly broken symmetry; 
examples of such Harniltonians are given by those of some parametric processes [lo-121. Extending 
the algerbra so* (2m) by adding operators Yjj, YY,: we get the algebra u(m, m) commuting with the 
polariztion subalgebra u(1) = Span{Po) c 4 2 )  and associated with interaction Hamiltonians 
Hi,,* = H,Lt({xj9 Y,;; Xij, X$)) (describing, for example, light propagation in Kerr media) which 
keep invadant for time evolution subspaces ~ ' ( r  ) = Cp>llKl L(PR) (with fixed r) [12]. If we restict 
ourselves by biphoton operators xj, k;: only we obtain7he subalgebra sp(2m9 R) c u(m, m). So, 
algebras so*(2m), sp(2m, R) and u(m, m) describe specific P-and Po-scalar degrees of freedom of 
light fields which are complementary, in a sense, to.polarization ones. 

3 Squeezing in polarization quantum optics. A new clas- 
sificat ion of unpolarized light 

The decomposition (2.12) implies a new classification of the polarization states of quantum light 
fields from the physical viewpoint [11,12]. This classification is closely related to a specific sort of 
squeezing of multimode light beams with consideration of polarization. 

In fact, a definition of squeezing in quantum mechanics is based on an analysis of different 
uncertainty relations for expectations < I (A;)" I > of a set {A;, i = 1, . .. , T > 1) of non-commuting 
Hermitian operators Ai representing some quantum observables[l,l4-17,20-251. These relations 
are connected with specific measures of admissible quantum fluctuations ("noises") for joint mea- 
surements of all observables A; in a state I > which characterize differences betveen quantum 
observables and their classical analogs(< [Ail >) and are displayed with the help of different 
quasiprobability functions[3,14,25] and generalized coherent states[3,10,20-221. Specifically, the 
most widespread uncertainty relation (of the Heisenberg type) has the form[1,14,20-221 



where (AA)2 G BA =< I(A)21 > -(< JAl >)2 is a standard quadratic measure (variance) of a 
deviation of the quantum quantity A from its classical analog. Then the problem of squeezing 
consists in finding quantum states minimizing both the product AAiAAj of two "individual" 
uncertainty measures (the condition of a joint quasiclassical behaviour of A; and Aj) and one (say, 
84) of them (the condition of properly squeezing). 

If the right side of inequality (3.1) is a c-number this problem is easily solved and leads to 
a definition of the usual concept of squeezing related to generalized coherent states of the group 
SU(1,l) [14-171. For example, it is the case for single-mode em field when we use as observables Ai 
two quadrature components A1 r X1 = (a;(j) + a,(j))/& A2 I X2 = i(az(j) - a.(j))/fi(a, j 
are fixed) [14,15]. However, for multimode em fields the situation becomes more complicated 
since in this case we have a more vast set of observables which obey non-trivial commutation 
relations[l0,16,17]. Therefore, there arc: many possibilities of definition of squeezing related to 
a choice (from physical considerations) of some subsets of observables (and adequate joint un- 
certainty meausures for them) for which a solution of this problem is comparatively simple. As 
we established above, in polarization quantum optics it is natural to take as such subsets compo- 
nents P, of the P-quasispin obeying the commutation relations (2.6) of the su(2) algebra as well as 

. subsets of unpolarized biphoton operators (2.16) of X- and Y- types (related to the "biphoton alge- 
bras" S O * ( ~ ~ Z ) ,  sp(2nz) R) and u(m, m)). That enables us to define a specific polarization squeezing 
which is closely related to a new physical phenomenon of biphoton unpolarized light(UL)[12]. 

Since operators Pa are similar to angular momentum operators J,, a = 1,2,3 obeying the s 4 2 )  
commutation relations, one can apply analysis[20,21,24] of uncertainty relations and an appropri- 
ate concept of squeezing for operators J, to analysis of those for operators Pa, a! = 1,2, 3(P3 = Po). 
As is known[20-221, the Heisenberg uncertainty relations (3.1) for A; = Ji (i = 1,2,3) are minimized 
on the SU(2) generalized coherent states[20] I(; f j  >= exp(CJ+ - C* J-)I j ;  f j  >, C = -f exp(+) 
where Ij; fj > is the highest (or lowest) vector of the SU(2) irreducible representation Dj. The 
states I<; f j > are maximally close to clas~ica~l ones[20] and minimize a SU(2)-invariant (cf. 
(2.11)) "radial" uncertainty nleausure Ci O J ,  (x i  a ~ ,  = nziiz = j on the states 15; f j >) which is 
an adequate characteristic of q~asicla~ssical behaviour of a whole set {J;)[20,21]. Besides, these 
states are used for a definition of polarization analogs Q(8,4; p)ltp = I < 5; f P(plC; f P > I2(p 
is a density matrix of a light bea,m) [23] of Q-functions of quasiprobability[3,14] which are well 
adapted for displaying squeezing properties of oscillator systems. Evidently, for physical systems 
with a fixed value of j (e.g., for usual spin systems) we obtain an "absolute" squeezing for {J;), 
characterized by relations 

C oJ, = 0, AJ, = o =< I J;I > Vi, 
a 

only for the unique vector li; 0 >= 10; 0 >. But for en1 fields the situation is quite different because 
of the decomposition (2.12) for LF (172). 

Specifically, as is seen from Eqs (2.13), (2.17), the states I >E L(O0) = Spaiz(100; 12, X >) satisfy 
Eqs (3.2a) and provide an "absolute" nlininlunl of both the aforementioned "radial" uncertainty 
measure xi ap, as well as uncertaint.y relations of the (3.1) type for operators Pi; besides these 
states form the infinite-dimensional space on which three non-commuting operators Pa behave 
themselves as c-numbers exhibiting an "absolute squeezing" and totally classical behaviour in 
polarization degrees of freedom (that it is of interest for designing different experiments related to 
the EPR-paradox and "hidden va.riable" t4heories[l ,2,5,1 I]). We note that in LF(nz) there exists 



another class of quantum states displaying a similar (though more weak, than (3.2a)) property of 
polarization squeezing. Namely, for states I >E L1(n = 0) we find from (2.12)-(2.14) 

As it follows from Eqs (3.2), states [PO; ... >E L(P0) C ~ ' ( n  = 0) and (00; ... > E  L(O0) possess 
the characteristic property (< JP,j >= 0) of UL (cf.[3,9]). Besides, the calculations [ll] showed 
that < IS,I >= 0 for all cr and correlation tensors $") ( r ' ,~F ' , t )  have for these states a form 
corresponding to UL beams with, in general, arbitrary wave fronts. But unlike classical (chaotic) 
UL, for the states (00; ... > and [PO; ... > we have additional characteristics of light depolarization 
which follow from Eqs (2.12)-(2.14), (2.17) and are expressed in terms of higher moments for Pa: 

showing the absence of appropriate polarization "noisesn (< 1 (Pa)" I > -(< I(.P,) I >)$. a = 0919 2 
for I >E L(O0) and cr = 0 for I >E Lf(n = 0)) of any order measured by appropriate noises of 
difference photocurrents in schemes of Fig. 1; herewith, as it follows from Eq. (2.8), for axial 
(plane wave) light beams results of measurements do not depend on rotations of analyzers around 
beam axis. 

So, for states ( > E  E(O0) all proper polarization properties are identical with those for vacuum 
state 10 >, but unlike the latter the light intensity < lHf 1 > in these states(with the Hamiltonian 
Hf from Eq. (2.3)) is not equal to zero. Consequently, they may be recognized as states describing 
absolutely unpolarized light while the states I >E L'(O) have a hidden polarization structure 
revealed in measurements of linear polarization noises. Therefore, states 14 > E ~ ' ( 0 )  generated 
by biphotons yf,  X: and >>E L(O0) c ~ ' ( 0 )  generated only by biphotons XG describe new 
types of UL due to strong quantum phase correlations rather than random mixing Pighe beam 
as it is the case for the classical UL [3,9]. Examples of such states are yielded by generalized 
coherent states of the above biphoton algebras (and appropriate groups) related with interaction 
Hamiltonians Hint = H:,, + H;, where H k ,  = CiCj(gijXjj + g:,X:), HL, = Cij(fijKj + f~%:) 
describing some specific parametric processes[ll]. In particular, generalized coherent states of the 
SO"(2m) group orbit type 

discussed together with some related models in [lo-111 are generated by If:;',, whereas H:,, produces 
generalized coherent states of the group Sp(2m, R) c U(m, m) 

coinciding in the case m = 1 with two-mode squeezed states introduced in [15] and related to the 
SU(1,l)  group [11,12]. In general cases states (3.4), (3.5) display some properties of specific mul- 
timode squeezing associated with biphoton algebras so*(2m), sp(2m, R), u(m, m) (cf.[lO-12,161). 
Therfore, operators Sx , Sy can be called as biphoton squeezing operators. Without dwelling here 



Figure 2: Scheme of production of biphoton unpolarized light 

on analysis of all their properties we note that operators Sx commute with the "proper9' polar- 
ization squeezing operators Sp(() = exp((P+ - (*P-) while it is not the case for the operators 
SY. 

Physical realizations of such states, connected with actions of Po- and P-scalar biphoton 
squeezed operators Sy({/?ij}) and Sx({xj}) on the vacuum vectors 10 >, are represented schemat- 
ically on Fig. 2 where POG stands for parametric oscillator generators corresponding to the 
operators Sy, Sx and other notations are the same as on Fig 1. We note that, in practice, it is 
easier to realize such schemes corresponding to Eq. (3.5) rather than Eq. (3.4) because the latter 
require parametric oscillator crystals with highly anisotropic properties. Therefore, for production 
of P-scalar light it is preferable to combine more simple schemes of production of Po-scalar light 
together with some interferometric schemes[5,18,19]. 

Thus, our analysis displays inner mechanisms of the light depolarization at  the quantum level 
by contrast to the generally accepted viewpoint [9] that randomization is the only way of obtaining 
Uk. Besides, the P-spin formalism yields (see (2.17) and (2.18)) some new natural measurable 
quantitative characteristics of light depolarization, namely, degrees depp = (1 - 2 P l f i )  and 
depp,, = (1 - 12iillR) of the content of P-scalar and of Po-scalar biphotons where p,?i = &, fi 
denote expectation values of appropriate operators; herewith F = -112 + [1/4+ < (P21 >>I1/"s 
determined from Eqs (2.10), (2.11) as a function of degP, fi and variances a,. Evidently, depp, 
is connected with thewell-known degree of circular polarization 1 < N+ > - < N- > I /  < M > 
whereas depp provides a new quantitative characteristic of polarization structure of light related 
to measurements of polarization noises. 

We also note that analysis above can be extended by considering modifications of the de- 
composition (2.12) where any other Hermitian operator Pii = Sp(((n'))Po(Sp(((n')))+ is diag- 
onalized instead of Po (Sp(((5)) = exp(C(n')P+ - (*(n')P-), ( ( G )  = -!exp(-iq5) and vector 
n' = (sin 8 cos 4, sin 0 sin 4, cos 6 )  corresponds to a position of the Stokes vector s" on the Poincare 
sphere). Specifically, one can diagonalize Hermitian operators Pa, a = 1,2 corresponding to 
a linear polarization basis of light beams[l2]. Such extensions lead to new states of quan- 
tum UL generated by Pc(e.g., PI- or P2) - scalar biphotons xt(n') = (Sp(((n')))+Y;:Sp(((I)) 
of the (2.16) type and having characteristics similar to those described by Eqs (3.2)-(3.3) but 
with some peculiarities concerning their "rotation" properties determined by Eqs (2.8); for ex- 
ample, the condition AP1(2) = 0 is valid only for quite definite angle positions of polariza- 
tion analyzers. We also note that usual multimode Glauber coherent states i{at, a;} >= 

+ + ni exp(ai a+(i)  + a,a'(i) - ot'a+(i) - ar*a-  (i)) 10 >, af # 0, which are in general cases states 



of partially polarized light, contain ( for special values of parameters a?) a subclass of states 
corresponding to UL. In particular, all such states display properties(< 1 Pa I >= 0, ap, # Ova) of 
usual UL, when the condition la: 1 = laf I is fulfilled[8,18]. 

All this leads to a new classification of states of UL within quantum optics which can be 
represented by a chain of embedded subsets 

with the following typical density matrices for each subset: 

a)ULO -+ pth, 

b)ULc 4 pc = I{%} >< {adI, b+I = 10-1, (3.7b) 

C)UL" 4 pbp = IX >< XI, IX >= exp(XP+ - XP-)I >, I >E L1(a = 0), (3.7~) 

d)uLP0 -t pp, = I >< 1 ,  I >= S~({/3i~))lO > E  L'(* = 0), (3.7d) 

e ) u ~ '  -t PP = I >< 1 ,  I >= Sx({7ij})10 > E  L(OO) (3.7e) 

where pth is a density matrix for the thermal radiation[3], p, describes coherent UL whereas 
pbp, ppo, pp correspond to different kinds of biphoton UL[12]. We note that all these classes of UL 
are distinguished by values of depp = (1 - 2 ~ 1 ~ )  and deppo = (1 - 12?il/N). 

4 Generalizations and conclusion 

Thus, in the previous sections we have shown that in the Fock space LF(m) of multimode light 
with consideration of polarization one can pick out with the help of Eq. (2.12) subspaces (L(P = 
On = 0), L'(T = 0) and someones related to them) of quantum states describing different new types 
of UL light and, simulbaneously, manifesting specific forms of squeezing in polarization optics. All 
other subspaces L(Pa), ~ ' ( a ) ,  T > 0, in the decomposition (2.12) describe, generally speaking, 
states of partially depolarized quantum light (see [10,11] where we also examined various types of 
polarization generalized coherent states of light). 

However, in real physical experimental situations states of light beams do not belong to a single 
subspace L(Pn) but are superpositions of states from different subspaces L(Pa). Therefore, it is of 
interest to study polarization squeezing properties (with using measurement devices of schemes on 
Fig. 1) of partially polarized light beams obtained by actions of the biphoton squeezing operators 
Sy, SX together with the "proper" polarization squeezing operators Sp(() on states ]in >,hY, of 
some physical input light beams 

that is presented schematically on Fig 3. As a result we can obtain new (non-classical) sets of 
states of partially polarized light which can be called as partially polarized squeezed light(PPSL). 
Specifically, taking as lin >,hYs usual multimode Glauber coherent states I{at, a;} >, a' # 0, 
we get in such a manner states of PPSL which contain (at the condition la;! = [ail) a subclass 
of states corresponding to ULC in the classification above. In general, transmitting different input 



Figure 3: Scheme of production of partially polarized squeezed light 

beams through physical devices corresponding to different combination of the above squeezing 
operators in (4.1), one can obtain new classes of partially polarized light distinguished by values 
of depp = (1 - 2PIN)  and depp, = (1 - 12?i l /~)  by analogy with UL. 

In conclusion we emphasize that the above results give a more deep insight into polarization 
structure of light beams enabling to determine new nonusual states in quantum optics. In a sense, 
the results of section 2,3 and those of papers [lo- 121 yield all necessary prerequisites for developing 
a quantum description of unpolarized light waves whose existence has not yet an adequate solution 
within the classical optics[26]. All this opens some possibilities in setting new optical experiments 
related, in particular, to "hidden" variables, "entangled states" and EPR paradox [1,2,5,6,19], 
polarization chaos, spontaneous symmetry breaking and bistability [8,11,12], "optical atoms" and 
reduction of quantum noises [4,6,11,12,19] etc. From other lines of possible applications of the 
results above we point out precise measurements in spectroscopy of anisotropic media[l8] and 
studies of interaction of light in different new polarization states with optically active biological 
macromolecules (using the interrelations between the above chiral symmetries su(2), b, a of em 
fields and chiral properties of such molecules)[27]. 
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Abstract 

Since wavelets form a representation of the Poincare group, it is possible to construct 
a localized superposition of light waves with different frequencies in a Lorentz-covariant 
manner. This localized wavelet satisfies a Lorentz-invariant uncertainty relation, and also 
the Lorentz-invariant Parseval's relation. A quantitative analysis is given for the difference 
between photons and localized waves. It is then shown that this localized entity corresponds 
to a relativistic photon with a sharply defined momentum in the non-localization limit. 
Waves are not particles. It is confirmed that the wave-particle duality is subject to the 
uncertainty principle. 

1 Hntroduc$ion 

We propose a quantitative approach to the photon localization problem. Photons are relativistic 
particles requiring a covariant theoretical description. Classical optics based on the conventional 
Fourier superposition is not covariant under Lorentz transformations [I]. On the other hand, 
wavelets can be regarded as representations of the Lorentz group [2, 3, 41. In Ref. [I], we 
discussed the difference between waves and wavelets without mentioning the word "wavelet." We 
have seen there that the lack of covariance of light waves is due to the lack of Lorentz invariance 
of the integral measure. We concluded there that an extra multiplicative factor is needed to make 
the Fourier optics covariant. We would like to point out that this procedure corresponds to the 
wavelet formalism of wave optics. 

In spite of the covariance of wavelets, photons are not wavelets. Instead, we shall make a 
quantitative analysis of the difference between these two clearly defined physical concepts. The 
advantage of this quantitative approach is that we can see how close they are to each other. In 
this way, we can assert. that photons are waves with a proper qualification. 

Another convenient feature of the localized wavelet representation is that it is possible to 
introduce an cut-off procedure in a covariant manner, so as to preserve the information given in 



the distribution. By introducing the concept and word "window" [5,6,7,8], it is possible to define 
the region in which the frequency distribution is non-zero. We can then compare the "windowed" 
wavelet to the photon operators in quantum field theory to pinpoint the difference between the 
photons and wavelets. 

2 Localized Light Wavelets 
For light waves, we start with the usual expression 

Unlike the case of the Schrodinger wave, w is equal to k, and there is no spread of wave packet. 
The velocity of propagation is always that of light. We might therefore be led to think that the 
problem for light waves is simpler than that for nonrelativistic Schrodinger waves. This is not the 
case. In Ref.[l], we have considered the following questions. 
(1). We would like to have a wave function for light waves. However, it is not clear which 
component of the Maxwell wave should be identified with the quanta1 wave whose absolute square 
gives a probability distribution. Should this be the electric or magnetic field, or should it be the 
four-potential? 
(2). The expression given in Eq.(l) is valid in a given Lorentz frame. What form does this equation 
take for an observer in a different frame? 
(3). Even if we are able to construct localized light waves, does this solve the photon localization 
problem? 
(4). The photon has spin 1 either parallel or antiparallel to its momentum. The photon also has 
gauge degrees of freedom. How are these related to the above-mentioned problems? 

Even though light waves do not satisfy the Schrodinger equation, the very concept of the super- 
position principle was derived from the behavior of light waves. Furthermore, it was reconfirmed 
recently that light waves satisfy the superposition principle [9]. It is not difficult to carry out a 
spectral analysis on Eq.(l) and give a probability interpretation. The question then is whether 
this probability interpretation is covariant. We addressed this question in Ref. [I]. We concluded 
in effect that the localized light wave is covariant if we use the wavelet form. We regret however 
that we were not aware of the word "wavelet" at that time. In this section, we shall translate 
what we did in Ref. [I] into the language of wavelets. 

The expression given in Eq.(l) is not covariant if g(k) is a scalar function, because the measure 
dk is not invariant. If g(k) is not a scalar function, what is its transformation property? We shall 
approach this problem using the light-cone coordinate system. We define the light-cone variables 
as 

s = (2 + t ) / 2 ,  u = (2 - t )  . (2) 
The Fourier-conjugate momentum variables are 

If we boost the light wave (or move against the wave with velocity parameter P) ,  the new coordinate 
variables become 

I I s l = a + s ,  u l = a - U ,  k,=a-k, k u = a + I C , ,  (4) 



where 
a* = [(I P) l ( l  r P)I'/~ 

If we construct a phase space consisting of s and k, or u and k,, the effect of the Lorentz boost will 
simply be the elongation and contraction of the coordinate axes. If the coordinate s is elongated 
by a+, then k, is contracted by a- with a+a- = 1. 

In the case of light waves, k, vanishes, and ku becomes k or w. In terms of the light-cone 
variables, the expression of Eq. (1) becomes 

We are interested in a unitary transformation of the above expression into another Lorentz frame. 
In order that the norm / Ig(k)12dk (7) 

be Lorentz-invariant, F(u) and g(k) should be transformed like 

Then Parseval's relation: 1 lF(u)12du = j lg(k)12dk 

will remain Lorent z-invariant . 
It is not difficult to understand why u in Eq.(2) and k = ku in Eq.(3) are multiplied by a+ 

and a- respectively. However, we still have to give a physical reason for the existence of the 
multipliers (a*)'i2 in front of F(u)  and g(k). In Ref. [lo], Kim and Wigner pointed out that 
the multipliers in Eq.(8) come from the requirement that the Wigner phase-space distribution 
function be covariant under Lorentz transformations [ll, 71. 

Let us illustrate this point using a Gaussian form. We can consider the g(k) function of the 
form 

which leads to the F(u) of the form 

F(u) = (:) 'I4 exp (h2/2)  exp (ipu) , 

where b is a constant and specifies the width of the distribution, and p is the average momentum: 

Under the Lorentz boost according to Eq.(8), g(k) becomes 



Thus, according to the transformation law given in Eq.(8), the transformed F(u) becomes 

We note here that the average momentum p is now increased to a+p. The average momentum 
therefore is a covariant quantity, and a- can therefore be written as 

Q- = a l p  , (15) 

where a is the average momentum in the Lorentz Game in which a* = 1, and P = 0. 
As a consequence, in order to maintain the covariance, we can replace F(u) and g(k) by F1(u) 

and gl(k) respectively, where 

These functions will satisfy Parseval's equation: 

in every Lorentz frame without the burden of carrying the multipliers 6 and &. We can 
simplify the above cumbersome procedure by introducing the form 

where the procedure for the Lorentz boost is to replace p by a+p, and k in g(k) by a-k. This is 
precisely the wavelet form for the localized light wave, and this definition is consistent with the 
form given in earlier papers on wavelets [2, 31. 

3 Windows 

There are in physics many distributions, and we have a tendency to choose "smooth" or analytic 
functions to describe them. These functional forms usually extend from minus infinity to plus 
infinity. However, the distribution function of physical interest is usually concentrated within a 
finite interval. On the other hand, it is not uncommon in physics that mathematical difficulties 
in theory come from the region in which the distribution function is almost zero and is physically 
insignificant. Thus, we are tempted to ignore contributions from outside of the specified region. 
This is called the "cut-off" procedure. 

One of the difficulties of this procedure is that a good cut-off approximation in one Lorentz 
frame may not remain good in different frames. The translational symmetry of wavelets allows us 
to define the cut-off procedure which will remain valid in all Lorentz frames. 

We can allow the function to be nonzero within the interval 

while demanding that the function vanish everywhere else. The parameter w determines the size 
of the window. The window can be translated or expanded/contracted according to the operation 
of the affine group [8]. Indeed, it is possible to define the window in such a way that the boundary 
condition be covariant, and the information contained in the window be preserved [8]. 



4 Photon Locallization Problem 
The wavelet formalism allows the description of a localized wave function for light waves in a 
Lorentz covariant manner with Lorentz-invariant normalization. We shall now examine how close 
the wavelet can be to photons. First of all, it should be noted that there are no physical laws 
which dictate the functional form for a(k) or g(k). This depends on initial conditions. If we 
choose an analytic function, this is purely for mathematical convenience. If we choose functions 
which vanish near k = 0 and k greater than a certain value, this also satisfies our criterion for 
mathematical convenience. Indeed, the concept of window plays a decisive role in this form of 
localization. 

In quantum electrodynamics, we start with the form 

This is a covariant expression in the sense that the norm 

is invariant under Lorentz transformations, because the integral measure (1 /w )dk is Lorentz- 
invariant. 

We are quite familiar with the expression of Eq.(l) for wave optics, and with that of Eq.(20) for 
quantum electrodynamics. The wavelet form of Eq.(18) satisfies the same superposition principle 
as Eq.(l), and has the same covariance property as Eq.(20). It is quite similar to both Eq.(l) and 
Eq.(20), but they are not the same. The difference between F(u) of Eq.(l) and the wavelet G(u) 
is insignificant. Other than the factor Ja where a has the dimension of the energy, the wavelet 
G(u) has the same property as F(u)  in every Lorentz frame [I]. However, the difference between 
G(u) and A(u) is still significant. 

It is possible to give a particle interpretation to Eq.(20) after second quantization. However, 
A(z,t) cannot be used for the localization of photons. On the other hand, it is possible to give 
a localized probability interpretation to F(z,t)  of Eq.(l), while it does not accept the particle 
interpretation of quantum field theory. 

A(u) of Eq.(20) and G(u) of Eq.(18) are numerically equal if 

where the window is defined over a finite interval of k which does not include the point k = 0. It 
is thus possible to jump from the wavelet G(u) to the photon field A(u) using the above equation. 

However, the above equality does not say that a(k) is equal to g(k). The photon intensity dis- 
tribution is not directly translated into the photon-number distribution. This is the quantitative 
difference between wavelets and photons. 

Of course, this difference becomes insignificant when the window becomes narrow. The nar- 
rower window in k means a wider distribution of the wave in the u coordinate system. We 
conclude therefore that photons become waves in non-localization limit. Particles are not waves. 
The wave-particle duality is subject to the uncertainty principle. The relation given in Eq. (22), 
together with the appropriate window, is a statement of this uncertainty relation. 
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Abstract 

The poeeibility of squeezed states generation for macroecopic mechanical oscillator is discussed. It 
is ahown that one can obtain mechanical d a t o r  in s q u d  state via coupling it to electromagnetic 
oscillator (Fabry-Perot resonator) and pumping thie Fhbry-Perot resonator with a field in squeezed 
state. The degradation of squeeaing due to mechanical and optical loeaes is also analysed. 

Realization of quantum states such aa squeezed, amplitude squeezed and others in real physical 
systems is of great importance for confirmation of predictions of quantum mechanics and its future 
development. There are a lot of papers concerning generation of squeezed states of electromagnetic 
fields [I, 2,3]. However realbation of such states in other systems, for example, mechanical is also 
of great importance. Tbis problem arises in different high precirrion measurements, especially in 
gravitational wave experiment [4]. 

Let's consider a system of two coupled oscillato~s [5,6]: electromagnetic (represented by Fabry- 
Perot resonator with a laser pump beam amplitude EL and frequency wp near one of the reeonant 
frequencies of resonator wb) and mechanical (represented by a moving mirror of Fabry-Perot 
resonator connected to a spring). Pump beam enters the resonator through fixed mirror with 
reflectance approaching 1 (this assumption is not critical for results and used only for simplicity, 
we also suppose that I t j  I--, 0 but EL. I t j  I=const., where t j  is amplitude transmittance 
coacient of fixed mirror). Usually one treats such a system in Hamiltonian formalism framework 
[7] when equations of motion are conservative and the system is in free evolution. However in 
our case it is more convenient to use Langevin approach with evolution of the system under the 
action of input fielde: EL (classical laser field) and Eb, (quantum field from field controller - device 
allowing to generate electromagnetic field in appropriate state). In our analysis Ea, is squeezed 
noise with two point of squeezing and it enters the resonator through moving minor with nonzero 
amplitude transmittance coefficient t,. Then bearised equations of motion for such system have 
the following form: 

where the following parameters are introduced 



& asrB + axe the mpEtude abnd the phase of the Geld opticd resonator due to the action of 
"Baser forcen E5 ~ t h  &rom fixed, S is the beam cross section, il is the length of opeicd resonator, 
6, is opGcs9 d m p h g  of remmtor due to the b h e  of i d d e  5dd tlarou& mosijlng 
refilecfi%rity less thm 1), rn a d  61, are mws and hquency of mecb&cal a d a t o r  arid f i~ its 
coor&ate operator. we = m e  that one can onnit the d m e g  
t e n  We edso adls could be represent& in te rm of their qu 
operators wifh mud  c tation rehtions [8, 91: 

Index " ba" tits a field entered the syetem from field controller and hdex "out" me= that the 
field outputs from Fabry-Berot resonator though moving mirror. 

htroducing quadratme components for d ator though eq~~afion 

(frequency A CI. up is not exactly equal to the frequency w, of &g]le m e & ~ c d  mda to r  a d  
match- the presence of co between two oaciuators) one can eablily o b t h  the 
equations of motion (we s the ayetern is in steady s tah therefore d&,,/& = 0) 

It is ob.riow horn (5) that fluctuati0118 of 3, and 2, depend on fluctuations of controller 6eBd 
quadrature components only near frequencim w FZ. 0 and w m 2 1 A I that means that controller 
field must consist of two modes with different frequencies wo ajnd wo + 2A. Then one can btroduce 

where &, &, kc; are quadrature component operators of two modes in narrow non overlapping 
bandwidths (6w <I A 1) near left andl right sidebands which are detuned from the pump hequency 
up by A : wo = wp - A and wo + 2A = up + A. Then introducing the coefficients 

one could obtain the following system of equations 

where phase C = a~ctan(2A/6~) represents the delay of the pump field inside the cavity with 
respect to the laser field. 



Let's rsssme that ccontroUer field Eb, is in squeezed state with < >= 0 and dispersions of 
quardrature components If), 51 

where go >. I is the squeezing coefficient of action field for mode with frequency %, No is 
vaculm level of dispersioo and we use the fact that 2 1 A la 2w,, < w. The same expressions me 
d i d  for $., & with otnious snbatitution go -+ g2 and correlations between &, &. and $., & 
ane aero. Factors go and g, depends on the structure of back action field contrder. 

The a n d a n i d  would be in squeesed etate only 8 the following special conditions 
are d d .  The first concerns the det g h of the eptem: it mwt satiafy the equation 

In this case contribution of "noiay wenponeat'' kc to i ,  %anishe*. For the contribution of mothex 
'n&y component" & would be d m  noimportant one must & m e  the phase 4 according to the 
following equation: 

x - < - 2 + =  k r / 2  k=0,&1,f2 ... (11) 

that means that special phase correspondence must take place. In physicd language thie meam 
that one xnuat compensate the delay of electromagnetic field inaide Fabry-Perot resonator witfa 
regwd to the pamp field. This can be done by appropriate phase correspondence between the 
pump beam and the 6EeI.d Eb &om the squeezed state controller. Then the system equations of 
motion occur (k = 1) 

Therefore we obtain specid quantum nondemolition coupling between optical and mechanical 
oscillator: one quadtature component of mechanical oecillator couples only with one quadrature 
component of opticai fidd (on frequencies and + 28)  and the larger the squeezing of the 
field of two electruxna.gnetic modes (with frequency wo and wo + 2A) the greater the squeexe factor 
of mechanical osciIiabr. It is worth mentioning that the squeezing g2 of the mode with frequency 
wo + 2A conld be s d e r  than the squeeeing go of the mode with frequency q of dectromagnetic 
fieid provided 6, < A (because of the filtration of fluctuations by narrow bandwidth opticd 
resonator) otherwise the squeezing ef two rrdes must be equal. 

Let's &ws the t h e  of operatifig regime achievement and the iniiuzncc of mechecal SP and 
optical coherent (due to difraction and mirror absorbtion) 6, losses. In practice optical damping 6, 
due trtursdt tzcnce through moving minor is much greder than mechanical damping 6,. Then the 
field inside resonator becomes squeesed through time 6;'. After that through time ( 2 ~ ~ / w , ) - ' I "  
(that is iuverse value of coupling constant) the state of m e c k c a l  oscillator becomes also squeezed 
and the hiitid state is forgotten. It is obvious that mechanical losses must not be very large: 
6, < ( 2 ~  y/wp)112/g (g - required squeesing &tor for mechanical oscillator) otherwise the rate 
of coherent pumping though Iorraes would be larger than the rate of squeeeing through action of 
contrder fieid. Simiiarly 6, m t  be ernaller than 6,/ max(go, g3). 



In conclusion let's discuss the structure of back &ion field controller. In accordance with the 
ideas of papers [lo, 11, 121 it  r u s t  contain two circulators for uncoupling the fields Ewt and Eh, 
the load (absorber black body with sea0 temperature) and t w ~  squeezers with pump frequencies 
2uo and 2 ( ~  + 2A) (for example, degenerate parametric mplifiere or four wave mixers). Then the 
field Ed comes through moving resonator mirror and two circulators to the load and diseipates in 
it. Zero fluctuations of the load entera through fitit circulator the squeeser with pump frequency 
2wo, then gets through second circulator to the squeezer with pump frequency 2 ( ~  + 2A) and 
then enters the system through moving mirror. 
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Abstract 

A two-dimensional generalized oscillator with time-dependent parameters is considered 
to study the two-mode squeezing phenomena. Specific choices of the parameters are used 
to determine the dispersion matrix and analytic expressions, in terms of standard hermite 
polynomials, of the wavefunctions and photon distributions. 

1 Introduction 

In the miadle of the sixties and beginning of the seventies a set of quantum states of the elec- 
tromagnetic field were observed which have less uncertainty in one quadrature than a coherent 
state [I-31. These one-mode squeezed states have generated big expectations in optical commu- 
nication systems 141. In some quantized fields, the interaction hamiltonians occur only between 
pairs of modes and then to understand the illail1 features of the system, one restricts to study 
one and two normal modes . In the last decade two-mode squeezing phenomena have attracted 
attention to study properties of noise and correlations [5-81. Recently the accidental degeneracy 
of a two-dimensional (2-D) harmonic oscillator with frequency wo plus an interaction proportional 
to the z-th projection of the angular momentum was studied [9]. This system was called the 
generalized 2-D harmonic oscillator because presents a bigger accidental degeneracy depending on 
the strength X of the angular momentum interaction. This model was generalized [lo] to include 
time-dependent parameters, n-L = n-LOf(t) and A = wOXO(t). If we take f(0) = XO(0) = 1; the 
hamiltonian, for t = 0, represents a charged particle moving in a constant magnetic field . 

The aim of this work is to study two-mode squeezing phenomena with this model because it 
demonstrates the change of dispersions due to variation of the mass and coupling constant during 
the evolution. In the framework of quantuill optics the hainiltonian is built by: the operator 
(11 f + f)$ . a', that causes a time-dependent exchange of kinetic and potential energies within 
each mode; the interaction 1/2(l/  f - f)($ Zf + ii. Z), which describes a degenerate two-photon 
interaction; and the potential iXo(t)(aial - aia2), that is a mode mixing operator. 

The solution of the corresponding time depe~ldent Schroedinger equation is obtained through 
the theory of integrals of motion [ l l ] .  By means of Noether's theorem, using a special variation 



[lo] ,  we construct the linear time dependent integrals of the motion. The resulting quantum 
invariants are given in terms of the positions and momenta operators [10,11] by 

with the initial conditions P(0)  = $and Q(0) = cj', so that the 2 x 2 matrices previously introduced 
satisfy X I  (0 )  = X4(0) = I2 and A3(0) = A2(0) = 0. The operators x(t) = 1 / f i  [Q(t) / l+ il / f iP(t)] 
and its hermitean conjugate, can be constructed with the matrices 

with 1 = d& defining the oscillator length. These integrals of motion also are given in terms 
of the creation and annihilation photon operators 

With the initial conditions x ( 0 )  = ii and x t ( 0 )  = $, the matrices defined in (3)  comply with 
Ml(0) = M4(0) = I2 and M3(0) = M2(0) = 0. The Ak's, Mk's, A, and A, are entries of symplectic 
matrices in four dimensions because the invariants (1)  and (3)  satisfy the commutation relations 
of Heisenberg-Weyl algebras. 

In the present work, we study the behavior of the model for Ao( t )  an arbitrary function of time 
and considering two kinds of varying masses, i. e., two choices for the function f (t),  namely: 

1 7 t s o  
f ( t )  = Icosh2 not , 0 6 t i T  . 

{%(t - T )  sinh OOT + cosh O0TI2 , T 5 t 
(5) 

For these two cases the X I ,  matrices take the general form 

where the definition 0 = J; woXo(r)dr was used. The analytic expressions for the pr's functions 
are given in Ref. [lo]. In the next sections we determine the coherent and Fock-like states, the 
photon distributions and the dispersion matrices in terms of these pk's. 

2 Squeezed Coherent and Fock States 

The coherent-like states are obtained by solving the differential equation ~ ( t ) ~ ~ ( i f , t )  = 0 with 
/ i(t)  given in Eq. (3). This solution yields the vacuum state of the physical system, and its phase 
is chosen to guarantee that satisfies the time dependent Schroedinger equation. The expression 
for the ground state wavefunction is 



To get the last expression the relation (2) was used and the functions /+ = -& (gpl  + f W )  and 

pq = 5 (gp2 + f p4) were defined. To obtain the general expression for the eigenstates in the 

coordinate representation one needs to apply the unitary operator ~ ( a )  = exp{B. zt - ti!* . A), 
which is an invariant, to the vacuum wavefunction (7), i .e. ,  

These are expressed in terms of multi-dimensional Hermite polynomials [12] through the relation 

Substituting the last expression into (8) and using the form of the coherent-like states in the 
Fock-like representation, we get the Fock-like eigenstates in the coordinate representation: 

These multi-dimensional Hermite polynomials are rewritten as a product of two standard one- 
dimensional Hermite polynomials [12] as follows: 

1 
[cos 0 ql + sin 8 q2] 1 

1 
[- sin 8 ql + cos 8 q21 

where we use the explicit expression of matrix R. These Fock (10) and coherent (8) -like states 
represent squeezed and correlated eigenstates of the system as it will be shown further. 

3 Propagator 

The propagator in the coherent state representation is given by the matrix elements of the evolution 
operator U(t), which will be obtained by means of the theory of time dependent integrals of 
motion [ll]. If f(t)  is an integral of motion then satisfies f ( t ) ~ ( t )  = ~ ( t ) . f ( ~ ) .  Taking its matrix 
elements with respect to the coherent states, we get a linear system of differential equations, which 
can be solved. Thus the propagator takes the form 

For the cases (4) and ( 5 ) ,  the following relations are satisfied 



Substituting these relations into the Eq.(12) we get the propagator, which through Eq. (9) can 
be expressed in terms of multi-dimensional Hermite polynomials. If we compare with the power 
series expansion of the propagator we get the probability amplitude for having nl and n2 photons 
in the coherent-like state 17, t), i.e., 

By means of the Eq.(12) this amplitude can be rewritten in terms of standard Hermite poly- 
nomials 1121. The squared absolute value of this amplitude yields the photon distribution function 
of the system, WnIn2(7, t) = I(nln21y', t)I2. This will let us calculate, at least formally, the mean, 
(Nk), and the mean squared fluctuation of the number of photons,  AN^)^, in direction k, which 
are present in the coherent state 17, t). The expectation values of Nk and N; are evaluated directly 
using the expressions of the creation and annihilation photon operators in terms of the integrals 
of the motion (3), and the commutation properties for these invariants. For the vacuum state one 
has 

With these expressions, we evaluate the ratio of the mean squared fluctuation (ANk)2 and the 
mean number of photons (Nk), which determines the nature of the distribution function of the 
system: 

For the cases (4) and (5) the ratio is greater than one when t > 0, which implies that we have 
a super-Poissonian photon distribution function. For t = 0, there is a discontinuity in the ratio, 
which is obtained by comparing the following limiting procedures: malting t -, 0 and then G -+ 0, 
and conversely. 

4 Dispersion Matrices 
The dispersion matrix can be written in terms of 2 x 2 matrices characterizing the dispersions 
in the positions and momenta operators and the correlation, between them. Besides for the cases 
under study, due to (6), they talte the form 



The corresponding correlation matrices for the creation and avihilation operators are obtained 
immediately from the last expressions; they are given by 

time time 

time time 

time time 

Fig. 1. Dispersion and correlation matrices behavior in positions and momenta 
space for tile studied cases in this paper: (a) corresponds to Eq.(4), and (b), to Eq.(5). 



The behavior of the dispersion matrices is illustrated in Fig. 1. For the case (4), we choose the 
parameters y = 0.1 and mo = wo = 1. It is seen that there is squeezing for the coordinates and 
stretching for the momenta. Also one notes that a, is a negative function and therefore there 
are one-mode correlations between the coordinates and the momenta. If we reverse the sign of y, 
the roles between the dispersion for coordinates and momenta are interchanged, and a, becomes 
positive. In the case (5), we use the parameters Ro = 0.15, T = 10, and mo = wo = 1. In spite 
of the mass is different that in the previous example, the general trends are similar. For example, 
the app is an increasing function of time starting from its minimum value at t 5 0, and there is 
squeezing for the a,,. The main difference appears in the correlation apq: in this case, it can be 
positive for large times, while in the previous one is negative or zero for any time. 
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Abstract 

Using a generalization of the q-commutation relations, we develop a formalism in which 
it is possible to define generalized q-bosonic operators. This formalism includes both types 
of the usual q-deformed bosons as special cases. The coherent states of these operators show 
interesting and novel noise reduction properties including simultaneous squeezing in both 
field components, unlike the conventional case in which squeezing is permitted in only one 
component. This also contrasts with the usual quantum group deformation which also only 
permits one component squeezing. 

1 Deformed Commutation Relations 
Consider the single particle deformed commutation relation [I] 

where a t  and a are generalized creation and annihilation operators, N is the number operator such 
that Nln) = nln), f is a real function, and the vacuum 10) is defined by a10) = 0. We define a 
normalized one-particle state by at  10) = 11). This formalism incorporates the deformation schemes 
previously encountered in the literature as special cases. 

Examples: 

1. f (N)  = 1. 
This is the usual commutation relation of the Heisenberg-Weyl algebra and describes ordi- 
nary quantum mechanical bosonic systems such as the the harmonic oscillator. 

2. f ( N )  = q. 
The so-called q-oscillator, first suggested by Arik and Coon [2]. It has since been studied 
in detail by several authors e.g. Jannussis et a1 [3], Kuryshkin [4], Kulish and Damaskinsky 

PI. 
q*+2+1 

3. f (N) = q ( q N + l )  - 
This gives a deformed commutation relation equivalent to that of the q-boson first discovered 
by Macfarlane ~[6] and Biedenharn in connectioa with the representation theory of quantum 
groups. 



4. This form of deformed commutation relation can also be related to the extensive work 
of Bonatsos, Daskaloyannis and others, [7] and refs. therein, on the generalized oscillator 
formalism as well as the recent work of Jannussis [8]. 

Building up normalized eigenstates of the number operator N by repeated application of the 
generalized creation operators in ( I ) ,  we obtain 

where the function [n] is defined recursively by 

[n + I ]  = 1  + f (n)[n] 

with initial condition [0] = 0. 

Explicitly, we see 

[n] = 1  + f ( n - 1 )  + f ( n - l ) f ( n - 2 )  + f ( n - l ) f ( n - 2 ) f ( n - 3 )  

+..- +f(n-l)f(n-2).-.f(2)f(l) (4) 

The functions [n] can be thought of as generalizations of the basic numbers of q-analysis [9]. They 
obey a highly non-linear arithmetic but for appropriate choice of the function f ,  they tend in 
some limit to the ordinary integers. 

2 Coherent States 

Conventional coherent states of the oscillator obeying the undeformed commutation relation 
( f  ( N )  = 1)  may be defined by 

a l X )  = XlX) (6) 

or equivalently 

where the exponentional function, by definition, has the property 

These definitions of coherent states have been used to generalize the concept to the cases where 
the commutation relations have been deformed. 



Given the q-commutation relation aat - ata = 1, we may define coherent states I A) by 

To achieve the alternative definition given by (7), it is necessary to introduce a q-derivative 
operator [9], ,D, such that 

D E (Ax) = AE,(Ax) 9 x 9  (10) 

where E,(x) is the Jackson q-exponential. When this is done, we see that 

The same procedure can also be used to define q-coherent states for the Macfarlane-Biedenharn 
oscillator (although in this case the generalization of the exponential function is different from 
that of Jackson). 

, For [n] (defined by (5)), an analytic function of the variable n, it is possible to extend the above 
analysis to the case of bosonic creation and annihilation operators obeying the general commuta- 
tion relations (1). 

We define an operator D, such that 
1 

D, = ; [.$I . 

This acts as a generalized differential operator 

The eigenfunctions of D, given by 
00 -n 

are well-defined provided the function f satisfies the appropriate convergence criteria. If f (n) > 1 
as n + oo then E (x) converges for all real values of x. If f (n) < 1 as n + oo then convergence is 
ensured for a certain range of x dependent on the precise nature of the function f .  

Since a E(Xat) 10) = AE(Xat) lo), we can use E(x) to define analogues of coherent states as nor- 
malized eigenstates of the generalized annihilation operator. 

3 Noise Reduction Properties 
We consider conventional (undeformed) bosons. 



The electromagnetic field components x and p are given by 

1 I 
x = -(a + at) and p = -(a -at). 

& ~1/2 

As usual, we define the variances (Ax) and (Ap) by 

( A X ) ~ = ( X ~ ) - ( X ) ~  and ( A ~ ) ' = ( p ~ ) - ( p ) ~ .  (17) 

In the vacuum state 
1 1 
1 1 

(A 4 0  = and (Ap)o = - a* 
and so 

1 
(A x)o(A P)" 5. (19) 

The commutation relation for a and at leads to the following uncertainty principle 

Thus the vacuum state attains the lower bound for the uncertainty, as do the coherent states. 

While it impossible to lower the product (A x)(Apj below the vacuum uncertainty value, it is 
nevertheless possible to define squeezed states Ill] for which (at most) one quadrature lies below 
it's vacuum value, i.e. 

If we now consider the generalized bosonic operators given by (I), using the same definitions for 
the the field quadratures, x and p, as in (16) we find that, just as in the conventional case, the 
vacuum uncertainty product (A X ) ~ ( A ~ ) ~  = is a lower bound for all number states. 

However, unlike the conventional case, it is not a global lower bound. 

Consider the quadrature values in eigenstates of the generalized annihilation operator. 

Then 

and 

where 



If we choose 0 < f (n) < 1, then it can be shown that E ~ , ~ \ A [ ~  E (0,l)  for X within the radius of 
convergence of the generalized exponential. 

Hence 
1 

(A 2):. = Z{l - € f i l l X I 2 )  

Evaluating the variance for the other component, we find that (Ap): = (A $1: SO 

However, it can also be shown that 

Thus we see that these generaliged q-coherent states satisfy a restricted form bf the Minimum 
Uncertainty Property (M.U.P.) of the conventional coherent states. Additionally we see that there 
is a general noise reduction in boih'quadratures compared to their vacuum value. In conventional 
coherent states there is no noise ieduction relative to the vacuum value. In conventional squeezed 
states, there is noise reduction in only one component. 

4 Special Cases 

We can apply the preceding analysis to the q-deformed bosons recently studied in connection with 
quantum groups (e.g. [5] ) .  

a). 'Physics' q-bosons 
First consider the q-bosons described by Macfarlane and Biedenharn [6]. 
These use the definition of the generalised number, in], recently discussed in the Physics literature 
and so will be termed 'physics' q-bosons. They are characterised by the deformed commutation 
relation 

t aa - qata  = q-N. 

This can be rewritten fl] as 
aat - f ( N )  ata = 1 

N+2+1 
where f ( N )  = :(*N+l) 

In this case, for normalizable eigenstates, the function ef , l  is negative and so noise reduction does 
not take place. This is in agreement with the findings of Katriel and Solomon [12]. 



b). 'Maths' q-bosons 
We now consider the q-boson described by Arik and Coon [2]. This uses the generalized num- 
ber function found in classical q-analysis and will therefore be termed a 'maths' q-boson. It is 
characterised by the deformed commutation relation 

For q E (0, I) ,  the Jackson q-exponential Eq(1AI2) converges, provided cqlAI2 = (1 - q)lAI2 < 1. 
Given this condition on A, we have normalizable q-analogue coherent states satisfying (6) in which 

Hence, for this type of q-boson, we do obtain noise reduction in both quadratures with respect to 
the vacuum value. 
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Abstract 

\ire investigate the general case of the photo11 distribution of a two-mode squeezed vacuuin 
and show that the distribution of photons among the two modes depends on four param- 
eters: two squeezing parameters, the relative phase between the two oscillators and their 
spatial orientation. The distribution of the total nunlber of photons depends only on the 
two squeezing parameters. We derive analytical expressions and present pictures for both 
distributiolls. 

1 Introduction 
Squeezing t.he quantuxn fluctuations of the radiation field has been delllollstrated experilllentally 
using various optical systems [I]. Most of them rely on two-mode squeezing [2, 3, 41. Therefore 
the properties of a two-mode squeezed state have been studied extensively [5, 61. However it  
a.ppears, t11a.t the plloton statistics of such a state has not been investiga.ted in a.11 details. Only 

some particular cases have been considered (see for example Refs. [$I and [8]). In the present 
paper we therefore extend these considerat.ions to an arbitrary two-mode squeezed vacuum and 
address the following questions: (i) \l'hat is the   no st general case of the squeezed vacuuin of a 
two-mode oscillat.or, a.nd how lnany illdependent para.meters a.re needed to  describe this state? 
( i i )  1Vha.t is the photon statistics in this state? This is of interest in t.he context of the degenerahe 
parametric a.~nplifier [9] since the lnatheinatical structure of the two-mode distribution function 
coincides wit11 the transition probability functioll of a two-dimensiona.1 para~netric oscillator [lo]. 

'also hloscow Institute of Pliysics and Technology Dolgoprudny, Moscow, Russia 
?also Mas-Planck-Isistifut fiir Quant.enopt.ik, D-8.5748 C;arching, Ciennany 
"pertrla~~ent. address: Lebedev inst.it.ut,e of the Academy of Sciences, hlosco\v, Russia 



2 general case of the squeezed vacuum of a two-mode 
oscillator 

\\'e start our co~lsiderations with the question (i). The linear callo~lical transfor~llation 

of the creation operators at, bt and the annihilation operators a, b to their new counterparts At, 
Bt and A, B corresponding to the two modes suggests a set of 10 parameters. Indeed, the generic 
transformation (1) of the four-dimensional vector (at, a, bt, b) into (At, -4: Bt, B) via a 4 x 4 ~natrix 
brings in 16 co~nplex values, that is 32 parameters. Since a and at, b and bt ,A and At, B and Bt 
are herinitia~l conjugate of each other, only half of these parameters are independent. Therefore 
the nu~nber of parameters reduces to 16. The condition to preserve the co~lunutation relation 
{A, B] = 0,  [A, Bt] = 0, [A, At] = 1, and [B, Bt] = 1 provides additional constraints. Since the 
co~n~nutator of an operator with its hermitian conjugate is always real, the last two conditions 
provide only two constraints, whereas the first two conditions must hold for the real and the 
i~naginary part separately. This decreases the numnber of para~neters by six leaving us indeed with 
10 parameters. 

This finding is in accordance with the results of group theory. Reference [ll] shows, that 
the group of rotations and squeezing of the four-dimensional phase space, that preserves the 
pl~ase'space volunle of the two degrees of freedom, consists of 10 generators. Hence there are 10 
paranleters determining the elements of the real symplectic group Sp(4,R). 

Rut what is the physical ~neaning of these parameters? They are associated with rotation and 
squeezing transformation of phase space of two oscillators. Generic rotations of four-dimensio11a.l 
phase space are described by 6 pa.rameters but the syrnplectic rotations in four-dimensional space, 
that is the transformation preserving the co~ll~nutation relations, are described by 4 para~neters. 
They can be represented as a sequence of four rotations. The first rotation given by the trans- 
formation e'Mml, where M = i(atb - bta) is the angular monlentu~n operator, corresponds to the 
rotation in the coordinate space by the angle dl. The second and the third rotations are given by 
the operator e'""' and e'xbtb, and correspond to rotations by the angles $ and x in the respec- 
tive phase-spaces of the two oscillators. The last rotation again can be taken in the forin eiM+2. 
Thus the angles $2, $ and x are chosen to be the paranleters of the sy~nplectic rotation. 
Tlne general sy~nplectic transformation also includes squeezing. We can represent the generic real 
sy~nplectic transformation (1) as consisting of three co~~secutive transformations: syml>lectic rota- 
tion (4 parameters), followed by independent squeezing of the two modes given by the squeezing 
operators 

S1 = e .,(a2-at2)/2, s2 = q ( b 2 -  bt2)/2 7 @ I  
t(2 squeezing para~neters r1 and r2) and followed by another real sy~llplectic rotation (4 paralneters 
more). But how lnany of these parameters govern the two-dimensional squeezed vacuuln sta.he? 
The first four parainetric rotati011 acting on the completely synlllletric vacuum state 1eavt.s this 
state unchanged. Hence 2 squeezing paranleters and 4 paralneters associated with the second 
rotations defii~e the two-climensiond squeezed vacilum state. In atldition wc* call il~c.lutlr all overall 
cl~iautiirn plmse factor t i p  of this state. An explicit calculation of the gt.uc.ral case of a two-mode 
sclueezrd vacuum wave filnction is g i w ~  in  Ref. [12]. 



3 Photon statistics for the total number of photons 

We now address the question: how Inally of these parameters govern the photon statistics of 
such a two-dimensional squeezed vacuum state'? In particu1a.r) how many of them determine the 
probability of (i) cou~lti~lg a total ~ lu~nbe r  71 of photons in the two modes, and (ii) c o u ~ l t i ~ ~ g  the 
liu111ber 1 2 1  and 122 of photons in the individual modes'! 

In this section we c.0nside.r the c.a.se of (i) and ask for the tot.a.1 number n of phot.ons in both 
modes, whicl~ corresponds to the surface of a four-dimensional sphere, $(pi + x: + + x:) = n, 
centered a t  the origin of the four-dimensional phase space. The rotation of the phase space does 
not alter this sphere and hence only two squeezing parameters are essential. The probability of 
cou~lting the t,ot.a.l number n of photons for the case of two independently squeezed oscillators 
reads 

n 

W~(SI ,SZ) = C wn,(s~)W,,-nl(s~),  
n1 =O 

(:3) 

where W,,, (sj) is the one-dimensional photon statistics [13] 

for n j  odd rvn3(sj) = 
J = S ~ ' / ~ ~ - ~ J  ( 7 9  "1 12 ) for aj eve11 

of the squeezed vacuum nrave function 

where 
sj = tanh2(rj). 

Equation (4) reduces Eq. (3) to 

where the ~lorlllalization factor N reads 

The odd ternls of lVn vanish because of Eq. (4) . The sulll in Eq. (7)  has been calculated in [I%] 
and the probability of count,ing rz = 2k photons then reads 

where describes the hypergeometric function. For the special case of identical squeezing in 
t.lle two modes, that. is, .sl = .s2 = .s, Eq. (9) yields 



I11 Fig. 1 we show the photon statistics (9) for various magnitudes of the squeezing parameters 
sl and s 2 .  The solid and dashed curves correspond to weak and strong symmetric squeezing 
(sl = .s2), respectively. I11 accordance with Eq. (10) the photo11 distribution then displays an 
ex~onentia.1 dependence. Stronger squeezing results in a higher amount of quanta involved. The 
dotted curve shows the photon statistic for an asym~netric squeezing. 

Fig. 1. Probability of counting n = 2k photons in a two-mode squeezed vacuum 
as given by Eq. (9). For sy~lunetric squeezing (dashed line for sl = s 2  = 0.5 and solid 
line for sl = s z  = 0.99) the curve is a straight line and hence exponential whereas for 
asy~ll~lletric squeezing (dotted line for sl = 0.5 and s2 = 0.99 ) the photon statistics 
is non-exponential. Here we have not specified the distribution of the iz  = 2k photo~ls 
among the two modes. Note that 1V,,=2k+l = 0 which we have omitted for simplicity. 

4 Photon statistics in the individual modes 
\Ve now turn to the second case and calculate the photon statistics W(nl, 1z2) = I < n1, 1z21\Ils, > I 2  
in the individual modes. For this purpose we start from the generic expression of a squeezed 
va.cuum state I*,, >, whicll we produce in the following way: 

with the va.cuum wave function of the two-dime11siona.l oscillator \IIO,O(:~l, x2) = \IlO(:rl) \Il0(:c2), the 
angula,r momentum operator fi = i (atb - bta) and the operator f (y) = eap(iy(btb - n t n ) )  which 
clescribes a mutua.l phase shift 27 between the oscillators. The wave funct.ion of a two-diinensiona.1 
squeezed vacuuill state is a Gaussian described by the three co~nplex numbers A, B, a.nd C, which 
are fiinctioils of the four real pammeters 1-1, 1-2, 4, and r. Their explicit dependence is given in 
[I?]. One also finds there the generic two-mode squeezed va.cuum \x7ave function depeuding on two 
inore para~neters that do not affect the 1)hoton distriBution. 



\\re co~~t rac t  Eq. (1 1) with the probability amplitude of the photon energy states h,, (XI) and 
t ,!4L2(;~2) and arrive after calculati~~g the resulting double integral [12] at  

Here Pf denotes t11e associated Legendre Polynomial. As in Eq. (7) the total uunlber of photons 
12 = 11.1 $ 7 ~ ~  I I IUS~  be an even  umber 11euce 721 and n2 are either both even or both odd. Otherwjse 
the p11oto11 distributio~~ f u ~ l c t i o ~ ~  vaaishes. 

In Fig. 2 we display the probability to find n.1 photons in ll~ode 1 and n2 photons in Inode 2. 
This is the generic case of the photon distribution of a two-mode squeezed t7acuum. It depe~~ds  
on four pa,ra.meters: two squeezing paranlet.ers, the orientation of the distribution fu~~ct ion with 
respect to our 1a.bora.tory system, and the correlation betweeten the two modes. Reside the even- 
odd oscillatio~~s the maxima lie on curves 1vhic11 are sylnmetric with respect to the lllai~l diago~lal 
121 = 722. This behavior is sinlilar to the distribution f u ~ ~ c t i o ~ ~  of a displaced two-mode squeezed 
state tliscussed in Ref. [i, S]. 

Fig. 2. Probal>ility of c o u ~ ~ t i l ~ g  1 2 1  and 712 p11otons in the two-mocle squeezed 
- ,  - . - vacllllrn calculated via Erl. (12). \Ve 11ave chosen 7.1 = 3. 1.2 = :I. o = ?. and -j = L. 

, - 9 
I Ile wavy struct,llrr of this distl.ih~~tion is confined to an angle in t h e  photon nilmher 
plane. 



5 Conclusion 
We conclude by su~lm~arizing our main results. The wave function of the two-mode squeezed 
vacuum depends on 6 parameters (besides the phase factor). However only 4 of them, - the 
squeezing parameters rl and 1-2 of the two modes, the phase difference 7 between the two oscillators, 
and the rotation of the reference systenl by the angle 4 - manifest thelllselves in the generic case in 
the distribution of the photons among the two modes. This distribution function can be expressed 
explicitly in terms of Legendre polynomials. Only two parameters rl and r2 govern the distribution 
of the total nuinber of photons, which we express explicitly in terms of a hypergeollletric function. 
In conclusion we want to make the remark that similar consideration for N-mode squeezed vacuuln 
state shows that the photon distribution IV(nl, n2, ..., nN) depends on N2 parameters. 
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Abstract 

Many so called paradoxes of quantum mechanics are clarified when the measurement 
equipment is treated as a quantized system. Every measurement involves nonlinear processes. 
Selfconsistent formulations of nonlinear quantum optics are relatively simple. Hence optical 
measurements, such as the quantum nondemolition (QND) measurement of photon number, 
are particularly well suited for such a treatment. It shows that the so called 'collapse of the 
wave functionn is not needed for the interpretation of the measurement process. Coherence 
of the density matrix of the signal is progressively reduced with increasing accuracy of the 
photon number determination. If the QND measurement is incorporated into the double slit 
experiment, the contrast ratio of the fringes is found to decrease with increasing information 
on the photon number in one of the two paths. 

1 Introduction 

The Theory of Quantum Measurement has a long and venerable history. Many of the original 
discussions of the founders of quantum mechanics are contained in the reprint volume of Wheeler 
and ~urek[lI. Yet, inspite of its long history, the issues raised in these well known discussions 
have not been fully settled. 

In this paper we attempt to make a modest contribution to this weighty problem. In doing so 
we are guided by a quote of Niels Bohr which reads: "... one sometimes speaks of "disturbance 
of phenomena by observation" or "creation of physical attributes to atomic objects by measure- 
ment." Such phrases, however, are apt to cause confusion, since words like phenomena and obser- 
vation, just as attributes and measurements, are here used in a way incompatible with common 
language and practical definition. On the lines of objective description, [I advocate using] the 
word phenomenon to refer only to observations obtained under circumstances whose description 
includes an account of the whole experimental arrangement. In such terminology, the observa- 
tional problem in quantum physics is deprived of any special intricacy and we are, moreover, di- 
rectly reminded that every atomic phenomenon is closed in the sense that its observation is based 
on registrations obtained by means of suitable amplification devices with irreversible functioning 
such as, for example, permanent marks on a photographic plate, caused by the penetration of 



electrons into the emulsion" [Ref. I, p. 31. We have underlined the words that we consider 
particularly worthy of note. Bohr requires a description of the whole experimental arrangement. 
Further, if one is to state the outcome of the experiment in classical language, large amplification 
is required. 

At the risk of making statements that may be considered even more controversial by the ad- 
herents of the Einsteinian school, we should like to strengthen Bohr's quote by saying: "Physical 
reality cannot be formulated until the measurement equipment used to determine the observables 
is specified and treated as a quantum system. The large gain of the measurement equipment 
provides the classical interface at the output of the measurement apparatus." 

Much of the controversy involving quantum measurements is the consequence of the fact that 
it is very difficult to describe well the measuring equipment, according to our interpretation, to 
describe it quantum mechanically. 

In quantum optics we have made great progress in describing optical components quantum 
mechanically. The theory has been well tested experimentally. The squeezing by a parametric 
amplifier is well understood theoretically and amply confirmed experiment Less exten- 
sively explored, yet also tested, is the self-phase modulation and squeezing in optical fibers via 
the optical Kerr effect['-']. Hence it appears natural to use the well tested quantum description 
of optical devices to construct a measurement apparatus and test some of the predictions of 
quantum .mechanics using such a measurement apparatus. This is the main objective of this 
paper. We start by describing a Quantum Nondemolition Measurement of the photon number 
of a signal via a nonlinear Mach-Zehnder interferometer. We follow the development of the 
composite wave function of the signal and measurement apparatus to the output. We shall see 
that the photon number in the signal can be determined with a negligible probability of error 
if the gain of the measurement apparatus is large enough. Further, when this is the case, the 
density matrix of the signal, obtained by tracing over the (Hilbert) coordinates of the measure- 
ment equipment, is diagonalized. Finally, since the probability of error of measuring a particular 
photon number approaches zero, each measurement, and not the whole ensemble, can be in- 
terpreted as yielding an interpretable result. This corresponds to the von Neumann projection 
operator interprbtation. However, when the gain is not very large, the signal density matrix 
does not decohere, it is not diagonalized. This is consistent with Bohr's dictum that we can put 
the measurement results into classical language only if the gain of the measurement equipment 
is very large. 

When no measurement is performed, and the signal and "measurement" beams are passed 
on into a second nonlinear Mach-Zehnder interferometer with a Kerr coefficient of opposite 
sign, the entire action of the first interferometer can be undone; the wave functions emerge 
disentangled! This confirms the reversibility of quantum mechanics. 

We conclude with the double slit experiment. We put a nonlinear Mach-Zehnder mea- 
surement apparatus in each of the two light beams. As the accuracy of the photon number 
determination is systematically increased, the contrast of the interference fringes decreases ac- 
cordingly. 



2 The Quantum Nondemolition Measurement 
Figure 1 shows a nonlinear Mach-Zehnder interferometer. The signal beam 8: at one frequency 
and the probe beam Pn at another frequency enter a Kerr medium through a dichroic mirror. At 
the end of the Kerr medium they are again separated by another dichroic mirror. A portion of the 
probe beam has been passed on directly for interference. Classically, the Kerr medium produces 
a phase shift on the probe beam that can be measured giving an indication of the intensity of 
the signal beam. Quantum mechanically, the process is described by the Hamiltonian of the 
Kerr 

I? = fiK&!ii8htb 0) 
where K is a factor proportional to the Kerr coefficient; 4 is the annihiation operator of the 
signal photons, & that of the probe photons. They obey the usual commutation relations: 

[&,@I = 1 (3) 

It should be noted that the Hamiltonian (1) does not account for a self-phase shift. This has 
been left out for convenience. A medium resonant at the sum frequency of signal and probe 
would be described by such a simplified Hamiltonian. 

The two portions of the probe beam are combined by a beam splitter with the Hamiltonian: 

As usual, one may consider the wave packets to evolve in time as they propagate along the 
system. If the beam splitter is 50150, the parameter M must be chosen 

where l is the length of the medium and v, is the group velocity, l / v ,  is the travel time. 
From the known Hamiltonian one may determine the evolution of the wave function 1 $), Jp) 10) 

of the three input ports. They are products at the input, and become entangled at the output. 
We denote the output annihiation operators by f* and 6. The balanced photodetector measures 
the expectation values of the difference current operator 4 = ftf* - i t i  and its moments[l11. 

(i) = l @ 1 2  sin(~ii!ii) = ~vl'ii!$ (6) 

The expectation value traced over the Hilbert space of the probe yields the sine of the signal 
photon operator. If the sine function can be expanded to first order, it becomes the photon 
operator. The mean square fluctuations follow from the second moment and are[''] 

if the signal is in a photon number state. This is shot noise since IPI2 is the photon number in 
the probe beam. 
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FIG. 1. Schematic of nonlinear Mach-Zehnder interferometer and balanced de- 
tector. 

FIG. 2. Two nonlinear Mach-Zehnder interferometers with media of equal and 
opposite Kerr coefficients. 



The probability of error follows from the mean square fluctuations (7) that approach gaus- 
sians in the large photon number limit[ll]: 

If lnp12 >> 1, the probability of error can be made arbitrarily small. The physical meaning of 
this quantitity can be fathomed as follows. nlPI2 is the phase shift due to the probe photons, 
n itself is the phase shift due to one photon. The geometric mean of these two products has to 
be made very large. If we used fiber interferometers, these operating parameters are not easily 
achieved. Here, however, we are not concerned with the practical realization of the measurement 
apparatus, but only with the theoretical conclusions that can be drawn from it. In particular, 
we find that the probability of error can be made arbitrarily small, for IrcPl = 10, it is This 
means that each measurement has vanishing error probability. Hence one may interpret every 
measurement, and not only the ensemble, as yielding a definite result. This is analogous to the 
von Neumann projection postulate which interprets a measurement as projecting the state into 

' an eigenstate. Pursuing this interpretation further, we can say that a measurement with the 
Mach-Zehnder interferometer at large gain projects the signal into a photon state. 

3 The Density Matrix 

The trace of the density matrix over the measurement system part at the output of the signal- 
measurement system of Fig. 1 can be evaluated for a signal wave function[ll]: 

m,kO error probability 

In the limit of large gain, the density matrix traced over the measurement equipment becomes 
diagonal at the same rate as the probability of error approaches zero (note the exponential 
factor!). Hence, again, we see that the signal acquires a classical (decohered) appearance when 
the gain of the measurement system ([&PI) is made very large. 

4 Reversibility 
If one does not perform a measurement on the probe beam, but reintroduces it in the second 
Mach-Zehnder as shown in Fig. 2, which has a Kerr coefficient of opposite sign, one can 
disentangle entirely the wave functions. This shows, of course, the reversibility of quantum 



mechanics if no measurement intervenes in the process. Of course, no measurement could have 
been undertaken, because the probe beam was completely recycled. This brings us back to 
the act of measurement. A measurement is an irreversible process that prevents recycling. 
Indeed, in the present example the probe beam is passed into a balanced detector in which it 
is absorbed. Only then can one apply the homodyne photon detection formula to evaluate the 
current operator statistics. 

Tracing, Decoherence and the Act of Measurement 

The density matrix of the signal system becomes diagonal in the signal Hilbert space when traced 
over the probe space. Tracing is a mathematical operation which, according to the postulates of 
quantum mechanics, evaluates expectation values. In the context of the derivation of the signal 
density matrix, the reduced density matrix can be interpreted as a "Gedankenexperimentn on 
the density matrix of the signal after passage through the Mach-Zehnder. Accompanied by the 
statement that the signal and probe systems would never be combined again, the entanglement 
that in fact exists between the two systems could never be reversed. In this sense, the reversibility 
of quantum mechanics is broken. In an actual measurement, of course, the apparatus works on 
the probe subspace, causes partial or total decoherence in that space, and leads "de facto" to 
an irreversible action. 

Two Slit Experiment 

Finally, 1et.u~ look at the "two-slit" interference experiment of Fig. 3. The two slits are here 
replaced by the two arms of an interferometer. A phase shifter in one of the arms changes the 
phase of the superimposed beams. If the two beams were perfectly coherent, the intensity at 
the detector would have to show perfect extinction. However, we mount two QND apparati in 
each of the arms to ascertain the number of photons passing through them individually. The 
gain of the apparati can be adjusted, thus changing the accuracy of the measurement of the 
photon number passing through each arm. One can then compute the expectation value of the 
contrast and finds it to be[l1] (see Fig. 4) 

Thus, a similar exponential factor as the one that appears in the error probability determines 
the extinction of the contrast. The factor is squared, because two measurements are being 
performed. Here again we find that the transition between the behavior of the photon as a wave 
and that of a particle is a continuous one. The accuracy of the determination of the photon 
number determines how much the photon behaves as a particle. 



FIG. 3. An interferometer representing two-slit interference and attached QND 
measurement apparati. 

FIG. 4. Expectation value of detector current versus phase and error probability 
of photon number determination. 



We started with the postulate that a proper formulation of a quantum measurement has to 
quantize the measuring apparatus as well. The quantum formalisms developed for optical com- 
ponents enable one to do a full quantum analysis of an optical measurement apparatus. The 
measurement apparatus of photon number with infinite gain yields results that can be described 
in classical language: photons behave as particles (since we chose a particle measurement appa- 
ratus). When the gain is not infinite, the behavior is more duplicitous, it is not what one would 
call the behavior of a classical particle. This confirms Bohr's statement that it is necessary 
to have large gain to obtain measurement results that can be put into classical language. We 
also found that a measurement with infinite gain is equivalent to a projection operation on the 
signal. 

If no measurement is undertaken, the entanglement of the signal and probe states can be 
fully undone by an inverse apparatus. 

Finally, the "double-slit" experiment can also be described in terms of partial knowledge of 
the photon number in each of the paths. If the knowledge is only partial, there can still be 
interference of the two beams. 
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Abstract 

Precision measurements involve the accurate determination of parameters through re- 
peated measurements of identically prepared experimental setups. For many parameters 
there is a "natural" choice for the quantum observable which is expected to give optimal 
information; and from this observable one can construct an Heisenberg uncertainty principle 
(HUP) bound on the precision attainable for the parameter. However, the classical statistics 
of multiple sampling directly gives 

us tools to construct bounds for the precision available for the parameters of interest (even 
when no obvious natural quantum observable exists, such as for phase, or time); it is found 
that these direct bounds are more restrictive than those of the HUP. The implication is that 
the natural quantum observables typically do not encode the optimal information (even for 
observables such as position, and momentum); we show how this can be understood simply 
in terms of the Hilbert space geometry. 

Another striking feature of these bounds to parameter uncertainty is that for a large 
enough number of repetitions of the measurements allvquantum states are "minimum uncer- 
tainty" states - not just Gaussian wave-packets. Thus, these bounds tell us what precision 
is achievable as well as merely what is allowed. 

1 Introduction 
I want to  start by pointing out that the very term ('precision measurement" implicitly refers to an 
idealization of our use of quantum theory. It assumes that there are some c-number parameters 
(ordinary commuting numbers instead of operators) "out there" in the laboratory which have 
no, or at  least negligible, quantum uncertainty for their values. For instance, in the case of 
the precision interferometric measurement of some path difference it is thus assumed that the 
end-mirror masses are so heavy that the initial uncertainty in their location and the quantum 
"diffusion" of their position throughout the entire measurement procedure are negligible. In this 
talk I will discuss the fundamental limits quantum theory places on our ability to determine c- 
number parameters through measurement. We might, for instance, be interested in the precision 
determination of fundamental constants such as the gravitational coupling G, the speed of light 
c, etc., or of laboratory parameters such as a time difference T, some path difference D, a phase 
difference @, etc. These latter parameters are just settings on some machine in our laboratory. 

The type of machine we envision is one which has an inexhaustible supply of raw material 
which it uses to make a "train" of identical quantum states. These states will have encoded in 
them in some way the value of the parameter we seek. Thus, if our machine has some setting 
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which controls the value of a parameter X, then it will generate an inexhaustible supply of states 
alternatively, if the setting is X' then it will generate a supply of new states Our job 

is to use some observable [ to determine the parameter's value. 
Let us consider a simple example where our machine sets some "location" parameter X which 

determines the location of the center of the peak of the wavefunctions generated: 

where i is a sequential label for replicas of our state generated by the laboratory machine at some 
fixed setting X .  Because we are seeking the "location" of the state we might expect that the 
natural observable of position [ = i is optimal, so this is the observable we shall use. In seeking 
fundamental limits to measurement in quantum theory it is worth seeing what the Heisenberg 
uncertainty principle (HUP) says. For a single measurement we would simply take the value of 
position measured and use that as our estimate of the location parameter X of our state. In this 
way, the uncertainty for the parameter X would just be the uncertainty in our observable for this 
state, so 

by the HUP, for a single measurement. Alternatively, for N measurements (each on a new replica 
of our state) we might take the average location we observe i = ($1 + . . + SN)/N as an estimate 
for our parameter, which is an operator with conjugate momentum j = & + . . + jN so the N-shot 
HUP will read 

1 ti 
A X = A X ~ - - ,  fi 2Ap1 

in terms of the uncertainty Am for a single state. This result shows a simple 1 1 0  improvement 
over the single-measurement HUP. 

To summarize, we have learned that precision measurements deal with the language of c- 
number parameters - this being an idealization. We have learned that we must make some 
choice of observable to determine our parameter of interest, and where it exists we might choose 
the natural observable. Finally, we saw that the process of extraction of an estimate for our 
parameter from observation requires some form of data analysis - even if it be only the completely 
transparent procedure of using the value observed. 

2 Bounds to data analysis 
The previous section considered a crude multiple measurement uncertainty principle. It is surpris- 
ing that much more powerful versions may be obtained from well known classical bounds to the 
efficiency of performing data analysis. The simplest of such bounds is called the Cram&-Rao lower 
bound [I], which we shall derive here. (Helstrom [2] was the first to place this bound in quantum 
language and recognize its significance; in this paper we broaden our physical understanding of 
this bound.) 

Consider an arbitrary kind of data analysis based upon the N observations xl, . . ., x~ which 
yields an estimate Xat for the parameter X via a function 

Xest = Xest (21 , . ., XN) 



which is independent of the value of the parameter sought, and for which each of the observations 
x; is "drawn" independently from the probability distribution 

To ensure that this data analysis has some connection with our parameter we impose the condition 
that on average it yields the correct value for X, i.e., 

By taking the derivative of this with respect to X we obtain 

where AXest E XWt - X. Then applying the Schwartz inequality yields the Cramhr-Rao bound 

with F the Fisher information given by 

Before we look at  the consequences for this theorem from classical data analysis, we shall state 
one more theorem which applies to the specific kind of data analysis called maximum likelihood 
(ML) analysis. Fisher's theorem [3] states that as N + oo ML analysis is asymptotically efficient 
(since it asymptotes towards the Cramhr-Rao bound), i.e., 

thus, at  least one method of data analysis may reach the classical bound when a large enough 
sample of data is used. What is not given by this theorem is just how large a data sample is 
required to achieves this. 

The simplest implication of the Cram&-Rao bound for a quantum system involves measure- 
ments of multiple copies of the pure state 

where X is a so-called translation parameter. The result may be directly obtained from the 
uncertainty in the momentum for this state 



yielding from the Cram&-Rao bound 

This result is rather startling, since it shows that the classical bound is always more restrictive 
than the quantum bound; even for N = 1 when we would expect to have no qualms about the 
usual HUP. Further, it directly yields a parameter uncertainty principle for an arbitrary kind 
of data analysis, and hence is more general than the N-shot HUP we discussed in the previous 
section. To see why the classical bound can be more restrictive than the HUP we turn now to the 
metric on Hilbert space. 

3 Quantum and classical metrics 

Consider two ensembles I$x) and lt,bxt) which differ only in their values of the parameter X. For 
pure states there is a natural metric, measuring the distance in Hilbert space between a pair of 

, states; since pure states are just rays of unit length, any suitable function of the angle between 
these rays will determine a Hilbert space metric. In particular, we shall choose the Study-Fubini 
metric [4] 

d (l$x), l$xt)) = 1 - I($xl$xt)12 ; 
as the states overlap more they become less distinguishable which is reflected in a decrease in the 
metric. 

For the observable i the two ensembles we are studying can be completely characterized by 
the probability distributions p(t(X) and p([lX1) (p and p' respectively). We can thus construct 
a classical metric to behave like the quantum one with respect to the distinguishability of states. 
Classical distinguishability, however, is limited by the Cram&-Rao bound, so if the nearby ensem- 
bles differ in 

the parameter X by SX then they are permitted to be distinguishable so long as NF(p) (SX)2 2 
1. This gives a natural classical metric for nearby ensembles as 

where the scale factor is chosen for convenience. This result is equivalent to the metric introduced 
by Wootters [5] to lowest order. 

To compare these two metrics, classical and quantum, we shall write the states in a descrete 
basis (labeled by j) 

Then to second order we may calculate the quantum metric to be 



where is the "momentum" operator generating infinitesimal translations in the parameter 
X. The first term in square brackets is just the classical metric. The second and third terms 
correspond to the dispersion in the rate of change of the wavefunction's phase; this is similar to 
Eq. (I), and reduces to it exactly when X is a translation parameter. 

This relationship shows that classical distances between nearby ensembles are shorter than the 
corresponding quantum distances. Because the ensembles are harder to distinguish classically, the 
Cram&-Rao bound is more restrictive than the HUP. The classical distances are shorter than the 
quantum ones. We might ask whether the greater distances inherent in the quantum metric are 
accessible at all for the purposes of precision determination of parameters? We shall see that the 
answer is typically yes. 

4 Seeing a quantum distance 

The quantum metric 
d (I$)) I$')) = d(p) P') (AV' )~(&X)~  9 

exceeds the classical one only by the variance of the rate of change of the phase of the wavefunction. 
Thus, by a suitable choice of basis the phase can be made trivial so that the classical part of the 
metric makes up the entire contribution. This may seem a little strange since we typically will 
start with what we thought was the "natural" observable for a particular parameter. Yet since 
in general the phase will give some non-zero contribution this argument tells us that natural 
observables are rarely optimal. 

We can see this surprising effect quite simply for a squeezed state. For the purposes of this 
example we will scale the units of position and momentum so that the ordinary HUP reads 
AxAp 2 1. Suppose we wish to find the location parameter X for the squeezed state 

On a phase-space diagram this corresponds to the squeezed vacuum (squeezed by e-' in along the 
x-axis) rotated counter-clockwise by 6' radians, and then displaced along the positive x-axis by 
the distance X. The natural observable for the position of the state would be = 2. So our mean 
signal would be 

S ( ? ) = X ,  

i.e., a measurement of 2 directly yields an estimate for the parameter X. Further, the uncertainty 
(or "noise") in this value after a single measurement will be 

which includes the reduced noise from the squeezed quadrature, plus an admixture (for 6' # 0) 
from the amplified quadrature. 

By contrast, suppose we use the observable i ZE it = R(B)PR~(B). The new signal will be on 
average 

sf = (2') =xcose, 



which is reduced by a trigonometric factor, and the uncertainty in this value after a single mea- 
surement will be simply 

Ax1 = e-' 

A comparison shows that the signal-to-noise ratio has been improved by using a non-natural 
observable with 

for e2' sin(28) > 1 (an improvement for all 8 # 0 is possible using a more complicated rotation 
angle for the new observable). 

In general then, so long as we can choose a basis where the phases are trivial we can "see" the 
full quantum distance for the new observable. In this ideal observable we will have a bound of 

ti 
Axest, opt 2 

~ ~ A P X  ' 
which if X is a translation parameter will be just our original N- shot HUP. Now, however, Fisher's 
theorem tell's us that this lower bound can always be achieved so long as we take a large enough 

. sample size (i.e., N -, oo) and that we use the maximum likelihood method for our data analysis. 
This means that for the proper choice of observable (typically not the natural one) allV quantum 
states are minimum uncertainty states! This removal of so-called natural observables from their 
central place in quantum theory has practical implications for the precision measurement of time, 
phase; etc., where natural observables for these measurements are somewhat problematic. 

5 Conclusion 

Precision measurements naturally assume a language involving the existence of c-number parame- 
ters. The bounds to classical data analysis form a natural extension of the Heisenberg uncertainty 
principle from operator dispersions to parameter uncertainties; and generalize it to allow arbitrary 
data analysis on the results of multiple measurements of identically prepared systems. In general, 
it is found that the "natural" observables do not yield maximal information about the parameters 
sought; however, with a suitable observable and using maximum likelihood data analysis all quan- 
tum states (not just gaussian wavepackets) are minimum uncertainty states for a large enough 
number of measurements. 

References 

[I] H. Cram&, Mathematical Methods of Statistics (Princeton Univ. Press, Princeton, NJ,1946) 
pp. 500-504. 

[2] C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York,1976). 

[3] R. A. Fisher, Proc. Camb. Soc. 22, 700 (1925) . 
[4] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988). 

[5] W. K. Wootters, Phys. Rev. D 23, 357 (1981). 
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Abstract 

Interference experiments with connected parametric down-converters have demonstrated 
that the possibility, in principle, of identifying the photon path through the interferometer 
is sufficient to wipe out all interference, irrespective of whether the identification is actually 
made. The distinguishability of the photon path can be controlled by a time-dependent 
shutter, which leaves the choice whether the photon behaves as a wave or as a particle in the 
experimenter's hands. By contrast, in some more recent experiments involving the addition 
of a 1ow-Q cavity, each idler photon makes the choice whether the associated signal photon 
behaves like a wave and exhibits interference, or like a particle. 

1 Introduction 
In this paper we briefly review some recent interference experiments in which several non-classical 
and non-local effects show up. The basis for all the experiments is the process in non-linear 
optics known as parametric down-conversion that generates pairs of signal and idler photons 
simultaneously in an entangled quantum state [I, 21. The experiments outlined below all make 
use of two down-converters, and the prototype of the arrangement is illustrated in Fig.1 [3, 41. 

Fig. 1. Outline of the experimental set-up underlying all the experiments [Repro- 
duced from Zou et a1 (1991)l. 

Here NL1 and NL2 are two similar crystals with a X ( 2 )  non-linear susceptibility functioning 
as down-converters. Both crystals are optically pumped by mutually coherent light beams of 



amplitudes &, & derived from the same laser beam. As a result down-conversion can occur at 
NL1 with the emission of a signal sl and an idler il photon simultaneously, or down-conversion 
can occur at NL2 with the emission of a pair of s2, i2 photons. The crystals are so oriented that 
il passses through NL2 and then is colinear with i2. At the same time the sl and s2 beams are 
brought together at the output beam splitter BS, where they are mixed, and the mixed signal 
beams fall on signal detector D,. We are interested to know whether sl and s2 exhibit mutual 
coherence and interfere. If they do, then the photon counting rate of Ds will oscillate as BS, is 
slowly translated in a direction perpendicular to its face. 

The results of the experiment are illustrated in Fig 2. [3]. It appear that sl and s2 do indeed 
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Fig. 2. Experimental Results of the Interference Experiment [Reproduced from 
Zou et a1 (1991)l. 

interfere (curve A ) when il and i2 are aligned, but that all interference disappears when il is 
blocked by a beam stop (curve B). The average rate of photon emission is, however, the same 
in both cases. If we argue that il induces coherence between sl and s2 in some sense, then 
this induced coherence is unusual because it is not accompanied by any induced emission. If, 
instead of blocking il, we insert a filter NDF in the path of ill as shown in fig 1, then the 
resulting interference pattern of sl, s2 is found to have a visibility proportional to the absolute 
transmissivity 7 of the filter. It can be shown that under somewhat idealized conditions, and 
with equal signal sl and sz intensities, the degree of coherence 1 y,,,, 1 between sl and s2 or the 
visibility is given by [4] 

where 'yoc is the normalized second order auto-correlation function of the down-converted field. 
70, 72, 71 are propagation times from NL1 to NL2, from NL2 to D,, and from NL1 to D,, 
respectively and 70 + 72 - 7-1 = 0 when the interferometer is balanced, in which case cyDc(0) = 1. 
It is possible to understan,d the absence of mutual coherence between sl and s2 when il is blocked 
in terms of the potential distinguishability of the photon sources. With the help of an auxiliary 
measurement with detector Di shown in Fig. 1, that does not disturb the interference between sl 
and s2, one can determine the source of the detected signal photon [3]. 



Effect of a Differential Time Delay 
As is well known, the insertion of a differential time delay ID in one interferometer arm generally 
lowers the visibility, and if ID exceeds the coherence time T, of the light the visibility drops close 
to zero. But according to Eq. (I), the effect of incrementing 7 2  by TD should be exactly the same 
as the effect of leaving 7 2  unchanged and incrementing 70 instead, even though 7-0 relates to the il 
path which is not really part of the interferometer. The reason is the quantum entanglement of 
signal and idler photons, which makes the effect of a delay on the signal virtually indistinguishable 
from the effect of the same delay on the idler. As the experimental results shown in Fig. 3 indicate, 
the observed visibility falls with increasing TD in accordance with Eq. (I), although it is the idler 
1 which is being delayed [5]. 

5 a 

delay of idler1 (ps) 

Fig. 3. Experiment Results showing the effect of a time delay imposed on the il 
idler photons [Reproduced from Zou et a1 (1993)l. 

3 Effect of a Time-Dependent Filter 
So far we have dealt only with steady state situations. An interesting variant of the foregoing 
arises if the filter of transmissivity 7 ( t )  shown in Fig. 1 is allowed to vary in time. Indeed we may 
think of the filter as a time-dependent shutter that opens and closes at certain times. We now 
ask how the transmissivity affects the visibility of the interference contributed by a signal photon 
which is detected by D, at time t .  

This problem has recently been examined theoretically [6]. With the help of a spectral analysis 
of the fields and the filter response function it was shown that the visibility of a signal photon 
detected by D, at time t is completely determined by the filter transmissivity 7 at the earlier 
time t  - 7 2  - 7:. Here T: is the propagation time of photons from the filter to NL2. The time 
t - r2 - T: is therefore the time at which a photon from NL1 on the way to NL2 and then on 
to D, would have passed the filter. Of course there is no such photon. But the time t  - 7 2  - T{ is 
the time when il  would pass the filter if the photons originate in N L l .  Provided the filter is then 
open (7 = 1 )  this photon is indistinguishable from an i2 photon from NL2. It does not matter 
at all what the transmissivity is at any other time. 



4 Effect of a Resonant Cavity around the Idler Beams 

Consider the experimental arrangement shown in Fig. 4 [7]. Here a beam splitter BS; has been 
inserted in the il beam between NLI and NL2, and light reflected from BSi is detected by an 
additional detector Di such that the propagation time from NL1 to Di is also 71. It follows that an 
sl, il photon pair emitted by NL1, of which the il photon is reflected by BSi and passed to D;, will 
result in coincident detections by both D, and Di. Needless to say, these photons do not contribute 
to the signal interference because their source is known. Mirrors M3, M4 are introduced so as 
to form an optical cavity resonant with the idlers. An il photon which is transmitted through 
BSi may then propagate to M4, where it may be reflected and again pass through BSi ; it may 
then be reflected from M3 and return to BSi, where it is reflected and passed to D;. Similarly, 
an iz photon emitted from NL2 may traverse the cavity and end up being reflected by BS; and 
detected by D;. Needless to say, an il or i2 photon which has made one or more trips around 
the cavity in this way will be detected by Di later that the conjugate signal photon is detected 
by D,. Moreover, if the interferometer is balanced, the time delay between detections by D; and 
D, will be the same whether the photons originate in NL1 or NL2. As a result the sources of 
these photons are indistinguishable and interference is to be expected, whereas the sources are 
distinguishable for coincident signal-idler detections. 

IF, 

Fig. 4. Outline of the experiment with a resonant idler cavity [Reproduced from 
Grayson et a1 (1993)l. 

In order to measure the delay time intervals TD between D, and Di detections the photoelectric 
pulses from D, and D; are passed to the 'start' and the 'stop' inputs of a time-to-digital converter 
(TDC) that measures and digitizes the intervals and accumulates the data in channels determined 
by TD. The number of events accumulated in delay channel TD is then a measure of how many 
photon pairs have a time separation 7 0 .  In addition by varying the optical path difference through 
displacement of BS, we can extract the visibility of the interference pattern formed by the two 
signal beams. 

The results of the experiment together with theoretically expected values are shown in Fig. 
5. [7]. Fig. 5a gives the accumulation of photon pairs as a function of the delay TD. The peak 
centered at TD = 0 corresponds to idler i l  photons that emerge from the optical cavity without 



making any round trip. The observed visibility is shown in Fig. 5b. Those photons that emerge 
without extra delay are counted but exhibit no interference, because they originate in NL1. Those 
photons that emerge after one cavity roundtrip behave like waves and interfere with about 50% 
visibility. 

0  
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Fig. 5. Experimental results showing how the photon pair rate and the visibility 
vary with the delay TD. The cavity round trip time is 6 nsec. [Reproduced from 
Grayson et a1 (1993)l 

Because the idlers are registered by the TDC after the signal photons, the experiment has 
some of the character of a delayed choice experiment. But the 'choice' is here made not by the 
experimenter but by the idler photons. Those idlers that are reflected by BSi at the first encounter 
cause the conjugate signal photons to behave like particles; those idlers that make one round trip 
before emerging from the cavity cause the conjugate signal photons to behave like waves and to 
interfere. We note that both aspects of nature are here exhibited by different photons in the same 
apparatus. 
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HOMODYNING AND HETERODYNING 

THE QUANTUM PHASE 
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ABSTRACT: The double-homodyne and the heterodyne detection schemes for phase shifts between 
two synchronous modes of the electromagnetic field are analyzed in the framework of quantum 
estimation theory. The probability operator-valued measures (POM's) of the detectors are evaluated 
and compared with the ideal one in the limit of strong local reference oscillator. The present 
operational approach leads to a reasonable definition of phase measurement, whose sensitivity is 
actually related to the output r.m.s. noise of the photodetector. We emphasize that the simple- 
homodyne scheme does not correspond to a proper phase-shift measurements as it is just a zero-point 
detector. The sensitivity of all detection schemes are optimized at fixed energy with respect to the 
input state of radiation. It is shown that the optimal sensitivity can be actually achieved using suited 
squeezed states. 

1 Introduct ion 

Weak forces on macroscopic bodies in interferometric arrangements or, more generally, minute variations 
of environmental parameters in optical fibers are detected through the induced changes in the optical 
paths of the light beams. The detection of the induced phase-shift represents one of the most sensitive 
measurement on radiation in order to monitor such small perturbations. The back-action effect on the 
measured parameter due to the radiation pressure imposes limitations on the radiation intensity, and 
improvements of the sensitivity can only be achieved by suited preparation of the input quantum state. 
In this paper a narrowband analysis of some relevant phase detection schemes is presented (a multimode 
wideband analysis can be found in [I]). Classically a phase-shift measurement in an interference experiment 
can be directly related to the polar angle between two quadratures of one field-mode, which in turn are 
given by two output photocurrents. Quantum mechanically the quadratures of the field are noncommuting 
observables and their relative polar angle cannot be interpreted as a selfadjoint operator, as in the early 
Dirac's heuristic approach [2]. The os~illator phase is not an observable in usual sense, and the problem 
of identifying its quantum dynamical counterpart has provoked many discussions in the literature (see, for 
example, [3, 4, 51 and references therein). Among the numerous attempts the limiting procedure of Pegg 
and Barnett [3] has become the most popular technique, because it allows the evaluation of expected values 
with very simple and reliable rules. However, despite its simplicity and effectiveness as a mathematical 
tool, this approach has no obvious physical interpretation, and leaves most of the conceptual problems 
on phase detection still open. The actual problem of a phase measurement description does not concerns 
with a definition of a selfadjoint operator, but with an operative recipe to evaluate the phase statistics in 
a real measurement, starting from the knowledge of the density matrix of the input radiation. On these 
lines the most appropriate approach to the phase detection of the field is the quantum estimation theory 
of [4]. Even though it easy to show that this method is equivalent in the end to the Pegg and Barnett 
procedure (see [8] for more details), nevertheless it provides a physically meaningful scheme for the phase 
measurement where all conceptual problems disappear. Despite it has long been recognised as the most 
natural framework for analyzing any kind of quantum detection, the quantum estimation theory has not 



gained the necessary popularity yet, perhaps due to the fact that its main ingfedient-the probability 
operator m m m e  (P0M)-is generally a nonorthogonal spectral decomposition, and thus appears to be 
in conflict with the conventional dictum of quantum mechanics that only "observables "-i.e. orthogod 
POM9s-w be mwured. This point has been well clarified in some papers (see for example [8]), where 
it is shorn t h t  nonorthogod POM9s correspond to actual observables on a larger PIilbert space wEch 
includes &o modes pert the measuring apparatus (all together referred to as Qproben). It is d e a ~  
that this assertion provides the proper una setting for the operational point of view of [Ill, whese the 
dependence of the measwed operator detection scheme just corresponds to the involvement of the 
probe variables in the measuring process, involvement which becomes unavoidable when the phase of the 
field is detected. 
Any quantum measurement needs a classical final stage and for measurement on radiation this is essentidy 
a photodetection. Moreover a proper measurement of the quantum phase has to be related to the detection 
of a quantity which itself is a phase, i.e. is defined on the unit circle. In this sense we distinguish between 
two main different classes: the genuine phase detection schemes and the measurements of a single p h e -  
dependent observable. In the former class, the phase-shift of the field is related to the polar angle between 
two measured pho\ocurrents which, in turn, correspond to a couple of two conjugated quadratures of 
the field. Such scheme is the only viable one for phase detection, and corresponds equivalently to either 
heterod or double-homodyning the field. This also clarifies the subtle nature of the phase itself 
which, despite being a single real parameter, nonetheless requires a joint measures of two conjugated 
operators. In contrast, in the second class of measurements, only a single observable is detected-typically, 
when homodyning a single-quadrature of the field. Here we want emphasize that a single-quadrature 
measurement cannot be used to infer the value of the phase, because the knowledge of a quadrature would 
require au additional measurement on the field-essentially its intensity-which unavoidably would destroy 
the information on phase. Thus, the single-homodyning scheme can be used only as a zero-phase monitoring 
technique, which, however, is the essential of a typical interferometric measurement. In order to stress the 
operational nature of POM approach here we also present, as an example, a numerical simulation of a real 
experiment, reproducing the classical output photocurrents due to a particular quantum state, and then 
evaluating the phase statistics as the polar angle distribution. 
After selecting a measurement procedure-either ideal or feasible-the statistics of the detected phase can 
be further improved at fixed total energy by looking for optimal states of the field. We show that the r.m.s. 
phase sensitivity versus the average photon number fi is bounded by the ideal limit At$ N A-l, whereas 
for the feasible schemes the bound is A 4  N fi-2/3, in between the shot noise level 8 4  - fi-'l%d the 
ideal bound. The latter can actually be achieved by single-homodyning suitable squeezed states, but only 
in the neighborhood of a fixed zero-phase working point. The requirement of detecting the whole phase 
probability distribution makes the proper phase measurement less sensitive than in the case of a zero-point 
detection and the state achieving the two bounds are dramatically different: they are weakly squeezed 
(about 2% of squeezing photons) for the double-quadrature measurement, whereas they become strongly 
squeezed (50%) for one-quadrature detection. 
Sect.2 is devoted to the theory of phase measurements, with a detailed analysis of the various schemes. 
Subsect. 2.1 is a brief review of the quantum estimation approach. Subsect. 2.2 presents some remarks 
and criticisms about the different definitions of sensitivity. Detection of the phase through simultaneous 
measurement of two quadratures of the field are discussed in Subsects. 2.3 and 2.4, which are dedicated 
to double-homodyne and heterodyne detection (it is shown that the two schemes are fully equivalent). 
Subsect. 2.5 examines the measurement of the quantum sine and cosine of the phase, with a comparison 
between the present quantum estimation approach and earlier treatments [7].In Subsect. 2.6 we analyze the 
homodyne detection scheme. In Sect .3 the optimal states of the field are given, which maximize sensitivity 
for all the schemes of Sect.2, also indicating how to actually achieve such states. 



2 Quaraturn measurement of the phase 

At presatly it is fairly universally accepted that the quantum description of a phase measurement on 
a single mode of the e. m. field be approached by means of the usual concept of observaible. 
As a matter of fact, even though int operators can be defined on the Fo 
carn appropriatdy describe the a c t d  statistics of phase measurements. The quant 
of Helstrom [4] provides the most general-nonetheless operational-framework to 
measurement in the quantum context, and, in particular, the detection of a phase differences between 
synchronous oscillators. The main ingredient of such theory is represented by the mathematical concept 
of probability-operator-valued measure (POM) on the Hilbert space 'lis of the system, which extends the 
conventional description by selfadjoint operators. Using a notation which is f d a r  to physicists--even 
though not strictly legitimate from the mathematical point of view [8]- given a set of (generally complex) 
parameters s to be measured, a POM di(z) is a self-adjoint measure with the following properties 

where Z denotes the space of the parameters z. Eqs.(2.1) assure that using a POM one has an operational 
recipe which univocally relates the density-matrix state 1 of the system to a probability distributions of 
the parameters z corresponding to a particular experimental setup. In formulas one has 

Also a set of selfadjoint operators A can be defined 

h 

and, more generally, operator functions f (A) as 

When the POM di(z) = Is) (zldz is given in terms of orthogonal Iz)'s, then it corresponds to the customary 
measure of the commuting observables A, whose corresponding selfadjoint operators obey the function 
calculus 

On the contrary, the relation (2.5) no longer holds true for a generic nonorthogonal POM. As a consequence, 
the selfadjoint operators A only provide the expected values of the parameters s, whereas the higher 
moments of the probability distributions differ from the corresponding moments of the operators A 
themselves, and can be evaluated only through Eq.(2.2). One should notice that, despite the POM's 
generally describe measurements that do not correspond to observables in the usual sense, nonetheless 
there is no conflict with the basic assertion of quantum mechanics that only observables can be measured. 
In fact, the Naimark theorem assures that every POM can be obtained as a partial trace of a custommy 
projection-valued measure on a larger Hilbert space [$I which itselfrepresents the original system interacting 
with an appropriate measuring apparatus. Upon denoting by I+(z)) E 'lis @ 7 i p  a complete orthonormal 
set of eigenvectors of commuting selfadjoint operators acting on the enlarged space-including also the 
apparatus (probe) space 'lip-the probability distribution 



comesponds to the BOM on the mbert  space 7ds of the system only 

di(s) = trp (bpl$(~))($(s)l) ($(e)lbpI$(&)) e (2.7) 

Notice that the above atensions of the system HPilbert space-hence, physically, the experinnental 
seallization of the POM-is not necessaaily unique. 
Hnn Subsect. 2.1 we review the qumtum. esthation theory of the phase which leads to the opt 
representing the most accurate measurement. This, however, is only an ideal kni t  as no viable schmes 
hplmenting such POM has been envisaged yet. Therefore, in Subsects.2.3 and 2.4 experimentdy 
achievable detection schemes which correspond to a sub-optimal POM (double-homodyne and heterodyne) 
are d y z e d  in detail, wheseas in Subsect.2.6 the customary homodyne detection is considered. The latter 
exits &om the present quantum estimation approach, however it is in order, due to the relevance of this 
scheme in any intdmometric setup. 

The quantum estimation theory analyzes the possible strategies for estimating a parameter on the basis 
of an error-cost-hction: the optimum POM is the one which minimizes the total average cost. For a 
maximum-likelihood criterion, the optimum POM for the phase is 

lei@) being the Susskind-Glogower phase states [7] 

It is worth noticing that in the present case the maximum likelihood criterion is equivalent to the Gaussian- 
cost-function one for the bounded case (sin2-cost) [4]. Such generality of the optimal POM db(4) justifies 
the term Canonical Measurement here adopted for this POM approach. Also notice that the Pegg and 
B m e t t  [3] approach is totally equivalent to the present one as regards evaluations of statistics. However, 
there is no physical interpretation for the mathematical tricks on which their method relies. Some examples 
of commuting pairs of self-adjoint operators achieving the optimum P OM (2.8) on a system-probe Hilbert 
space have been proposed in [9] and in [5]: however, 'no viable method for experimentally implementing a 
corresponding setup has been devised yet, and hence the POM (2.8) only represents an ideal limit. 
Corresponding to the optimal POM (2.8) one defines the selfadjoint phase operator 

1 4 dP(4) = -i c (-)"-'- 
n - m  In> (ml 

n#m 

and the squared operator 

Notice that, as announced, 

P z P ,  
and more generally f 3 )  # f(4). Such fail of the operator function calculus also holds true for the 
selfadjoint operators defined through the experimentally feasible non-optimal POM's. The fact that there 
is no orthogonal optimum POM for the phase, physically corresponds to the impossibility of defining the 
measurement of the phase independently on the apparatus. This assertion clarifies and formalizes the 
operational nature of the phase detection which has been pointed out by Mandel et al.in [ll]. 



2 Phase Sensitivity 

Usudy the sessitivity of a measujrement of a parameter say z E IEe is assumed equident to the r.m.s. of 
the e q m h e n t d  probabst y distribution dP(a),  namely 

On the other h a d ,  the phase miable 4 is defined in the bounded domain [-u,u) with 2x-periodicity: 
tMs pecdar propwty of the phase has lead many authors to the conclusion that the r.m.s. of the phwe is 
not the appropriate quantity to be considered as an evaluation of the phase sensitivity, 
not i n m i a t  undw phase miable translation 4 - q4 + X. Thus, different definitions for the sessitivity 
have beem adopted, whjich would be equident for an unbounded Gaussian-distributed miable. Here, 
Qbftw ait icd review- such quantities, we show that an operational definition of a phase measupment 
proacedue leads uneqiuivocdy to adopt the r.m.s. itself as the correct sensitivity parameter. 

a. %"Bacrse dispepso'ooz 0[12, 131. 
Dispersion D is defined as follows 

where cn are the coefficient of the number representation of the state and the sine and cosine operators are 
defined according to Eq.(2.4) as follows 

and coincide with the sine and cosine operators of Susskind and Glogower [7]. The definition (2.14) 
follows from elementary error-propagation calculus, the phase 4 being regarded as a function of the two 
%dependent variables" sin 4 and cos 4 as follows 

In Eq.(2.17) the correct logarithm branch is selected in order to obtain the desired domain for 4. A part 
the minor point that Eq.(2.14) would lead to dispersion D = 1 for constant distributions-instead of - 
Atp2 = u2/3-the main criticism is that sin 4 and cos 4 cannot be considered as independent variables, 
because they correspond to a noncommuting pair of operators which are jointly measured when detecting 
4. 

b. Reciprocal peak likelihood 64[5]. 
The peak likelihood P(#) is the maximum height of the probability distribution. Its inverse, namely 

has been introduced in [5] as a measure of the width of the distribution, coherently with the maximum- 
likelihood strategy used in the quantum estimation theory. Here, the following criticisms are in order: i) 64 
is a locd criterion, namely it checks only one point of the distribution, whereas there is no control on the 
global behaviour as, for example, on the eventual occurrence of high tails. The most degenerate situation 
occurs when the tails are so high that the distribution itself converges to the P(4) = 1/2r apart from 



one point with infinite probability density and zero integral [14], thus leading to vanishing 64 instead of 
64 = r2/3; ii) the coherence of this sensitivity definition with the maximum-likelihood strategy [5] cannot 
be considered as a d i d  argument, in view of the aforementioned equivalence between the likelihood strategy 
and the (quasi)-Gaussian one; iii) recent numerical results [S] have shown that the simulated sensitivity 
does actually not correspond to 64. 

c POM p.m.#. (A?$) 
Given a physical apparatus (or an ideal detector) one has a corresponding POM and, in turn, a probability 
distribution dP(4) according to Eq.(2.2). Such probability has a r.m.s. error (2.13) given by 

Here (. . .) denotes the ensemble quantum average on the system space Xs, and the operators 4 and 
depend on the considered POM (for the optimum POM they are given in Eqs.(2.10,2.11)). Notice that 
there is no ambiguity in choosing between the two operators @ # p, because Eq.(2.19) directly follows 
from the probability (2.2). For a random-phase state-namely a constant probability distribution--one 
correctly has (A?$) = u2 13. 
As regards the problem of invariance under phase shifts, here we stress that this actually is not a problem. 
In fact, the only concern is the correspondence between experimental and theoretical quantities, and the 
circular topology of the phase arises at both experimental and theoretical levels in the same way. Whatever 
procedure is considered for measuring the phase, the information on it has always to be inferred from a 
joint sine-cosine measurement, and hence the experimental equipment itself has to be tuned on a selected 
2%-window. Once the domain is fixed, the experimental noise is, by definition, the r.m.s. noise on such 
domain. Therefore, different choices of the 2?r-window actually lead to different experimented amounts of 
noise, and also theoretically the r.m.s. noise has to be evaluated on the chosen domain (hereafter we will 
always use the [-u, u) window). 

2.3 Double-homodyne Detection 

The double-balanced-homodyne [11] (DBH) detection provides a way for simultaneously measuring a couple 
of field-quadratures for one mode of e. m. field. The schematic diagram of the experimental set-up is 
reported in Fig. 1. There are four 50-50 beam splitters and four identical photocounters, and a. 1p/2 phase 
shifter is inserted in one arm. The mode supporting the phase is a, whereas a; stable reference for the 
phase is provided by a local oscillator (LO) which is synchronous with a and is prepared in a highly excited 
coherent state Iz). 
The DBH scheme can also perform a phase measurement, however with a probability distribution which 
does not correspond to the ideal case due to unavoidable addition of "instruzmental" noise. The DBIP 
phase distribution is obtained through the following procedure. Each experimental event consists of a 
simultaneous detection of the two difference photocurrents il = h6 - A5 and i2 = .ii4 - hg which "trace" 
two field-quadratures. Each event thus corresponds to a point plotted in the complex plane of the field 
amplitude. The phase relative to the event is nothing but the polar angle of the point itself. An experimental 
histogram of the phase distributions is thus obtained upon dividing the plane into small ("infinitesimaln) 
angular bins of equal width 64, from -u to u, then counting the number of points which fall into each bin. 
In formulas, one has the statistical frequency Pn for the n- th bin 8, [-?r + 7264, -u + (n + 1)64) 

1 
P - -(# ofevents withIl =pcos$,12 =ps in# ,#E 6,) , 
* - N  

where p = 41; + I; and N  is the total number of experimental points. 
In Fig. 2, as an example, a computer simulation of the above experimental procedure is illustrated for a 
squeezed state with equal number (n) = 10 of signal and squeezing photons. The experimental histogram 



Figure 1: Outline of scheme of a double-homodyne detectors 

(lo4 events) is compared with the theoretical results from the POM for the DBH detection. This can 
be obtained as follows. The difference photocurrents il and i2 are commuting operators with factorized 
probability P(I1, 4) = P(II)P(12). Introducing the reduced current f = f/lzl for each homodyne detector, 
one has the probability distribution in terms of the Fourier-transform of the generating function for the 
moments (eiG) 

The phase distribution is the marginal probability integrated over the modulus p 

Using Eq.(2.21) one has 

6s being the density matrix of the mode a (the system) and 

the density matrix of the probe. From Eqs.(2.6,2.7) one can see that the "experimental" POM is obtained 
upon tracing over the probe Hilbert space Xp, thus obtaining the operator which acts solely on the system 
space Xs  

r l z l  dp 
dfio(+) = d4 j0 / - J*"' trp{is B PP e ip(.ii -P cos d)+iu(fz -p sin 4) 

o -+I 2~ -rlz1 2~ 
1. 



Figure 2: Computer simulation of the DBH experimental procedure for a squeezed state with equal number 
(n) = 10 of signal and squeezing photons. The experimental histogram (lo4 events) is compared with the 
theoretical results from the POM in Eq.(2.26) 

Using the coherent state resolution of the identity, the following closed formula is obtained (the detailed 
derivation is reported in the appendix) 

where F(x) is the Eulero9s gamma function. 
The POM in Eq.(2.26) for the DBH detector corresponds to an effective measured phase operator which 
is given by 

and the squared one 

h 

needed for evaluation of the instrumental sensitivity (A&). For any state of the mode a one can simply 
verify that 

( A ~ D )  2 (69 9 (2.29) 

namely the DBH scheme adds extrinsic instrumental noise, as it does not implement the optimal canonical 
measurement of the phase. However, we stress again that the DBH detection is the best available method 
for detecting the phase. In Fig.3 a comparison between the canonical (ideal) and DBH (feasible) phase 
probability distributions is given for the same state of the computer simulation in Fig.2, showing that the 
former is sharper and higher than the latter. 



Figure 3: Comparison between the ideal and double-homodyne phase probability distributions for the same 
squeezed state of Fig.2 

2.4 Heterodyne Detection 

The fist proposed method to perform simultaneous measurements of two field-quadratures was the 
heterodyne detection. Here we synthetically analyze this scheme, only in ordef to make a connection 
with the double-homodyne detector and show that that the two apparatus are completely equivalent from 
the point of view of the measured physical quantities. The input field EzN impinges into a beam splitter 
and has nonzero photon number only at the frequency wo + W Z F .  The local oscillator works at the Merent 
frequency wo, and the output the photocurrent hUT is measured at the intermediate frequency WZF.  The 
measured photocurrent is given by 

where Ef denote the usual positive and negative frequency components of the field. The component at 
frequency WZF is given by 

For a nearly transparent beam splitter, and in the limit of strong LO in the coherent state lz) one can 
define the reduced complex current Y 

jL lim ~ - ' ~ o u T ( w z F ) ,  
v-9 l . l z l + -  

7 = cost. 



where 7 = I z ( d m .  In this limit the expression of 3 is given by 

y = Izl-'(a!b, + aibi) + vanishing terms , (2.33) 

where the subscript 4 1  and i refer to the signal, LO and image component of the field respectively, ar are 
signal modes, b the LO modes, and the vanishing terms denote operators which do not give contfibutions 
in the strong LO limit. In the double-homodyne in the same limit the role of the complex 
is played by 

where subscript 1 refers to the input signal and subscript 2 to the local oscillator, whereas bo is the vacuum 
mode at the unused port of the beam splitter which contains the input signal. The fully equivalence 
between heterodyne and double-homodyne is apparent when comparing Eq.(2.33) and Eq.(2.34). Aa in 
the double-homodyne case, now the real and imaginary parts of the current trace the two conjugated 
quadratures a d  and of the signal mode. In [16] the POM of the heterodyne detector has been 
derived in a different context, leading to the same result obtained for the double-homodyne in Subsect.2.3. 
We notice that the actual sources of extrinsic added noise are the vacuum modes ai for the heterodyne 
detector and bo for the double-homodyne: the other vacuum modes are totally irrelevant in the limit of 
strong LO. 

2.5 Measurement of the phase quadratures 

The PDM approach naturally leads to well defined operator functions of the phase which obey the 
trigonometric calculus at the operator level, and, hence, also at the level of expectation values. In parti&, 
the sine and cosine operators are defined as in (2.16). Such definitions coincide, in the case of optimum 
POM, with the sine and cosine operators i and 2 introduced by Susskind and Glogower [7] 

where i +  denote the raising and lowering operators (+In) = In + I), 4- = (i+)t. Notice, however, that 
this equivalence between operators fails for higher powers, namely 

Here some remarks are in order, regarding relevant differences between a conventional measurement of a 
single phase-quadrature-say the cosine &and a joint measurement of both sine-cosine quadratures which 
have been analyzed in previous Subsections. A single phase-quadrature measurement leads to violation of 
the trigonometric calculus for expectation values. In fact, for a general density matrix state b one has that 

whereas for a joint measurement one obtains 

We stress again that, however, the linear operators coincide in the two cases, and thus one gets the 
same average values. However, the probability distribution of the out comes from single phase-quadrature 
measurement exhibits unphysical features for nonclassical states, whereas the probability distribution from 
the joint measurement does not. In the single-quadrature measurement one has 



where the dgenstates of C are given by [7 ,15]  

Ic) = {:(I - e2)-'1' C sin[(n + 1 )  arccos c] In) 
n=O 

On the other hand, the Radon-Nikodym derivative of the joint measurement POM's leads to 

- c2)-? C ( m [ f i l n )  erp [i(n - m) arccos c] , 
n,m 

for the optimum POM case, whereas for double-homodyning one obtains 

P ( c )  = [ b d f i ~ ( # ) ! ? ]  = i(l - e2)-! ~ ( m l f i l ~ )  r ( 9  + 1 )  exp [i(n - m) arccos e] . (2.42) 
d+ dc ~r 

n,m Jaz 
The differences between the single-quadrature and double-quadrature probabilities become striking for 
isotropic states, as, for example, the vacuum or a general number state. In this case the above distribution 
should be compared with the Radon-Nikodym derivative of the constant distribution 

which is a concave function and has poles at the c = f 1 stationary points of the cosine. The probabilities 
(2.41) and (2.42) coincide with (2.43) for number states, whereas the probability (2.39) has the opposite 
curvature for the vacuum state, and oscillates fastly around the function (2.43) for nonvacuum number 
states. These undesired physical features disappear for highly excited coherent states, where, however, the 
main quantum features are lost. 

2.6 Homodyne Detection 

This Subsection is devoted to the customary homodyne detector, which, despite it exits from the present 
phase estimation treatment, however it is the most relevant device in any interferometric setup. Actually, 
the homodyne detector belongs to the class of the zero-point measurement schemes, and thus is not cr 
measurement of phase. The balanced homodyne scheme measures one quadrature of a field mode, which 
in turn is related to its phase difference with respect to the synchronous LO. Generally one is interested 
in the measure of the phase shift x of the signal state 

where, without loss of generality, the input state is assumed of the form 

The expectation value of the quadrature is given by 

The quadrature 4 is proportional to the cosine of the phase with a proportionality "constant " 
which can be evaluated from the knowledge of the fixed input state. Notice that, however, when the 
present scheme is regarded as a measure of the phase of the state I$), itself the state-depending "constant 



t be preventively measured without destroying the Infomation on phase. 
ch does not need any knowledge of the "constant" is the 4 - # = ~ / 2  

t the maxim=-derivative zero-current working point. Thus, it is not possible to detect 
Wwenee, the sensitivity depending on the particular input signal, whereas, a suitable 

=&dm is needed to follow the working point. A convenient description of the homodpe 
detector in view sf the above condderations is given in [IT], where the zero-point (zero-field) probabaty 
&atributicpa. ir revisited sas a sort of a phase probabillity distribution. 
The phme msitivity d the homodpe detector can be straightforwardly obtained from mor  propagation 
d c d u s  us- the r&tion 

h the Biteratme on interferometry, One can see that the q5 - XI = ?r/2 w o r h g  point 

3 Optimd states for phase measurements 

The design a phase measurement needs optimization of both the detection scheme and of the quantum 
. state which es the phase idomation. The former is the main task of quantum estimation theory, 

which leads to an ideal scheme to be compared with the feasible ones. The latter9 which is the main 
concern of this Section, depends on the detection scheme itself, and should account for the actual physical 
constraints, mainly the total power impinged into the state. Therefore, the problem is that of o p t ~ z h g  

the r.m.s sensitivity A) Y JT (A42) for fixed average photon number, and depending on the particular 
detection scheme. 
In the following we consider, without loss of generality, a zero average phase state, with real coefficients on 
the number basis, namely 

The state optimization problem is to minimize a quantity of the form 

with the constraints 

The (red symmetric) matrix A = {A,,,} depends on the detection scheme. In particular, for n # m one 
has (A,, = 0) 

(-)"-" 
An,m = (canonical) (n - m)2 ' 

(-ln-rn r(=p + 1) 
An," = (DBH) . 

(n-m)2 &x! 
The method of Lagrange multipliers reduces the problem to that of minimizing the following expression 

7r2 
F({cn}; &PIfi) = 7 + 2 An,m cncm + A (5 C: - 1) + (2 nc; - i i) 

n#m n=O n=O 



with respect to (c,), X and /3 being the Lag~ange multipliers. The variational problem (3.6) is that of a 
ric form and is equivalent to the eigenvalue problem 

tric m t r k  M = (Mnm) given by 

Eq.(3.7) for the matrix (3.8) can be numerically solved upon suitable truncation of the Rilbert space 
3.1,. The absolute minimum corresponds to eigenvalue X = ?r2/3, and A E [0, dim3t8/2] turns out to be 
a decreasing function of the running parameter /3 E [O, 11. Notice that one should consider only average 
values A < dim%,/2, such that the nurnber distribution has vanishing tail at n = dim%,, in order to avoid 
undesired nmericd boundary effects. 

Figure 4: Phase and number probability distributions of an optimal states of fi = 20 for both ideal and 
DBH detection 

3.1 Canonical Measurement 

For ideal measurement of the phase, the best phase states obtained through the above optimization 
procedure, lead to the simple power-law 

in agreement with results of [18]. The proportionality constant actually increases very slowly as a function 
of fi, and one has a variation of few percent for two decades of Ad. Eq.(3.9) can be compared with the 
result of [I$], and with the theoretical bound Ad N l l (e6)  [19] obtained by means of information-theory 
arguments. One should notice that essentially the same result can be obtained for large fi (A > 10) using 



squeezed states whwe the squeezhg photon number is optimized as a h c t i o n  d the avepage totd  nmbm. 
out that the opt states have only N 3.7% of squeezing photons (see Rg. 5). T i s  res& ir 

qdte differat from the customary 50% o p t h d  squeezing number (which dso holds tme for the homodpe 
smitivity of the M d - Z h d e r  htderometw [20]). 
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squeezing photon number as a function of the average total number for both ided m d  
DIBH detection. 

As eqected, an actual measmement of the phase does not achieve the ided semitivity (3.9). h the case 
of doublehomodpe ( o ~  eqddently heterodyne) phase detection, the resulting power-larw is 

which is obtained by ically solving Eq.(3.7) for matrix M given in Eqs.(3.8) and (3.5). In Fig. 4 the 
optimized states for both canonical and DBH detection are compared for an equal fixed average photon 
number A = 20. Om can see that the number and phase probability distributions are qualitatively s u s r ,  
however the DBH optimum states are slightly sharper in the number distribution and larger in the phase 
one. Also the best DBH states are essentially indistinguishable from squeezed states which sre o p t ~ z e d  
in the squeezing photon number as a function of the average total number (see Fig. 5). In this case, onlJr 
less than N 2% of squeezing photons turns out to be optimal. 



Figure 6: Uncertainty product versus the average photon number for optimal states. 

3.3 Heisenberg Uncertainty Product for phase quadrature 

The customary Heisenberg uncertainty relation 

AAAB 2 f l ~ r  { j j [ ~ ,  B]) I (3.11) 

refers to the situation in which the quantum system is prepared in a state with fixed uncertainty say AA 
and the other observable is measured. For the case of a joint 3-B measurement, however, a generalized 
uncertainty relation hold, where the 112 factor on the right side of Eq.(3.11) is dropped, corresponding to 
an added noise of 3 dB [21]. For the phase-quadratures one has the commutation relation 

corresponding to the joint-measurement uncertainty relation 

In Eq~(3.11) and (3.13) the uncertainties are defined in the usual way, namely A02 = (d2 )  - (6)2. On the 
other hand, in the POM approach the correct uncertainty (namely the measured quantity) is defined as 
A02 = (5) - ( o ) ~ ,  where 5 # o2 is defined as in Eq.(2.4). In general, by means of Schwartz inequality, 
one obtains 



I Ideal detection I Double-homodyne I Homodyne I Ideal Sine detection 
I I I 

Optimired (1.38 f O.O1)ii-l.OOf ." (1.00 f 0.01)fi-0.6bi.01 $%-I 

Squeered 
Stat- %.,/A - 4% A.,/ii 2% fi,,/fi = 50% 

'Table 1: Aspptot ic  smsitivities versus the average photon number (results from numerical calculations 
are given with error esthation) 

ThesePore, one should not expect that the optimum states for phase detection achieve the rninhunr 
~lneertainty product (3.13), even though phase detection corresponds to a joint sine-cosine measurement. 
Pn Fig. 6, the ' ' 

uncertainty product in Eq.(3.13) is compared with the actual uncertainty product 
of the optimal states for canonical measurement. One can see that the minimum uncertainties are 
never achieved, despite canonical detection is ideal. In the same figure the uncertainty product of the 
optimal states for DBN detection is also reported for comparison, showing additional noise due to nonideal 
measurement . 

3.4 Homodyne detection 

FOE h o m o d p  detection the well known sensitivity A# = iii-I is achieved only near the zero-current 
working point. As a consequence, it happens that it is better than the sensitivity achieved by the true 
phase measurement, either in the double-homodyne or the ideal case it self. This is due to the fact that the 
measuremmt of the fidd-quadrature near the zero-current working point partially underestimates the tails 
of the phase distribution at  qb = f T .  The latter are enhanced by large squeezing, and thus one also finds 
that the optirnal number of squeezing photons is only a few percent of ii for the true phase measurements, 
whereas it is 50% for single homodyning. It is interesting to notice that the measurement of a single 
phasequadpatwe, say sinqb, also exhibits a small optimal squeezing fraction (N 5%),  as, in some sense, it 
is more faithful obsefarable than the field quadrature. In Table1 the above results are reported along with 
the p b e  sensitivity for other quantum state and different detection schemes in the limit of large average 
photon numbers 6. 

4 Conclusion 

We have analyzed ideal and actual detection schemes for the quantum phase, We have also considered the 
homodyne detectors as it can be used as zero-phase measurement apparatus. The working conditions for a 
phase detectors have been discussed showing that in an actual measurement the phase shift corresponds to 
the polax angle between two real output photocurrents. We have analyzed in detail the double-homodyne 
scheme of [Ill, giving the POM of the apparatus. The equivalence of this schemes with heterodyne one in 
detecting the phase it has also been shown. 
A. critical revision of various adopted definitions of sensitivity has been reported, we have concluded that 
the usual r.m.s. noise is the right quantity to be considered. 



The sensitivity of the detection schemes Bas been optimized at fixed energy with respect to input 
qumtum stater of ra&ation. We have shown that the sensitivity versus the average photon nmber  6 is 
bounded by the ideal limit A4 N A'l, whereas for double-homodyne detection the bound is &bD A - ~ / ~ ,  
in between the shot noise level A4 N m d  the ideal bound. The optimal states achieving the best 
sensitivity for h e d  energy have been numerically obtained, and we have shown that they are very close 
to coherent states weakly squeeged either for ideal detection or for double-homodyne. This resdt, which 
is in contraet with the 50% of op tha l  squeezing photons for single-homodyning, is due to the sensitivity 
of the double-homodyne detection to the whole phase distribution including tails, which are 
increasing squeeeing. 

Appendix: Eduation of Double-Homodyne POM 

The phase distribution is the margind probability integrated over the modulus p , namely 

Using Eq. (2.21) one has 

Bs being the density matrix of the mode a (the system) and 

the density matrix of the probe. From Eqs. (2.6) and (2.7) one can see that the POM is obtained upon 
tracing over the probe Hilbert space 7 i p ,  thus obtaining the operator which acts on the system space Hs 
only 

Using the coherent state resolution of identity one has 

where R is the matrk element 

R = ( ~ , ~ , O , O I U + ~ ~ ( ~ ~ + ~ ' ~ ) ~ ~ O , O , Z , W ) .  

In Eq. (A.6) 0 denotes the unitary evolution operator of the detector, which acts on the state (A.6) as 
follows 

The explicit expression of the matrix element R is given by 



g the strong 10 limit 111 -r m and introducing the complex variable a = f (v + ip)eids)  one gets 

Substituting Eq.(A.9) into Eq.(A.5) leads to 

0 ° 1 1  
= @CaG&pt  - @a 1p exp(p&eib)la) (ale""" e~p(p&te-~b) 

P=o 

Using: the cohermt resolution of the identity and integrating over p one obtains 

where r ( z )  is Eulero's Gamma function. The normal ordered representation of the vacuum state 

leads to 

From Eq.(A.13) one obtains the POM of the detector in form of a double series 

Alternatively, using the I?-function integral representation one can write 

e-d e ~ * a t  10)(01e~-i4a = 2 ~ W p d p  ~pe+)(~e'dl. 
a 
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Abstract 

We study a Stern-Gerlach type setup, with a quadrupole magnetic field, for neutral 
particles of arbitrary spin. The Namiltonian is of a form proposed for joint measurements of 
incompatible observables. The measurement results are discussed, showing the limitation of 
such Harniltonians. Some remarks are made on the relevance of covariance as a criterion for 
measurement schemes. 

1 Introduction 

The canonical form for the Hamiltonian of a measurement interaction is (operators are careted) 

where the subscripts o and p denote object and pointer, respectively. The operator A, is mea- 
sured, whereas iLb is conjugate to the read-out observable 6,. One of the simplest measurement 
arrangements, often used as an example [l, 2, 31, is the Stern-Gerlach, where an inhomogeneous 
magnetic field effects an interaction amounting to [2, 41 

Here the coupling constant. K is proportional to the strength of the inhomogeneity. The spin 
degrees of freedom represent the object, and the spatial degrees of freedom are the "measuring 
device". Thus we measure the spin in the x-direction, by reading out the x-momentum component. 
If we assume both fix and 8, to be conserved in the absence of interactions, the Harniltionian (2) 
causes in the Heisenberg picture (ti = 1) 

fix (t ) = fix (0) + K&,t . (3) 

Thus, as soon as t is larger than the Sx-width, the spatial part is separated into s packets, according 
to 6, eigenvalue. Conversely, a read-out of fix means an accurate measurement of 6,. 

In order to be able to measure two incompatible observables jointly, Arthurs & Kelly [5] 
extended the basic scheme (1) to 



In this interaction Hamiltonian, 8; and 4 are two compatible pointer system operators, with 
read-outs $ and hP, respectively. The operators A, and &, not necessarily compatible, are to be 
measured. Arthurs & Kelly applied (4) to joint position-momentum measurements. They found 
that the probabilities of finding a result (a, b) are given by 

where la) is a coherent or squeezed state, depending on the interaction balance rcA/rcB. Therefore 
the a marginal is related to the x probability distribution by a convolution 

with a Gaussian f ,  and analogously for b and p. This relation, providing the basis for the inter- 
pretation of b in terms of x, we have termed "non-ideality" elsewhere [6]. Sets of operators such 
as !la) (a1 , which generate probability distributions but are not orthogonal, are called positive 
operator-valued measures (POVMs) [7]. 

If we combine (4) with (2), we get a Hamiltonian like 

Such a Hamiltonian may be realized using a quadrupole magnetic field, which around the origin 
in the x, y-plane satisfies 

A m  (0,0,zy) +- ii o; ( x , - y , ~ ) .  (8) 

In the present paper we will investigate the properties of a measurement scheme based on the 
quadrupole Stern-Gerlach (7), where K = K, = K,. Neutral particles of arbitrary spin s will be 
used. We shall focus especially on its relation to (6) and (5). 

2 General description 

If we consider the quadrupole Hamiltonian (7), we see that its rotational symmetry immediately 
implies that 4, = 2, - C?* is conserved. It is therefore profitable to change into a polar momentum 
representation (p, p). Denote the eigenvalues of 8, by m,. Now we can eliminate cp by writing the 
m, component of the state IQ) as 

The Harniltonian, seen as an operator on the (2s + 1)-dimensional spin Hilbert space, then 
becomes 

We have taken K = 2m = 1, without loss of generality [B]. Note that r?y3z is not Hermitian, but 
then neither is i&; the overall expression (10) is Hermitian. 



FIG. 1. Two views on the measurement results. (The Gaussian spatial part initially 
had variance Ap2 = 0.01 and L, = 0.) 

a. Typical output distribution. The density of markers indicates the momentum 
3 probability density at  t = 1. The input state was a s = t state, with mx = - - 2' 

b. Matrix element ( i lk(pX)l i )  for s = 4 as a function of time. The quality of the 
measurement can be characterized by the integral of the matrix element over px > 0. 
Note that this value does not approach 1. 

We integrated eq. (10) numerically. In view of the fact that the process is intended as a spin 
measurement, we took the initial state to be a product of spatial and spin parts (denoted by 
subscripts T and a when necessary), 

The spatial part Id), was taken to be a axially symmetric Gaussian. The final state then turned 
out to be structured into a number of expanding rings, one for each Iml; only rn = 0 (for integral 
spin particles) leads to a hump remaining around the origin. Fig. 1.a is a typical example, where 
s = i, and we have 3 rings. In the figure the spin part was initially directed in the +-direction, 
with m, = -2 2 ,  and thus we see that the distribution is peaked in the left part of the middle ring. 
More generally, states with spin initially directed in the xy-plane lead to correspondingly oriented 
distributions; only spins initially in the z-direction evolve into complete ring distributions. In the 
rings the spins are directed roughly outward, with appropriate magnitude. 

The scheme is meant to be seen as a spin measurement. Accordingly, we trace out the spatial 
variables and generate the outcome probabilities from the spin density operator i, by means of a 
POVM ~ ( p ,  p) on spin Hilbert space, 

probge (P, p) = Tr[iju M(P, $41 ; 
MP, p) = I ( P  T P  I 8 0 )  0 )  I ; 0 )  = P -  (12) 

In the next two sections we will discuss some properties of the POVM M@, p). 



The output variables of the measurement are (p,,p,). Naively, one would suspect on the basis 
of (3) and (7) that a read-out of 6, can be seen as a measurement of b,. Accordingly, we are 
interested in the p, marginal of a, 

Consider first the s = case. Here the spin operators anti-commute. Thus the interaction 
Hamiltonian (7) satisfies 

$&St = & ; 8 = iy ~ ~ ( 2 3 , )  . (14) 

Hence, if the initial spatial state is i,-symmetric, the p, marginal of the final ( p ,  ,py ) distribution 
must depend only on 6,. Accordingly we may write (13) as 

where the fm are positive functions and hm(0) denote the projectors onto the & eigenstates. Thus 
we get an analog of the convolution (6), reproducing the basic result (3) with additional noise terms 
that do not depend on the spin degrees of freedom [4]. As is easily verified, an analogous relation 
holds between PY and dy. In fig. 1.b we plotted the probability that a particle with m, = +; will 
give the measurement result p,. We see that the noise terms assure that the measurement quality 
is limited, in contrast to (3). This is necessary on account of the uncertainty principle [9, 101, as 
we are jointly measuring the two incompatible observables 6, and 6,. 

Nevertheless, (15) means that an unambiguous relation between the li, and b, distributions 
exists. It allows for the m, estimation from p, that we aimed at [ll], albeit an imperfect one. In the 
spin-$ case, the spin observables are Fourier-pairs [12] and therefore close analogs of the position- 
momentum pair studied by Arthurs & Kelly [5]. Accordingly, the above conclusion matches theirs. 

We might think that for s > this result may be generalized. In fig. 2.a the diagonal elements 
of the POVM (13) in 5, representation are plotted vs. p,. We see that indeed the various m, 
values are roughly correlated to different p, regions, as expected. Thus, it appears that from p, 
an estimate of m, can be made, just as for s = f. But there is a catch: neglecting the p2-term 
(strong or impulsive interaction approximation), it follows after some calculation that 

sin r t  
pix (t) = pi, (0) + 5,(0) [t C O S ~  8 + - r sin"] 

1 sinrt cos r t  - 1 + Gy(0) [1 - t] sin 28 + b,(0) 
r 

sin 8 ; 

where we used the polar position representation (x, y )  = (r cos 8, r sin 8). Clearly 6, contains extra 
spin terms that do not commute with 8,. Indeed the non-diagonal elements of k ( p x )  are not zero, 
as is evidenced by fig. 2.b. Consider again (16). The desired effect, t6,, is contained in the second 
term , whereas the last two terms are the problematic ones. As the rings expand more and more, 
the ! terms will decay roughly as l / t2.  Still, even as t 4 oo, a significant term containing 6, 
remains: k and 8, are incompatible. 



FIG. 2. The POVM ~ ( p , )  in bX representation. (Data as in fig. 1.) 
a. Diagonal matrix elements (rnl&(p,) jm) = (-rnj&f(-px) j - m>- 
b. Independent non-zero non-diagonal matrix elements (mlh(-p,) lm'). 

But all the problematic terms in (16) are seen to contain a factor sin28 or sin8. Denote 
reflection in the sr-plane by i,. The sine terms in (j,) vanish if we choose the spatial part of 
the initial state i,-symmetric, like we do in our calculations. But if we consider (s), terms with 
factors like 8: sin2 28 emerge. Such terms do not vanish, so that higher moments do not commute 
with &. Only if s = f , we have 6: K i so that (f iz) commutes with ex after d l ,  in accordance 
with our earlier result (15). 

But in what sense can we consider this scheme to be a measurement of & if s > i? Clearly 
no analog of (15) holds; only the expectation value ($,) is free of incompatible spin terms, so that 
we can use the measurement only to estimate the 5, expectation value. Higher moments, or even 
m, probabilities, cannot be established. 'Thus it is a 6, measurement only in the weak sense of 
expectation value estimation [l 11 . 

The measurement is therefore not generally a useful joint measurement. But it may have another 
use. Remember, the Hamiltonian (7) is rotationally symmetric. If we now consider the outcomes 
in polar coordinates, it is easily derived that the POVM k ( p ,  rp) is angle covariant: 

Covariance is a criterion that is often used to characterize classes of rneasurelfients e.g. time 
or photon phase measurements. Here we therefore speculate that &f@, cp) realizes some kind of 
spin-angle measurement. Define the projector onto the eigenstate of the operator cos 8&, $ sin 86, 
with eigenvalue m as &($). Then we choose as spin-angle observable 1131 



where the summation runs over all relevant lml values, and c, = & for m = 0 and otherwise. 
Accordingly, c,am(0) defines a POVM that may be seen as a "spin-anglen observable [7]. We can 
now attempt to link (18) to (17). As in the previous section, this is possible for s = f .  There a 
convolution-type relation between the realized angle measurement and the ideal (18) holds [4]. But, 
as in the previous section, this cannot be generalized to higher spins: k and 18 are incompatible, 
although the incompatibility is generally smaller than that of fig. 2.b. Thus, although the POVM is 
angle-covariant, it  is not clear in what sense the "angle of spin" is measured, if at all. Analogously 
we may therefore conclude that photon-phase covariance and time covariance must also give many 
POVMs without unambiguous interpretation. Like spin-angle covariance, they are weak criterions. 
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Abstract 

We review a statistical-geometrical and a generalized entropic approach to the uncer- 
tainty principle. Both approaches provide a strengthening and generalization of the standard 
Heisenberg uncertainty relations, but in different directions. 

The purpose of this note is to introduce two approaches to the uncertainty principle which have 
been developed recently, a statistical-geometrical approach and a generalized entropic approach. 
But before we go into this, let us consider why one would need a new approach at all. In other 
words, what is unsatisfactory with the traditional approach to the uncertainty principle? In the 
standard textbook approach the uncertainty principle for position and momentum is expressed by 
the inequality 

tt 
V$ : A+PA+Q 2 - 

2 (1) 
or more generally: 

for arbitrary observables A and B. Here, A*A etc. is defined as: 

There are three problems. First, uncertainty relations as (1) or (2) presuppose that all observ- 
ables for which one wants to write down an uncertainty relation can be represented as self-adjoint 
(or at  least normal [I]) operators. Unfortunately this is not always the case. Notorious examples 
are time and energy, and phase and photon number. Further, in relativistic quantum theory, even 
the status of the position observable becomes dubious. There is no self-adjoint position (vector) 
operator for photons [2] .  

Secondly, note that the right-hand side of (2) still depends on $. It may become zero, even if 
A and B do not commute. In fact, this always happens in an eigenstate of A or B. Then, taken 
as a general statement about A+AA+B, the inequality only says that this product is greater than 
zero for some states and equal to zero for others. That, however, is true also in classical physics. 
To read off more from (2), one needs to know the state. But then, when $ is given, one can also 
calculate A*A and A*B directly, without using the inequality at all. 



Even in the case where the right-hand side is always strictly greater than zero, as in relation 
(I),  there are further problems, due to the properties of the standard deviations. In the definition 
(3) of the standard deviation, the probability density is integrated with a quadratic weight factor 
that puts most emphasis on the tails of the distribution. As a result, the standard deviation can 
become very high, even if 99% or more of the probability distribution is concentrated in a very 
small interval, and the remainder is located in long tails, as e.g. in a Breit-Wigner lineshape. 
Thus a large standard deviation does not necessarily prevent a probability distribution from being 
very sharply concentrated, and a bound on the product of standard deviations by itself does not 
prevent both observables from being as precisely determined as we please. In the next sections we 
ask whether there are more stringent inequalities that improve on the above aspects. 

2 Statistical-geometrical approach 

It is usual to assume in quantum theory that the state of the system is given. But in this section 
we consider an inverse problem. Suppose we don't know the state of the system. Our problem is 
to make a statistical inference about this state from given measurement results. 

For definiteness, let us assume that some partial information about the state is given: it belongs 
to a given set of (pure) states labeled by an index parameter 8. To be more specific, it is asumed 
that these states are generated by some unitary group: 

where A is a self-adjoint operator. We can think of this set of states as describing a curve in state 
space. The problem of statistical inference is now equivalent to that of estimating the value of 8. 

It is clear that a detailed discussion of this estimation problem should involve the kind of mea- 
surements performed, the results obtained, and criteria distinguishing 'good' from 'bad' estimates. 
However, even without going into details of statistical theory [3,4], it can be made plausible that a 
fundamental bound for the estimation accuracy is obtained by considering the overlap I($el$e+se)  I. 
If this overlap is high the states resemble each other much and a typical measurement result which 
would be probable or improbable in one state would likewise be probable or improbable in the 
other. Then one cannot expect to discriminate the states by any measurement procedure. It is 
only when the overlap begins to fall off that there are observables whose probability distributions 
for the states $@ and differ enough to allow for accurate discrimination. 

This suggests the following definition. Choose some fixed value P < 1 and define the estimation 
inaccuracy S*8 as the smallest value of 68 for which 

Due to the particular choice (4), this overlap does not depend on the value of 8. One can then 
show: [5, 6, 7, 81 

V : S*8A*A > 275 arccos ,B ( 5 )  

This then represents a useful uncertainty relation. It says that an unlimited increase in the 
estimation accuracy of 8 is only possible at the expense of an increased spread in A. 

Several remarks are called for. First, these relations are applicable to any one-parameter uni- 
tary group. Obvious examples are the translations in time, represented by the evolution operators 



U(t) = exp(-itH/h) or the translations in space, exp(ixP/fi), where P is the momentum opera- 
tor; or we can consider an angle of rotation and angular momentum, or phaseshifts and photon 
number. In short, we find statistical uncertainty relations of the type (5) in every case where A 
is the generator of a unitary group and 0 the group parameter. This approach is in fact ideally 
suited for a relativistical treatment of quantum theory in which one starts from the construction 
of unitary groups from the symmetries of the system. 

Secondly, relation (5) is asymmetrical; S$O is an inaccuracy of estimation of a parameter (i.e. 
a c-number). A4A on the other hand is the r.m.s. spread of a quantum mechanical observable 
(self-adjoint operator). Since one does not need a pair of operators to obtain relation (5) there 
are no problems when such a pair does not exist. 

However if one does exist, e.g. in the case of non-relativistic position and momentum, it is 
possible to take advantage of that fact. Then there is a second, independent, uncertainty relation 
for the spread in position and the estimation accuracy of the parameter in the group of kicks 
{U(p) = exp(-ipQ/ti) ) , i.e. shifts in momentum. This restores symmetry between position and 
momentum. More importantly, we note that the position operator mimicks the parameter x of 
the translation group in the sense that 

($z lQl$z )  = x (6) 

(assuming ($IQI$I) = 0) i.e. the position operator acts as an unbiassed estimator of the location 
parameter. From this it follows: [9] 

combined with (5), where A is interpreted as momentum, this result implies the standard uncer- 
tainty relation (1). In fact, as a bonus, we obtain (1) not only for the position operator proper, 
but for any other operator acting as unbiassed estimator of x as well. 

There is only one problem of those nlentioned in the previous section that is not solved by the 
relations (5): they still rely on one standard deviation, and thus become useless for states in which 
this diverges. To fix this problem, the standard deviation can be replaced by an interquantile range, 
i.e. the smallest size W4(A) of an interval W on which a fraction a  < 1 of the total probability 
distribution for A is concentrated: Jw I($la)12da = a. A variation of the proof of (5) gives [6, 81 

S40W+(A) > h arccos 1 s p - a  

a  

Finally we note that this concept of estinlation inaccuracy fits into a general geometrical 
approach to statistical inference on the basis of the Fisher information metric [4]. Let it suffice 
here to note that this metric equips Hilbert space with a statistical distance between states which 
equals 

d($, $7 = arccos I ($ I $') I 
and that the geometrical background of (5) is the simple fact that the distance between $e and 
$# (i.e. the right hand side of (5)) is less than the length of the curve (4) connecting these points. 
This also point the way to how the relations are to be generalized in cases where the curve is not 
generated by a unitary group. 



3 Generalized entropic approach 

For a discrete probability distribution p = (pl , . . . p,), with p; 2 0, xi p; = 1, the Shannon entropy 

represents, roughly speaking, a measure of whether the distribution is 'spread out' or 'peaked'. If 
A and B are quantum observables for which an uncertainty principle holds, it is natural to ask 
for a lower bound of the sum of the Shannon entropies for the probabilities 1 (+la;) l 2  and (+lbj) l2  
[lo, 111. Here we assume a discrete spectrum and la;) and Ibj) denote the eigenstates of A and B. 
It turns out that 

This entropic uncertainty relation limits the concentration of both probability distributions by a 
bound which is independent of +. 

There is a class of expressions that share many properties with the Shannon entropy, and also 
represent useful measures of 'peakedness' or concentration: 

Their properties have been studied extensively by Hardy, Littlewood and Pcilya and by Renyi [12]. 
( - log MT is known as Renyi entropy.) Special cases are: 

Where # counts the nulllber of elements in a set. The generalized entropic uncertainty relation 
then reads: [ll, 131 

which contains the  relations (9) as the special ca.se with I. = s = 0. 
Remarks: The above inequalities apply to any pair of discrete observables and yield a non- 

trivial bound iff these observables do not share an eigenstate. (A condition which is slightly 
stronger than mere non-commutativity. ) I11 the case of a two-dimensional Hilbert space, the most 
restrictive bounds are obtained by the choice 9- = -112, s = m or V.V. 

Secondly, in the proof of (12) it is not necessa.ry to assume that observables are represented by 
self-adjoint operators. It is sufficient to demand the existence of the sets of "eigenstates" {la;)) 
and { I  bj) ) , possibly non-orthogonal, such that 

Thus, the approach of this section is also applicable if one accepts unitary operators [14] or even 
more generally, positive-operator-valued measures ( POVM's) [15] as bona fide representations of 
observables. As an example, we mention a phase observable below. 



In the case of continuous observables, it appears necessary to replace (8) and (10) by a relative 
notion of entropy: 

where apldp is the Radon-Nikodym derivative of a probability measure p with respect to a 'back- 
ground measure' p. These expressions reflect whether the probability distribution p is concentrated 
in comparison with p. In the discrete case, the absolute entropies are recovered by choosing p to 
be the counting measure #. In the case of continuous observables it is natural to take for p the 
Lebesgue measure, and apldp becomes an ordinary probability density. 

For continuous nondegenerate operators A and B a theorem of Haussdorf and Young analogous 
to (12) leads to [17, 131 

MT($, AIp)Ms(($, Q, I P )  := (/ I ( $ I ~ ) I ~ ( ~ + T ) ~ ~ ) ~ ~ ~  (1 l(+lb)~~(l+~)db) l" 5 sup l(aIb)l2 

(Still assuming r = -s/(2s + I).) For position and momentum a slightly stronger inequality 
MT($, P lp)Ms($, Q la) 2 2(1 + r ) ( l  + 2r)-(1+2T)1(2T)(2nh)-1 is obtained by a theorem of Beckner. 
These inequalities are all sharp for Gaussian 'minimum uncertainty' states and strictly imply the 
standard uncertainty relations (1). 

Let N be the photon number operator of a single electromagnetic field mode, with eigen- 
states In) and C In) (nl = I. A description of a phase observable by means of a POVM @ w$s 
constructed by Lkvy-Leblond and by Susskind and Glogower [14, 161 from the non-orthogonal 
improper "eigenst ates" 

This yield a resolution of identity S,2" ddl4)(41 = I in analogy with (13). Here one finds an 
analogous uncertainty relation 

1 

where 

Let us finally compare the two different approaches. Both improve on the standard approach in 
the sense that they yield bounds which are state independent and strictly imply A+PA+Q > h/2. 
The statistical/geometrical approach is restricted to conjugate pairs of quantities: timelenergy, 
location/momentum, anglelangular momentum etc. All such pairs are treated, on the same 
footing, as consisting of a parameter and an observable. It is essential that the observable is 
represented as a self-adjoint operator because of its role in (4). The approach is relativistically 
invariant. The entropic approach, on the other hand, is applicable to pairs of arbitrary observables, 
not necessarily conjugate pairs or even self-adjoint operators. It is sufficient that they do not share 
eigenst ates. However, these uncertainty relations do not seem to have a relativistic generalization. 
Also, the last problem mentioned in the introduction is not completely overcome in this approach. 
IN the example of the Breit-Wigner distribution one still has the result MT(plp) = 0 for r 5 0 
and the inequality is not very restrictive. 



References 

[l] M. Bersohn, Am. J. Phys. 34, 62 (1966). 

[2] A.S. Wightman, Rev. Mod. Phys. 34, 845 (1962); K. Kraus, in Uncertainty Principle and 
Foundations of Quantum Mechanics, W.C. Price and S.S. Chissick (eds), (Wiley, London, 
1977). 

[3] A. Bhattacharyya, Bull. Calcutta Math. Soc. 35, 99 (1943); C.R. Rao, Bull. Calcutta Math. 
SOC. 37, (1945). 

[4] W.K. Wootters, Phys. Rev. D 23, 357 (1981). J.  Hilgevoord and J. Uffink, Found. Phys. 
29, 323 (1991). 

[5] L. Mandelstam and I. Tamm, J .  Phys. (USSR) 9, 249 (1945); G.N. Fleming, 

Nuovo Cimento A 16,  263 (1973); K. Bhattacharyya, J .  Phys. A 16,  2993 (1983). 

[6] J .  Uffink and J .  Hilgevoord, Found. Phys. 15,  925 (1985); J.  Hilgevoord and J. Uffink 
in Microphysical Reality and Quantum Formalism, A. van der Merwe et al. (eds) (Kluwer, 
Dordrecht, 1988) and in Sixty-two years of Uncertainty, A. Miller (ed), (Plenum, N.Y., 1990). 

[7] J.  Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697 (1991); L. Vaidman, Am. J .  Phys. 
60, 182 (1992); A. Uhlmann, Phys. Lett. A 161, 329 (1992). 

[8] J .  Uffink, Am. J. Phys. (to appear). 

[9] J-M. L6vy-Leblond, Phys. Lett. A 111, 353 (1985). 

[lo] D. Deutsch, Phys. Rev. Lett. 50, 631 (1983); 1.Bialynicki-Birula, inQuantum Probability and 
Applications 11, L. Accardi and W. von Waldenfels (eds.), (Springer, Berlin, 1984); K. Kraus, 
Phys. Rev. D 35, 3070 (1987). 

[ll] H. Maassen and J.  Uffink, Phys. Rev. Lett. 6 0  1103 (1988). 

1121 G.H. Hardy, J.E. Littlewood and G. Pblya, Inequalities, (Cambridge U.P., Cambridge, 1934); 
A.Renyi, Wahrscheinlichkeitsrechnung, (Deutscher Verlag der Wissenschaften, 1962). 

[13] J .  Uffink, Measures of Uncertainty and the Uncertainty Principle, Ph. D. thesis, University 
of Utrecht (1990). 

1141 J-M. Lkvy-Leblond, Ann. Phys. 101, 319 (1976). 

[15] E.B. Davies, Quantum Theory of open Systems (Academic Press, London, 1976); A.S. Holevo 
Probabilistic and Statistical Aspects of Quantum Theory (North-Holland, Amsterdam, 1982). 

[16] L. Susskind and J .  Glogower, Physics 1, 49 (1964). 

[17] 1.1. Hirschman, Am. J .  Math. 79, 152 (19.57); I. Bialynicki-Birula and J .  Micielski, Comm. 
Math. Phys. 44, 129 (1975); W. Beckner, ,41111. Math. 102, 159 (1975). 



MEASUREMENT OF VERY SMALL PHASE FLUCTUATIONS BY MEANS OF 
THE OPERATIONAL APPROACH 

A. Bandilla 
A,G "Nichtklassisclie Stralilung" der MPG, Humboldt-Univeristat Berlin, 

Rudower Cliaussee 5, 0-1 199 Berlin, Germany 

Recexitly Noh, Foughres and Mandel (NFM) [I] have improved tlie operational ap- 
proacli to the qua~ltum pliase problem substantially and measured the phase dispersion 
of coherent liglit dowli to very small mean photon numbers of tlie order of This has 
prompted many other investigatiolis and clarified some important questions in relation 
to what is. actually measured. Although their treatment is rather general, we confine 
ourselves here to the case of a strong local oscillator (LO) axid reproduce their mea- 
surement scheme in Fig. l. Surprisingly enough, this simultaneous measurement of the 
sine and the cosine of the pliase difference is completely equivalent to an old proposal 
to measure the pliase after strong linear amplification [2] realized experimentally by the 
Welling group [3]. The reason for this rests on the fact, that in both cases the results are 
determined by tlie Q fu~ictioii of the signal. This was shown for amplification in [4] and 
for tlie measure~nent after beam splitting by Lai and Haus [5] and aIso in [6, 7, 81. The 

, measured pliase dispersion is given by 

where the double bracltets mean a classical average over the radius integrated Q functio~l 
of the signal aiid the b,', are defined by 

These coefficielits are all s~naller than one and broaden therefore tlie phase distribution 
of the pure state 1?1, > 

In s1iowil1.g that the b,i result from tlie calculation of tlie dispersion with the help of the 
NFM operators we found tlie expa~ision [8] 

that evidently proves the above ~neiitio~ied property b: < 1 and lim,,,, b i  = 1. Tllis 
exl>a~ision converges excellently ancl is very useful because eq. (1) recluces to the Pegg- 
Barnett (PB) dispersioli [9] by putting all b,', equal to one, the zeroth approximation of 
eel. (4). 

Now, very small phase fluctuatio~is silppose great photon number fluctuations and the 
last can cliange the iilterference signal. Of sucll kind is the situation for states near to the 
so-called pliase optimized states (POS) [10,11] which are characterized by the relation 
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Fig. 1 Outlitze of thc cxperii~reiitc~l schet~rc used By Noh, Fougires aizd Marzdcl where the sirze 
aitd tlre cosiize of the phasc difleretzce are nreasured sit~wltaizeously. BS; are identical. 
50/50 Beain sp1iltct.s uiid Dj arc photodctectors. Iitput 2 is the local oscillator. 

where N is the illeall photon number. Note that coherent states lead to 

For clarity the subscripts PB indicate that  eqs. (5) and ( 6 )  are Pegg-Barnett dispersioils 
i. e., they are calculated by rel>lacing the classical average in eq. (1) by the qua~ltum 
ense~nble average < ei@ > wit11 the Hermitiail phase operator @ [9]. 

The question is now how to deteriniiie such sinall dispersioils from ~lleasuremeiits 
in the operatio~lal appro:tcll, i. e., by illeasuriiig via the radius integrated Q fuilctioii 
(eqs. (1)) (2) and (4)). The answer is that wit11 the help of the expailsion (4), some 
liinitatio~ls and an additional illeasureille~lt of tlle photo11 distributioil in the scheme of 
Fig. 1 it is possible to infer the PB  dispersioil of states with a (69)%oml~arable to 
the value of eq. (5). Note that tlle illeasureinent of eq. (1) aloile cailiiot give adequate 
iilforinatio~l about pliase dispersioils near to POS. This is illustrated in Fig. 2 for two- 
photon coherellt states (TCS) that call be optiillized to come close to POS for certain 
degrees of,squeezing s at  a fixed illeall photon ilu~llber N [12]. 

The followi~lg invc:stigations are rather ailalogous to calculatio~ls made by Ritze [13] 
in his differe~lt prol~osal to il~easure extreillely sillall phase fluctuations. First, one has to 
find a suitable reference 1)liase in orcler to inake the c,, in eq. (1) real. This correspo~lds 
to < sill@ >= 0, where wc? suppress the phase of the LO. Seconcl, oilly such input fields 
call be adillitted that allow a, truncation of the expa~lsio~l (4): 
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Fig. 2 Plzase dispersions for TCS at a mean photon rzurnber of N = 1500 and increasing 
squeezing paranteter s. Note that s = 1 describes coherent ligltt. The Q function based 
dispersion (by)$ starts at 1 /2N,  coines close to the coherent state value 1/4N and in- 
creases again. The Pegg-Barnctt dispersion (bv)gB begins at 1/4N for s = 1, decreases 
sharply and reaclzes its tnitzimunz near to tlte POS level at strongly di#erent s t~alues than 

t 6v)& 



Third, we assuine a smooth c,, distribution and approximate the c,,+l by 

where ci, denotes the derivative of c,, with respect to n. With eq. (8) we call deterillille 
the second suill in eq. (7): 

where .iz. is the photoil ilu~nber operator and < . . . > the ~ l o r ~ n a l  qualltu~ll average. Due 
to the Schwarz inequality we find in addition [14,2] 

and therefore (bv)bB > c'i. It turns out that POS fulfil ( 6 ~ ) ; ~  >> c'i and our truilcatioil 
assumption requires the same. Therefore 4 can be neglected in eq. (9) and we obtain 
evelltually 

It is evident that for the deterilliilatioil of the averages over the ~luinber operator ex- 
pressions on the right-hand side of eq. (11) we need the kilowledge of the photo11 num- 
ber distribution. This is not surprising because very small pl-lase fluctuatiolls require 
enhailced photon ~lulllber fluctuatiolls that affect the iilterference signal. During the 
lneasure~lleilt of such phase dispersioils we nlust co~lseque~ltly also illo~litor the photon 
iluinber fluctuations. 

The situatioil cliallges remarkably, if we onlit the first bean1 splitter in Fig. 1 and put 
the signal into each chaililel as illustrated in Fig. 3. This makes sense if we co~lfiile our- 
selves to two- yhoton coherellt states (TCS) because than the radius integrated Wigiler 
function is illeasured as was shown for coherent states by Freyberger ancl Schleich [6] and 
generalized to T(;S by Leonhardt and Paul [Is]. The lneasured dispersion is now 

where the subscript W poiilts to the Wigiler fuilctio~l and the A!L call be expaildecl illto 
the series 

(-1)l1 1 - (-1)" - 5  
A ; ~  = 1 + -+...  . 

4(n + 1) + 32(n + 12S(n + 
Eq. (13) shows clearly the oscillatio~ls about one what anloullts to the fact that  eqs. (12) 
and (6) give exactly corresponding results in this order ( l /N) .  However, for TCS's near to  
POS (eq. (Ci)), as introduced in [12], the next order, 1/N< is dominating. Here, the term 
1/32(n+ 1 ) h f  the A,', plays an importmt role. The result is that the measurecl disl>ersion 
(bP)& call be sma l l e~  thail the corresponding PB result. Thus the measurement following 
the scheme of Fig. 3 yields for C-oherent states with N >> 1 the Pegg-Barnett result while 
second-0;-der effects can change the measured disgersion for ogtiillized TCS drastically 
for moderate. M ( S  50). For very large N ( 6 ~ ) : ~  and (Sp)k coiilcide for TCS [lG]. 



vacuum 

Fig. 3 Modified l~otrzodyne dctcction scherrzc with two irzput ports whcrc two identically prepared 
sig7zals are itzcidcrzt. Tlic X/4-platc inakcs, as itz Fig. I ,  a n /2 pilase sltift in ordcr to 
measure simulta~~cously the siile and the cosine of the phase difleretzcc. Tlte sigttal is here 
rzot corztarrtinated by thc vacuunt frorrl tlic urzused port. Tllus, therc is iro physical reason 
for aizy broadetzit~g as it1 Fig. I .  
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TH%E QUANTUM MEASUREMENT OF TIME 
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Abstract 
Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a 
parameter, rather than an observable quantity like space. In relativistic Quantum Field 
Theory, space and time are treated equally by reducing space to also be a parameter. 
Herein, after a brief review of other measurements, we describe a third possibility, which 
is to treat time as a directly observable quantity. 

1 The Measurements of Space and Momentum 

Here we postulate the existence of position eigenstates, such that their correspond- 
ing eigenkets (defined by 2lx) = xlx), where 2 is the position operator) resolve the iden- 

tity operator 

-OD 

for the Hilbert space that they span, 5 tt {lx) : x c [-=,+=I}. Thus, any state I y) E Y 
can be expressed as a weighted sum.of position eigenstates: 

+- 
I Y) = j h l x )  Y(X) (2) 

-00 

where ~ ( x )  ( X I  w) is Schrodinger's time independent wavefunction, the magnitude- 

square of which gives the probability of obtaining the value x in what we call the 

measurement of 2. 
An infinitesimal translation in physical space, denoted by ~ ( S X ) ,  is defined by its 

mapping of the position eigenstates: 
f(6x)lx) = lx + Sx), (3) 

and linear canonical momentum, denoted as j, is defined to be the generator of these 

translations: 
lim f(6x) = fx - i$Sx / h . 
6x+O 

It is important to note that in writing equation (3) we are assuming that space is un- 

bounded, i.e. x c [--,+-I. From equations (3) and (4) we can easily prove [I] that there 

is a Fourier transform relation between y(x) and ~ ( p )  = (PI y ) ,  where $ 1 ~ )  = plp). 

Rayleigh's theorem [2] then guarantees that 1 is a norrnalizable distribution and 



hence (since it must also be positive semi-definite) it corresponds to a probability distri- 

bution function (pdf) that describes the "measurement of j." This can also be seen by 
virtue of the fact that a normalized I V ( ~ )  1 implies that the momentum eigenkets must 

also resolve the identity operator: 
+- 

In the case of the measurements of space and momentum our descriptions are complete in 

the sense that both operators are Hermitian thereby ensuring that each has an orthogonal 

set of eigenkets so that the corresponding wavefunctions can collapse. 

2 "Time-like99 Measurements 

Time evolution, by an infinitesimal amount, s t ,  denoted as f i ( ~ t ) ,  is defined by 

fi(sr)l y,t) = I y, t  + st), (6) 
where I y,t) is the ket I y) when the time parameter takes on the value t. This is very dif- 

ferent than the interpretation of equation (3), i.e. we are NOT postulating that I y,t) is an 

eigenket of a time operator. Thus, Schrodinger's time-dependent wavefunction, 

y(x, t) = ( x  1 y ,  t) , still describes the measurement of space (not time) as is clear from the 

fact that it is still the completeness of the position eigenkets that allows us to interpret 
2 

Iy(x,t) 1 as a pdf for x so that at each instant in time we have 
+- 

2 
dxly(x,t)l =1. 

-00 

(7) 

We can obtain "time-like" information by performing this measurement of space (on 

identically prepared systems) at different values of the time parameter, but we are only 

inferring time information from the spatial measurement. 

Similarly, we can perform measurements of other quantities, such as a spin com- 
ponent (e.g. jZ )  at different times, but here again we would be inferring rather than di- 

rectly measuring the temporal information. For example, consider a particle of spin s. We 

have an identity operator 

is= E lm)(ml 
m=-s 

(8) 

for the spin part of our state space, 3C, tt {lm) : m = -s,-s + 1, ..., s - 1,s) , where 

izlm) = mfilrn). Thus the measurement of iz (performed at time t) is still described by a 



S 

probability mass function for m, so that for every instant in time we have .Z P, (m) = 1, 
2 

where P, (m) = l(m 1 yl, t)l . 

3 The Direct Measurement of Time 

We can parallel the discussion of the spatial measurement given in section 1 under 
the substitutions of t for x, the Hamiltonian fj for j, and fi(6t) for ~ ( sx ) ,  thereby ob- 

taining a temporal wavefinction [3], yl(t), that is complementary to the energy represen- 
7 

tation: yl(t) u yl(E) , i.e. 

where yl(E) = (E I yl) and fil E) = EIE). As it stands however, this rather obvious 

approach does not give a complete description of the measurement of time [4] due to the 

existence of a lower bound on the energy eigenspectra (i.e. a "ground state"). 

For the sake of definiteness, consider a single harmonic oscillator of ("rigged") 

Hilbert space HI i, {Inl) : nl = 0,1,2, ...'.), where 211nl) = nl(nl), f j l  = fio ($1 + kfl), 
00 

and fl = Z I nl)(nl 1. The temporal wavefunction in this case is 
n,=O 

dt) = eui@12 y19 e - i n # =  e-ig/2 
nl =o 

(10) 

where @ = o t , yln, = (n, 1 yl), and the gauge-induced topological phase, e-'#I2, is not 
2 observable without performing interference with another system since I yl(r) 1 ' = I yl(@) I . 

Clearly the lower bound on photon number (nl 2 0) prevents yl(t) (or y(@)) from col- 

lapsing to a delta-function. This implies that the underlying phase kets {I@)} are not 

ofiogonal, (~1142) * a(& - $2) (where w(@)= (91 Y)) and yet 

2 
so that &Iv(@) 1 is a perfectly valid pdf (as can also be seen fiom Parseval's theorem 

[2]). This pdf must somehow correspond to a realizable quantum measurement (as can 

also be seen from the formalism of probability operator measures or POMs 151) and yet 

our description of the measurement is "incomplete" in the sense that we do not have 

wavefunction collapse (the {I$)} is not an orthogonal set) and likewise, the non- 

Hermitian operator associated with this measurement does not commute with its adjoint. 



4 Tke Complete Description of The Direct Measurement of Time 

In order to get a complete description of the direct measurement of time we must 
deal with a filbert space that is larger than 311. For example, we can use the product 
space for two oscillators, E 311 @ H2. If we are willing to restrict our states to a 

subset of Hlg2 where each value of the energy difference (m = nl - n2) occurs with a 

unique value of the energy sum ( j  = nl + n2) then there are an infinite number of 

Hermitian time operators since there is an infinite number of such subsets (one such 
example, where we restrict to 31' c {311B2 : nl% = 0). is discussed in [6],  [7], and [8]). If 

we do not wish to restrict our states, then there are two physically reasonable alternatives. 

We perform a relative time measurement that treats the different j states as either: (1) 

distinguishable; or (2) indistinguishable. These two procedures also correspond to 
performing: (1) a "marginal measurement" in which we average over all values of abso- 

lute time; and (2) a "conditional measurement" in which we determine the relative time 

distribution at an instant in absolute time, as we now demonstrate. 

Complementarity suggests that for an arbitrary two-mode excitation, with number 
representation y,+ I 1 ,(% 11 y),,, we take a two-dimensional Fourier transform 

J=2 

Rewriting this in terms of @= - + @,)I2 and I (k - ~ ~ ) / 2 ,  we have 

where 
00 + j  

I @ A , ~ ) E  Z Z l i ,m)eimheUh and 1 j , m ) = l n ~ ) ~ l n ~ ) ~ 1  
j = O  m=- j=n,+n2 , m=n,-n2 

(14) 
j 

We see that the ez part of v ( @ ~ , @ = )  cannot collapse due to the boundedness of its 

complement, the energy sum ( j 2 0). 
We can eliminate @= to obtain a complete description of the measurement of @A 

on Hlg2 by applying an "absolute time average" to I @A, @z)(@A, 1 resulting in 



Note that since both of the inner sums use the same value of j, interference among the 
different j states is excluded and we have (for pure states) the pdf 

where: Tr() denotes trace; f i  is the .density matrix, and 

This procedure treats the j states as distinguishable (adding the non-interfering 
probabilities that each contributes to the measurement of @A). 

We can also eliminate @= by conditioning 1 @A, @z)(@Ay @= 1 to = 0 resulting in 

where the renormalization constant is 

Herein we are taking a "snapshot" in absolute time so that the inner sums use different 

values of j thereby permitting interference among the different j states so that (for pure 

states) we have the pdf 

This measurement treats the j states as indistinguishable (adding the interfering 

amplitudes that each contributes). 

5 Discussion 

It may be of interest to note that in the "marginal measurement" defined by 

equation (15) (which reduces to equation (16) for pure states) we are directly measuring 

the relative phase angle between our two "clock arms." Thus, two uniformly (randomly) 
distributed clocks result in a uniform (random) distribution in @A. This is different than 

what one would obtain from the marginal pdf calculated from the joint distribution of our 

two clock arms. Rather than directly measuring a phase difference, the marginal pdf 



would describe the procedure of first measuring G1 and G2, and then subtracting the 

results of these two measurements (resulting in a non-uniform distribution for the case of 
two random clocks, due to the mod 2 z  range of G1 and G2). 

It may also be of interest to note that physical intuition regarding the connection 

between the issue of distinguishability and "absolute time average" versus "snapshot" can 

be reinforced by contrasting electromagnetic field moments with the angular 

measurement (which is equivalent to the measurement of when the two oscillators are 

the right and left circularly polarized modes of an electromagnetic wave [3]). 

Furthermore, in the case of the "snapshot" (equations (18) and (19)) we determine the 

angular distribution of the field vectors (and their quantum fluctuations) at a point in 

absolute time, whereas the "absolute time average" (equations (15) and (16)) traces out 

the quantum version of the polarization ellipse. 
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Abstract 
The free evolution of a non-relativistic charged particle is manipulated using time- 

dependent magnetic fields. It is shown that the application of a programmed sequence 
of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 
"go back in time" to recover its past shape. The possibility of more general operations upon 
the Schrodinger wave packet is discussed. 

Introduction 

We expect that in a near future the problem of particle trapping will be replaced by a wider 
manipulation problem concerning the purposeful operations on quantum states. This involves 
the inverse evolution problem: given a unitary operator acting in the Hilbert space of states 
of a quantum system, one asks if there exists a realistic (possibly time-dependent) Namiltonian 
inducing this operator as a result of a dynamical evolution process. The importance of the subject: 
the unitary operations which can be dynamically induced, can also be used to control the wave- 
like behaviour of quantum objects, e.g. during the preparation of a measurement. The so defined 
subject was put forward by Lamb [I] and it has been subsequently developed by his followers 
(Lubkin [2], Mielnik [3, 41, Royer [5],  Brown 161, Ferndndez [7], and other authors.) A key to 
the manipulation of a quantum state lies in the possibility of trapping the particle in a circular 
dynamical process called an evolution loop [4] (EL). In an EL the evolution operator U(t) becomes 
the identity for a finite time interval. The subsequent perturbation of the EL can induce arbitrary 
unitary operations on the wave packet as the result of the cummulative process involving the small 
precessions of the distorted loop [3]. 

The unitary transformations that will be discussed in this paper are: 

evolution loop U(T) = 1, T > 0, 
rigid displacement of the wave packet U(T) = eia*pfh, 
the quantum time machine U(T) = e -iT'p2/2mA , -oo < T' < CQ. 

173 



2 The evolution loops 

Consider a non-relativistic spinless particle of charge e evolving under the action of a homogeneous 
time-dependent magnetic field B(t). The Hamiltonian of the system can be expressed as: 

where L is the angular momentum operator and r l  = r- (r a) 8 is the part of r orthogonal 
to B(t). Here, B(t) will be taken as the sequence of identically shaped orthogonal pulses in 
the three directions X I ,  $2 ,  23 defined by the right-handed orthonormal set of basis vectors 
{el ,  e2, es): 

B(t)el for t E 10, T ) ,  
B(t - T)e2 for t E [T, 2T), 
B(t - 2T)es for t E [2T, 3T), 

with B(t) = B@(t/T),  S,' @(tt)dt' = 0. The generic evolution can be determined through the opera- 

tor U(3T9 0) = U(3T, 2T)U(2T, T)U(T, 0) .  In dimenssionless units (t' = t /T,  tj = J* q, @ = 

p )  it takes the form: 

Above, Q(q,p)  = 7 {exp (-i fi ~ ( t ' ) d t ' ) )  is the evolution operator induced by the one-dimensio- 

nal harmonic oscillator of variable frequency a(t1) = (E) /3(t1) = a@(t1) and Hamiltonian B(t1) = 
p2/2 + c ~ ( t ' ) ~ ~ ~ / 2 ,  q and p are two canonically conjugated operators such that [q, p] = i and 7 is 
the time ordering operator. 

Now, because W; depends on Hamiltonians which are quadratic in the canonical variables 
(&,fi;) but it doesn't involve (sj,fij) j # i ,  it is possible to represent it by a 2 x 2 matrix w; (the 
"Heisenberg picture" ): 

where i = 1,2,3. The kind of dynamical process (3) depends on the algebraic type of the matrices 
w;, and due to the form of the operators W; it is determined just by one c-number invariant called 
the discriminant: 

A(,@) = Tr(wl) = Tr(w2) = Tr(w3). ( 5 )  
Whenever this invariant accepts one of the distinguished values: 

27rI 
A(@) = 2 cos -, I ,  n = f l ,  f 2 , .  . . , 

n 



the matrices wi fulfill the algebraic identity wq = 1 [4] + kV'; = 1. Hence: 

It can be shown [8] that for any piece-wise continuous bounded real function @(ti), 0 5 t' 5 N 
with N finite, there exist pulse amplitudes a for which the discriminant A(a@) accepts any of the 
special values (6). Whenever this happens, the n repetitions of our magnetic pulse pattern (2) 
generate the evolution loops in the space of states L2(R3) at the loop period T = 3nT. 

As an illustration we restrict the discussion to the case of rectangular pulses: 

@(t') = 0(1/2 - ti)O(t') - O(t' - 1/2)0(1 - t'), (8) 

where 8(x) is the step function. In this case, the discriminant A(ap)  can be analytically de- 
termined taking the form A(a@) = 2 cos 2 a  - a sin 2a. The simplest EL is achieved making 
n = 4, 1 = 1 in (6); the solution for a becomes: 

The loop period is T = 12T, and the orders of magnitude of the field strenght and T must satisfy 
the relation B = 2amcleT with the value of a in (9). 

3 Rigid displacement of the wave packet 
The evolution loops provide a convenient method to generate arbitrary unitary transformations 
of quantum states. Suppose, e.g., we want to produce a rigid displacement of the wave packet. 
To this end, we take the loop induced by the rectangular pulses (8) with the a-value (9) as the 
unperturbed system. The loop is then perturbed by a homogeneous time-dependent external force 
F(t) = eE(t). The total Hamiltonian becomes H(t) = Ho(t) - er . E(t), where Ho(t) is the loop 
part and -es , E(t) is the perturbation. The evolution operator within one loop period T = 12T 
can be evaluated in the interaction picture. Hence: 

7 

U(T) = exp (f F(t) . ro(t)dt) = exp [i (a . p + b - r)] , 

where ro(t) is the triplet of canonical operators xl(t), x2(t), x3(t) in the Heisenberg frame of 
Ho(t). By taking F(t)  = F sin 2rtl.r it is possible to obtain explicitly a and b in (10) [S]. With 
the aim of produce the pure rigid displacement, with b = 0, we selected F(t) as a sequence of 
pulses of rectangular force. It was found that a single pulse of rectangular force F = eE in the 
xl-direction acting within the interval [9T, lOT] displaces the packet against the applied force by 
a, = -1.658693FT2/m (the boomerang eflect). Other possibilities are discussed elsewhere [8]. 

4 The quantum time machine 
As the next example we shall discuss the quantum time machine. In this scheme, the acceleration, 
slowing or inversion of the free evolution of the charged particle is possible. Once again, the 



technology is based on a sequence of pulses of homogeneous magnetic field of the form: 

B(t)el for t E [O, 2T), 
B(t - 2T)ez for t E [2T,4T), 
B ( t - 4 T ) q  for t  E [4T,6T), ~ ; ~ B ( t ) d t = O ,  

with B(t) given by: 

Bl fo r t  E [O,tl), (0 < t, < T) 
B2 fo r t  E [tl,T), 

-B2 for t  E [T,T+t2) ,  (t2 = T -tl) ,  
-Bl for t  E [T+t2,2T).  

The key evolution operator U(T = 6T, 0) in dimensionless coordinates and time t1 = t /T  takes a 
similar form as in (3): 

U(6,O) = 0'6 8 OGgZ 8 GflZ9 (13) 
where gZ = R(2) and G = G(2) describe the evolution of the oscillator of variable frequency and 
the free evolution in [O, 21 respectively. A11 the calculations are made in the matrix representation, 
working with the angular parameters 71 = alt; and 7 2  = a2t',, where a1 = eBlT/2mc, a 2  = 
eB2T/2mc9 t', = tl/T, t', = t2/T. It turns out that when the amplitudes and times of the pulses 
of magnetic field satisfy the relations [$I: 

a1 = 71 tan 71 - 7 2  tan 7 2  

tan 71 
3 

a 2  = 71 tan 71 - 7 2  tan 7 2  

- tan y2 7 

t; = 71 tan 71 
71 tan 71 - 72til1l-y~' 

t; = -72 tan 7 2  

71 tan 71 - 7 2  tan y2 ' 
the free evolution operator is produced at the end time of the sequence (1 1): 

i p2 i p2 
~ ( r )  = exp (-%%TI) = exp (---rX) ti 2m , 

where the "effective" time TI = TX = 6Tx depends on the distorsion coeficient: 

As from definition t i  and ti must be positive, then yl and -y2 must lie in intervals of different 
parity, i.e. nn < 71 < (n + 1/2)n and (m - 1/2)n < 7' < mn, m,n E Z+ or vice versa. The 
distorsion coefficient x as function of rl and y2 is plotted in the Fig.1. As can be seen, one can 
generate three different situations: 

free evolution acceleration 
O < x 5 1 free evolution slowing 

free evolution regression 



FIG. 1. The "chessboard of distorted time" for the free evolution of a charged 
particle manipulated by the magnetic field (1 1-12). The level curves for the distorsion 
coefficient x are ploted as functions of the angles 71 and and mark the zones for 
which at T = 6T we obtain the acceleration (X > I), slowing (0 < x 5 1) or regression 
(X 5 0) of the free evolution. 

As a final remark we would like to point out that this kind of manipulations is not restricted 
to rectangular pulses of magnetic field. The same possibilities can be found if smooth fields are 
used, although we won't have analytic expressions for the discriminant anymore. 

Acknowledgments 

The authors acknowledge to CONACYT, Mkxico for financial support. 



References 

[I] W.E. Lamb Jr., Phys. Today 22(4), 23 (1969). 

[2] E. Lubkin, J. Math. Phys. 16, 663 (1974); ibid 15, 673 (1974). 

[3] B. Mielnik, Rep. Math. Phys. 12, 331 (1977). 

[4] B. Mielnik, J. Math. Phys. 27, 2290 (1986). 

[5] A. b y e r ,  Phys. Rev. A 36, 2460 (1987). 

[6] L.S. Brown, Phys. Rev. A 36,2463 (1987). 

[7] D.J. Ferniindez C., Nuovo Cim. 10733,885 (1992). 

[8] D.J. Ferniindez C. and B. Mielnik, Controling Quantum Motion, (preprint CINVESTAV, 
1993). 





QUANTUM STATE ENGHNEEMNG 

K. Vogel,.V. M. Akulinl, and W. P. Schleich2 
Abteilung fur Quantenphysik) Universitut Ulm 

Albert-Einstein-Allee 1 1, D-89069 Urn, Germany 

Abstract 
We show how to create an arbitrary field state in a cavity by sending appropriately 

prepared two-level atoms through the cavity and subsequently detecting them in their ground 
state. 

Two typical questions in quantum mechanics are (i) how does a given initial quantum state evolve 
in time? (ii) what are the properties of a given quantum state? Usually, the question of how 
to prepare these states is not answered. One notable exception is the operational approach by 
W. E. Lamb [I]. He prepares an arbitrary quantum state of a particle by "catching" it in an 
appropriate potential constructed out of the corresponding wave function. In quantum optics, 
however, quantum states of the radiation field are of central interest. Here this scheme does not 
work, since there is only a limited variety of Hamiltonians describing the interaction between 
matter and the radiation field. During the last few years, the preparation of nonclassical states 
of the radiation field has attracted a lot of interest. However, the investigations were limited to 
certain classes of quantum states. In particular, the generation of squeezed states [2], number 
states[3, 41 and Schrodinger cat states [4, 51 was discussed. 

So far two approaches have been used: (i) Find an appropriate Hamiltonian which transforms 
via unitary time evolution a given (simple) initial state to the desired final state. (ii) Make a 
measurement on one of two entangled quantum systems and obtain the state of the other system 
by the corresponding state reduction. Although in principle we can always construct the necessary 
Hamiltonians and entanglements, the variety of states which we can obtain in this way is limited 
since the Hamiltonians and entanglements based on physical interactions are limited by nature. 
Nevertheless, we give a recipe how to construct an arbitrary quantum state of the radiation field 
starting from the vacuum state by repeatedly using a simple Hamiltonian and subsequent state 
reduction [6]. 

2 The Ingredients for Quantum State Engineering 

The ingredients for our method of creating an arbitrary quantum state are two-level atoms and 
a cavity for the electromagnetic field. The atoms interact with a resonant mode of the cavity via 

lalso Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia. 
2also Max-Planck-Institut fiir Quantenoptik, D-85748 Garching, Germany. 



the Jaynes-Cummings Hamiltonian. We start with a cavity field which is initially in the vacuum 
state and consecutively inject atoms in such a way that there is at most one atom in the cavity at 
a time. Before an atom enters the cavity we prepare it in a specific superposition of the excited 
state la) and the ground state Ib). This superposition has to be chosen appropriately [7] in order 
to drive the state of the cavity field towards the desired state. A measurement of the internal 
state of each atom after it has passed through the cavity leaves the quantum field in a pure state. 

Let us consider one step of this process, that is, the interaction of the k-th atom with the 
cavity field. Before we inject the k-th atom the cavity field is in a state 

The k-th atom enters the cavity in the superposition state la) + ickl b) controlled by the complex 
number ~k [8]. During its flight through the cavity the atom interacts with the cavity field 
according to the Jaynes-Cummings Hamiltonian. After it has left the cavity, the state of the 
combined atom-field system reads 

Here CAk) = cos(g~kdn+l)  and sik) = s i n ( g ~ k J X ) ,  where .rr, is the interaction time of the 
k-th atom with the field and g is the atom-field coupling constant. 

Obviously the state (2) is an entangled state. In order to obtain a pure field state we make 
a measurement on the k-th atom and detect it either in the excited state or in the ground state. 
If we detect the atom in the excited state our method cannot create the desired field state. We 
therefore have to go back to the vacuum state and start the procedure again. However, if we find 
the k-th atom in the ground state we continue the process. In this case the new field state [8] 
reads 

The coefficients for the new state, (PL~),  and the coefficients for the old state, (P;~-'), are related 
via the recurrence relation 

(k) (k-1) (k) = SF~(P~:') - ckCn-i(Pn (Pn 

which follows from Eq. (2). 

3 The Art of Quantum State Engineering 

Each atom which has passed through the cavity and has been detected in the ground state increases 
the number of Fock states building up the cavity field state by one. Therefore, after N atoms 
have passed through the cavity, the field state which initially was the vacuum state Icp(O)), is a 
superposition of the N+ 1 number states lo), [ I ) ,  . . ., IN). But how do we get a desired combination 



The key idea of our method is to find a combination 

of N number states lo), Il), . . ., IN) which yields the field state after the N-th atom prepared 
in an appropriate internal state la) + ieNlb) has passed through the cavity and has been detected 
in the ground state. From Eq. (4) we find for the N + 1 unknowns, that is, the N coefficients 
cpLN-') and the parameter E N ,  the following set of N + 1 equations: 

We express the unknown values cpLN-l) in terms of the known values dn, starting with the first 
equation of the set (7), and obtain 

In addition we have to satisfy the last equation of the set (7 ) .  We therefore substitute the 
coefficients r p i N ~ l )  into the last equation of the set (7 )  and obtain 

as the characteristic equation for E N .  

We solve the characteristic equation numerically and choose one value EN from the N roots 
of Eq. (9). Equation (8) immediately gives us the corresponding coefficients cpLN-') of the state 
( c # ~ - ' ) ) .  We take ( y ~ ( ~ - ' ) )  as a new desired state which we have to obtain by sending N - 1 
atoms through the cavity. For the state I c p ( N - l ) )  we do the same calculations as for the state l$d)  

and obtain the parameter E N - 1  and state with N - 1 coefficients SoLN-2). We repeat the 
calculations until we end up with the vacuum state. A string of complex numbers ~ 1 ,  6 2 ,  . . . , EN 

defines the internal states of a sequence of N atoms we have to inject into .the cavity in order to 
obtain the desired state from the vacuum state. 

We illustrate this method by creating a superposition of the number states 12) and 17), 

In Table I we give the values e l ,  E Z ,  . . ., EV calculated for identical interaction parameters grr, = x / 5 .  
In order to give an impression about the individual steps of the evolution of the field state from the 



TABLE I. Internal state la) + ;lak[ evklb) of the k-th atom needed to obtain the 
state (12) + 1 7 ) ) / 4 ,  Eq. (lo), for a fixed interaction parameter gr = 1715. The right 

column gives the probability P:'), Eq. (14), to find the k-th atom in state Ib) after its 
interaction with the cavity field provided all earlier atoms have been detected in the 
state I b). In this case the probability P7, Eq. (16), to find all atoms in the ground 
state is P7 = P:') . pb(l) . pj7) = 0.00801. 

vacuum state to the desired state, Eq. (lo), we plot in Figure 1 the Q-function for the field state 
Icp(k)) after the k-th atom has passed through the cavity and has been detected in the ground 
state. 

4 Probabilities 
But what is the probability to create the state, that is, what is the probability Plv to find all atoms 
in the ground state after they have passed through the cavity? So far we have used unnormalized 
states for the atoms and the field because it was convenient for calculating &I, and cpLk). However, 
when we need probabilities we have to use normalized field states 

and atomic field states (la) + ieklb)) / J-. 
For the coefficients $Ak) we obtain equations similar to Eqs. (7) which read 



FIG. 1. Q-function Q(a) = l (a19(k))]2/7r  for the field state I c p ( k ) )  after the k-th 
atom has interacted with the field and has been detected in the ground state. The 
parameters for the internal states of the incoming atoms are given in Table I. 



Here the normalization constant 
1 & =  Jm 

consists of two parts: The factor 114- which takes into account the normalization of the 

internal state of the k-th atom, and the factor 1/m which is due to the normalization of the 
field state after the state reduction. Here 

is the probability to find the k-th atom in the ground state. From the first equation of (12) follows 

Since we start from the vacuum state we have = 1. Moreover, we note that for a normalized 
desired state we have $AN) = dn. We substitute Nk from Eq. (13) into Eq.(15) and obtain for the 
probability PN to find all N atoms in the ground state 

The probability PN depends on the choice of roots of the characteristic equation, Eq. (9), 
and the interaction times ~ k .  Can we use these "degrees of freedom" to optimize the probability 
PN? To get an idea of the possibilities of this optimization let us consider the simplest case 
of identical interaction times ~ r ,  = T for the example of a superposition of the number states 
12) and 17), Eq. (10). The dependence of the probability P7 on the interaction parameter g.r is 
shown in Figure 2. For this curve we have chosen for each atom the ek with the smallest absolute 
value. We note that P7 increases for increasing interaction parameter g~ and reaches its maximum 
P7 x 0.00944 at g~ x 0.2219~ and then decreases. Moreover, trapping states, that is, interaction 
parameters g r  with sin ( 9 7 6 )  = 0 (n = 1,2,. . . ,7), manifest themselves in vanishing probabilities 
P7 as apparent from Eq. (16). As a general rule the maximum value for the probability occurs for 
interaction parameters smaller than those corresponding to trapping states. 

In the next step of the optimization we allow each atom to have its individual interaction time 
r k  with the cavity field. In Table I1 we have chosen 7-k such that the probability P7 to find all 
seven atoms in the ground state has a maximum. Using this strategy we increase P7 up to the 
value P7 x 0.02630. 



FIG. 2. Probability P7 to find all seven atoms in the ground state as a function 
of the interaction parameter gr for the superposition state, Eq. (10). Here we have 
chosen ck with the smallest absolute value. Note the occurrence of trapping states 
where, according to Eq. (16), the probability P7 vanishes. 

TABLE 11. Internal state la) + i l ~ ~ l  eiPklb) of the k-th atom needed to obtain the 
state (12) + 17)) 14, Eq. (10). Here we have optimized the interaction parameters gm 
as to maximize the probability P7, Eq. (16), to find all atoms in the ground state. The 
right column gives the probability pik), Eq. (14), to find the k-th atom in state 1 b) 
after its interaction with the cavity field provided all earlier atoms have been detected 
in the state Ib). In this case we have P7 = 0.02630. 



In conclusion we emphasize that we can construct any superposition of the first M + 1 number 
states from the vacuum state by injecting IV appropriately prepared atoms into a cavity and 
detecting all of them in the ground state after they have interacted with the field. Furthermore, 
we note that the Jaynes-Cummings Hamiltonian is not crucial for this method. Similar interactions 
between field and atom can also be used provided that they allow for energy exchange between 
field and atoms. 
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Abstract 

Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. 
These systems can lase without atomic population inversion in any atomic bases. Max- 
imum squeezing is obtained for the parameters in the region of lasing without inversion. 
A practical four-level system and an ideal three-level system are presented. The latter 
system is analysed in. some detail and the mechanism of generating amplitude squeezing 
is discussed. 

1 INTRODUCTION 
Generation of squeezed states of light has attracted lots of attention in the past decade 
due to the posssible applications in various fields of physics. Squeezed light was generated 
in several different systems (atomic multi-wave mixing, degenerate parametric oscillator, 
optical fibers, optical diodes, second harmonic generation, and et al) and in several different 
forms (c.w. and pulsed) in laboratories around the world.[l] Although, this kind of quantum 
state is generated routinely in the laboratories, to make a compact, efficient, reliable, and 
cw squeezed coherent light source is still a challenge. Diode laser is a very good device to 
generate amplitude squeezed light with high efficiency[2], but the wavelength selection is 
very limited for applications in atomic spectroscopy. 

Another area of recent interest in physics is to achieve lasing without atomic population 
inversion in multi-level atomic systems.[3-71 The possible applications of these new lasers 
include reaching new wavelengths and getting " quiter" laser output intensity. Several theo- 
retical works were published in studying quantum statistical properties of A-type three-level 
atamic system and multi-level Raman systems. [8-111 In this paper, we discuss quantum sta- 
tistical properties of multi-level closed-cycling atomic systems, which exhibits lasing without 
atomic population inversion. 

We have studied two particular atomic systems. The first one is a practical four-level 
closed-cycling atomic system.[ll] A brief discussion of the steady-state behaviors and lin-. 
earized fluctuations in this system are given. Conditions achieving good squeezing are de- 
scribed. 



To understand the mechanism of generating squeezing in this relatively complicated sys- 
tem, we constructed a simple, idealized three-level model which eliminates the intermediate 
level 14> and neglects decay from the upper lasing level /2> to the ground state 11 >. After 
adiabatic elimination of extra atomic variables (under condition y31>>tc, with tc as cavity 
decay rate), we obtain a set of equations which are similar to an effective two-level atomic 
system. Then steady-state correlation functions of the amplitude fluctuations are calcu- 
lated, analytically, to find best conditions for maximum squeezing. Some interesting effects 
are discussed and compared to the results of previous four-level model 

Four-Level Cycling System 
Our model consists of an essemble of N closed four-level atoms confined in a single-mode 
cavity with photon loss rate 2tc. The transition I I >  t, 13> of frequency ~ 3 1  is driven by a 
laser of frequency wl with Raby frequency 20. 2yij (i, j=1-4) are the spontaneous decay 
rates from state li> to state Ij>. Using standard procedure, a set of stochastic differential 
equations are derived. The steady state behaviour and conditions to achieve lasing without 
inversion were discussed in our earlier publication.[ll] When y21/%4<1, lasing will start from 
population inversion. As the laser intensity building up, the population of the upper lasing 
level 12> will be depleted and the lasing will be sustained by the coherence induced between 
levels 12> and 13>. This transition from lasing with inversion to lasing without inversion in 
the same system is an interesting phenomena to study. At the opposite limit, i.e. 'y21/y34>1, 
the laser will always operate with no population inversion. 

We calculated, numerically, the amplitude fluctuations of the system by linearization 
around steady-state solutions and found that large degree of squeezing (about 80%) at the 
laser output can be obtained with relative low pumping power and very small decay rate 
from the upper lasing state 12> to the lower lasing state Il>. 

3 Three-Level Idealized Cycling System 
Due to the complication in the four-level system, numerical calculation has to be used in 
calculating the laser intensity fluctuations. In order to understand the mechanism and the 
limiting conditions for achieving optimal squeezing, we simplify the four-level model to be 
an ideal three-level closed-cycling system. 

Since we are only interested in the optimal conditions for generating squeezing, the decay 
from upper lasing level 12> to the lower lasing level [ I>  is neglected. To simplify our 
calculation, we also eliminate the intermediate state 14> and neglect decay from level 13> 
to level Il>. Since the effective coupling between the atomic transition and the intracavity 
field is fig instead of g, we can increase the coupling by putting large number of atoms in 
the cavity mode, which is usually true for a laser system. This will justify the approximation 
of neglecting decay rates but of keeping finite dipole coupling between level 13> and level 
I I >  and between level 12> and level I I>. Careful choice of the atomic element as the gain 
medium can also help to satisfy this approximation. The decay rate y from level 13> to level 
12> is the only one to keep. 



Using the same standard procedure, we derive a set of stochastic differential equations 
for this system from Harniltonian, as following: 

J I ~ =  inJJ3 + iag(J2p - Jll) + r3(t), 
. t 
J12= -inJ23 - iatg(J22 - Jii) + rio(t), 

Ji3= -7513 + ifl(J33 - Jii) + iqJ23 + r4(t), 
. t 
J13= -7Jf9 - iR(J33 - Jll) - iatgJJ3 + Ts(t), 

ti= -ma.-- igJ12 + rl(t), 
. t  
a = -nat + igJf, + r2(t), 

where < ri(t)rj(tl) >r DijG(t - t') describing the correlation of the fluctuations. There are 
36 nonzero Dij terms for this .particular system. To save space,. these nonzero diffusion terms 
are not given explicitly here. For a closed system, we have condition 

These ten differential equations are still too complicated to calculate correlations for 
the fluctuations analytically. However, in good cavity limit, i.e. 7 >> K (which is a good 
approximation in a realistic laser system), some of the atomic variables (J13, J?, 523, ~ f ~ ,  J22, 
and J33) can be adiabatically eliiminated from equation (1). We can do it by letting time 
derivatives over these atomic variables go to zero, because they decay much faster to their 

t steady-state values comparing to J12, ~f ,, and the field variables. We can then solve J13, Jig, 
J23, J ? ~ ,  JZ2, and J33 together with their corresponding fluctuation terms from equation (1) 
and substitute them into equations for J12, ~ f ~ ,  a, and d. After some algebra, we arrive at 



Where the new normalized variables and parameters are defined as 

The new fluctuation terms are still quite complicated. 
The steady-state equation can be easily solved to give 

where G=Ng2/rcy is the normalized coupling strength between the field and atoms. In this 
calculation, we have assumed the resonance condition between the cavity mode and the 
transition frequency from level 12> to level Il>. The normalized steady-state population 
distributions are 

To calculate correlation fuctions of the fluctuations, we need to linearize equation (3) 
around their steady-state solutions. From the numerical calculation of the four-level system 
and the steady-state solutions of this system, we can determine the area in the parameter 
space where best squeezing occurs. For Xo>>l, and small, but finite, Y, equations in (3) 
can be linearized to give 

where 



The intracavity correlation functions and, therefore the amplitude squeezing is easily calcu- 
lated by standard method. The intracavity squeezing is given by 

The steady-state intensity Xo is related to the pumping intensity Y and coupling strength 
G through the steady-state equation (5). 

It is easy to show that S+ is limited to the minimum value of -0.5, which corresponding 
' 

to a 50% squeezing inside cavity. The output spectrum of squeezing has also been calcu- 
lated numerically. The maximum squeezing is also limited to a 50% level at  around carrier 
frequency. 

4 Discussion 
We have calculated two atomic models for generating squeezed states of light and conditions 
for lasing without inversion. The four-level system can start to lase with or without popula- 
tion inversion depending on the relative decay rates. Far above threshold the lasing is onky 
sustained by the coherence induced between level 13> and level 12>. For the three level ideal 
model, the laser will always operate without the population inversion. 

The four-level system can generate 80% squeezing at the output for relatively low pump- 
ing power. As for the simplified and idealized three-level cycling system, even without decay 
from the upper lasing state to the lower lasing state, the maximum output squeezing and the 
total intracavity squeezing are both limited to the 50% level. we realize that 50% squeezing 
comes from the suppression of spontaneous emission of the upper lasing level. The extra 30% 
squeezing is due to the pumping regulation through the incoherent decay processes between 
level 13> & level 14> and between level 14> & level 12>. So, the extra level 14> actually 
enhances the available squeezing for the laser output. 
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Abstract 

Electromagnetic fields of the vacuum mode near a conducting mirror are modified with 
respect to those in free space, with their amplitudes having a sinusoidal spatial dependence 
from the mirror. Therefore if we combine this spatially amplitude-modulated vacuum field 
mode and intense corehent light with a beam splitter, we may detect this fluctuation of the 
vacuum mode in a homodyne detection scheme. It will give new method to produce squeezed 
states of light with a single mirror placed close to an unused port of a beam splitter. We 
show that the amplitude fluctuation of the combined light can be reduced by a factor of 2 
below that of the coherent light. We also discuss the limitations due to the finite line width 
of the laser and the effective absorption length of the photodiodes. 

1 Squeezed light generation with a conducting mirror 

The characteristics of vacuum fluctuations in a confined space have been studied in several cases, 
for example near an infinite plane conducting mirror [I], between two parallel mirrors and in a 
spherical cavity [3]. Here we consider a tangential vacuum-field mode with its wave vector k normal 
to the conducting surface ( z-direction) [2], and we choose the polarization and the propagation 
of the electric field along the x and z-axis, respectively. Then the electric field operator for the 
vacuum field entering the beam splitter (see Fig. 1) becomes 

where uk is the frequency for the mode k(wk = ck), h and eo have the usual meanings, and V 
is the normalization volume [I]. Note that the sinusoidal spatial-dependence sin(kz) for the field 
amplitude comes from the boundary condition that the tangential components of the electric field 
modes on the conducting surface should vanish. 

We now consider a homodyne detection scheme to measure the quantum mechanical noise 
of the signal (i.e. amplitude-modulated vacuum field ) as shown in Fig. 1. Let us assume, for 
simplicity, that the electric field for the local oscillator has a single mode(we will consider the 
multimode effects in the next section). Then the local oscillator field can be written as 



with 

where w is the laser frequency ( w = ck,). Here we have decomposed the coherent light El into 
ECl and $ [4]. ECl is the classical analogy of the coherent light which has a definite amplitude 
and phase, whereas $ is the quantum fluctuation in the electric field of the coherent light which 
is simply equivalent to the vacuum fluctuation. 

Considering the vacuum mode relation in the Fig. 2,  we can get the electric field in fluctuating 
vacuum modes at the detector 1 

where zl ( Z 1 )  represents the length for the beam path between the single mirror (laser) and the de- 
tector 1. We have separated the electric field into positive- E(+) (-- eiWt) and a negative-frequency 
components E(-) (-- e-'wt), and note the propagation-direction of traveling wave. We also add the 
factor 2 for the normalization of the vacuum fluctuation. Jz 

Using photodetection theory 151, we obtain the photocurrent i as 

t 

j = L ,  dtth(t  - t 1 ) k ( + ) ( z ,  t') E(- ) (z ,  t'), 
where h ( t  - t') is the photodetector response function [6]. Assuming instantaneous response of 
the detector, we can approximate h( t  - t') as hS(t - t'). Then the photocurrent induced on the 
detector 1 is 

Since the expectation value of a*a is much greater than that of &t& and &ti ,  we keep only the 
terms which contain a or a*. If the reflectivity (R )  of the beam splitter approaches to 1 ,  the Eq. 
( 5 )  surely represents the positive frequency part of the Eq. (1). In that case, hl and 62 are totally 
decoupled and we can find the standing vacuum mode in the port 1. 

Using the condition in Eq. ( 5 ) ,  il is. obtained as 

where j," is the time-averaged photocurrent which is normalized with respect to h ,  and we have 
replaced a with I a I eim. Note that in Eq. ( 8 )  we have included only one vacuum field mode 



identical to the laser light with its wavevector k and frequency w = clc, since only that mode 
survives as a result of the time average effect on the detector. We have neglected the a*a term 
in 1; , since it does not include any fluctuation and corresponds to a constant dc current which 
can be filtered out by ac coupling. And the average values of j , ~  are expected to be zero, since the 
operators and ii2 both represent the fluctuating vacuum field modes. 

The sum and difference of these pliotocurrents I:, 1: are obtained from the Eq. (8). It becomes 

We now evaluate the square of each quantity to find its fluctuations. Squaring the Eq. (8), we 
gather the terms (8'6:) which contains the nonzero vacuum expectation value. Then the results 
become 

and the modulation effect due to the cos(Z; + z;) term will vanish , since the origins of the Zl and 
Z2 are not an absolute one for the traveling local oscillator mode. However, the origin of the zl 
and z2 is absolutely fixed to the mirror position so we will keep only this modulation effect due 
to cos(2zl12) term. Together with the relation R + T = 1, Eq. (10) finally become 

These results , Eq. ( l l ) ,  clearly show that the intensity fluctuations measured at each photode- 
tector exhibit a sinusoidal spatial dependence. The photocurrent fluctuations for each detector 
comes partly from the vacuum field in the local oscillator itself, and partly from the vacuum 
field modified by the perfect mirror. Note that the sinusoidal modulation in Eq. ( l l ) ,  which is 
responsible for amplitude squeezing, is totally due to the vacuum field mode that has the same 
frequency as the laser oscillator but is altered by the perfect mirror. 

For the balanced homodyne detection, assuming T = R = 1/2 , the resulting quantum fluc- 
tuation of the modulated light may fall below that of the coherent state i.e. become squeezed 
as shown in Fig. 2. The fluctuation of the coherent state without the perfect mirror can be 
calculated by replacing c ~ s ( k , z ~ , ~ )  by its average value zero so that Eq. (11) simply becomes a 
constant value as the result of the usual beam splitter . On the other hand, if we consider 
the situation such that the distance zi(i = 1,2) between the perfect mirror and each detector is 

2 
well resolved and satisfies ic,z; = n*(n: positive integer), then Eq. (11) reduces to y. In other 
words, the measured quantum fluctuations may fall below that of the coherent vacuum state by as 
much as 50%. This squeezing limit comes from the intrinsic fluctuations of the coherent state of 
the laser itself, which is combined with the modified vacuum field with its amplitude suppressed 
at the detector position such that kozi = nr( i  = 1,2). 



The quantum fluctuations of the square of the sum and difference of the photocurrents If and 
I," are similarly obtained from Eq. (9). Squaring this Eq. (9) and keeping the non vanishing 
terms, we can obtain 

< (I," f I;)~ >EE (Il f 12)2 

where we have used the relation Zl - zl = Z2 - 22. Using the relation T + R = 1 , we simplify 
this equation (12) like this, 

We find that fluctuations of the sum of I," and 1; in Eq. (13) is not dependent on zl,zz, since this 
fluctuation has come from the local oscillator. On the other hand, as in the case of and E, the 
fluctuation of (Il - 12)2 which comes from the modulated vacuum field contains the important 
spatial modulation with a period of n/ k,. The spatially-averaged fluctuation of (Il - 12)2 is I CY 1 2 ,  
which is just the quantum fluctuation of the free-space vacuum field without the mirror. However, 
the fluctuation of the difference at the detector position such that kozi = nr(i = 1,2) becomes 
zero. The resulting fluctuations of (Il - &)2 in Eq. (13) are also plotted in Fig. 2. In this Fig. 
2, we have replaced the cos(koz2) with zero, which represents the average value, and have plotted 
(Il - 12)2 as a function of zl. 

2 Practical limits: finite linewidt h and absorption length 
So far, we have considered a monochromatic coherent light for the local oscillator. The laser 
light, however, always has a finite linewidth, so that the modulation depth in Eqs.(ll) and (13) 
may be decreased as the linewidth increases. In this section, we will consider the practical limits 
to squeezing due to the finite active layer depth of the photodetector as well as the finite laser 
linewidth. 

The effects of the line broadening can be calculated from the Gaussian probability density 
function [7] 

Another practical limit comes from the finite thickness of effective absorption-layer of the pho- 
todetectors. The period of the spatial modulation of the quantum fluctuations is of the order of 
the optical wavelength, whereas the effective depth of the detectors is typically much larger than 
the wavelength. The probability that a photon is converted into an electron-hole pair at a distance 
< from the surface of the detector's active region can be written as [8] 

where K the absorption coefficient of the detector material. 



We can evaluate the expectation values of the fluctuations in Eqs. (11) and (13), with respect 
to this probability function and obtain 

and 

where = arctan(%) and D is the thickness of the depletion layer of the photo detector. 
Note that we also have used the fact that the variation of e- (z+t)2"k2 in the region [O,D] is so 
small that we can extract this term as a constant out of the integrand in the above equations. 

We can easily see from Eqs. (16) ind (17) that all the modulation terms which have 4 , 2 2  

dependence are reduced by a scale factor JGZ2. In Figure 3, we plot the fluctuations 

of and (Il - 12)2 in Eqs.(l6) and (17) with respect to the absorption coefficient K and Azl. To 
observe deep modulations more than anything else, we need a large absorption coefficient K for the 
detector. For an Ar+ laser light (A = 514.5nm or k, = 122 122cm-I ), the absorption coefficients 
of the Si and Ge are about 104cm-I and 4 x lO'~rn-~, respectively. The scale factors are thus 0.04 
and 0.85 for Si and Ge detectors. Therefore it would be possible to observe the squeezing effects 
with a Ge type detector. However, it might be hard to measure a modulation of the quantum 
fluctuations for the Ar+ ion laser with a silicon detector . If we make a very thin depletion layer 
for the silicon detector in order not to wash out the spatial modulation, the quantum efficiency 
7 will decrease, which implies the fact that all the photons are not converted into electron-hole 
pairs. Some extra noise will then add up with a relative amplitude (1 - q ) ,  and this extra noise 
will dso degrade the modulation of the quantum fluctuations. 

The linewidth of a single-mode frequency-stabilized Ar+ laser is better than 1 MHz , which 
is equivalent Ak = 0.0002~na-~. The scale factor for this linewidth e-Ak2z2 is 0.9996 for z R 

100cm. Therefore the practical limit to the modulation or squeezing effects is mainly due to the 
characteristics of the photodetectors in use. 

3 Conclusion 

We have proposed the possibility to produce squeezed state of light simply with a single conducting 
mirror without elaborate experimentation to produce squeezed vacuum. The electromagnetic field 
modes near a perfect mirror a re  modified with respect to those in free space due to the cavity 
QED effects: the modes of the vacuum fluctuations have sinusoidal spatial dependence from the 



mirror. These modified vacuum-field modes, when combined with a coherent light, may produce 
spatially modulated squeezing effects for the coherent light, which can be measured in a balanced 
homodyne detection scheme. If we divide a coherent local oscillator with a 50:50 beam splitter 
and combine with the modulated vacuum field, we estimate that the quantum fluctuations of the 
combined light are reduced by as much as 50% below the intrinsic fluctuations of the coherent 
light at distances z = nX (n : positive integer) between the photodetectors and the perfect mirror. 
Moreover, at those position, we reduced the fluctuation of the difference of two beams which are 
come from the unused beam splitter. In other words, we can obtain the highly sub-Poissonian 
fluctuation of the difference which may come from the totally correlated beams such as photon 
twins generated by the parametric amplification [9]. 

The finite laser linewidth degrades the spatial modulation by a factor e-Z2Ak2, but this factor 
can be neglected if we use a narrow linewidth laser. Decreasing the distance between the perfect 
mirror and the detector will also help. The imperfect reflectivity of the mirror may slightly decrease 
the modulation of the vacuum field. But, since the reflectivity of a metal-coated mirror at  the 
optical frequency is about 97% , this also gives negligible effects. The most important practical 
limit comes from the characteristics of the photodetector. We need a detector whose quantum 
efficiency is close to unity and whose absorption coefficient is large enough that the depth of the 
effective absorption region is smaller than the wavelength (e.g., Ge type photo detector). Including 
all these limits we have calculated the quantum fluctuation of the light intensity in the last section 
and'shown in Fig. 3. The results indicate that we may increase the ratio of the average intensity 
to the intensity fluctuation using this homodyne detector with a good conducting mirror. 
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Fig. 1 Homodyne detector. Dl,  D2 : photo detector, B.S. : bean) splitter. E, and EL represent 
the signal and local oscillatbr, respectively. 

Fig. 2 The vacuum mode relations in the beam aplit tt.1. with a conrlact.ing mirror. 



Fig. 3 The amplitude fluctuation of ( a ) z  and (b) ( I ,  - 12)2, ,normalized to / a 12, as a 
function of log K ( K : absorption coefficient in units of crn-' and A:, is displacemen.) Note that 
the intrinsic quantum fluctuation without the mirror correspond to 0.5 ill (a) and 1.0 in (b) on 
the vertical axis. The arrow indicates for the Ge detector whicll has K = 4 x 105cm-' (N.F. : 
Normalized Fluctuation ) 
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Abstract 

The conception of the amplification of the coherent field is formulated. The definition 
of the coefficient of the amplification as the relation between the mean value of the field at 
the output to the value at the input and the definition of the noise as the difference between 
the number of photons in the output mode and square of the modulus of the mean value 
of the output amplitude are considered. On the simple example it is shown that by these 
definitions the noise of the nonlinear amplifier may be less than the noise of the ideal linear 
amplifier of the same amplification coefficient. Proposals to search the other definition of 
basic parameters of the monlinear amplifiers are discussed. This definition should enable us 
to formulate the universal fundamental lower limit of the noise which should be valid as for 
linear quantum amplifiers as for nonlinear ones. 

1 Introduction 

In the development of the modern communication systems the tendencies to reduce the energy of 
the signal and to  increase their frequency take place. The question about the minimal energy of 
the signal which can carry the information without the significant bit error rate is important. If 
the amplitude coding, the phase of the field carries no information, and there is no fundamental 
limit on the noise of amplifiers: in principle it is possible to count the number n of photons and 
to construct the state of G2n photons, where G2 is the intensity amplification coefficient. The 
uncertainty of the number of photons at the output in the ideal case should be exactly G2 times 
greatly than at  the input. But the face of the field sometimes is important. For example, if the 
3-dimensional picture should be transferred, the "exact" amplification of number of photons in 
each mode causes the complete loss of the phase information, and the output picture is plane. So, 
the question of the phase properties of quantum states and their amplification is very important. 
For the case of the linear amplification the inicially coherent state the minimal fundamental noise 
is determined [l] by the amplification coefficient: 

N,;, = GG* - 1, 

where N is the intensity of the output noise 



while G is the amplification coefficient: 

Here subscripts "in" and "out" denote the initial state (before the amplification) and the output 
state (after the amplification). We assume that these states are related by the unitary transfor- 
mat ion 

I UI >in; U+U = 1. (4) 

In the simplest case of the single-mode linear amplifier the transformation of the field operator is 
linear: 

U + ~ U  = Ga + F, ( 5 )  
where G is a c-number amplification coefficient and F is an operator which transforms the state of 
the amplifier only and does not touch the mode of the field. So, all commutators and correlators 
of all degrees of F and F+ with all degrees of a and a+ are zero. 

The aim of this work is to apply the definitions (1-4) to the example of the nonlinear amplifier. 
(For the nonlinear amplifier the relation (5) is not valid). Here we don't interested by the squeezing 
properties discussed in [4],[1], the fundamental limit of the noise is the problem which should be 
investigated. 

2 The parametric amplification the saturation 

Consider the model example of the quantum amplifier with small nonlinearity. The parametric 
amplifier with the saturation of the pump may be considered as the nonlinear amplifier. In the 
two-mode approximation the Harniltonian can be written in the form 

where a is the operator of the mode of the field, b is the operator of the idler mode, and the symbol 
:. ..: denotes the normal ordering. All correlators and all commutators of all degrees of a ,  a+ with 
all degrees of b, b+ are zero because the amplifier knows nothing about the phase of the field which 
should be amplified. The c-number parameter c describes the depletion of the classical pump. In 
the ordered form the hamiltonian (6) can be rewritten as 

In the following consideration the parameter c is assumed to be small. Consider the transformation 
of the field defined by the operator 

U = exp(-iHt), (8) 

where t is the c-number parameter. It may be considered as dimensionless time of the interaction. 
The Heisenberg equations have the form 



Consider the perturbation theory by the parameter e. Let 

In the 0-th order of the perturbation theory the introduction of (1 1) into (9),(10) gives: 

ao(t) = a(O)cosh(t) + b(o)+sknh(t), (12) 

bo(t) = b(Q)cosh(t) + a(O)+sinh(t); (13) 

Use notations a = a(O), b = b(0) , s = sinh(t), c = cosh(t); for the first order: 

Let the input we have the coherent state with amplitude a; the mean value of the number of 
photons x = aa* . The calculation of the amplification coefficient (3) and of the mean value of 
photons at the output gives: 

< a+a >,&= c2x + s2 - 2e(x(2 + x)c(c3/3 - c + 213) + 2(x + l)s4/3) + 0(e2). (16) 

By the formula (1) the output noise of the amplifier is 

while the noise of the ideal linear amplifier with same amplification coefficient G by formula (15) 

The difference of two last formulas gives 

This difference is negative at positive E: and all values of x. It proves that the noise of the nonlinear 
amplifier may be less than the noise of the ideal linear one with the same amplification coefficient. 

3 Discussion 

The-example of the "better than linear" quantum amplifier is constructed in the previous section. 
During the discussion at the Workshop it was suggested to consider another example of the non- 
linear amplifier - the system of identical resonant 2-level atoms interacting with the single mode of 
the boson field. This system has the "exact" solution [3] and the dependence of the noise intensity 
on the amplification coefficient and the input intensity may be presented also in the extremely 
nonlinear case. It indicates the same possibility to realize the "better than linear" amplifier. In- 
fortunately, the consideration is not yet finished at the time of the deadline of the submission. 



The paper on the noise properties of the "Tavis-Cummings amplifier" [3] should be published 
elsewhere. Formulas of the previous section based on the simplest generalization of definition. of 
the amplification coefficient and the noise intensity to the case of the n o h e a r  amplifier. 
(19) shows that in the sense of these definitions the nonlinear amplifier may be better then the 
ideal linear one. Either the real system with "better then linear9' information capabilities can be 
constructed or the another, more appropriate definition of the amplification coefficient and (or) 
the noise of the nonlinear amplifier shouldbe investigated. One of the alternative possibilities 
suggested at the Workshop - to define the amplification coefficient by 

instead of formula (3). It is under investigation now. The possibility of the other definition of 
the noise (instead of (2)) may be considered too. Of course, no "better then linear" amplidier 
should break information limits of quantum states ground in [4]. So it is important to work out 
appropriate parameters to characterize the nonlinear quantum amplifier of general kind. 

We are grateful to Roberto Ortega, Javier Mondragon, Marvin Mit telman, Alexei Bulatov and 
other participants of the Workshop for the discussions. This work is partially supported by the 
Comitet Nacional de Ciencia y Technologia, Mexico. 
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Abstract 

There have been theoretical studies for generation of optical coherent superposition states. 
Once the superposition state is generated it is natural to ask if it is possible to amplify it 
without losing the nonclassical properties of the field state. We consider amplification of the 
superposition state in various amplifiers such as a sub-Poissonian amplifier, a phase-sensitive 
amplifier and a classical amplifier. We show the evolution of phase probability distribution 
functions in the amplifier. 

. 1 INTRODUCTION 

The superposition principle lies at  the heart of quantum mechanics according to Dirac [I]. In this 
paper we consider the amplification of optical superposition states. As a result of interaction of 
a single mode coherent state with a nonlinear Kerr medium, the coherent state input becomes a 
generalized coherent state [2 - 31. The dynamics of a single mode field propagating in the Kerr 
medium is governed by the effective Hamiltonian [2] H = wA + XA2, where X is the non-linear 
factor and A is the photon number operator. Under the influence of the nonlinear interaction the 
initial coherent state la) of the amplitude a evolves at time t into the state 

where Ik) is a Fock state. At the interaction time t = TINA, we can rewrite Eqn(l) as a form 

which is a superposition of N coherent component states located on a circle with the centre at 
the origin of phase space. If we decompose the state (2) into the Fock basis and compare it with 
Eqn(1) we obtain an equation for the arguments, Cn, of the coefficients of coherent components 
for an arbitrary value of N. For example when N = 4 we have 

which we call the Yurke-Stoler state throughout the paper. 
Such superpositions of multicomponent coherent states may be generated not only in the 

amplitude dispersive medium but also in the micromaser type experiment. Recently Garraway et 
al. have proposed a method to prepare quantum superposition of multicomponent states [4, 53 



for the eventual goal of preparation of a Fock state. A stream of three-level atoms are injected 
into a high-Q micromaser cavity. It is assumed that there is just one atom at a time in the 
cavity and the initial coherent cavity field is tuned to the two-photon resonance with the atomic 
transition. A superposition state of two coherent component states is generated by a conditional 
measurement of the atomic excitation after an interaction time that determines the relative phase 
of the component states. By a sequence of the conditional measurements the superposition of 
multicomponent coherent states may be generated. As a special case, the initial interaction time 
is chosen to create a superposition state of two component states separated in phase space by ?r 

and the interaction times are reduced by one half after each interaction. The second conditional 
measurement creates a superposition of four component states 

where N is a normalization constant. Eventually, the Nth measurement creates the superposition 
of 2N components separated by 2 ~ 1 2 ~  in phase space. We call the state (4) as the Garraway 
state. 

2 PHASE PROBABILITY DISTRIBUTION FUNCTION 

There are quasiprobabili t y distributions according to ordering of system operators. One is the 
Glauber P representation which is quasi probability distribution function for the normal ordering 
of the system operators and another is the Q function &(reie) for antinormal ordering of system 
operators [6] .  The Wigner function W(reie)for the symmetrical ordering can be negative. Since 
the P function cannot be defined in the nonclassical regime, the P function is not dealt with in 
this paper. 

We can study the phase probability of the system with help of the quasiprobabilities. We 
derive two phase probability distributions from the Q and Wigner quasiprobability distributions 

[TI : 

Buzek et al. [7] compare these two probability distributions with phase probability defined by Pegg 
and Barnett [8]. As for the Wigner function, the Wigner phase probability distribution can have 
negative values, which indicate nonclassical nature of the system. For the quantum superposition 
state, the quantum interference between component states are best illustrated by the Wigner 
phase distribution as it can become negative for the quantum interference of component states. 
As shown in Fig.la the quantum interference for the Yurke-Stoler state is reflected by the negative 
values of the Wigner phase probability function. However the Wigner function for the Garraway 
state is always positive as in Fig.lb. We can therefore conclude that the quantum interference 
is not necessarily represented by negative values in the Wigner phase distribution. The Q phase 
distribution function is always positive differently from the Wigner phase distribution function as 
shown in Fig.1. 



Fig.1. Wigner and Q phase distribution of the Yurke-Stoler (a) and Garraway (b) 
state. Solid line shows the Wigner phase distribution and dashed line shows the Q 
phase distribution. (a = 3) 

AMPLIFIED SUIIPBERPOSITION STATES 

The simplest way to amplify the state of the single-mode field is to displace it by the displacement 
operator D(o) [6]. This operator shifts a field state by a given amplitude in phase space. The 
displacement of a field state can be implemented by driving the field by a classical current. The 
displaced superposition state is expressed by 

D = exp (odt - 8 6 )  , 

where 140) is the initial superposition state. From definitions of the quasiprobability distributions 
it follows that their shapes are invariant with respect to the action of the displacement opera- 
tor. The only difference consists in the shift of the Wigner function of the state in phase space 
along the action of the displacement operator. One of consequences of this invariance is that the 
displacement of the state does not change the quadrature-squeezing properties associated with 
the original state. As the whole picture is displaced along one direction in phase space the phase 
distribution will be differed by the action of displacement as shown in Fig.2. The Wigner phase 
distribution becomes to have negative values by displacement. 

Recently the correlated (phase-sensitive) amplifier has been realized experimentally [9]. In 
this section we study the evolution of the phase probability distribution of the superposition 
states amplified by the phase-sensitive amplifier. The dynamics of the field mode coupled to the 
phase-sensitive amplifier is in the Born and Markov approximation governed by the Fokker-Planck 
equation for the Q function, which in the interaction picture can be written as [lo] 



Fig.2. Wigner phase distribution for the displaced Garraway superposition state. 
Solid line is for the initial state and dashed line is for the displaced state (a = 1, a = 3). 

where y is proportional to the coupling between the field mode and the environment, and No and 
Mo are the parameters determined by nature of the amplifier. If the phase-sensitive parameter 
Mo is equal to zero then the Fokker-Planck equation (8) reduces into the equation describing the 
phase-insensitive amplification of the single mode field. The gain G of the amplifier is defined as 
G = exp(yt). 

Fig.3 clearly shows that the choice of the M value determines into which quadrature noise 
should be added. When M is positive the phase information a t  d = 0 and 7r is kept while the 
phase information at 6 = 7r/2 and 3 ~ / 2  is lost very rapidly. However, when M is negative the 
information at 6 = n / 2 , 3 ~ / 2  is kept at the expense of the rapid loss of the information at the 
other quadrature. 

We consider a stream of atoms injected into a micromaser cavity with an infinite &. We assume 
that there is just one atom at a time in the cavity and the atom makes the two-photon transition 
of frequency wo between the nondegenerate ground and excited states via a single intermediate 
level. The cavity is assumed to be tuned to the two-photon resonance with the excited and ground 
levels and the intermediate level is so detuned not to be excited, so that one photon transitions 
can be neglected which means that the transition between the ground and excited levels can be 
considered as a two-photon process. 

Let us assume that the field mode is initially prepared in a pure state 

and the atom is prepared in the excited state. During the time evolution the atom and the field 
become strongly entangled [4]. Nevertheless, at some particular moments they become dynamically 
disentangled and are again in their pure states. One of those moments is identical to the revival 



Fig.3. Wigner phase distribution for the Yurke-Stoler state in the phase sensitive 
amplifier characterized by No = 3, Mo = (a) and by No = 3, Mo = -m (b). 
Dashed line is for the initial state and solid line is for the state at  G = 1.22 (a  = 3) 

Fig.4. Part of the Wigner phase distribution of the Yurke-Stoler state in the sub- 
Poissonian amplifier. Line a is for the initial state, line b is for the state with two extra 
photons and line c is for the state with four extra photons. (a = 3) 



time t R  (see ref. [4] for details) when the atom is (approximately) in its ground state and the field 
can be described by the state vector 

At this moment exactly two photons are transferred from the atom to the field, so the mean 
photon number of the field is fi(1) = fi(0) + 2, where ~ ( i )  is the mean photon number of the 
cavity field after i atoms pass the cavity. Analogously, after a sequence of M atoms each of which 
interacts for time tR with the cavity field, the state vector of the field can be written as: 

We call the process during which the exact number of photons are transferred to the field as the 
sub-Poissonian (amplitude-squeezed) amplification. 

In Fig.4 we can see that the Wigner phase distribution function is smoothened by the ampli- 
fication. This means that the phase uncertainty is enlarged as the number uncertainty (so that 
the energy uncertainty) is reduced by the sub-Poissonian amplification. 

This paper was supported by NON DIRECTED RESEARCH FUND, Korea Research Foun- 
dation, 1993. 
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Abstract 

We examine experimentally photocurrc~lt noise rcductio~i in the opto-clcctronic closed 
loop. Photocurrent noise density 12.5 dl? bclow the shot-noise level was observed. So large 
suppression was not reached in previous experilncnts [I, 2, 3, 41 and can not be explained in 
terms of an ordinary sub-Poissonian light in  the loop. We propose the concept of anticorre- 
lation state for the description of liglit in tlie loop. 

We study closed opto-electronic loop consisting of light source (single-mode, single-frequency 
argon laser with 1W output power at the wavelengtl~ 514 nm), clectro-optical modulator with half- 
wavelength voltage 170V, p-i-n pliotodiocle having quantum eficiency 0.68 and electronic feedback 
circuit including two amplifiers with total 62-63 dI3 amplificatior~ in the 1-100MI-Iz frequency 
range and noise tcinpcrature less tlian 3001< (Fig.1). 'l'lie modulator operates ill the regime of the 
amplitude modulation, where feedback strengtli A is proportior~al to the light power and can be 
easily changed. The feedback strength has been controlled by the value of average photocurrent: 
A/ ( i )  = 0.6-0.7 mA. 

Experimental noise spectra of the feedbacl; pliotodiode current (Fig.2) are in a good agreement 
with formula 

where is the standard shot-noise level, T is loop round-trip time. Eliminating the noise 
amplification areas by a narrow-bandpass filter we have obtained the photocurrent noise reduction 
up to 12.5 dB (=factor 17.8), i.e. 94.4% of standard shot noise has been suppressed (Fig.3). This 
noise reduction is beyond the limit imposed by non-unity quantum eaciency of the feedback 
photodiode: (hi2) / ( S i i N L )  should be larger tllan 1 - 71. Pliotocurrerit noise reduction does not 
depend on tlie quanturn eficiency of tlie fecdbacl< pliotodiode and can be ~ n a d e  arbitrary large 
(Fig.4). Our data can not be explained in tcrx~is of an ordinary sub-Poissonian light in the loop 
and require an i~ltroduction of tlie ncw coi~cel>t of liglit. 

The light bcarn extracted from tlic loop csl~ibits a. iloisc above the sta~idard quantum limit 
(Fig.5). This noise is shown in Fig.6 versus tlie fecdbaclc strc~igtll for two values of the feedback 
photodiode quantum efficiency. The data arc in a good agrccrnent with the theory [5 ] ,  shown by 
solid line. 

To describe the state of liglit in tlic loop we offer the concept of a.nticorrclation state: the 
temporal variations of average liglit iritcrlsity l>roduccd Ly electrically driven nlodulator are anti- 
correlated to its clunntum fluctuations. 1)uc to this n~~ticorrcl;lt,io~t tllc total fluctuations of in-loop 



light intensity can be suppressed: 

where (61ioL) is the standard quantum lcvcl. I11 addition tllc part of tlie intensity modulation 
component is a posteriori anticorrelated to photocurrent fluctuations arising in the diode due to 
non-unity quantum efficiency. Thus the pliotocurrent noise is suppressed, and this suppression 
is more effective than in the light because the closcd opto-electronic loop is a device stabilizing 
the fluctuations of the current at the modulator. The light here serves only as a feedback signal 
carrier. 

When a beam splittcr is inserted into the loop to extract the liglit, the intensity modulation 
component contains a term anticorrelated to tlie quantum fluctuations brought by the beam 
splitter. However in the extracted beam the corresponding quantum fluctuations are correlated 
rather than anticorrelated to tliis ~liodulation term. Tliercfore cxtractcd beam noise is always 
super-Poissonian: 

The principal difference between tlle anticorrelation light and ordinary sub-Poissonian light is 
seen from the following example: the ordinary sub-Poissonian light decreases its sub-Poissonian 
quality when passes through a beam splitter; the anticorrelation light with sub-Poissonian noise 
passes through a beam splitter and improves its sub-Poissonian factor while the reflected beam 
gains super-Poissonian statistics. In principle, this paradoxical situation may be observed by QND 
measurements. 
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Spectrum I Analyzer dc 

Fig. 1. Experimental setup: a - liicasurelilc~lts of pllotocurrellt rroisc ill tlie closcd 
bpto-electronic loop, 13 - the sa.mc for tlic bealn extracted from the loop. 13D - pllo- 
todiodes, EOhl - electro-optical modulator, US - beam splitter, A - aml~lifiers, Att 
attenuator. 
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Fig. 2. Noisc spcctra of thc fccdltack pliotodiodc current at  different values of the 
feedback strength; a - amplifier iloisc, loop rduxltl-tril> ti~lle T = 4711s. 
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Fig. 3, a - photocurrent noise spectral density in tlie loop with a narrow-band 
filter in the feedback circuit, b - standard shot-noise level, c - amplifier noise. 
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Photocurrent ( i ) ,  m A  

Fig. 4. Shot-noise suppression factor at t l ~ e  freque~icy 19.2 A4112 versus feedback 
strength in the units of average photocurrent. Dashed line is the limit due to the 
quantum efficiency of tlie feedback photodiode 71 = 0.68. 
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Fig. 5. Pllotocurrent noise spectrunl for tlie ~)l~ot,odiode in the extracted beam 
( a )  and the relevant standard shot-iioisc levcl ( b ) ;  c and d are tllosc for feedback 
photodiode. 
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Fig. 6. Noise spectral density of the extracted beam photocurrent, normalized to  
the standard sliot-noise level, vcrsus tlic fecdba.ck stre~igtli (in tlie units of tlie average 
fcedbacli pliotocuirrcnt). 
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The study of semiconductor laser based on an analogy of the Schradinger equation and 
an equation describing light wave propagation in nonhomogeneous medium is developed.The 
active region of semicondnctor laser is considered as optical waveguide confining the elec- 
tromagnetic field in the cross-section (x, y) and allowing waveguide propagation along the 
laser resonator (%).The Inode structure is investigated taking into account the transversal 
and what is the important part of the suggested consideration longitudinal nonhomogeneity 
of the optical waveguide& is shown that the Gaussian modes in this case correspond to 
spatial squeezing and co~selation.Spatially squeezed two-mode structure of nonhomogeneous 
optical waveguide is given explicitly.Distribution of light among the laser discrete modes is 
presented.Properties of the spatially squeezed two-mode field are described. The analog of 
Franclr-Condon principle for finding the maxima of the distribution function and the analog 
of Ramsauer effect for control of spatial distribution of laser emission are discussed. 

Introduction 
The aim of the talk is to  study the possible modes of the electromagnetic field propagating in a 
semiconductor laser taking into account nonhomogeneous longitudinal structure of the m & m  
in the optical waveguide of the  1aser.The Gaussian modes in such structures may demonstr& a 
squeezing phenomenon in the electromagnetic field distribution in transversal cross-section of the 
semiconductor laser.We will consider the light propagation along the active layer of the semicon- 
ductor laser understanding that  the refractive index of the media of this layer has such dependace 
on the transversal coordinates z and y that provides the waveguiding conditions confining the elec- 
tromagnetic field in the transversal section of the laser waveguide.We also assume that the value of 
the longitudinal coordinate z which varies along the laser resonator axis influences the refractive 
index.Our goal is t o  show that  the refractive index dependence on the longitudinal coordinate z 
produces the change of the widths of the Gaussian electromagnetic field beam that may influence 
the far field distribution.The equation for propagating field of the fixed frequency w in paraxial 
approximation is derived from the Helmholz equation 

for which the structure of the field looks as the amplitude A which has slow dependence on the 
longitudinal coordinate z and the fast oscillating exponential.Due to this the equation for the 



amplitude A(x, y, z) is reduced to the Schrijdinger-like equation (Fock-Leontovich approximation 
[Illor parabolic approximation) 

in which formally the coordinate z plays the role of time and the refractive index plays the role of 
the potential energy.If there is no dependence of refrective index on the coordinate z the equation 
(2) is equivalent to the SchrXnger equation for the stationary states which in case of waveguide 
describe the possible modes of electromagnetic field propagating along the laser resonator. If the 
z-dependence of refractive index takes place the structure of the modes changes essentially.For 
optical fibers this phenomenon has been discussed,for example,in [2]. Our aim is to consider 
this phenomenon for the semiconductor laser waveguide since the physical picture of the light 
propagation in semiconductor laser has its own specifics and applications. 

2 Spatial Squeezing of Semiconductor Laser Beam 

As a model we will suppose that the refractive index has parabolic profile in transversal coordi- 
nates with z-dependences of the formal "frequency" -coefficients in parabolic terms wi(z)x2/2 and 
wi(n)y2/2.We will apply the result known in the theory of nonstationary quantum oscillator to the 
case of optical waveguide of semiconductor laser with the parabolic refractive index of the active 
1ayer.It was shown [3] that the width of the Gaussian packet describing at the initial moment the 
ground state of quantum oscillator due to the time dependence of the frequency has the following 
value at t-moment 

where the function e satisfies the equation 

Dots mean the-derivatives.13'e can use the complete analogy of our equation for the fight propa- 
gation with Schrijdinger equation for the nonstationary oscillator.Due to this malogy the foll 
conclusion may be made for the influence of z-dependence of the refractive index on the behaviour 
of the fundamental mode.Its width in transversal coordinate x has the form 

and in transversal coordinate y it has the form 

where the functions e,(z) and e,(z) satisfy the equations 

<(z) + u:(Z)ex(~) = 0, 
e,(z) + w i  (z)ey (z) = 0 



and the initial conditions 

where z = 0 is the coordinate of the left mirror of the laser resonator. The formulae (9) and (8) 
are given in dimensionless variables. It is known that the functions e, and e, may become less 
than 1 for appropriate z-dependence.In our case it means that for appropriate refractive index 
we may obtain squeezing of the light spot on the right mirror of laser resonator in coqasison 
with the width of the field distribution on the left mirror in both transversal directions.0gpmite 
phenomenon also may be present.It means that changing somehow the media properties dong 
the resonator axis we could form the far field distributi0n.h particular there may exist spatid 
squeezing in the light beam propagating in semiconductor laser. 

3 Spatially Squeezed Two-Mode Structure in the Optical 
Waveguide of Semiconductor Laser 

We have discussed above the spatial squeezing for Gaussian modes,because the squeezing for 
modes which differ from fundamental one are described by the same formulae ( 5 )  and ($).Xow 
we will consider the spatial squeezing in discrete modes of semiconductor laser using the same 
analogy with time-dependent oscillator.h generic case these discrete modes $,, are described by 
Hermite polynonnials of two %xxiables.'In our case it may be shown that the widths of light spots 
on the right mirror of the laser resonator may be given by formulae 

We see that the width ia both direction may be essentially reduced by choosing an approp~ate 
z-dependence of refractive index.This spatial squeezing may be achieved both for Gaussia mode 
and discrete modes s i m l t u s l . h e  appropriate z-dependence of the refractive index come- 
sponds to such behaviour of the function ex and e, for which their moduli become much ]less than 
1 on the right anirror.In these cases we have the spectral squeezing of the light patterns related to 
the discrete mode structure of the semiconductor laser beam. 

4 Analogs of Fr ck- Condon Principle and msauer Ec 
feet for Semiconductor Laser Nonhomogeneous dong 
the Optical Axis 

Since we have established that for the field in the semiconductor laser the formal role of potentid 
in Schrijdinger equation is played by the dielectric constant,while the role of time is played by 
the coordinate dong the cat3ty axis [4J, [5] ,[6] we have a complete analogy of the character of a 



stepwise change in the properties of the active region along the laser optical axis to the character of 
change in vibrational motion of nuclei after the electron transition in a polyatomic mo1ecule.h or- 
der to use this analogy,we will exploit existing results in quantum mechanics to explain the various 
operating conditions of a laser emphasizing that the role of the field is played by the wave func- 
tion @.In quantum mechanics, bound states exist when the probability density l2 diminishes 
exponentially away from the potential energy minimum.For a semiconductor laser,these bomd 
states with quantum energy levels correspond to mode solutions of the wave equation.Hence,my 
conclusion regarding the transitions between energy levels due to changes in a potential over time 
may be reformulated analogously for the case of light redistribution among the modes when two 
(or more) different parts of the active region are joined corresponding to inhomogendty of the 
dielectric constant along the cavity axis.A continuous junction (slow change of refractive index 
along the cavity) is possible together with stepwise junction (a step in refractive index profile in the 
vicinity of the junction) .In quantum mechanics of nonstationary potential the SchrGdinger q u a -  
tion is solved in some cases for varying gotentia1,but such cases are few and they include a specific 
dependence of the potential on the coordinates(see [?I). For time irregular changes in potentidyin 
quantum mechanics the behavior of a system for the case of polyatomic molecules is predicted 

. by the Franck-Condon principle for potentials arbitrary depending on the coor&nates.Hence9tEs 
formulation of the analog of the Franck-Condon principle for semiconductor laser operation is of 
interest, since the qualitative predictions obtained on the basis of this principle are independent 
of models describing the dielectric constant of the laser active region [$I. 

For taking into account the nonhomogeneities of heterojunction laser along the resonator we 
proposed in [4], [ti] the modd in which the active region was considered as a set of several opticd 
waveguides with different refractive indices connected to each other in such a way that the couphg 
between the separate sections of the active region was achieved with the help of mode couphg 
coefficients Cnm.%et us consider the laser consisting of two end-joined active regions (each one 
homogeneous along the optical axis).So,we consider in fact two connected lasers each having their 
own refractive index described by their own "potential curven. Each of these connected lasers 
is described by its own gpotential welln with the "energy levels" corraponding to the descrete 
laser modes. If both potential wells are plotted in the same figure the analog of the Frm&- 
Condon principle can predict which mode in the second laser (the second part of the laser) GU 
be excited with the maximd probability,when the field energy was contain4 in a given mode of 
the first laser (the first part of the laser).This analog of the Franck-Condon psinciple produces a 
qualitative prediction for finding the maximum of the square of the modulus of the mode coughg 
coefficient of two lasers (two parts of the laser) 

i.e.,an analog of the Franck-Condon factor 

for diatomic molecules (the overlap integral of the vibration wave functions before and after the 
electron transition).This factor describes the portion of energy contained in n-mode of the second 
laser (the second part of the laser) if all energy of the first laser (the first part of the laser) was 



concentrated in its m- mode.Let us note that this rule is valid in a semiconductor laser when the 
imaginary part of the dielectric constant of its optical waveguide does not significantly change the 
spectrum of mode "levelsn (in language of quantum mechanics,the imaginary part of the complex 
potential does not change the energy level spectrum, but rather is responsible only for broadening 
of the levels and their lifetime; however, the widths of the levels are small compared to the distance 
between levels). 

Another analogy that would allow using results from quantum mechanics in the physics of 
nonhomogeneous semiconductor lasers is the analog of the Ramsauer effect [9].Let us discuss the 
practical important case when distribution of dielectric constant in one transverse direction (along 
the x-axis) has the step-like form (in the case of heterojunction laser,the distribution of ~ ( x )  in 
the direction of current flow is determined by the difference between the refractive indices of the 
active region and the wide-band layers of the heterostructure) and in the other direction (along 
the y-axis) it is approximated by parabola (symmetric waveguide). The dielectric constant in the 
resonator is described by the formula: 

and the equation for electromagnetic field in the laser formally coincides with the Schriidinger 
equation for the harmonic oscillator with variable frequency.The analog of the Franck-Condon 
factor (15),(16) for our model of longitudinal nonhomogeneous laser consisting of two homogeneous 
parts may be presented in the form,calculated in [7]: 

where PL(x) are the Legendre polynomials,and the parameter R can be interpreted formall:- as 
the reflection coefficient from a potential whose form is determined by the time dependence of 
the oscillator ftequency.1~ our case the role of time dependent frequency is formally played by 
the longitudinal dependence a(%) in formula (17).It is possible to find such dependence of the 
"potential" a(%) to  satisfy the conditions for which the equality R = 0 takes place (analogue of 
the Ramsauer effect in quantum mechanics) and Ty,, = 6nm (there is no redistribution of the 
energy of the electromagnetic field over the modes).In this case the structure of nonhomogene- 
ity of such longitudinal nonhomogeneous laser is such that there is "transparencyn in the point 
of connection of two lasers (two parts of the laser).With a specific dependence of ~ ( y ,  z )  at the 
connection between two part of the laser one can regulate the transparency of the conriection.It 
is possible to use this effect for control of the output characteristics of the semiconductor 1aser.h 
the presence of dielectric insert in such a laser one can control the output characteristics of the 
laser by varying the characteristics of the dielectric insert [lo]. 

The formula (18) may be considered as the mode distribution function of the laser light energy 
in the second laser (the second part of the laser) between its modes with index m, (m = 0,1,2. ...) 
if the light in the first laser (the first part of the laser) is exactly in the mode state labeled by 
the index n.Such distribution function emerges if the connection of two lasers is described by the 
change of the discussed aboi-e "frequency1' related to z-dependence of the refractive index along 
the laser optical waveguide. More general mode distribution function may be expressed in terms 



of Mermite polinomials of two variables in complete analogy with the parametric oscillator theory 
given in (1 1],[12]. 
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Abstract 

In the first part of this contribution we show that the master equation derived from the 
generalized version of the nonlinear Doebner-Goldin equation leads to the squeezing of one 
of the quadratures. In the second part we consider two familiar Hamiltonians, the Bate- 
man - Caldirola - Kanai and the optical parametric oscillator; going back to their classical 
Lagrangian form we introduce a stochastic force and a dissipative factor. From this new 
Lagrangian we obtain a modified Wamiltonian that treats adequately the simultaneous am- 
plification and dissipation phenomena, presenting squeezing, too. 

1 The nonlinear master equation 

Our search for a new class of equations was inspired by the model proposed recently by Doebner 
and Goldin [I]. They looked for the most general Schrijdinger equation compatible with the 
Fokker-Planck equation for the probability density p(x, t )  = I $(x, t )  12, 

(where D is a constant positive diffusion coefficient), and derived the nonlinear equation 

for a particle with mass m moving in a scalar potential V(x). The advantage of eq. (2), com- 
paratively to other ones [2], is its group theoretical origin, the nonlinear term was not simply 
added to the usual Schrodinger equation ad hoc, but its structure was derived from the analysis 
of representations of the Di$(R3) group, proposed as a "universal quantum kinematical group" 
[I]. The only drawback of eq. (2) is its limited range of applicability, since it can be  used only in 



the coordinate representation. It is desirable to have a more general equation valid in arbitrary 
representations. To obtain such a generalization (heuristically), first, we remove the Cartesian 
coordinates dependence, introducing an arbitrary set of states I z), which form a complete system 
with respect to some measure dp(z), i.e., 

Secondly, we replace the two V - operators in the additional term of eq. (2) by two arbitrary 
(linear) operators and 8. By this way we arrive at the equation, whose nonlinear part, in 
general, is neither Hermitian, nor anti-Hermitian, 

Multiplying both sides of this equation by ($ I z) and integrating over dp(z) with account of (3), 
one can check that the normalization of the wave function is preserved in time since 

JW I I ~ P ( z )  = 0, (5) 

where (z I fl{$)) is the non-Hamiltonian term in the right-hand side of eq. (4). Evidently, the new 
equation satisfies the homogeneity condition. Moreover, the "separability property" also holds: 
the wave function of noninteracting particles is factorized for all times, if it was factorized at the 
initial moment. Nonetheless, the form (4) is not the most general, in [3] we showed that the more 
general form for Q{$} is 

where X and r may be arbitrary complex numbers satisfying the restriction X + r = 1. In papers 
[4, 51 we investigated eq. (4) with B = A+ , A , B being lowering and rising operators for the 
two-level system and for the harmonic oscillator. It was demonstrated that this equation, written 
in the discrete energy (Fock) basis I n), describes the relaxation to "pseudothermal" stationary 
states, possessing the Planck distribution for the populations of energy levels, but nonzero off- 
diagonal elements of the density matrix. This is not surprising, since eq. (4) relates to pure 
quantum states. However, it is more natural to describe relaxation processes in terms of density 
matrices, in order to investigate the evolution of mixed quantum states. Therefore, our next goal 
is to obtain nonlinear master equations originating from eq. (6) and its special cases. 

Starting from equation (6) and considering the evolution of the pure state density matrix 
(Z I p+ I z') = (z I $)($ I 2') governed by this equation and replacing I $)($ I by P we obtain 

- DX(z1 B A P ~ z ' )  - DX*(z I jA+B+Iz1)  - ~ ( z I  [I?, P] I z ' ) ,  (7) h 
which preserves the trace, normalization and hermiticity for an arbitrary initial density matrix. 



2 Application: The harmonic oscillator in the coordinate 
representation 

This section is devoted to investigating a special case of the general equation derived in Sect. 1. 
We shall limit ourselves to one dimension, identifying the ket-vector I z )  x) and apply the new 
equation to the harmonic oscillator Hamiltonian 

we choose operators A and B as A = B+ = a ax + sx, where s, D,r,A, are assumed to be real 
constants. Now, designating the elements of the density matrix in the coordinate representation 
as p(x, y ) = p*(y , x) and introducing the notation 

we can write eq. (7) as 

All derivatives in this equation must be calculated for the independent variables x and y, and only 
after that one should consider x = y in the functions px, p,, and p,,. 

For the probability density P(x)  r p(x,x) eq. (11) results in the following Fokker-Planck 
equation 

d P  aJ d 
D dt dx -(xP)) dx , 

i A where J (x )  = - ?;;I [p,(x, x) - py(x,x)] is the current density, 2sDx is the drift velocity, and 
D is the diffusion coefficient. Eq. (12) clearly shows that the total probability is conserved in 
time. Eq. (11) admits a special class of solutions in the form of Gaussian exponentials, 

with c and @ being real functions of time, while a and b may be, in general, complex. Putting 
expression (13) into eq. (1 1) we get the equations for the coefficients a( t) and c(t), which do not 



contain neither the force f ( t ) ,  nor the function b(t ) .  Therefore, let us assume, for simplicity, that 
f = b = 0. Then, instead of eq. (11) we have the following set of ordinary differential equations 
for the real functions a = Rea, /? = Ima, c, and @, 

Here the parameter ( = r - A is introduced . 
The trace of the Gaussian density matrix equals 

consequently, the condition of its conservation is the equation 

and it is easy to check that this equation is fulfilled. The difficulty of treating the equations for 
the coefficients a, p, c is connected with their nonlinearity even in the absence of nonlinear terms 
in the master equations (i.e., when D = 0 ) .  It is well known, however, that in the latter case the 
equations of motion for average values and the second order moments are linear for any quantum 
system with quadratic Hamiltonian. Therefore we replace the equations for coefficients a, P, c, by 
the equivalent equations for the variances 

these quantities are related to the coefficients of the Gaussian density matrix (13) by 

tL2 2 
O x ,  tL2 a2 + p2 - c2 

a,, = - ( a  + c )  + - = - 
2 a x x  2 a - c  

Another quantity characterizing the quantum state is 

4 a + c  
A = - (oxxupp - a:,) = - 

tL2 a - C  



Its importance is explained by two factors. First, any quantum state must satisfy the generalized 
Robertson - Schrodinger uncertainty relation [6] A 2 1. Second, any positively definite density 
operator must satisfy the inequality 

but for any Gaussian state [7] 
T r ( P 2 )  - - A-112 

[Tr(i9I2 
Consequently, the parameter A characterizes the "degree of coherencen of the Gaussian state: 
A = 1 for pure states, and A > 1 for mixed states. 

The relations inverse to eqs. (21)  - (23 )  read 

so one can check that eqs. (14)  - (16)  result in the following equations for the variances, 

(j3Cp = 
1 - a, - w2 m ox, - 4Ds ox, + D 9 [2 + E(1 + A)] , 
m 0 x 1  

2 4, = - 2w m a,, + (62 - 4 4 , )  
Uxx  

As a consequence, the equation for the parameter A is 

We perceive that A is conserved in time if D = 0. Alternatively, if D # 0, then A tends to 
the unit value at t -+ oo, provided both coefficients, D and s, are positive. This means that any 
initial state exhibits the relaxation to a pure state! 

The advantage of the equations for the variances is clear: The nonlinear terms are multiplied 
by the diffusion coefficients, which are small in all reasonable situations. Therefore we may use 
the solutions corresponding to D = 0 as the zero approximation, and develop some perturbative 
scheme. 

If D = 0, getting rid of a,, and a,,, one arrives at  a single third-order equation for the 
coordinate variance. 

whose solution reads 
- A + B e2iwt + B* e-2iwt axx(t) - 7 



where A and B are constant coefficient. It is natural to suppose that for D 4 0 the evolution of 
aXs is given by the same expression, but with the slowly varying in time coefficients: 

where 
B*(t) = B(t) e"' f B'(t) e-2'wt 

Now inserting (33) into eq. (28) and neglecting terms of the order of 0(D2)  (guessing that the 
n-th derivatives of A(t) and B(t) are proportional to Dn), we can express the covariance a,, as 
follows, 

m ( A  + Be2 iwt  + i)* e-2iwt 
a,, = iu m B- + - ) + 2mDs (A + B+) - m D  , (36) 2 

and with the same accuracy we find the momentum variance for eq. (30): 

Since in this expression the function A is multiplied by the small parameter Dl we must calculate 
it in the zeroth approximation. Thus we get 

being both, R and A, slowly varying functions of time. 
Now, we make the crucial step first proposed in [8, 91: we put the expression for a*, in terms 

of A and B into eq. (30) and average both sides with respect to the fast oscillations of frequency 
w . Then we arrive at the equation, which contains functions A and R only 

and where a. = h/ (2wm) is the coordinate variance in the oscillator ground state, while I? = mD/h 
is the dimensionless diffusion coefficient. 

Now, averaging eq. (31) we arrive at  a closed equation for R(t), 

Consequently, eq. (39) actually is the first order linear nonuniform equation with respect to 
function A(t), which can be easily solved provided the solution to eq. (40) is known. 

Thus, averaging the equations for the variances over the fast oscillations leads to the effective 
linearization of the equations governing the evolution of the coefficients of the Gaussian density 
matrix. To get the equation for B(t), one should first multiply both sides of the equation for tr,,, 



by exp(-2ibcrt), and then average over the fast oscillations. We confine ourselves, however, to the 
evolution of functions A(t) and A(t) (the absolute value of B(t) can be extracted from eq. (38)). 
It is worth to mention that A(t) is nothing but the energy of quantum fluctuations (up to the 
constant factor and small corrections of the order of O(D)): 

Now if we consider a pure state, R = 1, then the solution for eq. (39) is 

A(t) = 00 + [A(O) - go] exp [- 4 r w ( 2 ~  s - ()t] . (42) 

We see that the energy of fluctuations can increase or decrease, depending on the sign of the term 
in the exponential: 

1)If 200 s - ( > 0, we verify that A ( w )  = oo , SE(oo) = hw/2 and B(m)  = 0, therefore 
asymptoticaly o,, and 5, do not oscillate. 

2)If 200s - ( < 0 and since reasonably rw << 1, A(t) becomes a slowly increasing function with 
time (the same for SE(t)). From eq. (38), asymtoticaly we have A(t) z 2B(t) >> 0:. If B(t) is real 
at t = 0 then it is real for any t > 8, so from eqs. (34) and (35) o,,(t) = A(t) + 2B(t) cos(2wt) 
or A(t) - 2B(t) 5 a,, 5 A(t) + 2B(t). But from eq. (38) A(t) - 2B(t) = oi/(A(t) + 2B(t)) N 

o:/(2A(t)). Therefore asymtoticaly a,, oscillates between two values, 

thence, as time goes on the solution of the nonlinear Schrijdinger equation becomes highly squee- 
zed. Note that a similar behavior of the variances (i.e., an exponential increase of the squeezing 
coefficient) is observed in the case of the usual Schrodinger equation for the parametrically excited 
oscillator, when its frequency changes in time [7]. However, in the present case all the coefficients 
in the generalized Schrodinger equation with the functional (6) (or its master equation counterpart 
eq.(7)) do not depend on time, and the increase of fluctuations is caused by the nonlinear terms. 

3 Amplifying - Dissipative Hamiltonians 
Here we shall consider the theory developed many years ago by P. Havas [lo], which is quite 
suited to construct Hamiltonians that take into account dissipation and apply it to two examples, 
confining ourselves to the one-dimensional case. 

3.1 The Bateman-Caldirola-Kanai (BCK) Hamiltonian 
The harmonic oscilator with an exponential time-dependent mass m(t) = mo exp((t), is known 
as the BCK Hamiltonian [11] and we shall introduce the phenomenon of friction in it. According 
to [lo] when friction is present the Lagrangian that describes the motion, ( that reproduces the 
classical equation of motion) is 



Here V(p; t)  = jm(t)w: p2 and F(t)  is a time-dependent external force. The exponential factor 
introduces the friction effects (also external) on the system and for the specific Lagrangian one 
has 

'Yo 
'Y(t) = 7 (1 - exp(-Ct)) , (45) 

as limt-.m ~ ( t )  = T ~ / (  and limC,or(t) = yet, so, recovering previous results [12]. We shall 
consider F(t)  as being a stochastic force whose mean in an ensemble is null, (F(t)) = 0, and that 
its correlation is Markovian, (F(t)F(t1)) = 2dS(t - t'). 

According to the quantization procedure of [12] one obtains the system Harniltonian 

where i), Q are canonicaly conjugated operators, [Q, i)] = ih. The physical position and momen- 
tum operators are related to those through 

&hys = &ex~(-'Y(~)/z) 7 j p h y s  = P ~ X P ( - ' Y ( ~ ) / ~ )  (47) 

In order to obtain the equations of motion for the operators P and Q in the Heisenberg pic- 
ture we first do an unitary transformation in Schrodinger equation with operator S(CtI2) = 
exp(-%{Q, i)}), which leads to the new Hamiltonian 

,ir2 
( , t )  = - 

1 1 + - mowip + - (yoexp(-(t) + I){?,+} 
2mo 2 4 

1 + f F(t)  exp [+y(t) - Ct)] (48) 

with 

- 1 
&hys - f exp [- Z('Y(t) + ~ t ) ]  

1 
j p h y s  = * e ~ [ - ~ ( ' Y ( t ) - ~ t ) ]  . (49) 

The equations of motion for f (t) and ,ir(t) are solved assuming f = u(t)fo + v(t)iio + w(t), 
leading to the set of linear differential equations 

where R; = $ - W: and with the following initial conditions 

1 
u(0) = 1 and u(0) = 2(w + () 

1 
1 

v(0) = 0 and C(0) = - 
mo 



The exact solutions of the above differential equations are : 

where I,(.) and Ku(.) are the modified Bessel functions of the first and third kind, respectively 
[13]. The parameter v is 

Similarly the momentum operator in the Heisenberg picture is h ( t )  = p(t)& + @(t)+o + E(t), 
where 

Considering that the energy increasing prevails over energy dissipation, yo/C < 1, one has the 
approximative solutions, 



and the variances for Qphys and fiphys become 

5 5 
am (AA?,,) - exp [- (5 - 2Ro)t] {: (% - 1 t+oo 1600 

eW(-2)  5 .  (i 2 ~ o  + 1) (1 + P)} + o (A > 1) 

verifying squeezing even in occurence of a weak dissipation. 

3.2 The optical parametric oscillator (OPO) 
' Using the same method we can treat the OPO introducing in the Hamiltonian the dissipation of 

the cavity, hence, 

where the mathematical operators A+ and A are related to the physical creation and destruction 
operators by a = A exp (-Xt/2) and a+ = A+ exp (-Xt/2). Moreover, fl (t) = wo is the 
mode frequency in the cavity, f2  = K exp(-2iwt) + iX/4, where K and w are, respectively, 
the intensity and the frequency of the pumping field, while X is the damping constant of the 
cavity. f3(t) = F( t )  eXt/(2wo)1/2. The force F( t )  is assumed to be a Markovian stochastic force: 
< F(t) > = 0, < F(t)F*(t1) > = < F(t)*F(t1) > = 2dS(t - t') and < F(t)F(tt)  > = 0, and the 
parameter d is related to the temperature of the cavity, 

Considering the pumping at resonance, wo = w, and for d / w o  << 1, the solution of Heisenberg 
equations for operator AH(t) is 

where 

u(t) = e-'wOt cosh(2rct) + [~-'wo' (sinh2 y cosh(2nt) - z sinh y cosh y sinh(2nt)) - c.c.] (68) 

v(t) = z sinh(2nt) (cosh2 y e-'WOt - sinh2 y eawt) - 1 sinh(2y) sinh(2nt) cos(2wot) (69) 

and tanh(2y) = Xl(2wo). 



With the above solution we present the asymptotic ( t  -+ w) mean values of several quantities, 
after taking the average over the high frequency oscillations of the field (wo) and considering 
4K/X < 1: 

d 
lim (8) = u ~ ~ - " ( A $ A ~ ) ,  N - 1 
t-+m 1 - ( 4 ~ 1 ~ ) ~  

2)Variances of the two quadratures, 

d 
lim (~21,~)~  N - 1 
t--roo 2Xwo 1 - ( 4 ~ 1 ~ ) ~  

Although the asymptotic values of the variances of the quadratures are both above the value 
112, at initial times squeeze is seen in the fast oscillations (before averaging over the mode fre- 
quency). In eqs. (71) and (72) one verifies the effects of the dissipation-amplification process 
through the quantity ~ K / A :  

i) If ~ K / X  << 1 (very weak pumping compared with the cavity dissipation), the thermalization, 
represented by the parameter d, dominates in the physiqal expressions at equilibrium. 

ii) On the other side, when ~ K / X  is close to 1 (strong pumping) the factor (1 - (~K/X)~)- '  dom- 
inates the strepghts of the asymptotic values, increasing dramatically the energy and fluctuations, 
as is expected to occur at  resonance. 

4 Summary 

We have presented two different formulations of quantum dynamical equations that show squeezing 
in the variances of the conjugate canonical operators. In the first one we considered a general- 
ization of the Doebner-Goldin nonlinear extension of the Schrodinger equation and we verified 
that although the parameters that enter the nonlinear part of the equation are constant in time, 
squeezing occurs, essentially due to the nonlinearity. Moreover, the master equation shows the 
surprising feature that any initial mixed state relax to a pure state! 

In the other approach we introduced the dissipation phenomenon into the Harniltonian for- 
malism by starting with a conveniently defined Lagrangian, as proposed by P. Havas [lo]. We 
considered two familiar time-dependent Harniltonians, the BCK and the OPO. The BCK Hamilto- 
nian has a time-dependent mass and it displays amplification of energy and squeezing of variance 
of momentum or of position, although uncertainty is preserved. The dissipation was introduced 
and the effects are seen in eqs. (63)-(64). 

The second Hamiltonian is the OPO, describing a single mode in an electromagnetic cavity 
with pumping at resonance. Dissipation is introduced to take into account the loss in the cavity 
walls. As an expressive result we verify that the asymtotic physical expressions depend, essentially, 
on the factor ~ K / A ,  K representing the pumping and A, the dissipation. 
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Abstract 

The possibility of using the phase space formalism to establish a correspondence be- 
tween the dynamical behaviwr of squeezed states and optical or charged beams, propagating 
through linear systems, has received a great deal of attention during the last years. In this 
comection, it has been indicated how optical experiments may be conceived to measure the 
Wigner rotation angle. In this paper we address the topic within the context of the paraxial 
propagation of optical or charged beams and suggest a possible experiment for measuring 
the Wigner angle using an electron beam passing through quad~poles and drift sections. 
The analogous optical system is also discussed. 

1 Introduction 

Lorentz group is the basic language of special relativity [I]. It has been recognized as a powerful 
tool in many other fields of modern physics as well. Many dynamical symmetry groups, underlying 
specific branches of physics, as quantum optics, classical and quantum mechanics, Hamiltonian 
optics, are locally isomorphic to the group SO(2,l) of Lorentz transformations in twospace and 
one-time dimensions. 

Actually, the (3 + 1)-dimensional Lorentz group SO(3,l) is the full space-time symmetry 
group. However, we seldom discuss Lorentz transformations in the three-dimensional coordinate 
system, since computing for instance velocity additions and successive Lorentz boosts is quite 
complicated, 4 x 4 matrices being involved. Restricting thereby the problem from SO(3,l) to 
SO(2,l) may simplify significantly calculations. 

Furthermore SO(2,l)  has both a physical and mathematical interest. It is indeed the lit- 
tle group, which leaves a space-like four-momentum invariant. Accordingly, studying SO(2,l) 
amounts to studying free particles travelling faster than light (the so-called tachyons), which are 
intrinsically interesting from a theoretical point of view. 

Above all, the group SO (2,l)  gave rise to a great amount of interest, since, as already remarked, 
it is locally isomorphic to other groups, as Sp(2), SU(1, I), SL(2, C), and has therefore a very 
rich mathematical and physical content. The isomorphism with the above quoted groups offers 
many advantages from both analytical and theoretical point of view. In fact, it allows further 
simplification in the calculations involving Lorentz transformations, the groups Sp(2), SU(1, I), 
SL(2, C) consisting of 2 x 2 matrices. In particular, the algebraic analogy with the symplectic 



group Sp(2) offers a further advantage, as Sp(2) consists of real matrices. Hence, it is possible 
to visualize Lorentz transformations in terms of transformations in a two-dimensional geometry, 
making a correspondence between Lorentz transformations in real space and linear canonical 
transformations in phase-space or, equivalently, between volume-preserving transformations and 
area-preserving transformations. 

In addition, as firstly recognized by Han, Kim and Noz [2], the quoted isomorphism allows 
to conceive a kind of analog computer for testing the Lorentz group properties. In particular, as 
is well known, instead of rotations, pure Lorentz transformations do not form a subgroup. As 
a consequence, the product of two boosts along different directions is not a boost but a boost 
preceded or followed by a rotation. The angle of rotation is known as the Wigner angle and 
provides the kinematic basis for Thomas precession in atomic physics [I, 21. 

Many suggestions have indeed proposed in order to perform optical experiments to observe the 
optical analog of the Wigner angle [3, 41. 

In this connection, the paper is devoted at suggesting a possible experiment for measuring the 
Wigner angle within the context of electron beam transport [5]. The paraxial propagation of a 
charged particle along a magnetic channel is indeed governed by the symplectic symmetry. It can 

. be therefore conceived an experiment involving electron beams for measuring the Wigner angle. 
The formal analogy between the propagation of charged beams and that of light beams through 
optical systems in the Gaussian approximation suggests to discuss the topic in full generality. 
However, the specific language used through the paper is that usually adopted in accelerator 
physics, whilst the symbology is just that of ray-optics. 

The paper is organized as follows. Sec. 2 is devoted to a preliminary analysis of the problem, in 
order to introduce the formalism relevant to symplectic symmetry. In Sec. 3 the analogy between 
linear canonical transformations and optical systems is developed, thus leading to a specific design 
of the experiment for measuring the Wigner angle within the electron-beam optics, as illustrated 
in Sec. 4. Concluding remarks are given in Sec. 5. 

2 SO (2 , l )  and Sp(2) 

As remarked in ref. [6], the symplectic group, originally introduced by Weyl in 1938, plays a central 
role in many branches of physics, as a consequence of that symplectic transformations preserve the 
skew symmetric products, which frequently appear in physics. In particular, symplectic geometry 
is the mathematical theory underlying Hamiltonian mechanics. It emerges especially in phase- 
space picture. The phase-space of a mechanical system is indeed recognized as a symplectic 
manifold and the time evolution of a conservative dynarnical system is a one-parameter family of 
symplectic diffeomorphisms, or, linear canonical transformations. 

Phase space formalism is becoming the unifying language for both classical and quantum 
mechanics.It is basic to the Hamiltonian formulation of classical mechanics. Within this context, 
indeed, the evolution of a dynamical system is described by a number n of independent coordinate 
variables and on the same number of canonically conjugate momenta. The cartesian space of these 
2n coordinates is just .the phase-space. 

Correspondingly, phase space picture of quantum mechanics is becoming increasingly popular. 
Although, the concept of phase-space is not compatible with quantum mechanics, ij and f? being 
noncommuting operators, the Wigner phase-space representation allows to overcome this prob- 



lem, since in this representation both the coordinate and momentum variables are enumbers. 
Accordingly, it is possible to perform phase-space canonical transformations as in the case of 
classical mechanics, which correspond to unitary transformations in the Schrijdinger picture of 
quantum mechanics. 

Phase space concept appears therefore as the unifying context, where classid as well as 
quantum mechanics can be naturally framed, thus suggesting the possibility to transfer concepts 
and methods from quantum to classical mechanics and viceversa. 

Furthermore, as discussed in ref. [2], phase-space picture provides the natural language for 
quantum optics as well, offering a geometrical view to coherent and squeezed states as circles and 
ellipses respectively. In this respect, taking advantages from the symmetry of the relevant Wigner 
phase space distribution function it is possible to calculate expectation values and transition 
probabilities for the above quoted states [2]. 

In the present paper, we are interested in the paraxial propagation of optical or charged-particle 
beams through optical systems [7, 81. We are thereby led to consider the harmonic oscillator-type 
Hamiltonian .l 

with q and p being canonically conjugate variables. As noticed, the Hamiltonian (1) models the 
paraxial propagation of electron beams as well as light beams through optical systems. The p2- 
term describes the free propagation for both electron beams and light rays, the variable p being 
understood as the particle-momentum and the ray reduced slope, respectively. On the other 
hand, the q2-term accounts for the propagation through optical systems as quadrupoles or lens- 
like medium, the corresponding strength being measured by the coefficient k(s). The coordinate 
s is measured along the symmetry axis of the system, also assumed as the direction of the beam 
propagation. 

The basic tools of classical mechanics are the Poisson brackets and the canonical transforma- 
tions. The latter can be derived from the former. 

The properties of Poisson brackets, indeed, as the antisymmetry, the derivation property and 
the Jacobi's identity, assure that Poisson brackets make any commutative ring of functions defined 
on a domain X c R2n into a Lie algebra. It is thereby possible to associate with any Hamiltonian 
H the operator iH = {H, . . .}, which for the one-degree of freedom writes as 

Accordingly, the dynamics ruled by (1) is naturally framed within the group structure generated 
by the operators associated with the quadratic polynomials: 



Embedding the above operators into the following 

it is easy to recognize the syrnplectic structure of the corresponding group, as displayed by the 
commutation relations obeyed by the above introduced operators: 

[KllK2]= ~3 [ K I , K ~ ] = - ~ ~  , [ ~ 2 , ~ 3 ] = - K l .  (5) 

As elements of Sp(2), the operators K1, k2, K3 are amenable of the matrix representation 

Finally, let us say that the operators (4) are the generators of the canonical transformations 
in phase-space, which will be analysed with some details in the next section, within the context 
of the specific problem of charged beam motion in magnetic fields. 

3 Linear canonical transformations and optical systems 

Before analysing the specific role of the operators K ~ ,  i = 1,2,3 and discussing the optical analogs 
of the associated canonical transformations, let us make some preliminary considerations in order 
to visualize the phase-space canonical transformations within the specific context of electron-beam 
transport physics. 

As is well known, an invariant quadratic form 

can be associated to any dynamics described by quadratic Harniltonians in canonical coordinates 
and momenta. In passing, it is worth stressing that within a quantum context the quadratic form Z 
is reported as the Ermakov-Lewis invariant [9], the vector a: containing obviously the position and 
momentum operators, whilst in classical mechanics it is known as the Courant-Snyder invariant 
1101, firstly introduced in the analysis of electron beam motion through magnetic channels. In the - - 

above expression, the two component vector 11: r (:) is acted by the real 2 x 2 matrix T, - which 

furthermore is required to be symmetric and unimodular: det T = 1. Just to share the language 
of accelerator physics, we refer to T - as the Twiss matrix1 andwrite it in the form 

'The quadratic form (7) can also be regarded as the transcription in phase space of the quantum invariant, the 
vector a: being formed by the expectation values of the position and momentum operators and the matrix T - being 
linked to the quantum covariance matrix. 



a+O 2a tan (24) = -- B-Y 
Figure 1: Phase-space ellipses for different values of the Twiss parameters a, ,6, y. 

The entries a, By 7 usually named as Twiss parameters, play an important role in dksigning trans- 
port channels. 

The quadratic form (7) can be depicted in the phase space as an ellipse, whose size and 
orientation are determined by the Twiss coefficients. The area of the ellipse, which is just the 
value of the invariant Z, is usually denoted in accelerator physics as Z = T E ,  E being referred to as 
the beam emittance. It plays a crucial role in characterizing the quality and the dynamics of the 
e-beam. In a single particle analysis, a, p and 7 define the particle trajectory, as in an ensemble 
analysis they define the second order momentum of the phase space distribution function, thus 
providing information on its extent and maximum localization. Explicitly, 

the averages being understood on the distribution function. Accordingly, the emittance can be 
given the further meaning: 

2 2 2 2 
E = aqqo, - a, . 

According to the above considerati~ns~the dynamics of charged beams passing through transport 
channels naturally leads to a visualization of the problem in terms of circles and ellipses in the 
phase-space, which on the other hand have been recognized as useful pictures for the coherent 
and squeezed states of quantum optics as well (Fig. 1). 

Acting on the vector : amounts to acting on the phase-space ellipse and correspondingly on 
the Twiss parameters. To be more precise, let us say that a linear canonical transformation U, 
represented by the matrix U - = ( E), change the Twiss parameters as [8] 

After these introductory remarks, let us consider the specific effect of the transformations gener- 
ated by the operators k, i = 1,2,3 and recognize the corresponding optical systems. 

Using the matrix representation (6), we immediately get 



Figure 2: Phase-space canonical transformation (a) and optical system (b) corresponding to the 
operator en%. 

which represents an elongation in the q-direction and correspondingly a stretching in the p- 
direction, turning for instance a circle into an ellipse, as sketched in Fig. 2a. 

It is needless to say that the transformation (12) preserves phase-space area, as a consequence 
of that Sp(2) matrices leave invariant the cross products, naturally associated with areas. 

In the optics of electron or light beams the transformation described by S(v, 0) is realized by 
means of telescopic systems, consisting of two thin lenses appropriately combined, according to 
the scheme shown in Fig. 2b. In this regard, let us recall that the symbology for optics of electron 
beams and light beams is the same. Hence, thin lenses in ray optics correspond to quadrupoles in 
electron-beam optics. 

The parameter M ,  which is just equal to minus the ratio of the foci of the two lenses, is 
reported in optics as the magnification of the system. It produces indeed an image magnification 
and a ray-angle demagnification. 

As to the operator K ~ ,  it is easy to obtain the associated transformation as 

cos 412 - sin 9512) 
e-''l R' '(4) = ( sin 412 cos 412 7 



f = -cot $12 

Telescopic system 

Figure 3: Phase-space canonical transformation (a) and optical system (b) corresponding to the 
operator . 

immediately recognized to describe the rotation around the origin in the phase space by the angle 
412, as further confirmed by the transformation law (11) for the Twiss parameters according to 
which the associated ellipse rotates in the counterclockwise direction by 4/2. 

Since any group elements can be appropriately factorized, the canonical transformation cor- 
responding to the matrix R(4) can be realized by means of an appropriate sequence of the basic 
optical elements, that is thin lenses, drift sections and telescopic systems, which however are just 
a combination of the first two. 

Accordingly, the optical system corresponding to a rotation in phase-space can be realized by 
means of the following sequence (Fig. 3): 

1. telescopic system with magnification M = cos $12 

2. drift section of length d = - sin 4 

3. thin lens of focus f = -cot 412 

In this connection, it is worth stressing that the above scheme is only one of the possible ones, 
which can be obtained changing the ordering in the operator factorization, thus allowing to satisfy 
specific requests on the parameters of the optical components. 

Finally, the operator enK2, which can be represented by the matrix: 

enK2 = S(q, 90') = 
cosh q/2 sinh 712 
sinh q/2 cosh q/2 



Telescopic system 

---------- 
Direction q3 Entity q Direction q3 
of the squeeze of the squeeze of the squeeze 

Figure 4: Optical analog of the squeeze S(q,t$). 

is easily identified according to the transformation law (11) as producing a squeeze in the direction 
making an angle of 45" with the q-axis. 

The optical analog can be realized for instance by the same sequence as before, the relevant 
parameters being now M = coshq12, d = sinh 7112, f = tanh-' 7112. 

Finally, let us discuss the squeeze S(q, 4) in the direction making an angle 4/2 with respect to 
the q-axis. Since it can be obtained combining rotations and squeeze along the q-axis, as formally 
expressed by the composition 

it is easy to get the well known matrix representation [2] 

cosh 712 + cos 4 sinh 712 sin 4 sinh 712 
'(" = ( sin 4 sinh 712 cosh 712 - cos 4 sinh q/2 (16) 

According to the above discussion, a possible optical configuration can be realized by a telescopic 
system, preceded and followed by the same sequence of thin lens-drift section, symmetrically 
disposed. It is worth stressing that the magnification of the telescopic system is determined by 
the entity q of the squeeze as the parameters of the optical system drift section-thin lens are 
determined by the squeeze direction 4 (Fig. 4). The quantities q, q5 are usually combined into the 
squeeze parameter < - 7ei4, so that q and 4 can be regarded as the modulus and the phase of the 
squeeze parameter C. 

In csnclusion, we have stated a correspondence between the linear canonical transformations in 
phasespace, as squeezes and rotations, and optical systems, which can be conceptually conceived 
as realizing such transformations, acting effectively on electron or light beams. 



4 Electron-beam transport channels and Wigner angle 

The correspondence between linear canonical transformations and Lorentz transformations has 
been already recognized [2]. Boosts correspond indeed to squeezes in phase-space and rotations 
in real space to rotations in phase-space and rotations in real space to rotations in phase-space. 
Similarly, as the product of two boosts along different directions is not a boost, but a boost 
preceded or followed by a rotation, so the product of two squeeze along different directions does 
not result into a single squeeze, but into a squeeze and a rotation. It can be verified that 

S(X, 4)S(rl, 0) = S(J¶ W(w)  . (17) 
The parameters J, 8, specifying the entity and the direction of the resulting squeeze, and the 
angle w, referred to as the Wigner angle, are determined by A, 4, q according to the well-known 
formulae: 

cosh J = cosh q cosh X + cos 4 sinh X sinh q , 
sin +[sinh X + cos + tanh q(cosh X - I)] 

tane = 
cos 4 sinh A + tanh q[l + cos2 d(cosh X - I)] ' 

w sin 8 sinh % sinh 4 
tan- = 

2 cosh 4 cosh f + cos 4 sinh 4 sinh f ' 
Within the context of the optical analogy, developed in the previous section, the above relations 
can be recast in terms of the parameters of the optical systems corresponding to S(X,4) and 
S(q, 0) , according to 

coshJ = 
1 

4M;Mf { 1 )  1) + (1 - )  ( M -  1 )  1)) , 
(Mi - l)(Mi + 1) - (1 - y )  (M; - l)(Mi - 1I2 

tan26 = 2d 
(Mj- l ) (Mt+ 1) (1 - $1 + (M; - 1) [ 2 ~ f  + (1 - 7) (Mf - 1l2] 9 (19) 

w (Mi - l)(Mf - 1) tan- = 2d 
2 (M; + l)(Mf + 1) + (1 - $) (M; - l)(Mi - 1) ' 

where M, specifies the magnification of the optical system S(q, 0) , whilst MA, d and f denote the 
parameters of the system S(X, 4) according to the scheme of Fig. 4. 

Accordingly, one can design an appropriate sequence of quadrupoles and drift sections to 
perform the transformation represented by the product of three squeeze: 

S(-6, e)s(X, 4)S(v, 0) , (20) 
with J, 8 given according to (19). 

As stated in (17), such a transformation does not leave unchanged the Twiss parameters of 
the beam, which indeed change as in a rotation of the angle w/2. Explicitly, 

2 w  & = a1 sinw + ,& cos - + 71 sin2 5 
2 2 ' 
2 w  = -a1 sin w + Dl sin - + cos2 . 

2 



It is evident that if ol = 0 and 71 = = 1, that is depicted in phase-space by a circle of 
unitary radius, the rotation does not have any effect, since a 2  = 0 and 7 2  = ,02 = 1 as well. As a 
consequence, a beam having different variance in the q and p directions should be used; in other 
words, sharing the language of quantum optics, a squeezed beam should be used to produce a 
rotation of the beam ellipse. 

In that case, indeed, the initial ellipse will rotate in the phase-space just by the angle w/2. 
Measuring then the Twiss parameters of the electron beam before and after being acted by the 
optical system, performing the transformation (20), it is possible to infer the Wigner angle, w, for 
which the following link with the Twiss parameters can be deduced: 

tanw =. 2 ~ 2 ( &  - n) - ~ ( p 2  - r2) 
(P2 -72)(P1-71) +20102 ' 

5 Concluding remarks 

The consideration developed in the previous sections are basically grounded on the algebraic 
analogy between the SO(2,l) Lorentz group and the symplectic group Sp(2), which is basic to 
the Hamiltonian dynamics. Exploiting this analogy, it is possible to conceive and design an optical 
system for electron beams, which allows to get a measure of the Wigner angle by detecting the 
variations occurred in the electron-beam Twiss parameters as a result of the motion through the 
magnetic channel. In this connection, the two-slits method [ll] may offer an appropriate tool to 
visualize the rotation of the beam ellipse and thus to measure the Wigner angle. However, the 
measure is strongly limited by space-charge effects and transverse coupling, induced by sextupolar 
contributions to the quadrupole magnetic field. 

The discussion has been put forward in full generality comprehending also light beams, whose 
paraxial propagation through optical systems is governed by the symplectic symmetry as well. An 
experiment using light beams can be conceptually conceived, but its realization is rather difficult, 
since the measure of the corresponding Twiss parameters, which in the specifically optical context, 
can be understood as linked to the beam spot-size and divergence, is limited by diffraction effects. 

In conclusion, let us stress the relevance of the above results, according to which an analog 
computer for the Lorentz group can be recognized within the purely classical context of electron 
beam transport or opti$l ray propagation. 
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Abstract 

The manipulation of noise and uncertainty in squeezed states is governed by the wave 
nature of the quantum mechanical particles in these states. This paper uses a deterministic 
model of quantum mechanics in which real guiding waves control the flow of localized parti- 
cles. This model will be used to examine the phase space flow of particles in typical squeezed 
states. 

1 Introduction 

The study of squeezed states and uncertainties is exciting. It is exciting because of its potential 
applications to low-noise instrumentation and communication. It is exciting because it represents 
a new frontier of physics, giving us new understanding of quantum mechanics. However I hear 
again and again that the end of many new experiments is to verify quantum mechanics. Should it 
really be so exciting to re-verify quantum mechanics for the ten thousandth and first time if we are 
so sure that the present ideas of mechanics are indeed correct. Or perhaps we are still 
haunted by the ghosts of de Broglie and Einstein and their insistence that quantum mechanics be 
deterministically based. The non-verbalized and forbidden question seems to be "Is it possible to 
construct a localizable, deterministic model that is consistent with the observations that quantum 
mechanics explains so well?" And in spite of the repeated claims by physicists that they are ardent 
non-determinists, their pursuits seems to be strongly focused at finding a weakness in quantum 
mechanics or at least some inkling of a microscopic, deterministic world that has been previously 
hidden to physics. Certainly modern quantum optics experiments have this potential. 

It is not that there is anything incorrect with quantum mechanics. It is just that it is a 
statistical theory and there are many situations and many applications in which it would be very 
useful to have a deterministic, single particle theory also. At any rate, it would seem that this 
workshop would be incomplete without at least one person reiterating the challenge of de Broglie 
and Einstein. In this vein, I will present one possible deterministic model for quantum mechanics, 
and then go on to relate this model to squeezed states and uncertainties. Phase diagrams will be 
included. 

2 The Model 
To begin with, this model assumes that particles have real, and localizable, continuous, existence. 
This is consistent with the feelings of many, if not most, physicists. However, the model also 



assumes, contrary to popular belief, that the waves of quantum mechanics are also real. After 
a century of discussing wave-like phenomena, perhaps the physics community might allow the 
possible existence of some real waves. I assume that a source that emits particles, also emits 
waves in rough proportion to the wave intensity, and anything that absorbs particles also absorbs 
the waves in proportion. The model also assumes that the waves entrap the ensemble (or phase 
space of) emitted particles and force them to flow along with the wave energy, such that a setup 
that splits the waves will also split the particles in rough (or statistical) proportion to the split of 
wave energy, thereby insuring that the particle density stays proportional to @. In a sense, the 
particles are nearly massless specks, carried at will by the flow of waves. All large-scale dynamics 
are controlled by the waves. What is there left for the particles to do? Without them, the 
wave fields would pass through each other. The particles represent small local, non-linear mixing 
sites that allow wave fields to interact with each other for the processes of scattering, transitions, 
absorption, emission, and detection. Thus in this model[l] propagation is determined by the 
waves while interactions are determined by the particles. This model is similar to models by de 
Broglie[2], Bohm[3], Einstein[4], and others, although it is generally more specific and physical 
than the previous models. 

What about a wave equation? I find the easiest wave equation to work with is the Klein-Gordon 
Equation: 

which can be changed into a plasma equation: 

with the substitution of: 

An interpretation of this is: for each species of particle, such as electrons, space supports an 
associative guiding wave governed by (2) with the 'plasma' frequency given by (3). There need not 
be any real plasma, only a space resonance at this frequency which may be fundamentally linked 
to the existence of the particles themselves. Furthermore, I am not hypothesizing agreement of 
two independent, physical quantities in (3), the mass and the plasma frequency. In quantum 
mechanics there is no physical, classical mass and the mass is used only as a number in various 
equations. In this model also there is no physical mass associated with the classical mass numbers, 
but instead the physics is tied up in the 'plasma frequencies'. 

One can hypothesize an interaction potential between the waves and particles, and generate 
the phase space orbits shown in Fig. 1. In order that the orbits stay bound to the waves, even 
as the waves spread out and decline in amplitude, it is necessary to assume that the microscopic 
mass of the particles be in proportion to the waves. This can be rationalized[l] as a mass due to 
the energy content of a local resonance centered about the particle. Fig. l a  shows phase space 
orbits for particles trapped in a standing wave field. Fig. l b  shows similar orbits for traveling 
waves hitting a finite height barrier. Evanescent waves partially penetrate the barrier, causing 
some particle orbits to be carried into the barrier, while a fraction of these waves and particles 
tunnel completely through the barrier. 



FIG. 1. Phase space orbits for particles captured in a) standing wave fields, and 
b) a tunneling situation. On the vertical axis is plotted the microscopic momentum of 
the particles which is very different from the macroscopic, observable momentum. 

Just to mention a few more details of this model from Ref.1: mixing equations show that 
during interactions, frequency sums and vectorial wave number sums are conserved and form the 
basis ,for macroscopic energy and momentum conservation. Microscopic energy and momentum, 
are not so useful since the waves and the associated microscopic energy tend to spread out while 
propagating. The spread out remnant wave energy creates the vacuum fields, as well as being 
redeposited around particles, i.e. in populated states. 

3 Uncertainties 

The Heisenberg uncertainty principle states that; 

However, since in this model, waves control particle motion, in order to localize a particle or group 
of particles, we need to first localize the entrapping wave. The correct uncertainty relation for 
localizing waves is given by: 

A x A k > 2 ~ ,  ( 5 )  

where 6k is the spread in wave number. Just as quantum mechanics operationally does, this model 
replaces macroscopic momentum with wave number. Similarly, the related uncertainty: 

can be visualized as in Fig. 2, where a traveling wave pulse is entrapping particle orbits to itself. 
Suppose there is a detector at some point to the right that the pulse will impinge on and that 
we are discussing the 6t in the time spread of the detected particles. In order to narrow the time 
spread of particles, we must narrow the time duration the wave pulse will be at the detector and 
this requires use of the relationship: 

A t A w 2 2 ~ .  (7) 



This is again like conventional quantum mechanics (at least operationally): in this case replacing 
energy with a frequency. So we see that the Heisenberg uncertainty relations fall out very naturally 
from this model. 

FIG. 2. Sketch of phase space of particles trapped in a traveling wave pulse. 

4 Squeezed States: Amplitude and Phase 
One of the most common squeezing operations involves reducing the amplitude fluctuations in a 
beam of particles. Fig. 3 shows a hypothetical micro-phase space of a beam. Here we assume a 
perfectly level traveling wave field (of completely well defined amplitude and phase) and illustrate 
the statistical distribution of particles that might be filling this wave field. The particles are 
randomly placed with respect to position and microscopic phase, and move horizontally to the 
right (on unplotted) orbits on the plot. The irregular line plots the fluctuating density of these 
particles as a function of position, which 'squeezing' is often called on to smooth out. If we 
selectively amplify or attenuate certain parts of the beam to level the density of particles, two 
undesirable things will also occur. First, we will not (in most cases we cannot) also homogenize 
the beam in the microscopic momentum coordinate. This will adversely effect certain other 
measurements, such as phase as we shall shortly see. Secondly, any attenuation or amplification 
process that changes particle density necessarily also attenuates or amplifies the associated wave. 
If the wave started out perfect, it will be degraded by this process. 

X 

FIG. 3. Hypothetical micro-phase space of a beam of particle entrapped by a 
uniform traveling wave field. 



FIG. 4. Elemental phase detector showing mapping of various regions of phase 
space of the incoming beams into different parts of the interference pattern. 

Figure 4 shows an elemental or simplistic phase detector. It involves injecting two signals 
into opposite ends of an attenuating medium and looking for spacial interference in the middle. 
A moving detector would be used to map out the particle density as a function of position to 
determine the relative phase of the two beams. Changing the relative phase of the two signals 
will move the interference maxima. This scheme was chosen because, unlike most other schemes, 
all particle paths are along a single line, i.e. in one dimension. This frees the other dimension for 
plotting microscopic momentum and greatly simplifies our phase space plotting. The interesting 
feature of the plot is that the phase space orbits map different microscopic momentum regions of 
the incoming signals into different interference maxima. In the figure here, only the uppermost 
momentum particles make it into the central, most useful maximum. This illustrates that inhomo- 
geneities in the particle density in the momentum direction will adversely effect the interference 
pattern and thus the phase. Irregularities in the waves themselves will also have a similar adverse 
effect. 

5 Postscript: Modern Non-local Experiments 

Dr. Shimony raised the question about recent non-locality experiments being in conflict with the 
model presented here. My answer was that the experiments I had examined carefully[5] are in 
fact not inconsistent with this model. I wish to expand on that here. For example, the Franson 
experiment can be explained deterministically[6][7]. Even with delayed choice experiments where 
beams are changed after they become separated from each other, a change in the beam will affect 
both the particles in that beam and the waves around the particles. Since the waves determine the 
dynamics, it is not surprising that we get wave-like behavior in going through subsequent filters, 
beam splitters, and polarizers. 

Surprisingly, the hardest experiments to reconcile with this model are photon cancellation 
experiments[8]. However even for this there is a possible classical explanation [5]: the IF filters, 



which most quantum optics experiments use, are resonators and as such selectively accept and 
reject photons. The math of the time correlation of this classical acceptance and rejection process 

, has an uncanny resemblance to the math of entangled states. In a nutshell, when a Mach-Zehnder 
interferometer is balanced so as to prevent coincident detection through its outputs, the wave 
fields (of this model, as well as those of normal quantum mechanics) are phased so as to load 

I up only one IF filter at a time, thereby preventing the passage photons through the IF filters of 
I both detectors simultaneously. The conclusion is that these experiments are not conclusive proof ~ of non-locality, particularly if one has a local model, such as the one presented here, where the 
I particles are entrapped by and guided by waves. 

These effects of IF filters also should be considered with reference to the Franson and the de- 
I layed choice type experiments discussed above to give mathematically correct agreement between 

this model and experiments. We shall all look forward to the day when the quantum optics exper- 
iments are done with no IF filters after the down conversion process. Also, detection of practically 
all photons entering the experimental apparatus is essential if one wishes to analyze the system 
one-dimensionally (with branches). This requires large (no lost beam due to collimation or finite 
detectors, etc), high-efficiency detectors with large angular acceptance. Like good accountants, 
we need to see where everything is going. 
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Abstract 

The phase-space approach to classical and quantum systems demands for advanced an- 
alytical tools. Such an approach characterizes the evolution of a physical system through a 
set of variables, reducing to the canonically conjugate variables in the classical limit. It often 
happens that phase-space distributiops can be written in terms of quadratic forms involving 
the above quoted variables. A significant analytical tool to treat these problems may come 
from the generalized many-variables Hermite polynomials, defined on quadratic forms in Rn. 
They form an orthonormal system in many dimensions and seem the natural tool to treat the 
harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties 
of these polynomials and present some applications to physical problems. 

1 Introduction 

Classical special functions play a central role in both pure and applied mathematics. Usually 
conceived for the solution of very specific problems, they gave rise to a far-reaching theory, being 
part of, and frequently motivation for, important general theories. 

The trigonometric functions, for instance, originally introduced to deal with specific problems 
of astronomy and navigation, are the basis for the theory of Fourier series and Fourier integral, 
which have applications to many parts of physics. 

Similarly, Bessel functions firstly appeared in mathematical physics in the 1738 Bernoulli's 
memoir, containing enunciations of theorems on the oscillations of heavy chains. Then, they 
reappeared in mechanical problems as the vibration of a stretched membrane or the symmetrical 
and unsymmetrical propagation of heat in solid cylinders and spheres, as well as in astronomical 
problems, related for instance to the elliptic motion of a planet about the sun. Presently, Bessel 
functions have a very wide field of applications, from abstract number theory and theoretical 
astronomy to concrete problems of physics and engineering [I]. 



Correspondingly, classical orthogonal polynomials (Jacobi, Legendre, Hermite), also introduced 
in connection with astronomical problems, are now of great importance in mathematical physics, 
approximation theory as well as in the theory of mechanical quadrature. In addition, they find 
significant applications in quantum mechanics on the determination of discrete energy spectra and 
the corresponding wave functions in fundamental problems [2]. Orthogonal polynomials imse indeed 
essential tool to deal with the problems of the harmonic oscillator and the motion of particles in 
a central field. Furthermore, the classical orthogonal polynomials of a discrete variable are of 
interest in the theory of difference methods [2]. 

Theory of classical special functions is rather well settled [3]. Recursion relations, addition 
theorems, integral representations, generating functions, asymptotic formulae, differential equa- 
tions are collected in an organic body, which is however continuously refined and enriched by new 
investigations and new theoretical approaches [4]. 

Let us recall for instance the method illustrated in ref. [I], which suggests a generalization of 
the Rodriguez formula for the classical orthogonal polynomials, thus allowing to obtain explicit 
integral representations of all the special functions and to derive their basic properties. Similarly, 
the possibility of framing special functions within the context of group theory [4, 51 revealed a 
powerful tool permitting derivation of new results and a rational classification of old results, as 
well as suggesting to introduce new classes of functions, related to the recently discovered algebraic 
systems, such as the supergroups and the quantum groups [6]. 

Furthermore, we note the description of orthogonal polynomials by their recursion relations, 
which once regarded as eigenvalue equations allow to look at orthogonal polynomials from the 
viewpoint of scattering theory [4, 71. 

Recently, interest in special functions has greatly increased in connection with the possibility 
of generalizing the well known functions of mathematical physics to more than one variable and/or 
more than one index. In this regard, the generalization amounts to introducing functions with 
properties analogous to those of the one-variable counterpart. Generating functions are usually 
the key-note for many-variable generalizations of special functions. 

The multivariable Bessel functions, for instance, originally introduced by Appell [8] in con- 
nection with the problem of the elliptic motion of planets [9], have revealed a wealth of possible 
applications to physical and/or purely mathematical problems, as the scattering of laser radia- 
tion by free or weakly bounded electrons, the emission of e.m. radiation by relativistic electrons 
passing through magnetic undulators [lo] as well as problems related to the queuing theory [Ill. 
Also, they proved their relevance in multiphoton emission and absorption processes by quantum 
systems, which are of interest for the investigation of squeezed states, the relevant Hamiltonian 
operator containing indeed powers of the annihilation and creation operators [12]. 

Correspondingly, the multivariab1.e generalization of orthogonal polynomials has attracted a 
great amount of interest. In particular, as to the Hermite polynomials, let us recall that in ref. 
[13] a procedure has been developed, which generalizing that proposed by Gould and ~ o ~ ~ e i  [14] 
allows to define multivariable generalized Hermite polynomials, providing a complete orthonormal 
set in L2(Rn) space of square sommable functions with n variables. 

The present paper concerns with the classical many-variable functions introduced by Herrnite 
[15], whose application within the context of the phase space approach to physical problems is 
suggested. Accordingly, in Sec. 2 a general view on the many-variable Hermite polynomials is 
presented. The possibility of exploiting the developed formalism within the context of the phase 



space picture, which is becoming the context where many physical problems are naturally framed, 
is investigated in Sec. 3. In particular, the basic model of the harmonic oscillator is considered. 
General considerations and extensions are presented in Sec. 4. 

2 Many-variable Hermit e polynomials 

One-variable Hermite polynomials 7in(x)l can be defined by means of the relation 

where they appear as the coefficients of the series expansion of the exponential of a quadratic form 
defined on the red domain. 

The above expression can also be recast in the more usual form 

from which, exploiting the series development of the exponential function and appropriately rear- 
ranging the summation, the well known expression of the Hermite polynomials in form of a finite 
sum can be easily drawn: 

where [v] denotes the largest integer 5 v. 
Also, according to the formula for the Taylor expansion, (2) provides the Rodriguez formula: 

Taking the derivatives of both sides of (1) or (2) with respect to x and t ,  it is easy to infer the 
recursion relations 

linking the polynomial of order n to the contiguous ones. The prime denotes derivative with 
respect to x. 

It is immediate to get from the above relations the differential equation obeyed by ?in's: 

which allows to understood 3-1, as eigenfunction of the operator 

A d2 
'D=-- d 

&.Z fXz 2 (7) 

'The use of the script 'H, to denote the Herrnite polynomial is in order to avoid confusion with the more common 
polynomial Hn : H n ( x )  = 2n/27fn( f ix) .  



n being the corresponding eigenvalue. 
The opergtor 5 is not self adjoint; the adjoint operator 

admits the eigenfunction 3-1:) explicidy given as 

H,C (x) = an ( ~ ) e - ~ ' / ~  (9) 

belonging to the same eigenvalue as a,. Accordingly, the functions (7in,  H:) form a biorthogonal 
set in the usual sense that they satisfy the orthogonality relation 

Generalizing the relation (1) to involve a bilinear form defined in Rn, Hermite introduced many- 
variable functions [15]. Adopting a matrix notation, we can write down 

- -  - = e -1xTMx 2- =- e- - 
mi, 

where 3 and h are elements of the vector space Rn: 

the superscript T meaning transpose. 
Accordingly, M - is a real n x n matrix: - = (aij), i, j = 1,. . . , n, which is required to be 

symmetric: aij = aji, not degenerate, i.e. det M 2 0 and positive definite: ~i > 0, i = 1 , .  . . , n. 
The expression (11) can be rewritten in thFalternative form 

which is the n-variable analog of (2). 
In passing, it is worth noticing that the above expression suggests considering the more general 

bilinear form 

with the matrices =) A = B being symmetric but in general different from each other. In this respect, 
let us recall that the Grassman Hermite functions have been introduced using the above quadratic 
form, with A and & being antisymmetric matrices and z, h anticommuting variables. A further 
extension of(14) hGe been considered in ref. [6], with the intent of obtaining a class of functions, 
related to quantum groups. 



In full analogy with the one-variable case, taking the derivative of (11) or (13) with respect to 
the components of both vectors g and h, we get the recursion relations satisfied by Rml,...,mn (z): 

witki i ranging from 1 to n. 
Since corresponding to any quadratic form cj(2) = gTM: we can associate the adjoint form 

defined in terms of the inverse matrix, i.e. $(c) = --  EM-^, - it is possible to associate with the 
Rml,...,mn'~ the adjoint polynomials Gml,...,mn (2). The definition resembles the relation (1 I), but 
involves the transformed vectors: 

Explicitly, we have indeed 

, - + ( g - ~ ~ g - ' ( g - ~  = e - + T g - l g  ky . . . 7Gml,...,mn(~) k? . C - m , . .  1 mn. 

- If M is the identity matrix, the two polynomials coincide: Nml,..,,mn - Gml,,.,,mn. Furthermore, 
theyturn into the product of n one-variable Hermite polynomials, i.e. 

Taking the derivative of (17) with respect to : and &, the following set of recursion relations can 
be obtained: 

with A r det M and Aij the minor relevant to the element aij. 

The relevance of the polynomials Gql,..., is clarified by the orthogonality relation, which can 
be proved in the form 

For the explicit derivation of the above relation the reader is addressed to ref. [8]. 
The orthogonality relation (20) can be conveniently exploited to express a given n-variable 

function p(g) in form'of a series involving 7imll...lmn and Gmll...,mn. Accordingly, let us put 



with the coefficients Am ,,...,, , Bml mn being specialized according to (20) into 

The explicit values of the entries of the matrix M - should be suggested by the specific problem 
under study. 

It is needless to say that the theory of many-variable Hermite polynomials is very rich. How- 
ever, the above considerations represent all the machinery we need for testing the possibility of 
using these functions as basis for the phase-space analysis of physical problems. For a more 
detailed discussion the interested reader is addressed to refs. [8, 151. 

3 Two-variable Hermite polynomials and phase space 
picture of dynamical problems 

Phase space picture is becoming the unifying language for both classical and quantum mechanics. 
Phase space formalism is indeed basic to the Hamiltonian formulation of classical mechanics. In 
this connection, the evolution of a dynamical system is described by a number n of independent 
coordinate variables and on the same number of canonically conjugate momenta. The cartesian 
space of these 2n coordinates is just the phase-space. 

Correspondingly, phase space picture of quantum mechanics is becoming increasingly popular. 
Although, the concept of phase-space is not compatible with quantum mechanics, q̂  and f i  being 
noncommuting operators, the Wigner phase-space representation allows to overcome this prob- 
lem, since in this representation both the coordinate and momentum variables are c-numbers. 
Accordingly, it is possible to perform phase-space canonical transformations as in the case of 
classical mechanics, which correspond to unitary transformations in the Schrodinger picture of 
quantum mechanics. 

Phase space concept appears therefore as the unifying context, where classical as well as 
quantum mechanics can be naturally framed, thus suggesting the possibility to transfer concepts 
and methods from quantum to classical mechanics and viceversa. 

Furthermore, as discussed in ref. [16], phase-space picture provides the natural language for 
quantum optics as well, offering a geometrical view to coherent and squeezed states as circles 
and ellipses respectively. In this connection, taking advantages from the symmetry of the rele- 
vant Wigner phase space distribution function it is possible to calculate expectation values and 
transition probabilities for the above quoted states [16]. 

Finally, let us recall that phase space is the context where the dynamics of electron beams 
moving through magnetic channels is studied and the Harniltonian optics can be conveniently 
reformulated. 



As already remarked, the paper is aimed at investigating the possibility of using the many- 
variable Hermite polynomials, briefly discussed in the previous section, as analytid tool in the 
phase-space approach to dynamical problems. 

In the quantum framework, one-variable Hermite polynomials are intimately related to the 
harmonic oscillator dynamics. It is therefore natural to analyse, as first step for our investigation, 
the harmonic oscillator dynamics in the phase-space representation. 

Let us consider therefore the quadratic Hamiltonian 

the variable s playing the role of time. It is needless to stress the relevance of the above Hamilto- 
nian as basic model for many physical problems as well as approximation in many of the existing 
theories. 

As already stressed, in quantum mechanics the Hamiltonian (24) rules the evolution of a 
harmonic oscillator of unit mass and time-dependent frequency k(s), 4 and f i  being the position 
and momentum operators. In classical mechanics, it describes for instance the betatron motion of 
a charged particle through a magnetic quadrupole, as in the ray optics it governs the propagation 
of an optical ray through a nonhomogeneous medium with a quadratic profile of the refractive 
index. 

It is interesting to notice that in the configuration space picture the evolution of the system 
describid by the Hamiltonian (24) is analysed within the context of conceptually and formally 
different approaches: the Schrodinger equation for the quantum wave function and the Hamilton 
equation of motion for the canonically conjugate variables q and p. Conversely, the Von Neumann 
equation for the Wigner distribution function and the classical Liouville equation for the phase- 
space distribution are of the same form, so long as the Hamiltonian of the quantum system is 
quadratic. Hence, time evolution of the Wigner function can be obtained directly from the solution 
of the equation of motion of the corresponding classical system. Harmonic oscillator provides a 
unique example in which classical and quantum phenomenology overlap to a large extent. 

Let us approach the problem within the context of classical mechanics. Accordingly, the 
Liouville equation for the phase space distribution function p(q, p; s) is immediately written down 

with an assigned initial condition: p(q,p; s) = po(q,p). 
As introduction to the forthcoming discussion, let us recall that an invariant quadratic form 

can be associated to any dynamics described by quadratic Hamiltonians-in canonical coordinates 
and momenta. In passing, it is worth stressing that within a quantum context the quadratic 
form (26) is reported as the Ermakov-Lewis invariant [17], the vector g containing obviously the 
position and momentum operators, whilst in classical mechanics it is reported as the Courant- 
Snyder invariant [18], firstly introduced in the analysis of electron beam motion through magnetic 

channels. In the above expression, the two component vector : E (z) is acted by the real 2 x 2 



matrix T, which furthermore is required to be symmetric and unimodular: d e t z  = 1. Just to 
share th; language of accelerator physics, we refer to 21 - as the Twiss matrix2 andfeport it in the 
form 

The entries a,P,r, usually named as Twiss parameters, play an important role in designing 
transport channels. 

The quadratic form (26) can be depicted in the phase space as an ellipse, whose size and 
orientation are determined by the Twiss coefficients. The area of the ellipse, which is just the 
value of the invariant I, is usually denoted in accelerator physics as I = re,  e being named as 
the beam emittance. It plays a crucial role in characterizing the quality and the dynamics of the 
e-beam. In a single particle analysis, a ,P ,y  defines the contour of the particle trajectory, as 
in an ensemble analysis they define the second order momentum of the phase space distribution 
function, thus providing information on its extent and maximum localization. Explicitly, 

the averages being understood on the distribution function. Accordingly, the emittance r: can be 
given the further meaning: 

E2 = a 2  a 2  - , 2 
99 PP r w • (29) 

Let us stress now that the Liouville equation admits as particular solution the distribution function 

shaped indeed in form of a Gaussian and therefore with a maximum localization within the ellipse 
of area E .  

zTT x The above considerations suggest to use the functions 3-l,,,e-z- =- as basis in the phase- 
plane, the entries of the matrix 2 being chosen as  the second order momentum of the distribution. 
In other words we can use the agve  quoted functions to approximate a generic function defined in 
the phase space by means of two-variable Gaussians, further modelled by the Hermite polynomials 
Nm,n 9 which give a different maximum localization. The process is perfectly similar to that used 
for one-variable functions using the Hermite functions. 

Let us consider therefore generic distribution function p(q,p; s). According to the results of 
Sec. 2, we can express p(q, p; s) in form of a series: 

2 ~ h e  quadratic form (26) can also been regarded as the transcription in phase space of the quantum invariant, 
the vector : being formed by the expectation values of the position and momentum operators and the matrix 2: - 
being linked to the covariance matrix. 



with am,n(s) and ~ : ,~ (q ,  p) being explicitly given as 

The superscript W specifies that the polynomials 3C,,, have been used in the series expansion. 
The alternative expansion in terms of the adjoint polynomials Gm,n(q, p) can be also used, thus 

leading to 
P(P, pi s) = C bm,n~E,n(q, P) 

m 9% 

(33) 

with 

and the superscript G specifying that the adjoint polynomials G m ,  have been used. 
The entries of the Twiss matrix appearing in the above expression can be conveniently chosen, 

according to the previous discussion, as the second-order momenta of the distribution function 
po(q,p) at the initial time. Then, the emittance E is just obtained according to (29). 

Inserting the expression (31) into the Liouville equation (25), we get the set of equations for 
the coefficients a,,, (s) , namely 

where the relations 

and 

have been used, obtained from the recursive relations obeyed by ? f m ,  (see Appendix A). 
Let us consider for instance the particular case where the quadrupole strength does not change 

along the direction of motion: k(s) = k; and the initial -distribution function po (q, p) has the form 

The coefficients a,,n(0) are then given as 



In addition, assuming that the electron beam is matched to the quadrupole, namely 

it is easy to prove that the distribution function does not change during the motion: 

More general situations require the numerical handling of eq. (35), from which the evolution of 
p(q,p; s) can be inferred according to the expansion (31). 

4 Concluding remarks 

The analysis developed in the previous sections has been aimed at testing the possibility of using 
many-variable Hermite polynomials as analytical tool, within the context of phase-space picture 
to dynamical problems. 

The discussion has been limited, for illustrative purposes, to the harmonic oscillator dynamics. 
However, it can be easily realized that Harniltonians containing higher order terms, accounting 
for non linear forces, can be treated by means of the same formalism as well. 

Also, within a quantum mechanical context, the formalism developed might be used in con- 
nection with the Von Neumann equation, which, as already noticed, rules the evolution of the 
Wigner distribution function W (q, p; s) according to [I91 

Furthermore, let us say that, although in Sec. 3 we have considered 1-dimensional dynamics, 
problems with more than one degree of freedom can be analysed, as, for instance, the motion of 
electron-beams along magnetic channels with transverse coupling. In that case, the radial and 
vertical motions cannot be separated and the dynamics should be analysed in a 4-dimensional 
phase-space, the relevant elements consisting of the conjugate variables x, p,, y , p,. 



APPENDIX A 

Two-variable Hermite polynomials 

This Appendix is devoted to discuss with some details the properties of the two-variable 
Hermite polynomials, which are used in Sec. 3 as illustrative of the usefulness of such functions 
within the context of the phase-space formalism. 

Firstly, let us write down the explicit form of the recursion relations, reported in (15 )  for the 
general case of many-variable polynomials: 

From the above relations after some algebra the following partial differential equation can be 
deduced 

a2 a2 a2 
q - + p -  ( 8q )] x m , n  = ~ ( m  + n ) x m l n  , ( A - 2 )  

in some sense reminiscent of eq. (6), which can be recovered in correspondence with M = 1. - - 
Consequently, the polynomials a m ,  can be understood as Bgenfunctions of the operator 

with eigenvalue A (m + n) . 
Let us consider now the adjoint polynomials Gm,n(q,p) ,  for which the general relations (19) 

specialize into 

which provide the differential equation 

the same as for 
Finally, let us note that the orthogonality relation (20) in the case we are considering specialize 



REFERENCES 

[I] G.N. Watson, A Treatise on the Theory of Bessel Functions, (Cambridge University Press, 
London, 1958). 

[2] A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics, (Birkhauser, 
Basel 1988). 

[3] E.D. Rainville, Special Functions, (The Macmillan Company, N.Y. 1960). 

[4] Theory and Application of Special Functions, ed. R. Askey (Academic Press, N.Y. 1975). 

[5] W. Miller Jr., Lie Theory and Special Functions, (Academic Press, N.Y. 1968); N.J. Vilenkin, 
Special Functions and the Theory of Group Representation, (Academic Mat hematical Society, 
Providence, RI 1968). 

[6] R.J. Finkelstein, J. Math. Phys. 33, 4259 (1992). 

[7] K.M. Case, J. Math. Phys. 15, 2166 (1974). 

[8] P. Appell and J. Kamph de Ferikt, Fonctions hypergeomktriques et hypersphkriques. Poly- 
nomes d'Hermite, (Gauthier-Villars, Paris 1926). 

[9] M.B. Jekhowsky, Bull. Astr., XXXV, 134 (1918). 

[lo] G. Dattoli, L. Giannessi, L. Mezi and A. Torre, Nuovo Comento B105,327 (1990); G. Dattoli, 
A. Torre, S. Lorenzutta, G. Maino and C. Chiccoli, Nuovo Cimento B106, 21 (1991). 

[ll] W. Miller Jr., Comm. Pure Appl. Math. 18, 493 (1965). 

[12] G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino, M. Richetta and A. Torre, J. Sc. Comp. 8, 
69 (1993). 

[13] G. Dattoli, C. Chiccoli, S. Lorenzutta, G. Maino and A. Torre, Theory of Generalized Hermite 
Polynomials, submitted for publication. 

[14] A.W. Gould and A.T. Hopper, Duke Math. J. 29, 5 (1962). 

[15] Ch. Hermite, Comptes Rendus, t. 68, 93 (1864). 

[16] D. Han, Y.S. Kim and M.E. Noz, Phys. Rev. A37, 807 (1988); D. Han, Y.S. Kim and M.E. 
Noz, Phys. Rev. A40, 902 (1989); D. Han, Y.S. Kim and M.E. Noz, Phys. Rev. A41, 6233 
(1990); Y.S. Kim and M.E. Noz, Phase Space Picture of Quantum Mechanics, (World Publ., 
Co., Singapore 1991). 

[17] H.R. Lewis Jr., Phys. Rev. Lett. 18, 510 (1967); H.R. Lewis Jr., J. Math. Phys. 9, 1976 
(1968); H.R. Lewis Jr., and W.B. Reisenfeld, J. Math. Phys. 10, 1458 (1969). 

1181 E.D. Courant and H.S. Snyder, Ann. Phys. 3, 1 (1958). 

[19] E.P. Wigner, Phys. Rev. 40, 749 (1932). 



Antoine Royer 
Dkpartement de Genie Physique, Ecole PoIyfechnique 

Ag,,&Ca19 Qukbec H3C 3A 7, Canada 

The Wigner function is argued to be the only natural phase space function evolving 
classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to 
understand graphically how certain quadratic time-dependent ltonians induce squeezing 
of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem 
to the quantum uncertainties. This makes it possible to deduce features of the quantum 
evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian. 

B e  Wigner function [1] can be used to get a visual understanding of why certain time- 

dependent Hamiiltonians induce squeezing of quantum states. We first address the question: M y  the 
Wigner function, rather than, say, the Husimi function [2]? It will be showed that although other phase 

space functions may evolve classically under certain specific quadratic Hamiltonians, the Wigner 

funcriola is the only one to do so under quadratic Hamiltonians having a he-dependent bilinear part. 
We consider, as an exmple, squeezing by a peridically modulated harmonic oscillator. We then 

discuss a generalization of Ehrenfest's theorem applying to the quantum uncertainties. This allows to 

deduce aspects of the quantum evolution, such as squeezing, from the classical evolution even in the 

Phase space variables (position and momentum) are denoted by q and p. A caret is used to 

identify operators. Thus, [q, pf = i, where we take h = 1. The time variable is denoted by t. 

2 Qoadratic Hamiltonims and phase space functions 

Ehrenfest's theorem expresses the time derivatives of the expectations (q) and (p) in a way 

formally similar to Hamilton's equations. In the case of a Hamiltonian = $*2/m + V($, it reads 



where F(q) = -aV/aq is the force. If the potential V(q) is quadratic, hence F(q) linear (or, if the 
particle is in a state sufficiently localized on the scale of non-harmonic variation of V), then (F(i)) = 

I?((¶)), and (1) become identical to Hamilton's equations, implying that (¶) and (p) follow classical 

trajectories in phase space. This stays m e  in the case of a general quadratic Hamiltonian 

H(t) = iil(t) + &(t) (2) 

where gl(t) is linear, and &(t) is bilinear in i and j, (a, P, a, b, c scalar functions of time): 

Can one push this further, and associate with state vectors Iv), or state operators 6, a phase space 

function f(q,p,t) whose quantum evolution is classical for such Mamiltonians? That is, such that 

where (qbp3 is the point which classically evolves into (q,p) in the time interval (O,t), under the Hamil- 
tonim H(qq,t). It is natural to ask that f(q,p) be linear in eitker I~J) or 6, so that it has the fom 

where I$*) and ihp are kets and operators pmmeaized by phase space. 

lnwduce the unitary time-evolution operator 6(t,tt), defined by 

and similarly c1 and c2 corresponding to fil and g2. Let us first assure classical evolution under 
linear time-independent Hamiltonians HI = a¶+Pp: Here, Cl(t,0) = e-it@Q+p~), and one gets classical 
evolution, f(q,p,t) = f(q-Pt, p+at, O), up to a phase, iff 

'Ow) = r),l$), ;hp = I j q p ~ , - l  

where 
n 

D, = eipq-ic@ 

are phase space displacement operators, and I$) and A are some fiducial ket and operator. We now 

note the relations ([I+ denotes anticommutators, { )pB Poisson brackets): 



where H1,2 = Hl;~(q,p). Using these results, and refering to (3, one finds that 

where c2 is the time evolutor for fi2, and ~(q,p,t) is a phase determined by the equation 

One verifies (11) by verifying that both sides of C(0,t)6&2(~0) = 6qtPtei~ satisfy the same 

differential equation. We then get, from (6) and (1 1): 

* 

One sees that the function f$ evolves classically iff I$$ is stationary, i.e., if H2 is time-independent, 

and I+) = !En) is an eigenket of it. For instance, if 62 is a harmonic oscillator, and I$) = I&) is the 

ground state, then I@@) are coherent states, and 

is the Husimi function [2], which is well known to evolve classically under that flz of which I )  is 
n 

an eigenket. Clearly, no function f+ linear in state vectors can possibly evolve classically if H2 is 

time-dependent. Consider now (14): Again, f~ evolves classically iff At is stationary: For instance, if 
H2 is time-independent, and = IEn)(En*I or A = g&2), then the evolution is classical - but only for 

thatspecific time-independent H2. IS there an operator A (apart from the unit operator) such that 

(cp a real phase) for tim-dependent H2(t)? Yes, the parity operator if, since in = -ni9 = -& 
imply k 2 ,  n]=0. Setting A = fi in (14) yields the Wignerfunction [1,3] 

The Wigner function is the only phase space function which evolves classically under (any) time- 

dependent H2(t). One can see this as follows: Represent any A by its Weyl symbol Aw(q,p), where 



the Weyl symbol of an operator A is defined as [3,4] 

We want 4, hence its Weyl symbol, to be stationary for any $(t). Now, just as the Weyl symbol 
(17) of fi evolves classically under f12(t), so does that of it. Ihe  only possible way for (hdW(q,p) 

to be stsationiury under classical evolution with &fferent El2 's (e.g., with orbits which are ellipses or 

hygerbolas of different eccentricities) is that it be be concenarated at the origin: We must thus have 
A,(q,p) = (mst)Q)6(p); this implies [5b] that A = (const)lii[. 

%he classical evolution of the Wigner function under quadsattic M(t) is very useful for under- 

standing the quantum in terns of the classical evolution. As an example, consider a h  

If a=l (in suitable units), the classical orbits M(q,p) = constant are circles in the phase plane (q,p). If 

a # I, the orbits me ellipses (Fig.l), the ratio of the q semi-axis to the p semi-axis being a. We will 

now let a alternate between two values, y and y -1 (where y > I), at every quarter of a period 2x10, 

while keeping o fixed (i.e., only m changes). Let m = y -1 6 1 for the fmt quarter period: D ~ n g  that 

time intenval, a point initially on the positive q axis (beginning of arajectory 1 on Fig.2) moves to the 
negabve p axis, while receding away from the origin by a factor y. ;Then let a = y > 1 dusing the next 

quarter period: %he point moves to the negative q axis, receding away from the origin by another factor 
y. And so on. One here has parametric mplification. On the other hand, points initially on the p axis 

(arajectory 2) close in on the origin. Thus, classically, the phase plane gets squeezed into the rotating q 
axis, by a factory at each quarter period. Whence a corresponding squeezing of quantum states [5a,6]. 

Fig. 2 t 



The above concerned quadratic Hamiltonians, It will now be indicated that the Wigner-Weyl 

) ~presenation allows to reinterpret Ehrenfest's theorem, and to extend it to quadratic obsea- 

vables, hence to the quaturn uncentainbes. This makes it possible to deduce features of the quantum 

evolution from the classical evolution even in the case of arbitrary Hamiltonians. Let us first recall that 

repnsentation, expectation values of operators A have the "classical" form [1,7] 

In particular, the quantum expectations of 4 and f, are 

and the uncemhty matrix is 

A qumrum state (wave packet) may be roughly represented in phase space by an uncertainty ellipse 

(u - (u)) C-l (U - (u)) = 1 where u = 

We also need the result [7] 

[A, i]w(q,p) = i (Aw, BW)pB(q,p) if A or 6 is quadratic 

that is: The Weyl synnbol of the commutator of two operators, one of which is quadratic, is equal to the 

Poisson bracket of the individual Weyl symbols. Let now ;\ be an observable quadratic in ¶ and 6. 
We then have, by (20) and (24), for any fI(t): 

= Jd¶d~  Aw(q,~)(Hw, ~ W ) P B  (A quadratic, any H) (25) 

where in the last line we performed an integration by parts. Eq.(25) says that the rate of change of the 

expectation of a quadratic observable is classical, in the sense that it is the same as if each point in 



Wigner phase space instantaneously followed a classical trajectory. This does not mean that ($ 

evolves classically over finite time intervals, because fw(q,p,t) in (25) is the exact qumtaldy evolved - 
Wigner function at time t, not one evolved classically during some finite time (unless H is quadratic); 
more specifically, the first time derivative of (i) is classical, but not the higher order derivatives. By 

letting A stands for 4 or i, in (25), one gets Ehrenfest's theorem: 

The last expntssions in (26a,b) are the usual statement of Ehrenfest's theorem [equivalent to (1) if H = 

$%n + ~(^ql], giving a formal quantum-classical analogy. The f i t  expressions in (26a,b) tell us 
much more: That the rates of change of (q) and (b) are classical, but relative to a phase space 

distribution function. Eq.(25) generalizes Ehrenfest's theorem to quadratic observables, and thus to the 
uncefiainties: Indeed, according to (21), (22) and (25), the uncertainty ellipse (23) evolves exactly as if 

each point in Wigner phase space instantaneously followed a classical trajectory. For instance, if the 

ellipse gets squeezed classically, during some small (infinitesimal) time internal, then so does it 

quantdly. In general, one may expect that if the classical motion during a finite time interval squeezes 

the unceaainty ellipse, then so does the quantum evolution. The latter statement is of course rigornusly 

true if k(t) is quadratic, in view of (17); it is also approximately me,  in the case of arbi 

fw(q,p,t) is sufficiently localized on the scale of non-harmonic variation of H(q,p,t), for the evolution 

of fw(q,p,t) is then approximately classical [5b]. 

Let US mention, finally, that Ehrenfest's theorem for quadratic observables can also be written h 
a f o m  comsponding to the last expressions in (26a,b), namely [5c] 

a -  x@) = ((A,, HwIm(h9i)w) (A quadratic, any H) (27) 

where the subscript w on the function {Aw, Elw) ,(i,p) of the non-commuting operators 4 and p 
signifies that they are ordered according to Weyl's ordering rule [4]. 
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Probability densities in phase space containing quantum dynamics information are very 
useful. However, is there a true phase space representation of Quantum Mechanics? 

. 1 A Phase Space Representation 

As in other representations, let us postulate that there exist a set of basis vectors (TI = (p, gI and 
its adjoints (P) = Ip, -q), where F = (p, q) denotes a point in phase space. This set of vectors is 
oAhonorma1, (I" IT) = 6(P - I' ), and there is a closure relation, i = J dTlT) (TI, for them. The 
imer product between a bra ($1 and a ket 14) is defined as ( 4 4 )  = J Sdr V(F)+(T), falEnag 
the expected properties for an inner product. Hence, the projection of an abstract ket I$), onto 
the basis vector (TI, results in a wave function dependent on both p and p, $(k) = (TI$). 

The momentum operator P is defined as (p/2) - ih(8/8q), and the coordinate operator 0 is 
given by (q/2)  + &(d/dp). Momentm and coordinate operators comply with the commutator 
relationship, [Q, $1 = &f. These operators provide the foundation for the development of a 
quantum representation in phase space. In what follows, we present the consequences of thk 
choice of operators. 

These operators are the generators of change of phase and translation, exp(iqp/h)lp, p) 

= exp ( i ~ l 2 h )  IP, g - r)) and exp (Y Qlh) l P, q) = exp (iCd2h) I P  + F ,  g) 
With the definitions given above, we can write a Schrodinger equation in phase space, 

8 
( t )  = [;m(; - - - ih- s g ) 2 + v ( f + ~ &  

This is the equation on which the quantum theory in phase space is based. 
The physical interpretation of the wave function in Eq. (1) is that its square magitude 

times the volume element, (+(r)l2dr, gives the probability of finding the quantum system with 
moment= between p and p + dp and coordinate between q and g + dq before it is pertwbed 
in any way. Even though the wave function depends on both coordinate and momentuuaa, it 
is not possible to determine (to measure) them simultanwusly (see below). Fig. 1 shows the 
interpretation of the Heisenberg's uncertainty principle in phase space. The diagonal matrix 



elements of the quantw Eiouville equation, when the potential function can be written as a 
power series in its argwraent, V ( x )  = Czo V,xn, is given by 

where F t  is the density operator at time t. 

FIG. 1. Meisenberg's uncertainty relation, A p A q  2 ti, in phase space. 

2 Time Reversal Properties 

Time reversal is achieved by the replacements t - t, p  + -p, q 4 q  and by t&hg the 
complex conjugation of wave hnct ions. Under this tr ansfor mat ion, the momentum operator 
( p / 2 )  - i f i (d l8q)  transforms to its negative, the coordinate operator ( q / 2 )  + % ( 8 / 8 p )  remaim 
with no change, and the Schrodinger equation (1 )  becomes 

Thus, if +(p, q; t) is a solution to the Schrodinger equation, ( -p ,  q; - t) is also a solution. 
Similarly, if (p ,  qqlFt(p, q )  is a solution to the quantum probability conservation equation, then 
( -p ,  qlp^-tl - p, g )  is also a solution to it. 

3 Eigenfunctions of Momentum and Coordinate 
Operators 

Let us consider the eigenfunctions of coordinate and momentwm operators in phase space. A 
solution to the Eigenvalue equation ( p / 2  - ifitLa/aq)(rl%) = p'(rl%) is given by (TI .pl) = 
(2rti)-'I2 exp [ ig($  - p / 2 ) / h ] .  On the other hand, a solution to the eigenvalue equation ( g / 2  + 
&a/ap)(I'lud) = q-'(rlq) is given by (I'(ud) = ( 2 7 ~ h ) - l / ~  em[-ip(d - g / 2 ) / h ] .  As expected, 
there is no simultaneous eigenfunctions of coordinate and momentum operators. 



4 Simultaneous Measurement of Momentum 
and Coordinate 

Following the standard convention regarding measuring process, if one proceeds to deter 
the configuration of a given quantum system, the wave function, (r) $) reduces to the eigemtate 
(rlq) of i )  with probability I(% I$) ,)I2 of obtaining the value q'. If we then want to measure the 
momentm, we need to express the new state (rlq) as an expansion in terms of the eigenstates 

According to this, once one determines the configuration of a quantum system, one can find it 
with any value for the momentum. Therefore, a wave function dependent on p and q need not 
violate the uncertainty principle. 

5 Reduction $0 Momentum and Coordinate 
Representations 

Coordinate or mnnenkum representations can be recovered from the phase space representation 
proposed in this work. By taking the Fourier transform of the phase-space Schrodinger equation 
(I), over g, with kernel (4~t i ) - l /~  eq(-ipg/2ti), we obtain 

where we have mspmned that the potential function can be mitten as a power series in it- 
s argument, V(z) = En Kxn.  Mow, by taking the Piburier transform over p, with kernel 
(4n~)-'I2 exg(ipq/2h), we obtain 

6 Classical Correspondence 

En order to find what the classical analogues to quantum wave functions are, let us compare 
the quantum probability conservation equation in phase space (2) with the classical Liouville 
equation of motion, 

8 P a 
- p(r ;  t) = - -- + 
a t  [ma, 

We observe that the right hand side terms of the phase space quantum probability conservation 
equation (2) are just the symmetrizations of the classical products p p( r ;  t) and F(,)p(r; t) 
which appear in the classical Liouville equation (7). Therefore, the classical analogue to the 
quaraturn probability density I $(r; t)I2 is the corresponding classical probability density p ( r ;  t). 



The comparison between the quantum probability conservation equation in moment= r e p  
resentation, 

and the coordinate average of the classical Liouville equation, 

leads to the conclusion that the classical analogue to the quantum momentum probability densi- 
ty, I $(p; t) 12, is the coordinate average of the classical probability density; J dq p ( r ;  t). Similarly, 
the classical analogue to the quantum coordinate probability density I$(q; t)I2 is the momentuna 
average of the classical probability density, J dp p( r ;  t). 

7 Step Potential 

As a simple illustration, let us examine the dynamics of the scattering of a Gaussian wave packet, 
+(r;  0) = ( 2 W 2  exp[-(9 - q0)~/4 - (p - Jd2/4 + i(qn - m)/2], with (Po, qo) = (JZ, -3.5), 
from a potential step. In this calculation, f he energy of the wave packet is 1 and the barrier 
height is 1. This model system illustrates the development of nodal structure due to q u a n t u  
interference between the advancing and reflected parts of the wave packet when it encounters 
the step potential. 

-12-8 -4 0 4 8 12 -12 -8 -4 0 4 8 12 -12 -8 -4 0 4 8 12 

(J 
FIG. 2. Snapshots of the quantum evolution of the Gaussian density which is 

being scattered from a step potential at q = 0, in a dimensionless phase space. 

Figure 2 shows density plots in phase space of the square magnitude, I+(r; t = 0)12, of the 
time evolution of the Gaussian density. We can see that the wave packet breaks into three 
parts as it is evolving in time. First, there is a part whose momentum in near zero and which, 
consequently, moves very slowly. A second part of the wave packet smoothly changes its direction 
as it is reflected from the step, and combines with the part that stayed behind. Finally, a third 



part of the wave packet has enough energy to overcome the barrier and continues moving past 
the step with smaller momentum. 

FIG. 3. Same calculation as the one in Fig. 2, but made in the coordinate 
representation. 

Figure 3 shows the same type of calculation as in Figure 2 but made in coordinate repre- 
sentation. The analysis in phase space allows us a better understanding of the dynamics. Each 
peak appearing in the coordinate density corresponds to the different parts of the wave packet 
in phase space. These pictures suggest that, in this case, "quantum interference" effects may be 
partly explainable in classical terms. Each piece of the reflecting and transmitting wave packet 
resides in a different region of phase space and it is only when the wave function is projected 
onto coordinate or momentum space that one loses this perspective. 

-12 -8 -4 0 4 8 12 16 -12 -8 -4 0 4 8 12 16 -12 -8 -4 0 4 8 12 16 

q 
FIG. 4. Snapshots of the classical evolution of the classical analogue of the initial 

density in Fig. 2. 

4 

2 

P o -  
-2 

-4 

In a classical calculation, we have taken the Gaussian probability density p ( r ;  0) = (291=)-l/~ 
exp[- (q - qol2/2 - ( p  - ~ ) ~ / 2 ] ,  with (po, qo) = (fi, -3.5), which is the classical analogue to 
the one in Fig. 2a, as an initial density to be propagated according to the classical Liouville 
equation 7. In Fig. 4, snapshots of the evolution of this density are shown at the same times as 

1 1 1 1 1 1 1 1  - - 
- p(p,q;t) 

- 
- - 

t=Q - - 
1 1 1 1 1 1 1 1  

l t l l l l l l  - - 
- - 
- - 
- - 

t=l5Q - - 
1 1 1 1 1 1 1 1  



in Fig. 2, and, in Fig. 5, the momentw average of the density in Fig. 4 (the classical analogue 
to the density in Fig. 3) is shown. By comparing figures 2, 3, 4 and 5 we conclude that the 
classical and quantum behavior are qualitatively the same with small quaditative differences. 
Since the classical averaging process is over real-valued functions, only constructive addition 
of the pieces of the distribution are permitted, thus, the interference effect wont appear in the 
classical analogue to the coordinate quant urn density. 

FIG. 5. Momentum averages of the densities in Fig. 4. 
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Recent studies of particle localization show that square-integrable positive energy bispinor fields in a 
Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper 
we generalize this result by characterizing all classical tensor systems, which admit Fermi quantiza- 
tion, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a 
rigid body and Dirac's equation in tensor form. 

It is a common misconception that fermions can only be represented in quantum field theory by bis- 
pinor fields. Recent studies of particle localization [I], [2], [3], [4] have shown that particle wave 
functions cannot vanish in regions of positive measure for any set of times of positive measure. This 
demonstrates that gedanken experiments, designed to observe the two-valuedness of bispinors, are not 
physically realizable since such experiments require absolute isolation of particle wave functions [4], 
[51, 161. 

Moreover, in previous work we showed that square-integrable positive energy bispinor fields in a 
Minkowski space-time cannot be physically distinguished from constrained tensor fields. That is, the 
non-localization of particle wave functions implies that the two-valuedness of bispinors is unobserv- 
able in a Minkowski space-time. Thus, beam splitting experiments designed to observe the rotation 
properties of bispinors, in fact, describe the rotation properties of constrained tensor fields [4]. 

Furthennore, it was shown that Dirac's bispinor equation can be expressed, in an equivalent tensor 
form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was 
also shown [4], [7] that the free tensor Dirac equation is a completely integrable classical Hamiltonian 
system with (non-canonical) unitary Lie algebra type Poisson brackets, from which Fermi quantiza- 
tion can be derived directly without using bispinors. 

In this paper we generalize this result by characterizing all classical tensor systems which admit Fermi 
quantization. As shown in Section 2, these tensor systems have Lie algebra type Poisson brackets 



associated with a unitary symmetry group acting on the classical phase space. Two examples of clas- 
sical tensor systems which admit Fermi quantization are Euler's equations for a rigid body and the 
tensor form of Dirac's equation. It is well known that Euler's equation can be Fermi (or Bose) quan- 
tized [8]. It is less well known that Dirac's equation can be written in a classical tensor form which 
can be directly Fermi quantized in the same manner as Euler's tensor equation. 

2. FERMI QUANTIZATION OF CLASSICAL TENSOR SYSTEMS 

In this section, Fermi quantization is derived for the Euler and Dirac tensor equations by representing 
their classical Lie-Poisson brackets as commutators of Heisenberg operators on a Fock space of Fermi 
occupation states. 

We define a Fock space, that is, a Hilbert space H of occupation states of a single field, which is suit- 
able for both fermions and bosons, as follows. We suppose that there exists a denumerable set of 
operators A,, where p - 1, 2, 3, . . ., such that all A, and their adjoints 4 are defined on an invari- 
ant dense subspace 2, C H. For the ferrnion case, the operators A, and A; will be bounded, in which 
case ?) - H. 

For each pair of indices p and q we define: 

'which is an operator defined on 9. The following can be taken as a set of axioms which are satisfied 
by fermions and bosons alike, when p = 1, 2, 3, . . . is interpreted as an index laklling the degrees of 
freedom (modes) of a single field. Np - Npp as the occupation number operator, and $ and A, as 
creation and annihilation operators for the mode p. 

a) There is a zero-occupancy state in 9, denoted by I*, such that for all modes p: 

Furthermore, there are at least two distinct modes p and q such that A, f A,, and none of the 
operators A,: I> -+ ID are the zero operator. 

b) There are no states in H (except 0) which are orthogonal to all the occupation states: 

In,, n,, . . .> = (A;)"' (A;)"' . . . lo> (3) 

where np = 0, 1, 2, . . . is the occupation number for the mode p, and all but a finite number of 
np are zero. 

C) For all modes p, q, and r, the operators N, and A, satisfy the following commutation relation 
on 9: 

[N,, A,] - -A, 8, 



and its adjoint on ID 

where 6, equals one if p = q and equais zero otherwise. 

Note that axiom (c) is required for a quantum field theory in which field operators (Fermi or 
Bose) satisfy Heisenberg's equation [9]. Note also that axiom (c) does not involve any anti- 
commutation relations, and hence is applicable to tensor systems. We can prove that any Fock 
space satisfying (a), (b), and (c) is either Fermi or Bose, and for a given set of modes, the Fermi 
and Bose Fock spaces satisfying axioms (a), (b), and (c) are unique up to isomorphism [lo]. 

Axioms (a) and (c), or equivalent axioms, are assumed in more general Fock spaces which have 
been used to derive parastatistics [lo]. However, the parastatistical Fock spaces do not assume 
axiom (b). That is, in a parastatistical Fmk space, there is more than one state for each set of 
occupation numbers. Since from the current state of knowledge, one can assume that the occu- 
pation numbers n,, n,, . . . determine a unique state In,, n,, . . .>, we do not consider Fock spaces 
with alternatives to axiom (b). 

For a Femi Fock space we add: 

d) For each mode p, the occupation nurnber n, = 0, 1. 

As a consequence of axiom (dl, 4 and 4 are bounded opersators defined on H (i.e., 21 -H). 

Fermi quantization of tensor fields is derived from the following thmrem: 

Given any denumerable set of m&s p, q, a, s, . . ., there exists a Fenni Fock space H (unique up to 
isornophism) satisfying (a), (b), (c), and (d). Moreover, let be a self-&joint operator whose domain 
is a dense slabspace of H. Then ahere exist operators &(t) defined on H, indexed by each pair of 
modes p an q, and dependkg on time t E R satisfying: 

i) The adjoint relation: 

ii) The (equal time) commutation relation: 

iii) The Heisenberg equation: 



PROOF: 

The (unique) Fermi Fock space exists by explicit construction [lo]. Since is self-adjoint, we may 
define the following operators on H: 

iht N e-iht b ( t )  = e pq 

Formulas (6) and (7) follow from formulas (I), (4), and (5). Formula (8) follows by differentiating 
formula (9) with respect to time t. Q.E.D. 

Note that by formulas (6) and (7), the operators &(t) generate a unitary Lie algebra [I 11. For exam- 
ple, in the case of two modes, linear combinations of &(t) for p, q = 1, 2 satisfy the commutation 
relations of angular momentum operators [12], which allows Euler's tensor equation to be Fermi 
quantized [8]. The following corollary of Theorem 1 characterizes all classical systems that can be 
Fermi quantized. 

COROLLARY: 

Classical systems that can be Fermi quantized are described by bimodal complex amplitudes1 %(t) 
satisfying: 

(where the bar denotes ordinary complex conjugation), and a Hamiltonian function PI - PI(%) which 
depends on the amplitudes &(t), such that the Wamiltonian equation is given by: 

where the Lie-Poisson brackets { , ) are defined by: 

Furthermore, Fermi quantization of such classical systems is unique up to isomorphism. 

The chief application of Theorem 1 is the Fermi quantization of Dirac's equation in its tensor form. 
As previously shown [4], there is a double covering map which takes a bispinor field @ to a con- 
strained set of SL(2,C) X U(1) gauge potentials A t  and a complex scalar field p, where Lorentz indi- 
ces are denoted by a, P, y = 0, 1 ,2 ,3  and gauge indices by J, K, L = 0, 1,2,3.  Repeated indices will 
be contracted using Minkowski metrics gap and g,,. Since the Lie algebra of SL(2,C) is regarded as 
the complexification of the Lie algebra of SU(2), the gauge potentials A; for j = 1, 2, 3 are complex, 
while the U(l) gauge potential A: is real. A: and p satisfy the following constraint: 

1 Note that the set of observables (%) defines a complex phase space PC for the classical system, 
which is a Lie algebra under the Lie-Poisson brackets (12). In general, the "physical" phase space 
P need not coincide with PC. All that is needed is that P have Lie-Poisson brackets, and there is a 
homomorphism of PC onto P. All observables of P thus become observables of PC. For a more com- 
plete discussion of Lie-Poisson brackets see reference [13]. 





(and similarly for saPY and J") where the sum is over all pairs of fermion modes p and q, and the 
amplitudes %(t) are complex functions of time satisfying the complex conjugate relation (10). The + +' coefficients of the amplitudes a,,(t), denoted by Tg (x ), are fixed complex functions of x E K. Thus, 
at any time t, the amplitudes %(t) suffice to specify TP (and similarly, saPY and Ja), and hence can 
be considered as classical phase space variables. Substituting (19) into formula (18), we get: 

where o, is the frequency of the mode p. The classical Hamiltonian equations (which are equivalent 
to the Euler-Lagrange equation for the tensor Dirac Lagrangian (16)) are given by formulas (lo), (1 l), 
(12), and (20) which, by the corollary to Theorem 1, can be (uniquely) Fermi quantized. 

This then reproduces the existing second quantized theory for fermions. This also shows that bispinors 
are not more fundamental than the tensor Hamiltonian equations (lo), (1 I), (12), and (20), which we 
derived from the tensor Dirac Lagrangian (16). 
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Several sources of phase noise, including spontane- 
ous emission noise and the loss of coherence due to 
which-path information, are examined in the classical 
limit of high field intensities. Although the origin of 
these effects may appear to be quantum-mechanical in 
nature, it is found that classical analogies for these 
effects exist in the form of chaos. 

There are several sources of phase noise that may appear to be 
inherently quantum-mechanical in nature. One example is spontane- 
ous emission noise, which is often attributed to vacuum f luctua- 
tions. Another example is the loss of coherence in which-path 
experiments, which can be shown to be due to the entanglement of 
one particle with another. 

This paper addresses 'the question of whether or not these 
effects continue to exist in the macroscopic limit of high- 
intensity fields. If so, do they agree with the predictions of 
classical physics in that limit? 

One motivation for considering these questions is to gain 
further insight into the origin of these effects. In addition, any 
disagreement with classical physics in the macroscopic limit would 
suggest an interesting experimental test of quantum mechanics in a 
new and untested situation. 

It will be found that a classical analysis of these systems 
does give analogous effects due to classical chaos. This suggests 
that there is at least a loose connection between quantum noise and 
classical chaos. 

On the other hand, classical physics cannot provide any 
analogy for nonlocal effects such as violations of Bell's inequali- 
ty. The generalization of two-photon interferometry to high- 
intensity fields will be briefly discussed as an example of a 
situation in which no classical description exists even in the 
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macroscopic limit. 

2. Which-Path Experimeats 

Wave-particle duality suggests that we cannot determine the 
path that a particle has taken through an interferometer without 
destroying the interference pattern. In most cases, it can be 
shown that the loss of coherence is actually due to the entangle- 
ment of the particle's wave function with a second particle or 
system located in one path or the other. No actual observation of 
the path taken is necessary in order to eliminate the interference 
pattern. An interesting feature of these which-path experiments is 
that it is often possible to restore the interference pattern using 
a "quantum eraserw1. 

An excellent example of a which-path experiment is shown in 
Figure 1. As suggested by scully2 et al. , a single atom is incident 
upon a beam splitter that divides its wave function along two 
separated paths. A microwave cavity is located in each path and is 
coupled to the atom in such a way that a low-energy microwave 
photon will be emitted into whichever cavity the atom passes 
through. 

Fig. 1. A which-path experiment suggested by Scully 
et al. (Ref. 2) in which a microwave cavity is located in 
each arm of an atomic interferometer. 

The interference pattern must be destroyed, since the path of 
the atom can be determined by detecting the location of the photon. 



It can be shown that the change in the center-of-mass wave function 
of the atom has no significant effect and that the coherence is 
destroyed by the entanglement of the atom with the photon. 

It is obvious that there can be no classical analogy for this 
kind of which-path experiment because an atom cannot be described 
by a wave in classical physics. But this begs the question of what 
is really responsible for the loss of coherence. 

In order to allow a comparison with classical physics, 
consider instead the situation shown in Figure 2 in which the roles 
of the atom and photon have been interchanged3. Now a single photon 
is incident upon a beam splitter and its wave function propagates 
along two separated paths, A thin chamber containing gas atoms is 
located in each path and it is assumed that the photon is inelast- 
ically scattered, producing a secondary photon of low energy. The 
initial photon propagates with somewhat reduced energy toward a 
beam splitter and a single-photon detector. Once again, it can be 
shown that the change in the photon" wave function is irrelevant 
as long as 6k6x <e R, where 6k is the change in wave number and 6x 
is the thickness of the two chambers. The advantage of this 
which-path experiment is that it does allow a classical analysis if 
a large number of photons are incident, which corresponds to a 
classical light wave, 

~ h i n  Chamber I 

Fig, 2. A modified wmch-path experiment in which 
the roles of the atoms and photons have been interchanged 
to allow a comparison with classical physics. 

The quantum-mechanical calculation is straightforward and has 
been described in more detail elsewhere3. Consider an operator pt 



that creates a single photon in a short gaussian wave packet: 

Here 0, are complex coefficients and af creates a photon of 
frequency wi. In order to achieve the macroscopic limit af high 
intensities, the quantum state will be taken to be a coherent state 
of the form 

where a! is a complex number sufficiently large that the pulse 
contains a large number of photons. The interaction Hamiltsnian is 
given by 

Here the operators b and c annihilate photons in the two paths 
through the interferometer and eij, is a coefficient of no interest. 

The intensity at the detector can then be shown to be 

The last two terms are the only ones that depend on the relative 
phase, as reflected by the coefficients a and a/, and are propor- 
tional to the inner product of two states containing a photon in 
two different paths, which is zero. Thus the entanglement of the 
original photon with a secondary photon in one path or the other is 
responsible for destroying the interference pattern, as expected, 

It is interesting to note, however, that it is not possible, 
even in principle, to determine which path a photon has taken, 
since the quantum uncertainty in the energy and number of photons 
in the coherent state of eq. (2) makes it impossible to associate 
the detected photons with individual secondary photons, 

Any classical description of this experiment must be based on 
a nonlinear model, since a linear system cannot produce any change 
in the frequency of the light* With this in mind, consider a 
simple model consisting of three nonlinearly-coupled harmonic 
oscillators: 
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Figs 4, Chaotic phase-space tra jectory from the classi- 
cal model, which randomizes the phase and destroys the 
interference pattern. 

In the limit of low drive intensities the classical model 
produces a coherent response with no fluorescence, At sufficiently 
high intensities, chaos produces fluorescence at two frequencies 
that are analogous to the secondary photon and forward-propagating 
photons in Figure 2, both of which have random phase, Intermediate 
intensities produce more complicated behavior, including partial 
coherence at rational fractions of the drive frequency. 

Thus the classical model gives loss of the interference 
pattern due to chaos in the macroscopic limit of high intensities, 
This suggests that there is at least a loose connection between 
quantum noise and classical chaos. It is important to note, 
however, that the classical model produces a random phase only for 
sufficiently high intensities, whereas a proper quantum-mechanical 
treatment eliminates the coherence for arbitrarily low intensities. 

In many systems of this kind it is possible to implement a 
B@quantllam erasergs to restore the interference pattern1. This can be 
accomplished by letting the entangled secondary systems propagate 



in time, measuring their state at some subsequent time, and 
selecting only those events for which the secondary systems were 
found to be in the same final state. For example, a quantum eraser 
can be implemented for the micro-maser cavity experiment shown in 
Figure 1 by connecting the two cavities with a small hole contain- 
ing an atom and then selecting only those events for which the 
photon in one cavity or the other was absorbed by this atom. 

Surprisingly enough, it may be possible to perform a similar 
procedure in the classical model discussed above. Suppose we 
consider a subset sf the phase-space trajectories for which the 
other (non-detected) variables are the same in the two paths, i.e. 

where the primed and unprimed variables refer to the two different 
paths. In that case, it seems likely that 

If so, the out-going fields would be the same in the two paths and 
the coherence would be restored. 

3. Spontaneous Emission Noise 

The random phase associated with spontaneous emission of a 
photon by an atom is often attributed to vacuum fluctuations. Once 
again, this may seem to be inherently quantum-mechanical in nature. 
But returning to the example shown in Figure 2, it can be seen that 
both photons emitted by an atom in one path or the other of that 
interferometer are emitted by spontaneous emission. The classical 
model discussed above gave a random phase for both of these fields 
due to classical chaos in the limit of high field intensities, 
which is in qualitative agreement with the quantum-mechanical 
result. 

This further suggests that there may be some connection 
between quantum noise and classical chaos. It must be kept in 
mind, however, that the classical model cannot produce these kinds 
of results in the limit of low intensities. 

4. Nonlocal Effects 

The preceding discussion suggests that certain kinds of 
quantum phase noise may have a classical analogy in the form of 
chaos. This analogy can only be'taken so far, however, since the 
models used do not provide a realistic description of an atom and 
are qualitatively similar to the quantum-mechanical treatment only 
in the limit of high intensities. 

In addition, quantum systems can exhibit nonlocal effects that 
violate Bell's inequality and obviously have no classical analog. 
Such effects are not limited to low-intensity fields, as can be 



illustrated b considering the generalization of two-photon 
interferometr # to high-intensity fields as illustrated in Figure 
5 .  A somewhat similar situation involving photon polarizations has 
also been discussed by Reid and kgunro5, 

Fig. 5 ,  Nonlocal interferometer consisting of two 
identical interferometers with a short path and a long 
path, capable of operation with high-intensity fields. 

Nonloeal interferometry with high-intensity fields has been 
discussed in detail elsewhere6 and only the main results will be 
reviewed here. Consider a quantum state of the electromagnetic 
field given by 

where 

Here ct creates a pair of entangled photons in two paths via photon 
creation operators at and bt, y is a normalization constant, cu is a 



large complex number, and the coefficients f, describe the effects 
of filters inserted into the two beams, 

Although eq. (8) resembles a coherent state, its properties 
are quite different. The probability P, of detecting a pair of 
coincident photons in the corresponding output ports of the two 
interferometers of Figure 5 can be shown to be given by 

This is the same result obtained previously for the weak-field case 
but here the field can be extremely intense and contain a large 
number of photons. 

The probability PN of detecting N pairs of coincident photons 
in the corresponding output ports of the two interferometers is 

Eq. (11) also violates Bell" inequality. The factor of N! is due 
to the different ways in which photons can pair with each other and 
greatly enhances the probability of detecting a large number of 
pairs. No single pnoton detectors are required to observe such 
events, which correspond to large bursts of energy in the corre- 
sponding interferometer ports and which could be observed, at least 
in principle, with a bolometer. These effects are truly macroscop- 
ic in nature in that sense. 

It is also possible to consider an EPR paradox involving 
quantum phase measurements performed on high-intensity fields with 
initially uncertain phases, Both classical and non-classical 
effects are obtained, as described elsewhere7. 

Several sources of quantum phase uncertainty have been 
considered in the limit of high field intensities where a compari- 
son with a classical treatment is possible. It was found that 
classical analogies exist for the loss of coherence due to which- 
path information as well as the quantum noise associated with 
spontaneous emission. In both of these cases classical chaos 
randomizes the phase in a manner that is at least qualitatively the 
same as in the quantum description. 

This suggests that there may be a loose connection between 
quantum noise and classical chaos. The classical treatment is only 
valid in the limit of high intensities, however, which is not too 
surprising in that classical physics would not be expected to 
provide an adequate description at the quantum level. In addition, 
violations of Bell's inequalities can also occur for high-intensity 
fields. Nevertheless, there does appear to be an analogy between 
quantum noise and classical chaos. 
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HOW TO DETECT AN EXCITED ATOM 
without disturbing it 

OT 

HOW TO LOCATE A S'EPPE%i&-MINE 
without expbding it 
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Possible realistic implementations of a method for interaction-free measurements, due to a 

Elitzur and Vaidman, are.proposed and discussed. It is argued that the effect can be easily 
demonstrated in an optical laboratory. 

1 How to locate a Super-Mine 

A "Super-mine" is a device which explodes if anything touches it. Proton, electron, photon, 
neutrino,.. . anything that reaches the mine, with any energy, triggers an explosion. Our task is 
to locate the mine. We have to find out where it is, not where it was. We have to cheek that 
the mine is in a certain location without exploding it. We have no additional infomation, 
except that there is nothing else except mines in the region. We are allowed to fail in o w  
procedure, i.e. to explode a mine. In that case we can try again, in another region. But our 
measurement has to be reliable: we must not be mistaken when we say that there is a mine, 

The task seems to be impossible: the mine interacts with the external world only by explosion 
when it is "touched," so how it can be found without an explosion? In classical physics this task 
is certainly impossible, since its solution leads to a paradox: to find the mine you have to touch 
it, but if you touch it, it explodes. Nevertheless, quantum mechanics allows a simple solution, 
which was suggested recently by Elitzur and myself [I]. 

Our method is based on a particle interferometer analogous to the Mach-Zehnder inter- 
ferometer used in classical optics. In principle, it can work with any type of particle. The 
particle reaches the first beam splitter which has transmission coefficient 4. The transmi$te$ 
and reflected parts of the particle's wave are then reflected by the mirrors and finally reunite 
at another, similar beam splitter (Fig. 1 a$ Two detectors collect the particles after they pass 
through the second beam splitter. We can arrange the positions of the beam splitters and the 
mirrors such that because of destructive interference, no particles are detected by one of the 
detectors, say D2, and all are detected by Dl. We position the interferometer in such a way that 
one of the routes of the particle passes through the region of space where we w&to detect the 
existence of a mine (Fig. 2b). We send a single particle through the system. There are three 



possible outcomes of this measurement: 
i) no detector clicks, ii) detector Dl clicks, iii) detector D2 clicks. 

;En. the first case, the particle explodes the The probability for this outcome is i. In the 
second case (for which the probability is $), the measurement does not succeed either. The 
paxticle could have reached Dl in both cases: when the mine is, and when the 
located in one of the anns of the interferometer. In this case there has been no interaction with 
the object, so we can try again. Finally, in the third case, when the detector D2 clicks (the 
probability for which is f ), we have achieved our goal: we know that there is a mine inside the 
interferometer without exploding it. If we wish to specify by the interaction-free procedure the 
exact position of the mine inside the interferometer, we can test (locally) that except for that 
region, the interferometer is empty. 

I 

PARTICLE 
i / ------------------------- 

SOURCE 
/ / 

I I 

PARnCLE 
i / 

SOURCE 
0 / 

FIG. 1. (a )  If there is no any object inside the interferometer, D2 never clicks. 
( b ) .  When DZ clicks after sending just one particle we know that the mine is inside 
the interferometer and it is still intact. 



What i s  the Probability for a Successful Experiment? 

Even the ideal experiment does not always succeed. We have seen that the probability for 
success here is only 1/4. But we also have the probability 1/4 not to destroy the mine wjlthout 
finding it. Trying again and again, until success or an explosion, leads to the probability 1/3 of 
locating the mine without an explosion. We have shown [I] that by modifying the traasdssion 
coefficients of the beam splitters in the interferometer we can obtain ( h o s t )  the probability 
1/2 for success. 

This is, however, a gedanken experiment. A super-mine which is sensitive to evemhing, a 
Mach-Zehnder interferometer with complete destructive interference in one detect or, a single 
particle source - these are not devices that can be found in a standard laboratory. ket us now 
discuss a few points which are relevant for a realization of the idea in a real laboratory. 

We do not need a super-mine. The mine can be replaced by a fragile object which is 
nevertheless stable in the environment of the laboratory. It "explodes" (or clicks) if a photon 
with a certain energy hits it. Our task now is to detect the object without exploding it, using 
only such photons. 

We do not need a source of single photons. We assume that the explosion (the click) is loud 
enough for us to hear, so d l  we need is a weak source of photons and fast switch that stops the 
beam when detector D2 clicks. (The single-photon source is necessary if we want to locate an 
object and he sure that it was not disturbed in any way whatsoever, even if the object does not 
click.) 

We do not need 100% efficiency in detector D2. Of course, low efficiency will reduce the 
probability of detecting the object, but if the detector clicks, we are still 100% sure that the 
object is there. 

If we have an ideal interferometer, then the photon which hits the object does not have to 
invariably explode it. It is enough for the photon to have just finite probability to be absorbed 
(to be scattered, to change its phase). Even the probability for the success remains unchmged, 
we only need to put more photons through the interferometer. 

If we have an ideal equal-path interferometer, we do not need a monochromatic source: 
complete destructive interference occurs for all wavelengths. 

Unfortunately, we do not have an ideal Mach-Zehnder interferometer. There is no possibility 
of obtaining 100% destructive interference in the detector D2. Sometimes we will get clicks even 
if there is no object inside the interferometer. Also, we will get wrong clicks due to noise in the 
detector D2. 

What I have understood from my interaction with experimentalists [2] is that in a modem 
laboratory one can obtain the ratio of 1: 100 for the number of clicks in the detectors D2 and Dl 
when there is no object inside the interferometer (instead of the theoretical 0 counts for detector 
Dz). This is the most import ant limitation on the proposed "interaction-free" measurement. The 
most optimistic estimate I heard [3] was the ratio of 1: 1000. Therefore, we have to complete (one 
run of) our experiment while much fewer than a 1000 photons pass through the interferometer. 



Consrder a boy trying to catch a girl in a dark room. Tn order to catch her, he has to h o w  where 
she is. But if she knows that she has been located, she has enough time to move to mother 
location. She constantly looks in 4 direction, and any time she sees a photon, she moves. The 
girl can detect any photons the boy uses. Then, classically, the task of the boy is hopelless. 
However, quantum mechanics allows the boy to locate the girl without her being aware of, a d  
thus, to catch her. 

Let US now discuss a proposal for demonstration of such game in a laboratory. Instead of the 
girl we wiM take a high efficiency photo-detector. As I understand [4] there are detectom of up 
to 7'0% eEciency with noise of about one count per second. A student either puts or does not 
put this detector inside the interferometer. (Or, more realistically, she blocks or does not block 
the arm of the interferometer with a small mirror such that the reflected photons are absorbed 
by the photo-detector.) The output of the detector is connected to a bell. O w  task is to h d  
out if there is a detector without ringing the bell. We are allowed sometimes to fail, i.e. to ring 
the bell. Then we call the student to start everything fiom the beginning. But, when we claim 
that the detector is there, we must be correct with high probability. 

In order to achieve this goal we tune the Mach-Zehnder interferometer for maximal destruc- 
tive interference in detector D2, see Fig. 2. We prepare a weak source of light (low intensity 
laser) such that it sends about lo3 photons per second. We add a fast electronic switch which 
stops the beam when the detector Dz absorbs a photon. It is easy to get a switch with time of 
operation r = lOW6sec. (Detector Dl does not play any role in the experiment, so we can omit 
it.) 

FIG. 2. A fast switch detector stops the beam when it detects a photon. We can 
learn about the existence of an object inside the interferometer by measuring the 
time it takes for the detector to click starting from the beginning of the run. 



The experiment runs as follows: we switch on the laser and measure after what time the 
detector switch stops the laser. If it happens after about a second we can safely claim that the 
detector is not there: the probability for the mistake is about 2-lm. El however, the time is 
about 10-3sec we can claim that the detector is there: the probability for a mistake now is a h  
not large, about If our device works properly, the only other probable outcome is that we 
will hear the bell first. If tse detector is there, the probability for this is about 2/3. IB this case 
we have to call the student to start again. But the other third is, roughly, the probability for 
a successful interaction-free measurement. It seems that all kind of noises which we have not 
taken into account cannot deny us a significant chance to perform this experiment successfully. 
If we are satisfied by a less reliable measurement (even 10% error is a sound experiment) we even 
do not need an extraordinarily precise Mach-Zehnder interferometer or ultrasensitive detectors. 

How to Detect an Excited Atom 

I believe that the proposed interaction-free measurement is more than just a demonstration 
of peculiarities of quantum mechanics. This is a measurement which can be performed on an 
infinitely fragile object without disturbing it in any way whatsoever. I believe that it can have 
practical applications. Now let us discuss one of the possible application: detecting an excited 
.atom without changing its state. 

Suppose we are going to investigate an exotic excited state which can be characterized by 
the ability to absorb a photon of certain energy. We want to know when an atom in such a state 
has appeared, but we do not want to change its state while detecting it. As far as we know, 
our method is the only one available. This is in zontrast with the toy experiment of previous 
section where we always could locate the detector using photons which it cannot detect. 

In order to detect an atom we can use exactly the same system, with laser and fast electronic 
switch on the detector (Fig. 2). But we encounter a serious problem: the cross section of 
absorption of a photon by an atom is much smaller than the cross section of the laser b 
Thus, many photons will come through the interferometer before one of them will be absorbed 
by the atom. Even more photons will pass before the click of detector D2 signaling the existence 
of the excited atom. When more than 1000 photons pass the interferometer, we, most probably, 
will get a click just from noise, and therefore we will not be able to detect the atom. I am not 
familiar enough with the experimental possibilities, but there is hope of £inding some focusing 
(squeezing ?) procedure to improve the ratio between the cross section for absorption and the 
cross section of the beam. 

I have more hope in finding some other experimental implementations of interaction-free 
measurements. First, the Mach-Zehnder can be replaced by a Michelson-Morley interferometer, 
or any other two- (or several-) arm interferometer. But it can also be implemented in a single- 
beam interferometer with filters of polarization or some other degrees of freedom. Let me now 
state a general scheme for interaction-free measurements. 



5 Generalizatiora of Interaction-nee Measurement 

Our task is to detect a system in a certain state, say I*) . This state might cause some kind 
of explosion or destruction; destruction of a system, of a measuring device, or at least of the 
state I @ )  itself. The states orthogonal to I@) do not cause the destruction. Although the only 
physical effect of I @) is an explosion which destroys the state, we have to detect it without any 
distortion. If we succeed in this task, we c d  the experiment an interaction-free measurement. 

Let us assume that if the system is in a state I@) and the measuring device is in a state la1), 
we have an explosion. For simplicity, we will assume that if the state of the system is ohhogond 
to I @ )  or the measuring device is in a state la2) (which is orthogonal to )a1)) than neither the 
system nor the measuring device changes their state: 

Now, let us start with an initial state of the measuring device 

If the initial state of the system is I*), then the measurement interaction is: 

where 1x1) = -/3*IG1) + alG2). If, instead, the initial state of the system is orthogonal to I@) , 
then the measurement interaction is: 

To complete our measuring procedure we perform a measurement of the measuring device w W  
distinguishes between I x )  and 1 ~ ~ ) .  Since there is no component with IxL) in the 
it can be obtained only if the initial state of the system was 19). This is also the 
the system: we do not obtain IxL) in the case of the explosion. The probabigty to obt& 1 ~ ~ )  
(if the system was initially in the state I *) ) is laPI2. It is less than the probability for expII~on, 
which is laI2, but it is finite, and the ratio 1/312 can be made as close as we want to 1. h this 
case, the measurements will detect the state I*) with probability 1/2 (and with probability 112 
will be the explosion). 

A Mach-Zehnder interferometer (Fig. 3) is a particular implementation of this scheme. 
Indeed, the photon entering the interferometer can be considered a measuring device prepared 
by the first beam splitter in a state I x )  = -&(la1) + at time tl, where la1) designates a 
photon moving in the lower arm of the interferometer, and la2) designates a photon moving 
in the upper arm. Detector D2 together with the second beam splitter tests for the state 
IXL) = - 102)) at time t2. Indeed, if the state JxL) were measured at time t2, it must 
be found with certainty. 



FIG. 3. The photon passing through the interferometer and detected by D2 
can be considered as a measuring device prepared at time tl in the state Ix) = 
&(~QI) + I&)), and found at time t2 in the state 1 ~ ~ )  = -&(lQ1) - lQ2)). 

The difficulties of splitting and reuniting beams in the Mach-Zehnder interferometer can be 
avoided if our system is in a state 19) which is sensitive, say, to a left circular polarization of 
light: it causes some kind of explosion, while right polarization causes no change. Then we can 
start with an x-polarized photon which interacts with the system and look for a y-poldzed 
photon. If we do find such photon, we know that the system is in the state 19). 

Our method has remarkable property of not destroying i tely fragile states and it is 
applicable to a wide class of physical systems. Therefore, although now we do not know where 
it can have practical applications, we are optimistic about finding such applications in the futurce. 
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THE STOKES LINE WIDTH AND UNCERTAINTY RELATIONS 

A. 38. Nikishoh V. 38. f i t u s  
Eebedev Physical Institute, Moscow 11 7924 

For a function given by contour integral the two types (conventions) of asymptotic repre- 
sentations me considered: the usual representation by asymptotic series in inverse powers of 
large parameter and the special division of contou~' integral in contributions of high and low 
saddle points. It is shown that the width of the recessive term formation zone (Stokes strip) 
in the second convention is determined by uncertainty relation and is much less than the zone 
width in the first convention. The reasons of such a difference is clarified, The results of 
the work are useiul for understanding of formation region of the exponentially small process 
arising on the background of the strong one. 

Many physical quantities are represented by contour integrals depending on two (or more) real 
parmeters: 

C 
(1) 

z is one complex or a couple of two real parameters, v and a. The asymptotic representation of 
these integrals are considered when one of the parameters, v, tends to  infinity where the integral 
has essential singularity, while another parameter9 a, is near the Stokes line [I] where a = 0. 
We restrict ourselves to the case when f (t, z) in (1) has only two saddle points tl, t2 where 
f1(t1,2, Z) = 0, and denote 

Then the asymptotic representation consists of two terms: 

The main (dominant) one - ef2 and the exponentially small relatively to it (recessive) one - igef17 
Re(f2 - fl)  > 1 when v >> 1. 

Qualitative distinction of the two terms lies in the different rates of change of their phases 
Im fi,a(a) with a: 



Then from physical point of view D and R are the dominant and recessive waves with different 
frequencies w2 and wl . Another qualitative distinction is the appearance (or disappearance) of R 
when a crosses the Stokes line a = 0. This appearance takes place in a certain interval Acr which 
may be called the Stokes line width [2,3,4]. According to these authors the switching function of 
recessive term coincides with error-function 

where w = w(cr) is a certain odd fupction of a, depending on convention [4] about dominant 

Figure 1: 

term. The interval Aa defined by the condition 

Iw(CY)I 5 1 -+ acr 

may be called the Stokes line width. 

2 First convention about dominant and recessive terms 
The 1-st convention [2,4] is based on asymptotic series expansion. Consider it on the example of 
standard Airy function expansion [5] 

f i e - (  O0 2n 47r -- fie+' 2 ekC-*, - < argz < -, 
22114 

C o(-C)-* + I-- 
k=O 2z114 k=O 3 3 



Figure 2: 

Near the upper Stokes line r= 1 r 1 ei(2z/3+"), -C = f 1 z 13/2ei3a/2. According to the 1-st convention 
the dominant wave Sm is formed by asymptotic series trancated near its least tern, while the 
recessive wave R, is represented by the remainder: 

fie-< m-1 
=- C 4(-<)-k + 

2z114 k=, dt fm (t) [Ai(z)Ai(te-y)- 

fm(t) = (-l)m&mcm<-m-1/2e-<, m = m(z) - number of the least term. For z > 1 the 
m = m(z) > 1 and it is possible to find the asymptotic expression for &(z). The investigation 
shows that for asymptotic series whose terms behave with number k as 

r(ak + b)(~z)-~, 

the ratio 

where 



So the recessive wave is switched on when 151 2 1, or when the phase difference of dominant 
and recessive waves becomes large: 

3 Second convention and uncertainty relation 

The 2-nd convention [4] based on contour integral representation and dividing contour integral at 
the height of recessive saddle. The dominant and recessive terms of F(z) are nothing else than 
contributions of high and low saddles of the integrand. If t2 and tl are the high and low saddle 
points and z is near the Stokes line then the steepest decent lines going over the t2 and tl (§DL2 
and SDL1) on the complex t-plane are represented on the fig.3 together with the level line (LLI) 
of low saddle point tl. 

Figure 3: 

The point t,=t,(z) on the intersection of §DL2 and LL1 is a root of eqs.: 

Imf(t,z) = Imf2, 
Ref(t,z) = Refl. (13) 

The 2-nd convention defines the dominant D and recessive R terms of F = D + R as integrals 



Using in R the Taylor expansion for f (t, z )  near saddle point tl 

we obtain 

where 

is a complex function of a. Hence, the switching function g ( a )  is complex and is given by a Fresnel 
type integral. The recessive wave switches on or off when (w( 2 1 or 

It is very natural condition: the phase difference of dominant and recessive waves is of the order 
of 1 or greater. 

Near the Stokes line the phase is linear function of a: 

Imfl,.~(a) = b f 1 , 2 ( O )  - wl,2(0) . a + . . . , 
and 

Im(fi - fi) = A u . a  + .;. , Aw = ~ ~ ( 0 )  - ul(0), (20) 
as on the Stokes line 1m f1(0)=1m fi(0). Two waves may be distinguished only outside of the 
Stokes line (Stokes strip) 

IIm(f1 -fi)l 2 1 or A w - A a z  1, (21) 

when uncertainty relation is fulfilled. That is why the Stokes line width 

may be called natural. 
In the first convention, where 

due to condition(l2) or 

the Stokes line width is much greater than natural 
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The slower formation of wave & in comparison with R is caused by the fact that the last 

f i  - -fi) 1- terms in Sm are coherent to Q, and the disentanglement occurs 
v 

slowly. This coherence disappears when cr goes out of the more wider interval Acr - @/Aw 
than natural o m  and then all recessive properties are concentrated in Q,. 

4 T-parity and asymptotic expansions 

T-transformation consists of the change a 4 -a and the complex conjugation. We consider here 
only the important case when functions fls in (2) satisfy the conditions 

. and dominant wave D goes into itself, D 4 D + 6, up to unimportant phase factor and exponen- 
tially small additional term 6. One can say conditionally that D has positive T-parity. At the 
same time 

and does not have definite T-parity inside the Stokes strip because 

g(-w) = 1 - g(w). 

Yet outside the Stokes strip, when Iwl >> 1, 

ig(w)efl w f 1 w 2 / ( 2 w ) ,  Rew ) 1, 
iefi + ie.fl-w2 I ) ,  Rew< -1. 

Then before Stokes strip the R is 2J.lrlwl times less than its value Rs on the Stokes line, does 
not change at T-inversion and has the phase of dominant wave shifted by the arg(iw-I), as 
fi - w2=Refl+il[mf2. After the Stokes strip the wave R w 2Rs, has the proper phase Imfl + n/2, 
changes its sign at T-inversion and is accompanied by small additional term of the same type as 
R itself was before the Stokes strip. 

Therefore the Stokes strip is the forming region for recessive wave with frequency wl # wz and 
negative T-parity. 

As to behaviour of dominant and recessive waves at T-transformation in the representation 
F=Sm + & , then for the examples considered in [4] the Sm transforms into itself up to the same 
factor as for D but without any additional term 6,i.e. Sm + S,, while the R, behaves according 
to (29) with the change of w by real 5, see (11). Therefore the phase of forming wave R, equals 
to Imfl + 7r/2 a d  its T-parity changes from positive to negative value being indefinite inside the 
Stokes strip. As D=Sm + Rm - R, the additional term 6 having indefinite T-parity inside the wide 
Stokes strip vanishes outside it as 6 ie-t2+fi/2&5. 



b Stokes line width and the method of osculating param- 
eters 

It is instructive to see the appearance of Stokes width in the method of osculating pwmeters. 
According to this method the particular solution y(8) of the differential equation of tke second 
order with large parameter v is sought as a superposition of quasiclassical solutions * f ( 8 )  with 
the correcting coeEcient functions ~ ~ ( 0 )  defined by the relations 

and boundary condition 

The latter means that the solution in question is +y(8) .  As a*($) are not differentiated in eq.(31) 
. the differential equation of the second order is reduced to the system of two differentid equations 

of the first order. This is sometimes useful for seeking out the appropriate approximation. 
In physical literature there is a tendency to treat the two terms on the r.h.s. of (30) as two 

waves with f frequencies for arbitrary 8  and not only for 8  + +m (see [6] and references therein). 
This is done on the ground that quasiclassical solutions * f  conserve the sign of frequency and 
the factors a*($) should only correct the solutions. Yet this is true only in the case when + f (8 ) ,  
describing the strong wave, is taken with the accuracy up to the amplitude a- ( 8 )  of the weak wave 
a _ ( @ )  - f ( 8 ) ,  which under considered condition is erponentially small, for example a,(0) - e-*V. 

To see this we note preliminarily that as follows from (31,32) 

We use now as an example the parabolic cylinder function y ( ~ ) = ~ ~ i , - l 1 2 ( - e - ' T ~ 4 2 f i 8 ) .  The 
constant C is fixed by the condition a + ( - m )  = 1 .  The first terms of the asymptotic expansion of 
y(8) in power series in v-I can be obtained by Darwin method [7]. 

f i r  the n-th approximation we have 

Here Q are the real functions of 8, bounded for k 2 1  together with their derivatives and satisfying 
the relation 

ck(-8) = ( - l ) k ~ k ( 8 ) .  

It follows from (3334)  that a-(0)  - fn(8) consists of positive- and negative-frequency terms which 
have the form 



As seen from here a- - f becomes approximately the negative-frequency wave only when the 
first term on the r.h.s. is much smaller than the second one: 

In notation of [8] 

1 
cfn(8) = -2(-iv),+5 h3fl~-3n-2. (37) 

One can show that for 0 >> 1 the function ctn(8) % an2-2n8-2n-1 a ,  % 2"-'F(n+l), n >> 1. Then 
the condition (36) takes the form 

So for n N v >> 1 we have B2 >> 1. It is seen that with each successive step in approximation 
for * fn the width, in which positive- and negative-frequencies are not separated, shrinks quickly, 
but only at the step n N v the width approaches the barrier one - a physically reasonable result. 
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Abstract 

In quantum physics the direct observables are probabilities of events. We ask, how ob- 
served probabilities must be combined to achieve what we call maximum predictive power. 
According to this concept the accuracy of a prediction must only depend on the number of 
runs whose data serve as input for the prediction. We transform each probability to an asso- 
ciated variable whose uncertainty interval depends only on the amount of data and strictly 
decreases with it. We find that for a probability which is a function of two other probabilities 
maximum predictive power is achieved when linearly summing their associated variables and 
transforming back to a probability. This recovers the quantum mechanical superposition 
principle. 

E Introduction 

Quantum theory is not yet understood as well as e.g. classical mechanics or special relativity. 
Classical mechanics coincides well with our intuition and so is rarely questioned. Special relativity 
runs counter to our immediate insight, but can. easily be derived by assuming constancy of the 
speed of light for every observer. And that assumption may be made plausible by epistemological 
arguments [I]. Quantum theory on the other hand demands two premises. First, it wants us to 
give up determinism for the sake of a probabilistic view. In fact, this seems unavoidable in a 
fundamental theory of prediction, because any communicable observation can be decomposed into 
a finite number of bits. So predictions therefrom always have limited accuracy, and probability 
enters naturally. More disturbing is the second premise: Quantum theory wants us to give up 
the sum rule of probabilities by requiring interference instead. However, the sum rule is deeply 
ingrained in our thought, because of its roots in counting and the definition of sets: Define sets 
with no common elements, then define the set which joins them all. The number of elements in 
this latter set is just the sum of the elements of the individual sets. When deriving the notion of 
probability from the relative frequency of events we are thus immediately led to the sum rule, such 
that any other rule appears inconceivable. And this may be the reason why we have difficulties 
accepting the quantum theoretical rule, where probabilities are summed by calculating the square 
of the sum of the complex square roots of the probabilities. In this situation two views are 
possible. We may either consider the quantum theoretical rule as a peculiarity of nature. Or, 
we may conjecture that the quantum theoretical rule has something to do with how we organize 
data from observations into quantities that are physically meaningful to us. We want to adopt the 



latter position. Therefore we seek to establish a grasp of the quantum theoretical rule with the 
general idea in mind that, given the probabilistic paradigm, there may exist an optimal strategy 
of prediction, quite independent of traditional physical concepts, but resting on what one can 
deduce from a given amount of information. We will formulate elements of such a strategy with 
the aim of achieving maximum predictive power. 

2 Representing Knowledge from Probabilistic Data 
Any investigative endeavour rests upon one natural assumption: More data from observations 
will lead to better knowledge of the situation at hand. Let us see whether this holds in quantum 
experiments. The data are relative frequencies of events. From these we deduce probabilities 
from which in turn we derive the magnitudes of physical quantities. As an example take an 
experiment with two detectors, where a click is registered in either the one or the other. (We 
exclude simultaneous clicks for the moment.) Were, only one probability is measurable, e.g. the 
probablity pl of a click in detector 1 .  After N runs we have nl counts in detector 1 and n2 counts 
in detector 2, with nl + n2 = N .  The probability pl can thus be estimated as 

with the uncertainty interval [2] 

From pl the physical quantity x(p l )  is derived. Tts uncertainty interval is 

The accuracy of x is given by the inverse of A X .  With the above assumption we expect it to 
increase with each additional run, because we get additional data. Therefore, for any N ,  we 
expect 

A x ( N  + 1 )  < A x ( N ) .  (4 )  

However, this inequality cannot be true for an arbitrary function x ( p l ) .  In general A X  will 
fluctuate and only decrease on the average with increasing N. To see this take a theory A which 
relates physical quantity and probability by X A  = p1. In an experiment of N = 100 runs and 
nl = 90 we get: AxA(lOO) = .030. By taking into account the data from one additional run, where 
detector 2 happened to click, we have AxA(lO1) = .031. The differences may appear marginal, 
but nevertheless the accuracy of our estimate for X A  has decreased although we incorporated 
additional data. So our original assumption does not hold. This is worrisome as it implies that 
a prediction based on a measurement of X A  may be more accurate if the data of the last run are 
not included. Let us contrast this to theory B, which connects physical quantity and probability 
by X B  = p16. With N and nl as before we have ~ ~ ( 1 0 0 )  = .106. Incorporation of the data from 
the additional run leads to ~ ~ ( 1 0 1 )  = .104. Now we obviously don't question the vallie of the last 
run, as the accuracy of our estimate has increased. 



The lesson to be learnt from the two examples is that the specific functional dependence of 
a physical quantity on the probability (or several probabilities if it is derived from a variety of 
experiments) determines whether our knowledge about the physical quantity will increase with 
additional experimental data, and that this also applies to the accuracy of our predictions. This 
raises the question what quantities we should be interested in to make sure that we get to know 
them more accurately by doing more experiments. From a statistical point of view the answer is 
straightforward: choose variables whose uncertainty interval strictly decreases, and simply define 
them as physical. And from a physical point of view? Coming from classical physics we may 
have a problem, as concepts like mass, distance, angular momentum, energy, etc. are suggested 
as candidates for physical quantities. But when coming from the phenomenology of quantum 
physics, where all we ever get from nature is random clicks and count rates, a definition of physical 
quantities according to statistical criteria may seem more reasonable, simply because there is no 
other guideline as t o  which random variables should be considered physical. 

Pursuing this line of thought we want to express experimental results by random variables 
whose uncertainty interval strictly decreases with more data. When using them in predictions, 
which are also expressed by variables with this property, predictions should automatically become 

. more accurate with more data input. Now a few trials will show that there are many functions 
x(pl) whose uncertainty interval decreases with increasing N (eq.(3)). We want to choose the one 
with maximum predictive power. The meaning of this term becomes clear when realizing that in 
general AX depends on N and on a1 (via p l ) .  These two numbers have a very different status. 
The ;umber of runs, N, is controlled by the experimenter, while the number of clicks, nl, is solely 
due to nature. Maximum predictive power then means to eliminate nature's influence on AX. For 
then we can know AX even before having done any experimental runs, simply upon deciding how 
many we will do. From eq.(3) we thus get 

which results in 
x = C arcsin(2pl - 1) + D 

where C and D are real constants. The inverse is 

showing that the probability is periodic in X .  Aside from the linear transformations provided by 
C and D any other smooth function a(x) in real or complex spaces will also fulfill requirement 
(5) when equally sized intervals in x correspond to equal line lengths along the curve a(x). One 
particular curve is 

X .x a(x) = sin(-)e12, 
2 (8) . 

which is a circle in the complex plane with center at i/2. It exhibits the property = pl known 
from quantum theory. But note, that for instance the function p = sin(x/2) does not fulfill the 
requirement that the accuracy only depend on N. Therefore the complex phase factor in eq.(8) 
is necessary [3] [4]. 



Distinguishability 
We have now found a unique transformation from a probability to another class of variables 
exemplified by x in eq.(6). These unique variables always become better known with additional 
data. But can they be considered physical3 We should first clarify what a physical variable is. A 
physical variable can assume different numerical values, where each value should not only imply 
a different physical situation, but should most of all lead to a different measurement result in a 
properly designed experiment. Within the probabilistic paradigm two measurement results are 
different when their uncertainty intervals don't overlap. This can be used to define a variable which 
counts the principally distinguishable results of the measurement of a probability. Comparison 
of that variable to our quantity x should tell us how much x must change from a given value 
before this can be noticed in an experiment. Following Wootters and Wheeler [5][6] the variable 
0 counting the statistically distinguishable results at detector 1 in N runs of our above example 
is given by 

~ l ( ~ l )  dp n' 
e(nl) = - = Jij [arcsin(2p1 - 

AP(P> ') + 21 
where Ap is defined as in eq.(2). When dividing 0 by IV1I2 it becomes identical to x when in 
eq.(6) we set C = 1 and D = $. This illuminates the meaning of X: It is a continuous variable 
associated with a probability, with the particular property -that anywhere in its domain an interval 
of fixed width corresponds to an equal number of measurement results distinguishable in a given 
number of runs. With Occam's dictum of not introducing more entities than are necessary for 
the description of the subject matter under investigation, x would be the choice for representing 
physical situations and can rightly be called physical. 

4 A Simple Prediction: The Superposition Principle 
Now we return to our aim of finding a strategy for maximum predictive power. We want to see 
whether the unique class of variables represented by x indicates a way beyond representing data 
and perhaps affords special predictions. For the sake of concreteness we think of the double slit 
experiment. A particle can reach the detector by two different routes. We measure the probabilty 
that it hits the detector via the left route, p ~ ,  by blocking the right slit. In L runs we get nL 
counts. In the measurement of the probability with only the right path available, p ~ ,  we get n~ 
counts in R runs. From these data we want to make a prediction about the probability ptot, when 
both paths are open. Therefore we make the hypotheses that ptot is a function of p~ and p ~ .  What 
can we say about the function ptot(pL,pR) when we demand maximum predictive power from it? 
This question is answered by reformulating the problem in terms of the associated variables XL, 

XR and xt,t, which we derive according to eq.(6) by setting C = 1 and D = ;. The function 
xtot(xL, xR) must be such that a prediction for xtOt has an uncertainty interval SxtOt, which only 
depends on the number of runs, L and R, and decreases with both of them. (We use the symbol 
Sxtot to indicate that it is not derived from a measurement of ptot, but from other measurements 
from which we want to predict ptot.) In this way we can predict the accuracy of xtOt by only 
deciding the number df runs, L and R. No actual measurements need to have been done. Because 



maximum predictive power is achieved when 

We want to have a real function xtot(xL, xR), and therefore we get 

where a,  b and c are real constants. Furthermore we must have c = 0 and the magnitude of both 
a and b equal to 1, when we wish to have xt0t equivalent to XR or to XL when either the one or 
the other path is blocked. So there is an ambiguity of sign with a and b. When rewriting this in 
terms of the probability we get - 

2 X L ~  XR 
ptot = sin ( 2 ). 

This does not look like the sum rule of probability theory. Only for p~ + p~ = 1 does it coincide 
with it. We may therefore conclude that the sum rule of probability theory does not afford maxi- 
mum predictive power. But neither does eq. (1 3) look like the quantum mechanical superposition 
principle. However, this should not be surprising because our input were just two real valued 
numbers, XL and XR, from which we demanded to derive another real valued number. A general 
phase as is provided in quantum theory could thus not be incorporated. But let us see what we 
get with complex representatives of the associatea variables of probabilities. We take a(x) from 
eq. (8). Again we define in an equivalent manner a ~ ,  a~ and atot. From p~ we have for instance 
(from (8) and (7) with C = 1 and D = f) 

and 

If we postulate a relationship atot(aR, aL) according to maximum predictive power we expect 
the predicted uncertainty interval Satot to be independent of a~ and CYR and to decrease with 
increasing number of runs, L and R. Analogous to (11) we must have 

yielding 
Qtot = SQL + t a ~  + U, 

where s, t, and u are complex constants. Now u must vanish and s and t must both be unimodular 
when ptot is to be equivalent to either p~ or p~ when the one or the other route is blocked. We 
then obtain 

ptot = latd12 = 1 s ~ ~  + t a ~ 1 ~  = PL + PR + 2.\/= C O S ( ~ ) ,  (I8) 



where 4 is an arbitrary phase factor containing the phases of s and t. This is exactly the quantun 
mechanical superposition principle. What is striking is that with a theory of maximum predictive 
power we can obtain the general form of this principle, but cannot at all predict prOt even when 
we have measured p~ and p ~ ,  because of the unknown phase 4. So we are lead to postulate 4 as 
a new measurable quantity in this experiment. 

We have tried to obtain insight into the quantum mechanical superposition principle and set 
out with the idea that it might follow from a most natural assumption of experimental science: 
more data should provide a more accurate representation of the matter under investigation and 
afford more accurate predictions. From this we defined the concept of maximum predictive power 
which demands laws to be such that the uncertainty of a prediction is solely dependent on the 
number of experiments on which the prediction is based, and not on the specific outcomes of these 
experiments. Applying this to the observation of two probabilities and to possible predictions 
about a third probability therefrom, we arrived at the quantum mechanical superposition principle. 
Our result suggests nature's law to be such that from more observations more accurate predictions 
must be derivable. 
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Resonance fluorescence from a two-state atom has been predicted to exhibit quadrature 
squeezing below the Heisenberg uncertainty limit, provided that the optical parameters (Rabi frequency, 
detuning, laser linewidth, etc.) are chosen carefully. When the correlation between two quadratures of 
the radiation field does not vanish, however, the Heisenberg limit for quantum fluctuations might be an 
unrealistic lower bound. A generalized uncertainty relation, due to SchrMiger, takes into account the 
possible correlation between the quadrature components of the radiation, and it suggests a modified 
definition of squeezing. We show that the coherence between the two levels of a laser-driven atom is 
responsible for the correlation between the quadrature components of the emitted fluorescence, and that 

nger uncertainty limit increases monotonically with the coherence. On the other hand, the 
fluctuations in the quadrature field diminish with an increasing coherence, and can disappear completely 
when the coherence reaches 112, provided that certain phase relations hold. 

We consider a two-state atom, with excited state le>, ground state Ig>, and level 

separation oo, illuminated by an intense laser. The electric field at the position of the 

atom is assumed to have the form 

gL (t) = E. Re EL exp[-i(aLt + ~ ( t ) ]  , (1.1) 

where $(t) is a stochastic phase which takes into account the laser linewidth. We shall 

assume that this is a diffusion process with independent increments. The driven atom 



will emit resonance fluorescence, and the positive-frequency part of the electric field of 

this radiation is 

with dt(t) = lg >< el the atomic lowering operator, and y an overall constant. The 

fluctuations in the amplitude (or phase) are measured by a homodyne detector with the 

~ h g  laser as local oscillator. The slowly-varying operator under measurement is 

therefore1 

with 8 the adjustable mixing angle of the detector. Essentially, the detector measures the 

variance of this quadrature operator, denoted by var(Ee). 
The fluctuations in Ee(t) will be expressed in terms of the parameter re, defined 

as 

Clearly, this parameter lies in the range 0 I re I 1. For re = 0 we have var(EO) = 0, 
which corresponds to no fluctuations at all, and for re = 1 we have < E8 > = 0. This case 

corresponds to a pure random phase of the field (like in a number state). 

For Heisenberg's uncertainty relation we compare the quadrature field Ee with the 

field Eel, which is the same field except with a different mixing angle. Then the 
uncertainty relation can be written as 

with LH the Heisenberg lower limit, given by 



If we k s e a  the exp~ssion for the quadrature field in LH, it follows that the dependence 

on the ' g angles 8 and e' has the form 

and therefore we take 8' = 8 + nx with n as an integer. Then Eo is said to be squeezed if 

in view of (2.1). 
The fluctuation parameter re can be expressed in tems of matrix elements of the 

a t o ~ c  density operator B (either in the rotating frame or not). We find 

wi& the m g k  6 equal to 

The Heisenberg lower limit can be whitten as 

in tems of the populations ne and ng of the excited state and ground state, respectively. 

From (2.5) it then follows that the fluctuations in Ee are minimum if the Hlixing angle 8 
is chosen such that 6 becomes an integer multiple of x. This corresponds to maximum 

squeezing, given o, because Lw dms not depend on 8. For 6 = n.n the condition for 

squeezing becomes 

Wether squeezing occurs or not depends therefore on the populations of the atomic 

levels and the coherence between the levels. 



m e n  the atom has spent a sufficient mount of h e  in the laser field, its density 

operator wiU reach a steady state. The Rabi frequency of the transition is defined as 

d t h  fi the &pole moment operator of the atom, and the laser linewidth h will be 

pa rme~zed  (hrough the combination 

where A is the Einstein coefficient for spontaneous decay. The detuning between the 

laser and the atomic resonance is 

In terms of these parameters, the absolute value of the coherence becomes2 

and the difference in level population is 

which equals the Heisenberg lower limit. The condition for squeezing, for 6 = 0, then 

becomes 

as in Ref. (2). It is easy to see that for 4 > 1, which is h > A/2, squeezing never occurs. 

The fluctuation parameter r is, for 6 = 0, 



For a given deru~ng A and laser'linewidth A,, the fluctuations are ~ n i m u m  if we t&e the 

Rabi frequency, which is proportional to the laser power, equal to 
,'- 

Then r becomes 

which is independent of A. This minimizes for h = 0 ,  which gives r = 1/2 and 
a2 = 2 ( ~ ~  + f12 14). 

A convenient parametrization follows by introducing the new variable 

dimensionless and proportional to the laser power. Then r and can be written as 

and the condition for squeezing becomes 

The dependence of r and LH on 5 is shown in Fig. 1 for 8 = h = 0. The difference s = r - 
LH is also shown, and a negative value of s corresponds to squeezing in the quadrature 

field below the Heisenberg uncertainty limit. Squeezing occurs for 6 e 2, and the 

maximum squeezing appears for 6 = 213, which gives s = -118. Notice that the minimum 

in r is located at 6 = 2, corresponding to s = 0. Hence, the best relative squeezing 

(minimum s) does not coincide with the smallest relative fluctuations in the field 

(minimum r). 



Fig. I .  Plot ofparmeters r, LH, a d  s as rawt ion of 6.  

Heisenberg's uncertainty relation (2.1) sets a lower bound on the product of two 

variances. It is well known, however, that this is not the sharpest lower bound. A 

different uncertainty relation, due to SchrMinger, is3 

The Schriidinger lower bound is related to the Heisenberg lower bound by 

where the correlation coefficient c is defined as 



f < E & ~ + E , E ~ > - c E ~ > ~ E , >  
c = 

Jvw(~8) vw(~,)  

It can be v&id that c lies in the range 

which then gives 

This shows that the possible higher bound in Schriidinger's relation is due to the 

correlation between quadratures of the field with different values of 8. We shall always 

take '8' = 8 + n / 2, as before. 

For resonance fluorescence the correlation coefficient can be expressed in terms 

of the matrix elements of the atomic density operator. We obtain 

showing that c is determined by the coherence between the levels only, and not by the 

populations of the atomic states. The relation between the Schriidinger limit and the 

Heisenberg limit then becomes 

When 6 is an integer multiple of x12 or when the coherence is zero, we have LS = LH. 
When 6 is not an integer multiple of n/2, the Schriidinger limit can become arbitrarily 

large when the coherence approaches 112 (any coherence, in absolute value, is smaller 

than 112 in a two-level system). Figure 2 shows the ratio LS/LH for 6 = x14, and as a 

function of the atomic coherence. 

In terms of the parameters 6 and q the relation (4.7) becomes 



The laser power that minimizes s for q = 112 and 6 = 0 is 6 = 213. Then the minimum 

value of s is -118 and the mininnw of r is 5/8. Figuse 3 illustrates the behavior of r, LH, 

and LS as a fuwajIoern of d for hs  vdues of d q. 

Fig. 2 .  Ratio LJLH for 6 = Id4 as a h m i o n  of the coherence. 

Fig. 3. Plot of the Heisenberg- and Schrodinger limits and the fluctuation parameter r a,~ 

a function of 6. 



We have studid the possibilities for squeezing in the qu&ame components of 
=son- fluorescence from a two level atm. It was shown that the coherence betwwn 

the two levels gives rise to a correlation ktwwn quadrame fields with a different 
ing angle (in homodyne detection). This implies that the uncertainty limit on 

quantum fluctuations which is set by Schrijdinger's relation can be considerably higher 
than the comsponding lipnit in Heisenberg's relation. It appears that in the steady state 
both M t s  are very close, as illusbrat& in Fig. 3. P;or pulsed-laser excitation, however, 
the coherence can approach its limiting value of 112, and this would increase the 
Sc ger limit &matically. Then the Heisenberg lower bound is an unrealistic lower 
limit, and squeezing should be defined with respect to the SchrMnger uncertainty 
relation. 
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We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed 
states, are structural properties for diffusion processes. Through Nelson stochastic quanti- 
zation we derive the stochastic image of the quantum mechanical coherent and squeezed 
states. 

It is well known that the theory of stochastic processes is a powerful tool in the study of the 
interplay between probabilistic and deterministic evolution [I]. In quantum mechanics, and in 
particular in quantum optics, such interplay is expressed by the states of minimum uncertainty? 
the coherent [2] and squeezed states [3], which are viewed as the "most classical" states. 

In this paper we report on a recent derivation [4] of uncertainty relations for classical stochm- 
tic processes of the diffusion type, and we determine the diffusion processes of minimum uncer- 
tainty (MUDPs). We find that a special class among them is associated to Gaussian probability 
distributions with time-conserved covariance and mean value with classical time evolution: we 
refer to them as strictly coherent MUDPs. We will also identify Gaussian MUDPs with time- 
dependent covariance and conserved expectation value: we refer to them as broadly coherent 
MUDPs. By exploiting Nelson's stochastic quantization scheme [5 ] ,  we will show that the 
strictly coherent MUDPs provide the stochastic image of the standard quantum mechanical 
coherent and squeezed coherent states, while the broadly coherent MUDPs are associated with 
the phenomenon of t ime-dependent squeezing. 

Our study is motivated by the possibility that the formalism of stochastic processes offers to 
treat on the same footing, in a unified mathematical language, the interplay between fluctuations 
of different nature, for instance quantum and thermal [6]. 

Beyond the case of diffusion processes, it is interesting to note that coherence and squeezing 
have recently emerged in other contexts wider than quantum mechanics ( [ a ] ,  [8]). 



2 Uncertainty and Coherence in Diffusion Processes 
In what follows9 without lack of generality, we will consider a one-dimensional random vmiablle 
g o  The associated diffusion process q(t)  obeys 

where v(+) (q( t ) ,  t ) ,  is the fomard drift, v(q( t ) ,  t )  is the diffusion coefficient, and dw(t) is a 
Gaussian white noise, superimposed on the otherwise deterministic evolution, with expectation 
E(dw(t))  = O and covariance E(dw2(t))  = 2dta The forward and the backward drifts v(+)(x, t )  
and v(-) (x ,  t )  are defined as 

v (+) ( z , t )  = lim E 
At At-+O+ 

The definitions of v(+) and p r ( - )  are not independent, but related by [5]  

It is now convenient to define the osmotic velocity u(x, t )  and the current velocity v(x,  t )  

From the former definitions it is clear that u(x,  t )  "measures" the non-differentiability of the 
random trajectories, controlling the degree of stochasticity. In the deterministic limit u vanishes, 
and v(x ,  t) goes to the classical velocity v ( t ) .  

Finally, we have the continuity equation 

It is straightforward to check that E(v(+))  = E(v(-1) = E(v) ,  and E(u) = 0. Further, 

d 
E ( v ) = & E ( q )  V t .  

For the product qu, we have IE(qu(q, t ) )  1 = E(u(q, t ) ) .  By Schwartz's inequality, the r.m.s. 
deviations Aq and Au satisfy 

AqAu L E(v(q,  t ) ) .  (9)  



Inequality (7) is the uncertainty relation for any diffusion process. Equality in (7) defines 
the MUDPs. Saturation of Schwartz's inequality yields u(x, t )  = C( t ) (x  - E(q)) ,  where C ( t )  is 
an arbitrary function of time. Considering constant v and time-dependent u, in both cases we 
obtain a Gaussian minimum uncertainty density: 

where 2(Aq)2 = - v ( t ) / C ( t ) .  
From eq. (5) we can determine the current velocity: 

where 

,Eqs. (8)-(10) lead to the stochastic differential equation obeyed by any MUDP: 

It is interesting to observe that (11) defines the so-called linear processes in narrow sense. 
When A(t) = 0 they are the time-dependent Ornstein-Uhlenbeck processes. These last ones 
play a natural role in the theory of low noise systems [ I ] ,  which are thus found to be related 
with MUDPs. 

The possible choices of E(q) and Aq in (8) are not independent: taking the expectation 
value of in (9)-( lo) ,  and reminding (6) one has that either 

where j ( t )  and k( t )  are arbitrary functions of time, and we have chosen for simplicity q(t = 
0 )  = 0. Consider first case (12): Aq does not spread; also, it is immediate to verify that the 
expectation value-of the process E(q) follows a classical trajectory: 

As a consequence, MUDPs of the form (8) obeying (12) and (14) are coherent in a sense 
precisely analogous to that of quantum mechanical coherent states: we will refer to them as 
strictly coherent MUDPs and to processes (8) obeying (13) as broadly coherent MUDP~.  



It is possible to discriminate on physical grounds the strictly coherent MUDPs from the 
broadly coherent ones by observing that (12) and (14) come as immediate consequence on 
imposing the Ehrenfest condition 

so that the strictly coherent MUDPs can be viewed as the most deterministic semi-classical 
processes. 

Consider the scale transformation z + e-8x which authomatically implies u -, esu, where s is 
the scale parameter. The Gaussian distribution (8) is form-invariant under this transformation, 
while the uncertainty product (7) is strictly invariant with Aq + e'"Aq and Au -+ esAu. We 
will show next that in the framework of Nelson stochastic quantization this transformation is 
just the squeezing transformation of quantum mechanics. In this context, broadly coherent 
MUDPs are of special interest when considering time-dependent squeezing. 

. 3 Nelson Diffusions 

A very important class of diffusion processes (Nelson diffusions) in physics has been introduced 
by Nelson in his stochastic formulation of quantum mechanics 151. 

Togeach singkparticle quantum state P = exp [R + i s ] ,  Nelson stochastic quantization 
associates the diffusion process q(t) with 

where m is the mass of the particle. At the dynamical level, the Schroedinger equation with 
potential V (x, t) is equivalent to the Hamilton-Jacobi-Madelung equation 

It is well known [9] that for Nelson diffusions the uncertainties Aq and Au are related to the 
quantum mechanical uncertainties A8 and Afi of the position and momentum operators 8 and 
a by 

A8 = Aq , (A$)' = ~ [ ( A u ) '  + ( A V ) ~ ]  , 

Minimum uncertainty Nelson diffusions (MUNDs) are MUDPs. Correspondingly, we will 
speak of strictly and broadly coherent MUNDs. By solving (17) for MUNDs we obtain V(x, t) 
and the classical equations of motion for E (9). For strictly coherent MUNDs (12) we have 



When the arbitrary constants f ( t )  and Vo(t) vanish, eqs. (19) are those of the classical 
harmonic oscillator and the associated quantum states are the standard Glauber coherent states; 
when f (t) = const'. we have the Klauder-Sudarshan displaced oscillator coherent states; finally, 
when f ( t )  is truly time-dependent, we obtain the Klauder-Sudarshan driven oscillator coherent 
states [ lo] .  

For broadly coherent MUNDs we have instead 

where g(t) = (Aq)-ldAq/dt must be such that w2(t)  is positive. Eq. (20) describes the para- 
metric oscillator potential, associated to the feature of time-dependent squeezing. 

Furthermore, we can identify among MUNDs those corresponding either to Heisenberg or to 
Schroedinger minimum uncertainty. The key relation, easy to prove, is 

where < ( a ,  .} >+ denotes the expectation of the anti-commutator in the state Q, i.e. the 
Schroedinger part of the quantum mechanical uncertainty. 

Eqs. (18) and (21) show that the strictly coherent MUNDs (19) exhaust the Heisenberg 
minimum uncertainty states, while the broadly coherent MUNDs (20) form a subset of the 
Schroedinger minimum uncertainty states. 

Finally, we investigate the possibility of letting v be time-dependent in the context of quan- 
tum mechanics. From the first of equations (16) this means letting either m or ti be functions 
of time. 

This latter case seems a bit speculative at this stage. We thus fix our attention on the case 
of time-dependent mass m(t )  and constant h. 

For such systems it can be immediately verified that the Nelson scheme (16)-(17) still holds 
with m(t )  replacing m. Considering the most interesting case of strictly coherent MUNDs, 
which means choosing C ( t )  oc u( t ) ,  and solving (17) we obtain 



where f(t), Vo(t) are arbitrary functions of time. Eqs. (22) supplemented with m(t) = rnoer(') 
define the dynamics of the damped parametric oscillator. The stochastic approach thus sheds 
new light in a unified treatment on the study of quantum dissipative oscillators, for it allows to 
derive for the expectation value the dynamical equation (22) that was so far unknown. 

In conclusion, we have shown that the quantum mechanical concepts of uncertainty, coher- 
ence, and squeezing can be imported in the probabilistic arena of diffusion processes. This 
appears to be possible because of a subtle interplay between fluctuations, control, and optimiza- 
tion. Conversely, we may also say that these features of quantum mechanics can be traced back 
and related to general properties of diffusion processes. 

Work on this subject is in progress, and includes application of our scheme to polymer 
dynamics and chemical reactions, uncertainty relations in field theory and dynamical systems 
on lattices and manifolds. 
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ABSTRACT 
The squeezed states or Bogoliubov transformations and wavelets are applied to two prob- 

lems in non-relativistic statistical mechanics: the dielectric response of liquid water, e(?, w), 
and the bubble formation in water during insonnification. The wavelets are special phase- 
space windows which cover the domain and range of L1 n L2 of classical causal, finite energy 
solutions. The multi-resolution of discrete wavelets in phase space gives a decompostion 
into regions of time and scales of frequency thereby allowing the renormalization group 
to be applied to new systems in addition to the tired 'usual suspects' of the lsing models 

' and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to 
the dipolaron collective mode in water and to the gas produced by the explosive cavitation 
process in bubble formation. 

1. INTRODUCTION 
Water is extremely important in chemistry and biology both as a solvent and as a neu- 

tral medium which is rich in pos~ibilities.~-'~ The dielectric response of a medium, e(q', w) 
is related to the index of refraction as, n(q', w) = JETi, whose real part controls wave prop- 
agation and whose imaginary part gives the attenuation. An August 1993 dissertation at 
Missouri University by one of us, S.-H. Kim19, formulates a new model which is rather 
successful in accounting for the complex index of refraction n(w) + ia(w), over 14 to 15 
decades of frequency. This model is a number-conserving relaxation-time,7 Boltzmann 
transport equation model in phase space596t9 based on Kubo's fluctuation-dissipation the- 
orem l2 and a Kerr approximation.11 The free rotation gives an IR peak at the correct 
frequency which is much larger than the one found experimentally by Simpson et al.15 A 
phase-space analysis of our model based on wavelets will be presented here. 

The problem of bubble formation in liquids is both old and diffi~ult.~O-~~ It is now 
known that two different mechanisms of bubble formation exist: cavitation, where the 
growth is explosive and nucleation where diffusion of molecules yields a slow growth. 
This work will be restricted to cavitation. All bubbles are interesting for electromagnetic 
wave propagation in water because they give additional spatial dispersion $dependence to 

i the index of refraction of the medium through their Mie scattering. 
The approach taken here will be to form a mean-field theory of a a4 theory in 4 space- 

I time dimensions. It is a variant of an idea due to K a u ~ , ~ ~  Wilhelm~son~~ and G1inu-11~~ 
t that bubbles are non-linear, coherent effects in fluids. Kaup's clever title is, "Cavitons 

are solitons" for a plasma driven by both sound and electromagnetism. Our equations are 
I completely different and have solitary wave solutions rather than solitons. These solitary 

waves will have finite lifetimes in contrast to the infinite lifetimes of Kaup's cavitons, which 



he first showed were an integrable system. However, since both models are subject to other 
perturbations, this difference is not actually as serious as it first appears.29 

There is also a practical reason for trying to understand bubble formation. Apfe130j3', 
Nyborg32, Rose and G01dberg~~ have shown that ultrasound at the frequencies used for 
medical diagnostics forms bubbles in water and tissue. They have raised questions about 
the safety of ultrasound but have not yet shown any evidence that these bubbles (or any 
other effect of ultrasound) are harmful. T r e ~ e n a ~ ~  has suggested that bubble collapse may 
occur through shock waves, which could damage cells. 

Both of these problems will be analyzed using  wavelet^^^-^' which are a special class of 
windows 

(i) which cover the domain R1 or R2 in refs. (36-49) and the Lorentzian manifold of 
special relativity in ref (50,51); and 

(ii) are dense in the range of L2 n L1. 

The first space L2 is required classically for finite energy signals and for a probabili- 
ty interpret ation of Hilbert space states in non-relativistic quantum mechanics, and the 
space L1 is required classically for causality and is a major technical requirement in non- 
relativistic quantum mechanics which provides absolute continuity. Clearly, (i) assures the 
existence of measurability of the underlying space and (ii) places additional restrictions on 
the solutions for the correct dynamics and symmetries. In particular, the symmetry group 
is the set of dilations. In the continuous one-dimensional case dilations are generated by 
the transformation D 

on the coordinates x and solutions $ E L2 n L1, where a E R!,. and b E R1 . In the discrete 
case (k, j) E (the integers) with a = 2 (one choice, but not the only one) 

In the discrete case, L2 -+ C2 and L1 + C1 and qkj "live in" C2 n C1. The choice of a = 2 
gives the Lebeque covering of R1 and extends to Rn and thus any other integer with this 
property will suffice. To satisfy (2) the conditions (2a) completeness 

(2b) mean zero for $, mean one for 4 



where the multiresolution decompostion of Mallet satisfies Vj = Vj-lGWj-l, i.e. U 
Wj-l = tj. and q-1 n Wj-l = (0). For fixed j, eqs. (3,4) reduce to a translation on 12. 

t2 ne' 

If k is considered as a time (space) translation, kto, and 23 as a frequency (wavenumber) 
scale, 2jwo, with towo 2 1 then each fixed jo corresponds to a discrete translation group 
at frequency scale 2j0wo and changing jo changes the frequency scale. Even if ?,b or $ are 
time (space) signals, the dilation operators Dab or Djk map them into the time (space)- 
frequency (wave number) phase space. Thus 

implies that 

The interpret at ion of the 's spanned by the 4)'s is as a low band-pass window at frequency 
scale 2jwo whereas the higher frequencies are in the Wj's spanned by t,bj.'s at that frequency 
scale. 

From this short discussion two things should be obvious. One is that although a wavelet 
is a window, it is a great deal more as it must cover each space-time point in order 
not to miss any point particles, or sources of charge or mass. The other is that all of the 
solutions allowed by the symmetries and dynamics of the system must be expressed in 
the wavelet basis, i.e. they must be a complete set. Kaiser50 has formulated relativistic 
electrodynamics in terms of a wavelet based on analyicity and coherent states. D'Aranio 
and D e F a ~ i o ~ ~  have formulated a class of squeezed states of quantum optics and provided 
a general inversion structure for a general density operator in terms of a suitable window, 
which was expressed in terms of a general basis of observables. Han, Kim and Noz51 have 
presented a study of the relativistic phase space of light using compactly supported wavelet 
windows to clarify the relation between photons and light waves. Since there are many 
wavelet windows for any given problem, it is important to know which ones are natural 
and, if possible, if a "best one" exists. 

In this paper, the application of wavelets and state squeezing, Bogoliubov transfor- 
mations to the two statistical mechanics problems: E (q',w) for water in Section 2 and 
bubble formation will be described in Section 3, and our conclusions will be presented in 
Section 4. 



2. STATISTICAL MECHANICS OF WATER, THE DIELECTRIC RESPONSE 
In collaboration with Professor 6. Vignale, we have published studies of a classical 

water-like polar fluid whose properties are chosen to mimic water. The starting point is the 
number-conserving relaxation-time approximation to the Boltzmann transport equation. 
Up to the first order deviation from equilibrium it has the form 

BT BT where overdots are time rate of changes, q, = -, pa = -z, fO = e-mI.2 is the equilibri- a~~ 
urn Boltzmann distribution function. T is the k~netic energy of the molecule and includes 
translations, rotations and small amplitude vibrations, and Z is the partition function. 
fi is the first order correction term to fo by a perturbed applied potential. The static 
response of the electric susceptibility ~ ( w  = 0) is a 3 x 3 real matrix-valued quantity given 
by -Pfo(qa)- 

Upon determining the dynamical self-response function x,(w) self-consistently from ff '~ 

where the Kubo fluctuation dissipation theorem for the single particle self-electric suscep- 
tibility 

relates the electric susceptability to the van Hove correlation function G(w). The total 
response from the Kubo theorem is 

where Q is the local field factor which describes the coherent many particle interactions. It 
is the analog of Lorentz's local field factor, in modern many-body theory. We have explored 
several choices and found Wei and Patey17 to provide the best agreement with experiment. 
Indeed, various computer intensive molecular dynamics and Monte Carlo calculations gave 
eT(6,0) as 25-71 instead of the experimental value of 90.8 f 3.2! The large experimental 
uncertainty is dominated by the spontaneous dissassociation H20 + H+ + OH- , which 
at 20°C yields an ion concentration of 8.33 x moles/liter. The high mobility of the 
H+ species allows it to form a positively charged surface layer at the negative electrode 
which can distort the measured value of the electric permittivity, ~(w). By taking a limit 
as the moments of inertia approach zero, the Stockmayer fluid calculations were found 
comparable to the best computer studies. The causal dielectric permittivity values are 

and 



where (T, L) denote the transverse and longitudinal components of the dielectric tensor e 
and the electric susceptability tensor X .  The directions (T, L) are taken from the direction 
of the applied (vacuum) electric field 3. Remark: A wave propagation or scattering 
experiment is required to measure the q" dependence of n and a, in contrast to the ac 
capacitance bridge which measures only the angular frequency, w, dependence. A graph 
from ref. (18) of the real part of the index of refraction will be shown later. 

There is a collective mode in EL which Lobo, Robinson and Rodrigues9 first suggested 
and Pollock and Alderlo found in their simulation of a Stockmayer fluid model of water. 
It occurs in our model both in the symmetric rotor "waterlike" case1' and in the realistic 
asymmetric rotor case. l9 

Considering the water molecule as a two-level system for simplicity, the composite Boson 
creation and destruction operators which create and destroy water molecules (recall that 
this analysis is at frequencies that are far below the breakup threshold energies) are written 
as (Z,, ZJ) where their directions are those of the electric dipole moment, 9, of the molecule 
and a, p = 1,2 label which level. The collective dipolaron boson is created and destroyed 
by the Bogoliubov transformed operators (b,,  b;). The frequency of the dipolaron is 
complex-valued 

and lies in the lower half w-plane because the response function l/eL(;, w) is causal. The 
frequency in eq. (15) is determined from 

and the width from 

provided that a,, >> r,,. The peak and its width are shown in Fig. 1, where one can 
see that Qq, >> I?,, is satisfied. The mechanism of this collective mode is high frequency 
coherent oscillations of the electric dipoles in self-consistent fields in the liquid. In order 
for the mode to be longitudinal, they oscillate 180" out of phase. Both a,, and r,, were 
shown by Kim, et a1.18, to be almost dispersion-free (they only change by 1% over the 
entire range of validity). This mode depends on q = (4 being small but non-zero so it 
cannot be measured from any ac capacitance experiment such as those in ref. (3) and must 
await a light or neutron scattering experiment. Such an experiment would verify or falsify 
the model formulated in refs. (18,19). 



Fig. I. The dipolaron collective mode in water. 

Next, the-reader is reminded that eq. (10) includes translations, rotations and vibrations 
in the j& (p) terms. It is well known52~53 that the renormalization group is based upon a 

Pa 
scaling invariance. By expanding the single particle distribution function fl(.) in a wavelet 
series 

where (.) can stand for either the translation I, rotation (f3,4) or vibrations (ql, q2, q3)  in 
the real index of refraction n(w). The three normal modes for vibration are given by group 
theory and are used in our calculation of n(w). In Fig 2 the frequencies up to 10lOHz 
are dominated by the translations, from 1010 N 1012 Hz at (A, A') the collisions dominated 
Debye relaxation time dominates and at 1013Hz the free rotor peak occurs at (B1, B'). 
The free rotor peak at (B') in our theory is much too large, so work is underway to try 
to bring this into better agreement with the experiment. Between 1013 and 1014Hz the 
collective mode (C') occurs with coherent oscillations of the dipoles as its mechanism. The 
small optical peaks at (Dl, D2) fail to resolve the two higher frequency modes in (02) but 
we think that future experiments will. Thus, the wavelet phase space allows us to analyze 
the Boltzmann transport equation with a non-trival interaction. 



Fig. 2. The real index of refraction of water. 

3. BUBBLE FORMATION IN WATER BEING INSONIFIED BY ULTRA- 
SOUND 

The idea behind this calculation is to adapt the idea of Kaup to a solitary wave model 
by generalizing the work of Hammer, Shrauner and DeFacio where 4 is a 18 1 fluid density 
field 

with ui = A I B  where A, B are real and positive coupling constants and A is the strength 
of the negative mass, B is the strength of the positive nonlinear quartic interaction to three 
space dimensions with a radial time independent potential. In 3 @ 1 space-time dimensions 

where LF is the Lagrangian of the fluid, LA is the acoustic Lagrangian for the sound wave 
and LI is the interaction Lagrangian. If ,u z 0 and the sound waves are small enough in 
amplitude to be linear (see eq. (30a)) the field equations become 

The key role played by the nonlinear "potential" which acts as a convection term is our 
justification for calling this approach a strong convection model. The mechanism is that 



the constant sound wave in the fluid produces gas under pressure as a new phase  in the 
fluid. This is a non-equilibrium, open system and the gas density can be described by one 
Bogoliubov transformation and the non-zero temperature, O°C to 100°C, can be obtained 
from another Bogoliubov transformation. The entropy of this situation was discussed by 
DF, VN and Professor Brander63 of the Institute for Theoretical Physics at Chalmers in 
the Gothenberg. The l = 0, radial solutions to eqs. (21a,b) are Jacobi elliptic functions 
with modulus kl, 0 5 kl 5 1, Sol is a density defect where the local mass density is a 
minimum so that it is a site for cavitation and (u, uol) are the amplitudes for the density 
and pressure wave, respectively. 

Next a time-independent m e a n  field theory  for the density # is formed by linearizing 
about the Jacobi elliptic functions according to 

and 
B # ~ + B < < ~ > # + B U ~ [ S ~ ( K ( ~ + ~ ) I ~ ) ] ~  . 

This should be valid, provided it is not applied too close to a caviton 'explosion', and leads 
to the linearized field eqaution for the density # 

where 

Separation of variables using 

and 
u(r) R(r) = - 

r (25b) 

reduce eq. (25) to 

This ODE satisfies Dirchlet zero boundary conditions on the dense domain H2(R:) where 
R: is the positive half-line and H2 is the Sobolev space of L2 functions whose first two 
derivatives exist and are L2. Thus,.eq. (26) can be solved numerically using the Numerov 
algorithm. Then the density is constructed from the relation 

From eq. (27) the sound wave has modulus kl 0. One thing about this strong convection 
model which seems new is the inclusion of l 2 1 multipoles which give deviations from 
spherical symmetry. The calculus of variation "proof" that bubbles are spherically shaped 



only holds for thermal and fluid equilibrium, whereas the continous quasi-monochromatic 
sound wave makes this an open, non-equilibrium system. In Fig. 3 VMFT is plotted and 

Fig. 3. An example of a mean field theory potential, T / M F T .  

Fig. 4. The water density in a 3mm cell calculated from the mean field theory 
potential in the previous figure. 

in Fig. 4 a bubble is shown which was found in the density, using the convection potential 
of Fig. 3. The parameters are consistent with those of water with a sound wave amplitude 
which is physically realizable. The bubble is centered at S = 0.75mm; and has radius 
r o e  3001.1 ( p  = 10-~m).  The detection of bubble interfaces using wavelets is under study. 
Since some authors have questioned the safety of ultrasound in t i ss~e,3~>~* it is important 
to understand bubble formation. In addition, the Mie scattering from bubbles adds spatial 
dispersion to the effective index of refraction. 



4. CONCLUSIONS 
Two different problems in non-equilibrium statistical mechanics were discussed: 

(i) the dielectric response of water, e (q', w) ,  and 

(ii) bubble formation in water under insonnification using Bogoliubov transformations: 
state squeezing maps and wavelets. 

The multi-resolution structure of phase space permits the sort of analysis which the 
renormalization group has provided for lsing models and lattice gas models and little else. 
Thus, "squeezed states" are useful for more than quantum optics. 
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Abstract 

Coherent states on the m-sheeted complex plane are introduced and 

properties like overcompleteness and resolution of the identity are studied. 

+ 
They are eigenstates of the operators a m tam which create and annihilate 

clusters of m-particles. Applications of this formalism in the study of 

Hamiltontans that describe m-particle clustering are also considered. 

1. introduction 

Apart from the original (Glauber) coherent states which are associated 

with the Weyl group, other types of coherent states associated with other 

groups (e.g. SU(2), SU(1,l) etc.) have also been studied. In a recent 

publication [l] we extended these ideas in a different direction and 

introduced coherent states on the m-sheeted covering group of SU(1,l). From 

a physical point of view it can be used for the description of m-particle 

clustering. Here we extend the Glauher coherent states into coherent states 



in the m-sheeted complex plane. The properties of these states 

(overcompleteness, resolution of the identity etc.) are explicitly 

considered. Using these states we extend the Bargmann [2] analytic 

representation into a new formalism that we call Bargmann analytic 

representation in the m-sheeta complex plane. Using this representation we 

+ 
introduce new creation and annihilation operators a 

m lam which create and 

annihilate clusters of m particles and show that the properties of our 

coherent states with respect to them, are similar to the properties of the 

ordinalcy (Glauber) coherent states with respect to the usual creation and 

+ 
annihilation operators a ,a. 

The above ideas are used in the description of m-particle clustering. 

which is a generalisation of the concept of pairing. They could be used to 

generalise two-photon states into m-photon states with even better 

properties. Some work in this direction but from a different point of view 

has already been presented [3, 41 

2.  Goherent states on the m-sheeted com~lex ~lang 

We consider the Riemann surface 

* 
where C is the punctured complex plane 

I * 
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and Z is the discrete group of the integers modulo m. The punctured complex m 

* 
plane C is the m-sheeted covering surface of the Riemann surface Rm. 

* 
The sheet number s(z)  of a complex number z i n  C i s  defined as  

where I P  stands for  the integer part  of the number. s (z )  takes integer 

values from 0  to  81 - 1 (modulo m). 

We also consider the harmonic osci l la tor  Nilbert space N and express it 

as  

H is an infinite-dimensional subspace spanned by the number eigenstates a 

H 1 -  ( I N m + 1 >  ; N - 0 ,  1. 2, ..... ) ( 5 )  

We c a l l  n the projection operators on HI f  



We now introduce the states 

where s(z) is the sheet number of z defined in equ.(3). It is clear that if 

z belongs to the zero sheet the states l m ~ n  should be used; if z belongs to 

the first sheet the states fmN+l> should be used; etc. The state iz> 

belongs to the Hilbert space H 
s(z) ' 

We refer to the states (7) as coherent 

states on the m-sheeted complex plane. We can prove 

where S is tbe kronecker delta. 

In order to give a resolution of the identity for these states we first 

grove a resolution of the identity within the Wilbert space H I : 

Sl 
is the l-sheet and rl is the projection operator (6). S 

gives the resolution of the identity: 



The states ( r ; &  with z in the sheet SI, form an overcomplete set within 

the Hilbert space Hl. 

3 .  Extended Barnman re~resentation on the m-sheeted com~lex  lane 

Bargmann ( 2 )  introduced analytic representations in the complex plane 

which are based on ordinary coherent states. In refs. [5] analytic 

representations in the unit disc which are based on the SU(1,l) Perelomov 

coherent states, have been studied. This formalism has been extended in 

ref.[I] into analytic representations in the m-sheeted unit disc. In this 

section we study an analogous extension from the Bargmann representation in 

the complex plane into an analytic representation in the m-sheeted complex 

plane. 

We generalise the Bargmann representation by representing the arbitrary 

(normalised) state 10 with the function 

Ih-zfN I N> 

* 
where z takes values in C and s(z) is the sheet number of z (equ.(3)). The 

f(z;m) is analytic in the interior of each sheet and has discontinuities 

across the cuts C 
I ' 



As an example we consider the number eigenstates [M - d+I> where N, I 

are the integer part and remainder of H divided by m, correspondinglly. They 

are represented by the function 

f(z:m) - ( , s ( ) )  z" (NI).' (14) 

The kronecker B(R,s(z)) ensures that this function is non-zero only in 

the I sheet. 

As a second example we consider the states l z  ;m> of equ. (7) which are 
0 

represented by. -ehe. function 

* 
f(z;m;zo) - exp 6z ;mlz ;& - 

0 

We next consider the operators 

It is seen that they act as creation and annihilation operator within 



each one of the Hilbert spaces Hi. 

The operator 

can be considered as a number operator within the Hilbert space H R ' 

We also consider the operator 

which we call "remainder operatorn or "number modulo m operator". Its 

eigenstates are the number states and its eigenvalues the remainder%-l of the 

division of the number of the state over m. The operator R commutes with the 

operators a a +: m' m 

[R, am] - [R, am+] - o 
+ 

Note that the operators a a commute with the projection operators r of 
m' m P 

equ. (7) : 

+ 
A consequence of that is that an "arbitrary" function of a ,a leaves each m m 

of the Hilbert spaces HI invariant in the sense that when it acts on a state 

which belongs in HI it produces another state which also belongs in the same 



space. 

We next consider the displacement operators with respect t o  the a 9 
a lam 

+ * 
Dm(zo) exp [zo am - z o am1 (26) 

+ 
They displace the operators am,a by a constant and they commute with m 

the operator R or  equ.(22) 

[Dm (zo). R l  - 0 (29) 

We now ac t  with the operators Dm(zO) on the number eigenstates Il> (0 d 

1 5 m-1) and get the coherent s t a tes  on the m-sheeted complex plane (7) : 

Iz - ( z ~ ) ~ " ~  ; m >  - D~ (zo) I l > (30) 

The subscript i indicates that  among the m roots, the one which belongs 

t o  the sheet Sl should be chosen. Equ.(30) can also be writen as 

l z ; ~  - Dm (zm) Is(.)> (31) 

where Is(z)> is number eigenstate and s(z)  the sheet number of z (equ. (3)). 

Using equs. (27), (31) we prove that  the I Z;U a re  eigenstates of am 

a IZ;U - zmlz;m> m (32) 

+ 
It should be pointed out that  operators similar t o  a ,a  have been m m 

considered i n  [ 6 ]  and used in refs .  [4j where the following s t a t e s  have been 



studied 

They are a subset of our coherent states associated with the Hilbert space H I 

with I - 0 ;  or equivalently with the zero sheet of our m-sheeted complex 

plane. It has been shown in [4] that the states (33) have very interesting 

quantum statistical properties. 

4. m- hoto on states 

We consider the Hamiltonian 

and express H as: 

We easily see that the eigenvectors and eigemralues of H are: 

The physical significance of thrs Hamiltonian lies in the fact that the 



4- 
operators am lam 

create and annihilate clusters of m particles. Pairing of 

particles plays a very important role in various contexts in Physics. 

Generalisation from pairing into m-particle clustering can be described with 

various Hamiltonians. The obvious choice is 

+ * m 
H - n a  a + r  (a')m+r a 

There are certain difficulties associated with this Hamiltonian [3] and in 

any case it is useful to explore alternative models, especially if they are 

based on some symmetry which can be exploited to handle these highly 

non-linear terms. In ref. [I] a Hamiltonian associated with the SU(1,l) 

group, which describes m-particle clustering has been studied. In this 

section the Hamiltonian (34) which is associated with the Weyl group and 

which also describes m-particle clustering, has been studied. 

5. Discussion 

Coherent states on the m-sheeted complex plane have been introduced in 

equ,(7). The Hilbert space has been split into m subspaces (equ.(4)) and 

+ 
operators a a which play the role of creation and annihilation operators 

m '  m 

+ 
in each subspace, have been introduced. The am , a are different from the 

m 

+ 
usual creation and annihilation operators a ,a. It has been shown that our 

coherent states have the usual properties of coherent states with respect to 



+ 
the a m lam. 

They are eigenstates of a (equ.(32)); and they can be 
m 

expressed as the product of the displacement operator times the lowest state 

(equ. (31)) 

All these ideas can be used for the description of m-particle 

clustering. This is a generalisation of the concept of pairing which plays 

an important role in areas like squeezing in quantum optics, 

superconductivity, superfluidity, phase transistions etc. Consequently this 

formalism might be used for generalisations in all these areas. A 

Hamiltonian that describes m-particle clustering has been considered in 

equ.(34) and its eigenvalues and eigenfunctions have been calculated. 
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Abstract 
The review of the following results of the Refs. [l] - [5] is presented: For mixed state 

light of N-mode electromagnetic field described by Wigner function which has generic Gaus- 
sian form the photon distribution function is obtained and expressed expliciltly in terms of 
Hermite polynomials of 2N-variables.The momenta of this distribution are calculated and ex- 
pressed as functions of matrix invariants of the dispersion matrix.The role of new uncertainty 
relation depending on photon state mixing parameter is elucidated.New sum rules for Her- 
mite polynomials of several variables are found.The photon statistics of polymode even and 
odd coherent light and squeezed polymode Schrodinger cat light is qiven explicitly.Photon 
distribution for polymode squeezed number states expressed in terms of multivariable Her- 
mite polynomials is discussed. 

1 Introduction 
In the Ref.[l] it was shown that the matrix elements of density matrix in number state basis for 
polymode oscillator are expressed in terms of Hermite polynomials of several variables for the 
density operator in the canonically transformed t hermd st ate of the oscillator.In the recent works 
[2], (31 the photon distribution function for the generic Gaussian light described by the Wiper 
function which is the most generic Gaussian in quadrature phase space was found and expressed in 
terms of Nermite polynomials of 2 variables for one-mode case [2] and 2N variables for polymode 
case [3].The physical meaning of mixed Gaussian state of the light may be understood if one takes 
into account that the pure rnultimode Gaussian state corresponds to the generalised correlated 
st ate introduced by Sudarshan [6] who related those states to the symplectic dynarnical group-The 
mixed Gaussian states studied above may be considered as the mixture of generalised correlated 
states plus thermal noise acting on each mode which has its own temperature. The photon 
distribution function for even and odd coherent states [7] or Schrijdinger cat state. [8] subject 
to squeezing both in one-mode and polymode cases has been found in Ref.[4].The polymode 
Schriidinger cat states and photon distributions for light in these states were introduced in [5&The 
aim of this work is to give a review of the photon distribution functions and related sum rules 
for one-mode and polymode Gaussian light and for the even and odd coherent states light using 
the results of [2] - [5]. It should be emphasized that the squeezed light is worth to be used in 
interferometric gravitational antennas [9] and the even and odd coherent light may play alternative 
role in gravitational wave experiment [lo] ,El 11. 



2 Photon Distribution for Polymode Gaussian Light 
The mixed squeezed state of the N-mode light with a Gaussian density operator ,ij is described 
by the Wigner function (see,for example,[l2]) 

where 2N-dimensional vector Q = (p, q) consists of N components pl , ..., p~ and N components 
q19 ..*, QN. 2N parameters < p; > and < q; >, i = 1,2,. . . , N, combined into vector < Q>, are the 
average values of the quadratures.h real symmetric quadrature dispersion matrix M has 2N2 +N 
parameters 

They obey certain constraints, which are nothing but the generalized uncertainty relations [12]. 
. The photon distribution function in this state has the form [3],[1] 

where vector n consists of N nonnegative integers: n = (nl, 712,. . . ,nN). The function Hgl (y)  
is the Hermite polynomial of 2N variables. We introduced also notations 

The symmetric 2N-dimensional matrix R and the 2N-dimensional vector y are given by the 
relations 

R = U' - 2M) (IZN + 2 ~ ) - '  Ua, 

where the 2N-dimensional d t a r y  matrix 

is introduced.The matrices IN and l Z N  are identity matrices of corresponding dimensions. 
The probability to have no photons has the form 

1 
Po = [dd (M + ZI1~)]-i exp [- < Cj > (2M + 12N)-l< 4 >] (7) 

It may be shown [3],[4] that the multivariable Hermite polynomial is the even function if the 
sum of its indices is the even number and the polynomial with the odd sum of indices is the odd 
function. Due to this pairity property of the polydimensional Hennite polynomials the "diagonal" 
multivariable Hermite polynomial is the even function since the sum of its indices is always even 



number.@onsequently the above photon distribution function is the even function. Thus the 
photon distribution function for generic mixed Gaussian light found in[3] is expressed in t 
multivariable Hermite polynomials and it depends on the quadrature means and dispersions.a'ho 
photon number means and dipersion matrix corresponding to the found distribution (3) are of the 
form 

where 3 and dj are the trace and the determinant of the 2x2-matrix Mi,describing only j-th 
mode, and the 2-vector Qj has the components (pj, qj). 

3 Pure Polymode States 

The photon distribution for polymode squeezed correlated state may be expressed in terms of 
s ymplectic transform parameters relating boson operators as follows 

where R is a symplectic 2Nx2lV-matrix consisting of four N-dimensional complex square bbdks, 
and d is a complex N-vector.Then we have for photon distribution in squeezed correlated polyrnode 
state IP > labeled by the complex number vectaz with N-components 

where 
1 1 1 

Fo(,B) = (det <)-; exp [58t)*~-1/3 + P(d* - t)*C-ld) + ;idt)*C-ld - 5ldl (10) 

The photon doistribution function of the squeezed number state J m  > is descibed by the fonnula 

Pn = I det ~ 1 - l  exp [~e(d~*<- 'd )  - ld12] 
!HE}(L))~ 

n!m! ' 

Here m is the label of the state, whereas n is a discrete vector variable. 2Nx2N-matrix R and 
2N-vector L are expressed now in terms of blocks of matrix R and vector d as follows, 

4 Even and Odd Coherent States 

The one-mode even and odd coherent states have been introduced in Ref.[7].The polymode even 
and odd coherent states have been introduced in Ref.[S].The squeezed and correlated even and odd 



coherent states have been introduced and studied in Ref.[4]. We will discuss the photon statistics of 
the light in these states which are also called Schriidinger cat states [8] .The multimode Schriidinger 
cat states are defined by the relation [5] 

where the multimode coherent state I A > is 

and D(A) is the multimode displacement operator creating coherent state fiom the vacuum.The 
normalization constants are 

where complex number A has the form 

The photon distribution function has the form 151 

and the photon means corresponding to these distributions are 

< A+ 1 n; 1 A+ > = 1 a; l 2  tanh 1 A 12, 
< A- I n; I A- > = 1 a; l a  coth 1 A l2 . 

The photon number dispersion matrix has the matrix elements 

a2 = I a; 1 2 1  ~k I 2  sech2 I A I2 + I ai l 2  tanh I A I 2  Q, 
0,; = - I ai 1 2 1  P k  I 2  cosech2 I A l2 + I a; l2  ~ 0 t h  I A l2 6ik. 



5 Squeezed Schradinger Cat States 

Let us find out the photon statistics of squeezed polymode Schriidinger cat state labeled by the 
complex N -vector P.To do that let us difine transition amplitude from the polymode squ 
and correlated state I@ > to the polymode photon number state In > 

where 

Then the photon distribution function for polymode light in the squeezed Schriidinger cat state 
(even and odd) is given by the formula [4] 

If the shift parameter d = 0 the formula is simplified 

if we have equality 
N 

C n i  = 2k, 
i=l 

(24) 

and for even states 
P,+k+l(p> = 07 (25) 

if one has 
N 
Eni = 2 k +  1, 
i=l 

(26) 

where Pn(p) is given by the formula (3).For the light in the odd squeezed Schfidinger cat state 
the photon distribution is 

7'G+l(P) = 4NYn(P), (27) 
if the indices satisfy the equality (26) and 

if the indices satisfy relation (24).Thus the squeezed Schr6dinger cat states if the shift parameter 
is equal to zero have highly oscillating distribution function.The influence of shift parameter 
decreases the oscillations of the distribution function. For Hermite polynomials the following sum 
rule may be found [3] 

1 
= [det ( d X z R  + IZN)]-~ exp [ZZ (ACzR + &A%] . 



Were a = (zl, z2, ... z 2 ~ ) ,  the 2Nx2N matrix C, is the 2N-dimensional andog of the Pauli matrix 
oz9 and the diagonal 2Nx2N - matrix A has the matrix elements Xi in j-th and (N+j)-th rows. 
Let us consider the one mode case.Then the formula for the photon distribution function in terms 
of Hermite polynomials of two variables may be expressed in terms of usual Hermite polynolPials 

(T + 1)z + [a, - a,, - 2iup,] z* 
Hn-k 

((2T + 4d + 1) [B, - a,, - 2iap,]) a 

Here the parameters app, B,,, (~p, are matrix elements of the quadrature dispersion matrix M ,  d is 
determinant of this matrix and T is the trace of the matrix. The complex number z is determined 
by the relation 

1 
z = - ( < q > + i < p > ) .  JZ (31) 

Formula (30) can be used also to illustrate the generalized uncertainty relation (for the Gaussian 
states). Indeed, it is obvious that the probability to find n photons must be nonnegative. On the 
other hand, all but one terms in the right-hand side of eq. (30) are positive independently on the 
concrete values of the parameters determining the quantum state. The only exception is the term 

Consequently, to guarantee the positiveness of the photon distribution function for all conceivable 
combinations of the parameters one should impose the restriction d 2 $.This inequality is the 
Schrijdinger uncertainty relation (see, 161, [12] ). 
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Abstract 

A class of the one-dimensional SchrZjdinger operators L with the symmetry algebra LB* = 
q f 2 ~ f  L, [B+, B-] = PN(L), is described. Here Bf are the 'q-ladder' operators and PN(L) 
is a polynomial of the order N. Peculiarities of the coherent states of this algebra are briefly 
discussed. 

1 Introduction 
Exactly solvable spectral problems are of great importance. They have numerous applications in 
classical and quantum mechanics. In the last decades the theory of solitons once again exhibited 
their universal character. However, the definition of the notion of solvability (or integrability) itself 
is quite delicate. In particular, it involves the definition of functions which are allowed to enter the 
solution of the ~roblem (in a sense these are two complementary things - it is common to define 
functions as solutions of some equations). Let us take for example the standard one-dimensional 
Schriidinger equation: 

L$(x) (-d2/dx2 + u(x))+(x) = A+(x), (1) 

endowed with some boundary conditions. The widely used tacit definition of solvability of this 
spectral problem consists in the requirement for $(x) to be a finite sum of the hypergeometric 
functions 2Fl(a, b; c; x) [I], or of their descendants. On the one hand, the 2F1 indeed occupies a 
distinguished place among the classical special functions, but on the other hand, there are more 
complicated objects whose global structure has been well understood. 

In the theory of nonlinear evolution equations the smooth bounded potential u(x) is said to be 
solvable if it has a spectrum consisting of the N + 1 permitted bands, N of the finite width and 
one infinitely large (these are the regions of A for which the wave functions $(x) are bounded). 
In some cases this condition leads to the Lam6 equation, which is a simplest generalization of the 

lTalk presented by V.S. at the Third International Workshop on Squeezed States and Uncertainty Relations 
(Baltimore County, August 10- 13, 1993) 

20n  leave of absence from the Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia 



second order differential equation for hypergeometric function. Another type of functions with 
known global analytical properties can be defined with the help of the nonlinear second order 
differential equations: the Painlevk transcendents PI-PVI are the simplest examples. Different 
and more rich classes of functions are defined by the second order (linear or non-linear) finite- 
difference equations, an example is given by the basic, or q-hypergeometric function. In the latter 
two cases, the corresponding special functions may be taken for definition of potentials and then 
the condition of solvability of (1) can be thought as the requirement for wave functions +(x) to 
be related to u(x) by some simple formulae which do not lead to the essentially new objects. 
This short discussion and the systems to be described below demonstrate that the problem of 
classification of all exactly solvable problems is far from completion even for a simple equation 

(1). 
The integrability of a problem is related to its symmetry properties. Unfortunately, most of 

the symmetries are "hidden" and, as a result, the group-theoretical treatment of special functions 
often emerges as a secondary problem. Rarely new function was introduced primarily from the 
symmetry principles. The situation however changes when the classification problem is dealt with. 
The so-called characterization theorems are targeted to the enumeration of specific properties 
which define a taken system uniquely within the given class of equations. Using them one can 
see what properties should be abandoned in order to get more general systems. E.g., one may 
ask what are the most general potentials u(x) for which there exist a differential operator A of 
the order N such that [L,A] = 0. For odd N this happens to lead to the finite-gap potentials 
mentioned above (even N cases contain generically a functional non-uniqueness). 

Recently, the characterization of all potentials leading to the ordinary ladder algebra: 

where A is the N-th order differential operator, has been given in [2]. For N = 1 it is easy to find 
that u(x) cc x2, i.e. a harmonic oscillator potential. For N = 2 one gets the singular oscillator 
potential u(x) cx ax2 + /?/x2. The N = 3 case corresponds to the quite complicated situation 
when u(x) involves the Painlevk IV transcendental function [2]. 

Already from (2) one expects that the spectrum of Hamiltonian L is purely discrete and 
equidistant. This, however, depends on the structure of zero modes of A. If all of them are 
physical eigenstates of L with different eigenvalues, and the conjugated operator A+ does not 
break normalizability, then one has a spectrum composed from N independent arithmetic series. 
The wave functions are explicitly expressed through f (x), f'(x) and J f (x)dx, where f (3) is defined 
by a system of N first order nonlinear differential equations, i.e. the problem is solved exactly in 
the above sense. Although it is much harder to calculate physical observables of these systems than 
for the potentials related to the hypergeometric function, the principally important characteristics 
- the spectrum - is very simple and elegant. 

The aim of this note is, however, to present even more complicated potentials than just men- 
tioned ones [3-71. The first class of them is connected with the algebra (2) but the operator A is 
now a differential-difference operator [3]. The resulting potentials are more general than those of 
[2] since the corresponding characterization theorem does not apply. The second class is based on 
the q-deformed ladder relation: 



which simply can not be realized with the help of differential operators of the finite order. Note 
that the limit q + 1 does not necessarily mean that the operator A will be an integral of motion 
- there may be a diverging constant entering additively into L such that for q = 1 one gets (2) 
rather than [L, A] = 0. 

Let us briefly describe the definition of potentials leading to (3). The basic tool is the factorization, 
or dressing method based on the Darboux transformations. One takes a set of Harniltonians, 
Lj = -@/d;C2 + u~(x) ,  and represents them as products of the first-order differential operators, 

Up to Some constants Aj: 
Lj = A:A; + Aj, (5 )  

i.e. uj(x) = ff(x) - fj(x) + 4. Then one imposes the following intertwining relations: 

. which constrain the difference in spectral properties of Lj and Lj+1 and are equivalent to the 
equations: 

+ A- Aj+l j+l + = A;A;+ Aj. (7) 

Substitution of (4) into (7) yields the chain of differential equations [8]: 

which is called the dressing chain. 
The potentials we are interested in are defined by the following self-similarity constraints 

imposed upon the dressing chain [3, 61: 

The simplest example, defined by the reduction f j  (x) = q3 f (qjz), A j  = q2jA, has been found in 
[41. 

At the operator level, the relations (9) lead to the Schrodinger operators with non-trivial 
q-deformed symmetry algebras. Let us consider the products: 

which generate the interwinings 

The structure relations complimentary to (11) look as follows: 



These identities show that if the operators Lj and L j + ~  are related to each other through some 
simple transformation, e.g. 

Lj+N = q2ULjU-1 + W ,  (I3) 

where U is an invertable operator, then the combinations B: = M:U, By E U-'M,', map 
eigenfunctions of Lj onto themselves, i.e. they are symmetry operators for Lj. The form of U is 
restricted by the requirement that the Ljls be of the Schrodinger form. Taking U to be the &ne 
transformation generator, U f (x)U-I = f (qx + r), fixing the indices (e.g., j E 1) and removing 
them, we get the symmetry algebra [6]: 

For N = 1 this is a q-analog of the Heisenberg-Weyl algebra which for special values of the 
parameters serves as the spectrum generating algebra [5]. For N = 2 this is a q-deformation of 
the su(1,l) algebra, and for N > 2 we get polynomial relations describing symmetries of the 
self-similar potentials. Note that the limit q + 1 is not trivial. If the parameter r in (9) is not 
zero then we get the realizations of the algebra (2) which generalize the ones described in [2]. 
For q # 1 the parameter r may be set equal to zero. If the operators Bf are well defined and 
have N normalizable zero modes, then the self-similar potentials have spectra consisting of N 
independent geometric series. Moreover, u(x)'s are reflectionless and represent initial conditions 
for the infinite-soliton solutions of the KdV equation. 

We conclude that the N = 1 case describes the deformation of harmonic oscillator potential, 
the N = 2 case corresponds to the q-deformed conformal quantum mechanics [3], and the M 2 3 
cases correspond to the q-deformation of the PainlevC type equations. 

An interesting situation takes place when the parameter q is a root of unity, i.e. qn = 1. 
Generically these cases are related to the hyperelliptic potentials, the N = 1 system has been 
analyzed in detail in [?I. Depending on whether q is a primitive root of unity of odd or even 
degree, the solution may be unique or non-unique. The q = -1 system exists only when the initial 
condition f(0) = 0 is imposed and it provides a non-standard realization of the Heisenberg-Weyl 
algebra. Indeed, the equation arising from (8), (9) at N = 1, q = - 1: 

has the general solution f (x) = ~ 2 1 2 .  This corresponds to the operators Bf satisfying [B-, B+] = 
p with the explicit form: 

where P is the parity operator P$(x) = +(-x). 
The general q3 = 1 solution exists for arbitrary initial condition and is given by the equi- 

anharmonic Weierstrass function: u ~ ( x )  = 2p(x + Qj), (p'l2 = 4(p3 - I), where Qj+3 = Qj, and 
qjf2j = w2 - the real semiperiod of the doubly periodic function p(x). The analytical solutions at 
q4 = 1 exist for special initial condition but they contain functional non-uniqueness. The particular 



subcase of the q4 = 1 system is defined by the (pseudc+)lemniscatic Weierstrass function satisfying 
the equation (P')~ = 4p3 f p. SO, the group-theoretical treatment of the Schriidinger equation 
with these specific elliptic function potentials naturally leads to the q-oscillator algebra at roots 
of unity. Note that the algebra of symmetry operators in these cases does not have the spectrum 
generating meaning. 

3 Coherent States of the q-ladder Algebras 
Coherent states are interesting objects of quantum mechanics [9]. Originally proposed for the 
harmonic oscillator potential, eventually they were generalized in many directions. Let us discuss 
briefly coherent states of the algebra (14), (15) which we define as eigenstates of the "annihilationn 
operator B-: 

B-$a(x) = a$a(x). (18) 

Looking at the definition of B- one can realize that this is quite complicated functional equation. 
The simplest case (N = 1) has the following explicit form: 

where f (x) is a smooth solution of the differential equation with the deviating argument: 

The fi factor appeared because we took U to be unitary operator so that (B-)t = El+. We 
also assume that O < q2 5 1. (The q2 > 1 choice is equivalent to analytical continuation of the 
q2 < 1 potentials to the imaginary axis. This brings pole singularities into the potential and, as 
a result, operators B* are not well defined.) Coherent states of the q-oscillators have been widely 
discussed (see, e.g., [lo]), but the realization (19) is a principally new one since it deals with the 
ordinary Schrodinger equation. Unfortunately, the structure of functions $,(x), their minimal 
complete subsets, and many other things are not known at present. 

As it was noticed in [7] there is a particular coherent state among $,(x) which happens to be 
an eigenstate of the Harniltonian! (Such situation is characteristic for the whole algebra (14), (Is), 
i.e. for any self-similar potential at q2 < 1.) Tt corresponds to the zero energy state, L$d(x)  = 0, 
the formal existence of which follows from the boundedness of the potential Jzm lu(x)ldx < oo. 
So, we have the following representation of the q-oscillator algebra: 

i.e. B* are pure complex conjugated numbers. Possible existence of such Uclassicaln states of the 
q-oscillator algebra has been noticed also (in the different context) in [ll]. Since for $d(x) we 
have two equations: (19) with a = re-ie and 



we can remove the derivative part and get pure q-difference equation: 

~1q1-1'2[e-" lql$,l(qx) + eieq-l$cl(q-lx)] = (f (x) + Q-' f ( ~ - l  X))&~(X), (21) 

which, however, again is not easy to solve. 
Finally, let us consider the case q = -1, i.e. the coherent states associated with the realization 

(17). We put for convenience p = 2 and renormalize B* + JZB*. The +,(x) states form a 
subset of solutions of (B-)2$,(x) = a2+,(x). Because (B*)' are purely differential operators, 
one can easily solve this equation. Picking out the proper linear combination of the corresponding 
two independent solutions, one can find: 

where la) are the canonical coherent states of a harmonic oscillator: 

x 
la) = 7r-ll4 exp ( " - la!' - (- - a)'). 

2 a 
The states (22) are not minimal uncertainty states for the variables x and p G -id/dx for a # 0: 

((Ax)') = (I  - (a - a*)2 - ( a  + a*)2e-41aP)/2, 

((Ap)') = (1 + (a + a*)' + ( a  - ~r*)~e-'I~1~)/2, 

((Ax)?((Ap)') > 1/45 

where Ax = x - (x), (3) = xI+,(x)12dx, etc. However, it is easy to construct other canonical 
variables 

where P is the parity operator, for which +,(x) minimize their uncertainties, ((A$)')((An)') = 
114. A detailed consideration of the properties of these coherent states will be given elsewhere 

[12Is 
Finally, we would like to point out that the procedure of determination of potentials with fixed 

symmetry properties presented here may be generalized to other spectral problems. In [13] it was 
applied to the second order finite-difference equation. In that case many features of the continuous 
considerations maintain but there are also few new ones. E.g., the algebras at q > 1 may now 
have spectrum generating meaning, i.e. one can find the systems with the exponentially growing 
spectra. Another advantage consists in the possibility to realize q-analogs of the compact unitary 
algebras like 4 2 ) .  
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Abstract 
The bound quadratic Hamiltonian system is analyzed explicitly on the basis of quantum 

mechanics. We have derived the invariant quantity with an auxiliary equation as the classical 
equation of motion. With the use of this invariant it can be determined whether or not the 
system is bound. In bound system we have evaluated the exact eigenfunction and minimum 
uncertainty function through unitary transformation. 

1 Introduction 
In recent years an extensive effort has been devoted to obtaining an exact solution for the oscillator 
systems with time-dependent Hamiltonian and especially dissipative system, i. e ., damped free 
particle 2), damped 3, or damped driven harmonic oscillator 4, and driven time-dependent harmonic 
oscillator5). After Lewis and R,iesenfeld6) first derived the relation between the eigenstates of the 
dynamical invariant and the solution of the Schrodinger equation, many authors have applied the 
dynamical invariant method to investigate the time-dependent oscillator system. The dynamical 
invariant is related directly to an auxiliary equation as the classical equation of motion for the 
Hamiltonian system, which is given as nonlinear second-order differential equation. Therefore the 
dynamical invariant can be determined by the particular solution to the auxiliary equation. 

In this paper, employing the operator method, we derive the wave function and the minimum 
uncertainty function for the quadratic Hamiltonian system which includes canonical variables with 
time-dependent coefficients. Recently, we have investigated this system to obtain the wave function 
and propagator through path integral method 7). In Sec. 2, we derive the dynamical invariant 
from the equation of motion. We classify whether or not the system is bound in the consideration 
of our system as classical system and then find the conditions for bound and unbound. In Sec. 3, 
using the quantum invariant operator, we define the creation and annihilation operators and then 
evaluate the wave function and propagator of our system. In Sec. 4, we introduce new creation 
and annihilation operators from the old ones in Sec. 3, and evaluate eigenfunction of the unitary 
transformed system and minimum uncertainty function. Finally, we give the summary in Sec. 5. 



2 The bound quadratic Hamiltonian system 
The quadratic Hamiltonian of the system is given as 

1 
H = -IA(t)p2 2 + B(t)(pq + qp) + C(t)q2] ( 1 )  

where p and q are canonical variables. A(t),  B( t )  and C ( t )  is continuously differentiable function 
but A(t)  is nonzero. The classical equation of motion can be obtained from the Hamilton's 
equation of motion: 

+ C(t)q + t ( t )q  = 0 (2) 

with 

The general solution for Eq. (2) can not be found, but we may take the solution in the following 
form: 

q = p(t)eiy(t) (5) 

here, ~ ( t )  and y ( t )  are the functions to be determined from Eq. (2).  The functions are real and 
depend only on time. Substitution of Eq. (5) in Eq. (2)  offers the real and imaginary parts of 
this equation as 

p - p i 2  + C(t)P + t ( t ) p  = 0 .  (6) 

and 
+ 2p;u + C(t);up = 0.  

The time invariant quantity can be found from Eq. (7)  in the form: 

with auxiliary condition as the classical equation of motion, Eq. (2) .  With the use of Eq. (8) ,  the 
nonlinear differential equation [Eq. (6)] can be writ ten as 

We may find another classical time invariant quantity with an auxiliary equation as classical 
equation of motion. We assume that this invariant quantity depends on p, q and t .  Then, from 
Hamilton's equation of motion, the time derivative of I(p, q,  t )  becomes 



Combining Eq. (10) with Eq. (1) we may obtain the time invariant quantity as 

I(q,p, t )  is an invariant quantity and thus we can express it in phase space. For !2 = 0, Eq. (11) 
becomes a linear line in phase space and canonical variables q and p can occupy every region 
in phase space. Therefore the motion of the system is unbound. On the other and, for 0 # 0, 
Eq. (11) becomes ellipse in phase space because the coefficient matrix of it has positive real 
eigenvalues. The canonical variables q and p can occupy some finite region in phase space, and 
thus the motion of the system is bound. 

3 The Wave Function, Propagator and Uncertainty Val- 
ues 

For quantum mechanical treatment of our system, we may replace the canonical variables with the 
corresponding quantum operators in Eq. (7) and then we may also obtain the quantum invariant 
operator of the system as the same form of Eq. (1 1). 

In order to obtain the eigenfunctions and eigenvalues of the invariant operator, we define the 
t creation and annihilation operator, a and a with auxiliary equations, Eq. (8) and Eq. (9) as 

A 1 
at = F{- 2ti+ A [ + i  ( B -  :)] -ip}. 

t The invariant operator [Eq. ( l l ) ]  can be expressed in terms of a and a as 

Since the a and at satisfy the commutation relation, the normalized eigenstates and eigenvalues 
of Eq. (14) are given by 

The ground state must satisfy the condition that 

auo = 0. 

Solving Eq. (17) for u~ we obtain 



t Operating a continuously to Eq. (18) we may obtain the nth excited states: 

where Hn is a nth order Hermite polynomial. 
Eq. (19) is an eigenfunction of the invariant operator [Eq. (14)] with an auxiliary equation as 

classical equation of motion, but is not the solution of the Schrodinger equation; 

ih- - a a 

Comparision of Eq. (19) with (20) offers the exact wave function of the system: 

Making use of the Mehler's formula together with Eq. (21), we can easily evaluate the propa- 
gator of the system given by 

where p' = p(t'), 7' = +y(tl), A' = A(tf), and B' = B(tl). Eq. (22) is the result that we obtained 
previously7). 

The uncertainty relation is defined by 

With the help of Eq. (21), we can express Eq. (23) as 



4 The Minimum Uncertainty Function 
The minimum value for n = 0 in Eq. (24) is larger than K/2 and thus the coherent state of our 
system is not a minimum uncertainty state. To obtain minimum uncertainty state, we introduce 
the new creation and annihilation operators defined by 

for a pair of c numbers p, Y obeying 
(p12 - IuI2 = 1. 

The canonical transformation [Eq. (25)] which keeps the commutator invariant, is a unitary 
transformation. The properties of the b and bt are the same as those of a and at '1. 

Performing the same procedures in Sec. 3, we can obtain the wave function for nth excited 
states: 

x {- 2KAJp " - vI2 [++ - i [(B - f) Ip - v12 + i(pu* - u ~ * )  + ] ] }  (27) 

Substituting Eq. (26) into Eq. (24) and evaluating the diagonal element, the uncertainty relation 
for (n,n) states can be obtained: 

From Eq. (27) we can also find the condition of p and u for the minimum uncertainty 

where 

0 = tan" 

and 

Here, k is real and positive, and o must have the same sign of f (B - i). We can confirm that 
the minimum uncertainty is a function of one continuous parameter in the finite region. 



5 Summary 

Introducing the quadratic Hamiltonian system given .in Eq. (I), we have derived the classical 
invariant quantity with an auxiliary equation as the classical equation of motion. With the use 
of this invariant, we can distinguish whether or not the system is bound. We transformed the 
invariant into an operator in the replacement of the creation arid annihilation operator [Eq. (14)] 
and then evaluated the corresponding eigenfunction and eigenvalues. However, this eigenfunction 
is not the Schrodinger solution of the system. Though we obtain the exact wave function of the 
system [Eq. (21)] and propagator [Eq. (22)] the minimum uncertainty constructed by this wave 
function is larger than h/2 and thus the coherent states of the system is not minimum uncertainty 
st ate. To obtain the minimum uncertainty we introduce the canonical transformation, which keeps 
the commutator invariant. Through this unitary transformation we obtained the eigenfunction 
and minimum uncertainty state of the system. 
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Abstract 

In this paper we review some results on longitudinal beam dynamics obtained in the 
framework of the Thermal Wave Mode2 (TWM). In this model, which has recently shown the 
capability to describe both longitudinal and transverse dynamics of charged particle beams, 
the beam dynamics is ruled by Schrodinger-like equations for the beam-wave-functions, whose 
squared modulus is proportional to the beam density profile. Remarkably, the role of the 
Planck constant is played by a diffractive constant e, the emittance, which has a thermal 
nature. 

1 Introduction 
Recently, on pure basis of analogy with other similar subjects of physics, a new technique to derive 
the equation of motion for a thermal system, like a charged particle beam at finite temperature, 
which is able to take into account the collective behaviour of the ensemble has been obtained 
PI- [51. 
The starting point of this technique, the Thermal Wave Quantization (TWQ), are the equations 
of motion of the considered system, in the so called single-particle approximation, from which is 
possible to obtain the single-particle hamiltonian of the system. At this point, the formal anal- 
ogy showed in the case of the transverse dynamics for relativistic charged particle beams, with 
the electromagnetic optics in paraxial approximation and with the two dimensional nonrelativis- 
tic quantum mechanics [I], suggests to replace the single-particle hamiltonian, with a differential 
operator, and the hamilton-equations with a Schrijdinger-like equation, in which coordinate and 
particle momentum are replaced by a beam-wave-function. 
This technique, applied to the longitudinal and transverse beam dynamics, has led to the for- 
mulation of the Thermal Wave Model (TWM) for relativistic charged particle beam propagation, 
which represents a useful quantum-like description of the total beam optics [l]-[5]. This model has 
already been successfully applied for estimating the effects of the aberrations in linear colliders 
[3], [5], as well as for describing nonlinear beam-plasma interaction [Z], and nonlinear longitudinal 
dynamics in circular accelerating machines [4]. 

'presented by R. Fedele 



2 TWM for longitudinal dynamics 
Let us consider a single relativistic particle of electric charge q, within a stationary bunch, travelling 
with longitudinal velocity pc (P = 1) in a circular accelerating machine of radius & = cTo/2T (To 
being the revolution period). Its longitudinal motion is described, neglecting radiation damping 
and quantum excitations, by a pair of equations which, defining s G d (t being the time), can be 
put in the following dimensionless form [6] 

where x is the longitudinal particle coordinate and P = AE/Eo is the dimensionless longitudinal 
energy variation, after a turn in the ring. Note that x (-xRo 5 x 5 TRO) and P are both evaluated 
with respect to the synchronous particle (AE = O), and Eo is the synchronous particle energy. 
The quantity AV represents the total voltage variation after a turn and it takes into account 
the interactions of the particles with the surrounding medium (RF-cavities, pipe, kickers, etc.). 
Consequently, the equations (1) and (2) describe the longitudinal bunch dynamics on time scale 
t >> To. Furthermore, in (1) the parameter q is defined as r] r (Aw/wo)/(AE/Eo) (wo = c/& 
and A o  being the frequency shift with respect to wo). By defining the momentum compaction 
a G (AR/Ro)/(AE/Eo), where AR is the orbit radius variation with respect to &, it can be 
easily proved that q = l /y2 - a. From (1) and (2) we can easily write the following dimensionless 
single-particle harniltonian 

1 
H = ~ P * + U  , (3) 

where 
Ur- /. qAV dx' . 

cToE0 o 
In order to find an equation which describes the longitudinal evolution of the beam, taking into 
account its thermal spreading (longitudinal emit t ance) while it interacts with the surrounding 
medium (potential well and wake fields), we follow the quantum-analogy, which suggests to use in 
(3) the following correspondence rules 

6 a 6 

P 4 P E -ieL- 
a 

and H 4 H E ieL- 
ax as ) 

where EL is the longitudinal beam emittance. Thus, by considering (3) and (5), the following 
Schrijdinger-like equation for the beam wave function (bwf) 8 can be assumed 

where H = 8p2 + U .  Consequently, (6) becomes 



Note that (7) describes the longitudinal beam dynamics in terms of the bwf 9, which we as- 
sume to be related to the longitudinal density number X(x, s) through the following relation: 
X(x, s) = XoJiP(x, s)I2, where A. = iV/Ro ( N  being the total number of particle in a bunch). 
According to the previous definitions, ] @ I 2  gives the longitudinal beam density profile. Further- 
more, the circular topology of the ring should requires periodic solutions for Q, with respect to 
x (9(nRo, s) = 9(-nRo, s) and az9(nRo, s) = a,@(-a&, s)). In these conditions, from (7) the 
norm squared (A@) of bwf, defined as 

is conserved (U is assumed a real function), and it has been fixed for simplicity equal to &. This 
result is compatible with the physical requirement that JT:~ X(x, s) dx = N. However, in the 
following we restrict our analysis to consider bunched beam whose effective length is much smaller 
than &. Under this assumption, the above conditions of periodicity of Q do not have a relevant 
role, because in this limit, for the bunch, the ring looks like an infinite linear accelerator. Thus 
we can define the effective bunch length (TL, and the expectation value of the momentum P as 

and in complete analogy to quantum mechanics the uncertainty principle 

holds. Furthermore, note that (7) 117 plays the role of an eflective mass. 

2.1 The interaction potential and synchrotron oscillations 
As it has been shown in Ref. [4], the potential U can be split in two parts (RF + Self-interaction) 
and (4) becomes: U = URF + US. Note that whereas in general URF is a known function of x 
and s, the explicit expression for Us, depending on the bunch density (collective effects), needs 
particular assumptions about the beam interaction with the surrounding medium to be specified. 
This interaction can be parametrized in terms of the longitudinal coupling impedance 171. In the 

1 K  2 special case of a linear approximation for the RF-potential, URF = lnx , where K is the cavity 

strength (m is the synchrotron wave number), and for a purely reactive longitudinal coupling 
impedance X ,  the equation for bwf becomes 

where I is the beam current, and n is the so-called harmonic number [8]. In the simplest case of 
(X = 0) and for Ro >> a ~ ,  the Eq. (11) can be exactly solved, and the normalized solutions for 
bwf are the well known Hermite-Gauss modes as it occurs in complete analogy for electromagnetic 
optics in paraxial approximation [9] 



In (12) the functions aL(s), pL(s) and ~ L ( s )  are solutions of the following system of differential 
eauat ions 

and &(x) are the Hermite-polynomials with m a non-negative integer. Note that (@,I2 for rn .= 0 
(fundamental mode) gives a Gaussian particle distribution. Remarkably, it can be easily proved 
that (13) is completely equivalent to 

d2a; - + 4 ~ a i  = 4E with E = 
ds2 

= const. 

In this form it is easily to recognize that the equation for aL(s) (16), i.e. (13), describes the 
synchrotron oscillations. The equilibrium condition d2aL/ds2 = 0 gives 

where a: and or are the equilibrium value of o~ and a:, respectively, and v8 is the synchrotron 
number given by the ratio between the synciirotron frequency 0. = cm and the revolution 
frequency wo [lo]. Equation 17) recovers the well known relationship between the bunch length 6 a: and the energy spread aL [lo]. Since for the resent case the bwf is Gaussian, in obtaining 
(17) we have introduced the minimum value o:o$= eL/2 of the product aLo; consistently with 
disequality reported in section 2. 

3 Coherent stability criterion and soliton solution 
In this Section, we develop, within the framework of the thermal wave model, an analysis of some 
collective effects occurring when the bunch interacts with the surrounding medium. To this end, 
we consider the special case of RF cavity 08 and take into account both the space charge effect 
and a purely inductive coupling impedance. Consequently, (1 1) becomes 

Note that (18) is formally identical to the cubic NLS equation which describes the propagation of 
an e.m. pulse through a nonlinear medium in paraxial approximation [11],[12],[13]. In this analogy, 
the factor  EL^ plays the role of the diffraction parameter (the inverse of the wave number), s 
corresponds to the time, and -[qqI(X/n)/(2~E~)]13)~ corresponds to a nonlinear refractive index. 
Thus, an analysis of the bunch coherent instability (stability) can be made in complete analogy 
to the electromagnetic case I11],[12]. To this aim, applying the well known method developed in 



nonlinear e.m. optics to search for the sufficient conditions of modulational instability, we show 
that coherent instability for particle bunches is fully equivalent to modulational instability for e.m. 
bunches. Moreover, a soliton-envelope solution, very interesting for accelerator physics, is found. 

As an example, we analyze the instability of a plane-wave (!Po($, s) = po exp[i(kox - Qos)], 
where po is a positive constant) solution of Eq. (18), when a small perturbation around it is 
introduced. Let 

*(x, S) = [Po + Pl(X, s)] exp[i(kox - 520s) + iel(x, s)] (19) 

be the perturbed solution, being pl and 8.1 real functions, and 

EL77 2 - no = Tko 2IrfLE0 " ((f) P: a 

In order to obtain the dispersion relation of the system we can assume 

pl(x, s) = py cos (kx - Rs + 40) el (x, S) = 0: sin (kx - Rs + 40) , (21) 

where p?, 8:, k, 52 and are real constants. By imposing that (19) is a solution of the linearized 
(18) we obtain the following dispersion relation 

Reminding that unstable modes occur for S(R) # 0, namely 

we get stability for qX < 0 and instability for f l  > 0. This result recovers the well-known 
condition for coherent stability (instability) for monochromatic charged particle beams [14], in 
addition we remark that the above condition is fully similar to the Lighthill criterion, valid for 
modulational instability of an e.m. plane-wave travelling in a nonlinear medium [11],[12],[13]. 

For a bunched beam (oL << &), a solitary solution of (18) is found by looking for a solution 
of a relativistic envelope form: 

with XO, wo, and Po real numbers. Thus, according to the general theory of NLS equations [ll], 
the following soliton-like solution for the beam density (A = XoG2), which satisfies (8), is possible 
under the condition qX > 0: 

N ~ ~ ~ R  - 1 (;) x sech2 [ Nq2R (f) ( x - a s ) ]  , 
') = ~ E ~ T ~ E ~  77 ~ E ~ T O E O  77 

where 

1 N ~ ~ R  2 
EL77 2 

wo= ,xo--[ 2 7 7 ~ ~  ~~LToEo  (f)] . 



4 Conclusions 

In this paper, we have reviewed some results and applications of the Thermal Wave Model, showing 
in particular, how it is possible to give a novel approach to the study of the nonlinear longitudinal 
dynamics of a relativistic particle bunch in circular accelerating machines. Neglecting radiation 
damping and quantum excitation, we have shown that the nonlinear interaction between the bunch 
and the surroundings (potential well and wake fields) is governed by an appropriate NLS equation 
(equation (ll)) ,  fully similar to the one that holds for the propagation of an e.m. bunch in a 
nonlinear medium in paraxial approximation [l 11 , [12], [13]. Much remains to be done - like, for 
instance, the extension to 2- or even to 3-D, or the development of an iterable formulation - 
to make this model really interesting for the study of the typical, still unsolved, beam-dynamics 
problems. Nevertheless, its very innovative feature of allowing the treatment of the whole beam 
at the same time, makes it look extremely promising for a new, and more complete approach to 
the subject. 
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CAUSALITY PROBLEMS FOR FERNHISS TWO-ATOM SYSTEM 
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Abstract 

Let A and B be two atoms or, more generally, a 'source' and a 'detector' separated by 
some distance R. At t = 0 A is in an excited state, B in its ground state, and no photons 
are present. A theorem is proved that in contrast to Einstein causality and finite signal 
velocity the excitation probability of B is nonzero immediately after t = 0. Implications are 
discussed. 

To study and check finite signal velocity, Fermi [I] considered two atoms A and B separated by a 
distance R. At time t = 0 atom A is assumed to be in an excited state leA) and B in its ground 
state IgB), with no photons present. Atom A will decay to its ground state under the emission of 
a photon which may then be absorbed by atom B. Fermi asked when atom B will notice A and 
start to move out of its ground state. In accordance with Einstein causality, i.e. no propagation 
faster than the speed of light, he expected this to occur after a time t = R/c.  This was indeed 
what Fermi found by his calculation. 

More than thirty years later Shirokov [2] pointed out that Fermi's 'causal' result was the 
artefact of an approximation. Indeed, Fermi had replaced an integral over positive frequencies by 
an integral ranging from -00 to m. Without this approximation his calculation would not have 
given the expected result. 

Moreover, Fermi had calculated the probability for a transition to A nonexcited, B excited and 
no photons, i.e. the transition probability from the state leA) lgB) loph) to the state IgA) leB) loph), 
which requires measurements on A, B and photons simultaneously. Hence this 'exchange' prob- 
ability does not refer to finite signal velocity or Einstein causality but to 'local' or 'nonlocal' 
correlations. What is really needed for finite signal velocity is the probability of finding B excited, 
irrespective of the state of A and of possible photons.This will be called the excitation probability 
of B. 

Fermi's problem was investigated by many authors in this or in a related form, e.g. by Heitler 
and Ma [3], Hamilton [4], Fierz [5], Ferretti [6], Milonni and Knight [7], Shirokov [2] and his 
review 181, Rubin [9], Biswas et al. [lo], and Valentini [ll]. The older papers confirmed Fermi's 
conclusion, while the results of the later papers depend on the model and the approximations 
used. At present there seems to be agreement that Fermi's 'local' result is not correct, but that 
this nonlocality cannot be used for superluminal signal transmission since measurements on A and 
B as well as on photons are involved. 



Usually previous authors have used 'bare' states and a Harniltonian of the form 

where HAF and HBF represent the coupling of atoms A and B to the quantized radiation field. 
The Hilbert space is simply a tensor product, 

The initial state is then 
Idob") = I ~ A )  ISB) 10ph) . 

The probability of finding B in some excited state, irrespective of the state of A and photons, is a 
sum over all excited states leB) of B, over all states liA) of A and over all photon states I{n)), i.e. 

where the completeness relation for orthonormal bases has been used. The operator 

represents the observable "B is in a bare excited state", and it is a projection operator. The 
expectation value of 6 : ~  gives the excitation probability of B. 

For bare states, however, there is a serious difficulty. Even with atom A absent and no photons 
present atom B will be immediately excited under simultaneous emission of photons! This well- 
known unphysical behavior is a consequence of the interaction term HBF because then the bare 
ground state IgB)lOph) is no longer an eigenstate of the bare Hamiltonian. Therefore, all results 
for bare states have to be considered with caution. 

Valentini [ll] and also Biswas et al. [lo] have found the following interesting result for bare 
states by using perturbation theory and cutoffs. They calculated that for t 5 Rlc the bare ground 
state of B behaves as if the excited atom A were not present. This result seems to indicate a causal 
behavior and suggests a similar result for a properly renormalized theory. This, however, will be 
shown not to be the case. 

Fermi's problem of finite signal velocity will now be treated under very plausible assumptions 
without bare states. Although a renormalized theory has yet to be constructed only two basic 
properties of such a supposedly existing theory are needed. The first is that the states of such 
a theory form a Hilbert space, denoted by 'FIren. The other property needed is a renormalized 
selfadjoint Hamiltonian H ,  which is bounded from below, e.g. by 0. The assumption of positive 
energy is standard and physically well-motivated. 

In general Hren is no longer a tensor product, 



and the initial state, denoted by I&), will not be a simple product state, 

Similarly, if the observable "B is in an excited state" makes sense and is represented by an 
operator OeB then in general 6, # 0:;. However, QeB will still be a projection operator since 
its eigenvalues are 1 for 'yes' and 0 for 'no'. The excitation probability of B at  time t is then given 
by the expectation value 

($t I Oeg I $t) . 
Alternatively one may assume that the excitation probability of B is an expectation value of some 
positive operator, or one may measure the excitation through a positive observable which vanishes 
for the ground state, e.g. some operator related to the square of the dipole moment [12]. In all 
these cases one will run into difficulties with Einstein causality. 

No point-like localization of A and B is required. As a generalization of Fermi's set-up A and B 
may be systems initially localized in two regions separated by a distance R with no (real) photons 
present. The ground state of B may be degenerate. 

We note that measurements of the excitation probability of B involves measurements on B 
only and that P i ( t  = 0) = 0. One would expect, as Fermi, that 

Pi( t )  = 0 for 0 5 t 5 Rlc . (7) 

However, in a slightly different context a theorem of the author [13] as well as prior [14] and 
later results [15, 16, 17, 181 showed difficulties with causality in particle localization [19]. Although 
the theorem is not applicable here - it applies to free particles or to the center-of-mass of systems 
- it makes one wary. Indeed, as a complement to this first theorem I will now show a second 
theorem which includes interactions. 

Theorem. Let the Hamiltonian be positive or bounded from below and let the initial state 
at time t = 0 be 

A in an excited state, 
I+o) = B in a ground state, no photons. 

Let Pg(t) be the probability of finding B excited, 

where OeB is a projection operator or, more generally, a positive operator. 
Then either 

(i) The excitation probability of B is nonzero for almost all t ,  and the set of such t's is dense 
and open. 

(ii) The excitation probability of B is identically zero for all t. 

Remarks. Alternative (i) means that B starts to move out of the ground state immediately 
and is thus influenced by A instantaneously, in contrast to Einstein causality. Alternative (ii) is 
clearly unphysical since in this case B is never excited so that B is never influenced by A. 



The proof is basically very simple and uses only the positivity of H,,,, or rather its boundedness 
from below, and the fact that one deals with the expectation value of a positive selfadjoint operator. 

Proof of theorem. Since I$t) is continuous in t, so is Pi(t) .  Hence, if for some tl one has 
P;(tl) > 0 then this also holds in a small interval around tl, and therefore the set is open. Now 
let us assume that the set of t's with Pi( t )  > 0 is not dense. Then there is a small but finite 
interval I such that 

P;(t) = O for t E I .  (9) 

It will now be shown that this implies that alternative (ii) holds. Eq. (9) can be written as 

($tl OeB l$t) = O for t E I . (10) 

If OeB is a projection operator then (Oe,)2 = OeB. Therefore Eq. (10) can be written as 

($tI ('eB)2 I$t) = 11 OeB l$t) 112 
= 0 for ~ E I .  

This means that 
OeB j$t) = 0 for t E I .  

For O,, a positive operator the argument is similar [20]. Now let 4 be any fixed vector and define 
the auxiliary function Fd(t) by 

Then, by Eq. (12), 
Fd(t) = 0 for t E I .  

Since Ifmn 2 - const, one has that the operator 

is well-defined for y < 0. Putting z = t + iy one sees that F4(z) can be defined as a continuous 
function for I m  z < 0, and, moreover, Fd(z) is analytic for I m  z < 0. However, such an analytic 
function cannot have boundary values vanishing on a real interval unless 

for I m  z # 0 [21]. But then, by continuity, one also has F4(t) = 0 for all real t. Hence the right 
side of Eq. (13) vanishes for all t. Since 4 was arbitrary one has 

OeBl$t) - 0 for all t 

and this gives P i ( t )  r 0, i.e. case (ii). 
This proves that Pi@) is either nonzero on a dense open set or that it vanishes identically. 

In a slightly more sophisticated way it will now be shown directly that Pg(t) is either nonzero 
for almost all t or vanishes identically. Let the set of zeros of P i ( t )  be denoted by No. The 



same argument as before shows that F'(t) vanishes there too. As a boundary value of a bounded 
analytic function F4(t) satisfies, unless it vanishes identically, the inequality [22] 

00 

dt log IF+(t)l/(l + t2) > -oo . 

If & had positive measure the integral would be -oo and thus Fd(t) would vanish identically in 
t ,  for each 4. This would again imply case (ii). Hence if case (ii) does not hold P i ( t )  can only 
vanish on a null set [23]. This completes the proof of the theorem. 

A typical behavior of the excitation probability of B according to (i) is shown in Fig. 3. No 
estimate of the actual magnitude of P i ( t )  is provided by the above argument, except that is 
nonzero for almost all t. It follows trivially for alternative (i) that the set of zeros of P i ( t )  is not 
only of measure 0 but also nowhere dense. 

It should be noted that the above proof makes no use of any spatial separation of the two 
subsystems nor of its photon content. In fact, the theorem is a mathematically rigorous result 
which holds for any initial state I+o) ,  any positive Harniltonian and expectation value of any 
positive operator [24]. Physics comes in only when one thinks of as representing two spatially 
separated subsystems with no photons. Of course, if the systems are not spatially separated part 
(i) of the theorem comes as no surprise. 

Extensions. The derivation does not need that A and B are atoms. The result clearly extends 
to more general situations: 

a) Larger systems: A may be some "source" of photons and B a "detector". 

b) A and B may move. 

c) Other particles and other interactions may be included. 

Other positive observables can be considered. E.g., for an excited localized atom (or system) 
with no real photons initially one obtains an acausal result for photons and electromagnetic energy 
in regions not containing the atom. This is in contrast to a result by Kikuchi 1251 who, at  the 
suggestion of Heisenberg, had studied this problem using the same approximation as Ferrni [I]. 
The general case of a decaying particle or system can also be treated by the above approach. 

Discussion. If the effect implied by the theorem were real it could in principle be used for 
superluminal signals, with all the well-known consequences. However, the result may also be 
viewed as a difficulty for the formulation of the underlying theory. The theorem is of the 'if-then' 
type. To avoid its physical consequences one has to check whether its conditions or any additional 
physical assumptions are fulfilled in a given situation. There are several possible ways out. 

a) Systems localized in disjoint regions might not exist as a matter of principle, so that strictly 
speaking they always 'overlap'. Then an immediate excitation may evidently occur. 

b) Renormalization will introduce a sort of photon cloud around each system. This essentially 
implies an overlap of the systems, leading back to case a). 

c) The notion of 'ground state of B' in the presence of A may not make sense. Without A 
present one will expect a lowest energy state to exist for the system B plus radiation field, with 
no real photons. However, with A present, the lowest state of the complete system may change. 
Thus the 'ground state of B' may not be preparable independently of A. Effectively this also leads 
back to case a). 



These possible ways out suggest implicitly that the problem is not well-posed, i.e. an exper- 
imental set-up to check the theorem might not be feasible. But without disjointly localizable 
sources and detectors how to check finite signal velocity at all? 

One may argue that any violation of Einstein causality would be so rare or so small as to be 
unobservable in practice. But then a good theory should contain this from the beginning. Should 
quantum mechanics with its Hilbert space structure and its idealized measurements at sharp times 
therefore be modified? The above result is based on the use of Hilbert space and a selfadjoint 
time-development operator. This might not be appropriate any longer for systems with infinitely 
many degrees of freedom. 

Conclusion. Fermi's original question on finite signal velocity has been generalized and ma- 
lyzed in a model-independent way, without the use of any 'bare' theory or any approximations. 
Only positivity of the energy has been used. It has been shown that this leads to violation of 
Einstein causality if one assumes that two subsystems, 'source' and 'detector', can be localized in 
disjoint regions at some initial time. The view has been taken that this difficulty is of a theoretical 
nature, and possible ways out have been discussed. 
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The detection of cavity radiation with the detector placed outside the 
cavity is studied. Each leaked photon has a certain probability of propa- 
gating away without being detected. It is viewed as a continuous quantum 
measurement in which the density matrix is continuously revised according 
to the readout of the detector. The concept of pseudomaster equation for 
the no-count process is introduced; its solution leads to the discovery of the 
superoperator for the same process. It has the potential to become the key 
equation for continuous measurement process. 

Quantum theory of measurement has been a highly controversial topic ever since the pioneer 
work of von Neumann. The process discussed in this original work is now classified as the 
first-kind (nondestructive) measurement, which is described by an instantaneous projection with 
projection operators as its principal mathematical tools. On the other hand, photodetection is 
a second-kind (destructive) measurement. To deal with photodetection the concept of quantum 
measurement must be extended to include continuous measurement process in which the quantum 
state of the subject system must be continuously revised to reflect our most up-to-date knowledge 
about the system resulting from the ongoing measmment process. Superoperators have been 
the principal mathematical tools for such study. It is the purpose of this paper to introduce a 
simple equation which has the potential to become the basic equation to describe the continuous 
measurement process. 

There have been two different approaches to the theory of photoelectric detection. The fim 
approach was initiated by -Wandel [I] and followed by Kelley and Kleiner [2] and by Glauber 
[3]. The second approach was initiated by Mollow [4] and followed by Scully and Lamb [q, 
by She pherd [6], and by Srinivas and Davies [7]. In the first approach, light propagates in 
the open space, it encounters the photodetector, and any unabsorbed photons propagate away. 
In the second approach, both the radiation and the photodetector are enclosed in a cavity, andl 
any photons not absorbed by the detector at one time are available for detection at later times. 
For obvious reason these two different approaches are classified by Mandel [8] as open-system 
model for the former and closed-system model for the latter. 

The formula for the photoelectron distribution obtained in the open-system model was 
criticized by Srinivas and Davies [7] as being a short-time approximation only, it may lead 
to unphysical and meaningless results when time is large. In his response, Mandel [8] pointed 
out that, for the open-system model, it should be understood that the normalization volume must 
be large enough to satisfy the condition L >> ct at all times. He also pointed out that the 
circumstances modelled by the closed system are much less commonly encountered in practice. 

In this paper we introduce a new model that is the hybrid of the -two previous approaches. 
The radiation source is kept inside a cavity but the photodetector is taken outside of the cavity 
to detect only those photons leaked out of one end of the cavity, and any unabsorbed photons 
propagate away. We believe that this hybrid model not only keeps the merits of both previous 
models but also is a closer simulation of the circumstances more frequently encountered in 
practice. For example, if we want to study the statistical properties of photons in the output of 
a laser system, this hybrid model will describe the situation most closely. 



In 1981 Srinivas and Davies [7] first considered the closed-system photodetection as a 
continuous quantum measurement. The information provided by the readout of the detector is 
used to adjust the density matrix continuously so that it always represents our most current 
knowledge about the cavity radiation. The counting process consists of no-count and one-count 
processes, the former lasts a finite duration while the latter occurs instantaneously. The effects 
of the two processes on the density matrix can be represented by two superoperators postulated 
to be as follows: (i) The one-count process is described by the superoperator 3 such that 

where b(t) and @(t+) are the density matrix for the radiation field immediately before and after 
the detection of a photoelectron while and at are the annihilation and creation operators, 
respectively, of a photon. (ii) The no-count process lasting for a duration T is described by the 
superoperator ST such that 

A-t. x - t -  exp (-Za a ~ ) j ( t )  exp (-Za a ~ )  
6(t + T )  = S ~ ; ( t )  ~ - J ~ [ B ( ~ )  exp ( - ~ a t a ~ ) 1  9 

where X is the coupling constant. It is obvious from Eqs. (1) and (2) that the evolution of the 
quantum state for the cavity radiation under continuous photon counting is nonunitary. These 
two postulates were verified very recently by Imoto et al. [9] by using some specific microscopic 
model. The system consists of a cavity radiation and a stream of two-level atoms described by 
the well-known Jaynes-Cumming Harniltonian. More detailed theory has been further developed 
by Ueda et al. [lo]. 

These two superoperators are valid for the closed-system model. To find the corresponding 
superoperators for the hybrid model is tEe initial motivation of the present study. We have 
discovered a general method to solve this type of problems, and we shall call it the method of 
pseudomaster equation. 

For simplicity, we assume that the radiation inside the cavity is kept inactive except for 
possible leakage through one side of the cavity due to the less than perfect reflectivity of the 
mirror. Let ,LL be the rate of photon leakage or the inverse of the decay time. It can be expressed 
in terms of the speed of light c, the reflectivity of one end mirror R and the distance between 
the two end mirrors d as [ l l ]  

Let p(n, t )  be the probability that n photons remain inside the cavity at time t. Except for the 
difference in the physical meaning of the constant, the master equation for p(n, t )  in the hybrid 
model is exactly the same as the one first derived by Scully and Lamb [5] for the closed-system 
model, i.e., 

which describes the so-called non-referring measurement process, namely, the "free" evolution 
of the photon-num ber distribution without detection or without any adjustment of the quantum 
state according to the readout of the detector. 

Assuming each leaked photon has the probability 5 of being detected, then we believe the 
no-count process can be described by the following difference-differential equation 



where (1 - 5) is the probability that a leaked photon propagates away without been detected. 
Equation (5) is a modification of Eq. (4). One important characteristic of Eq. (5) is that it does 
not conserve the total probability. Because of this characteristic we call it pseudomaster equation. 
The physical meaning of q(n, t) will become clear in later development. 

By the way, the pseudomaster equation for the closed-system model is 

which is quite trivial, so we shall focus our attention on Eq. (5) for the hybrid model. 
The solution to Eq. (5) can be easily obtained through Laplace transformation. Let the 

no-count period begin at t = tl and let us make the identification 

as the initial condition, then the solution to Eq. (5) at a later time t = t2 can be written as 

The first physical meaning of q(n, t) is that it is the unnonnalized form of p(n, t) in no- 
count process, namely, 

Let Pm(tl, t2) be the probability that m  photoelectron^ are detected during the period (tl, t2). We 
are particularly interested in the special case m = 0. We can obtain from Eq. (8) the probability 
that no photoelectron is detected during the period (t l, t 2) as 

This is the second physical meaning of q(n, t). 
To be consistent, the no-count probability must satisfy the condition 

Po(t1, t2)P0(~21 t3) = P0(tl,t3)- 

Using Eqs. (8) and (10) in Eq. (9) we obtain 

Replacing tl and t2 in Eq. (10) by t2 and t3, respectively, and using Eq. (12), we obtain 



so the condition of Eq. (11) is satisfied. 
There are two kinds of waiting times, conditional and unconditional. We pick an arbitrary 

instant and ask: "How long do we have to wait until we detect a photoelectron?"is is 
the unconditional waiting time. If the waiting begins immediately after the detection of a 
photoelectron, then it is called conditional waiting time. From the expression for Po ( t l  , t?) we 
can also derive the unnormalized distributions for the two different waiting times accordmg to 
[I21 

and 

where (n) ,  is the average number of photons remaining at time t .  
The difference between unconditional and condition waiting times is that the latter begins 

immediately after the detection of a photons. Therefore we can see the effect on the quantum 
state of the radiation due to the detection of a photon by comparing Eqs. (14) and (15). If we 
replace p(n, t l )  in Eq. (14) by 

we obtain Eq. (15). On the other hand, if we try to use Eq. (I), we also have 

which is identical to Eq. (16). So we conclude that the effect on the quantum state due to the 
one-count process in the hybrid model is the same as that in the closed-system model, and the 
superoperator for the one-count process in hybrid model remains the same as given in Eq. (1). 

We now try to find the superoperator for the no-count process. Equation (12) provides the 
clue for this search. It turns out to be quite sophisticated because it involves the exponential of 
a superoperator. First let us define a superoperator R(r ,  p ,  5 )  such that 

Then we can define the exponential of this superoperator as 

which must be applied to both sides of the operand in lock step and cannot be split up into 
two separate parts, with one being the Hermitian conjugate of the other. Let us define another 
superoperator S(r ,  p )  such that 

P A t -  S(T,  p ) ~ ( t )  = exp (-:iitiir) ~ ( t )  exp ar) , (20) 



which is slightly different fkom that defined in Eq. (2) in the physical meaning of the constant p  
and in that it does not include the renormalization. We are now ready to present the superoperator 
Q(T,  5 )  for the no-count process such that 

Then the density operator at the end of the no-count process can be written as 

where the difference between the two superoperators Q(T,  p, 5 )  and Q,q(r, p ,  5 )  is that the later 
includes the renormalization. 

It should be pointed out that this superoperator must satisfy the following conditions: 

P O P ,  t  + 7 )  = Tr(Q(7 ,  P ,  5 ) i ( t ) l ,  (2) 
and 

Q(r1 + 7 2 ,  P ,  5 )  = Q ( s ,  P ,  [ ) & ( T I ,  P, 5 ) .  (25) 
The last semigroup condition is very critical because we have found at least two less sophisticated 
expressions for &(T,  p ,  C), which satisfy the first two conditions, but must be abandoned because 
they do not satisfy the last condition. It can be easily verify that the expression given in Eq. (21) 
satisfy the first two condition. That it also satisfies the last condition can be shown as follows: 

where we used the operator identity [13] ex6 tv ( (8 ,  d t )e-xat i  = f ( d e - X ,  d t e x )  to change the 
00 Ca co k 

orders of some operators and used the summation identity x x A ( k ,  4) = x x A ( k  - &, &) 
E=O e=o k=o e=o 

to carry out one summation. 
For a perfect detector with 5 = 1, we have QN(T,  A, 1) = ST as given in Eq. (2) for the 

closed-system model. This means the present model with perfect detector is identical to the 
closed-system model as far as mathematics is concerned. On the other hand, when 5 = 0 we 
obtain the superoperator for the non-referring measurement process, which always preserves the 
total probability, i.e., T r [ Q ( r ,  p, O ) $ ( t ) ]  = 1;  SO no renormalization is necessary. 

We can also consider a more general "closed-system" model with the detector inside the 
cavity but the cavity has some leakage. The pseudomaster equation for the no-count process 
of such a system can be written as 



where A is the coupling constant between the radiation field and the cavity and ,.L denotes the rate 
of photon leakage. Except for a slight change of constants, the calculations of this generalized 
closed-system model are almost exactly the same as the hybrid model. We just list the most 
significant results as follows: 

and 
Q(T, A, P )  = S(T, -I- P ) ~ X P  [W, + P,  A/(A + ,.L))I. (30) 

In conclusion, we have introduced a hybrid model for photodetection which is the mixture of 
the previous open-system and closed-system models. It is without the defects of the former and 
more realistic than the latter. We have also introduced the concept of pseudomaster equation, the 
solution of which provides the clue to discovering the superoperator for the no-count process. It 
is obvious that, comparing with the superoperator approach, the method of pseudomaster equation 
is simpler, easier to see how to write it down and easier to handle. So we believe it has the 
potential to become the fundamental equation for analyzing various models of photodetections 
as continuous quantum measurement process. 

*This work was supported by the U. S. Navy, Office of Naval Research, under Grant #N00014- 
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SQUEEZED STATES AND GRAV'bCTON-ENTROPY PRODUCTION 
IN THE EARLY UNIWRSE 
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Squeezed states are a very useful framework for the quantum treatment of tensor pertur- 
bations (i.e. gravitons production) in the early univem. In pafticcular, the non equilibaium 
entropy growth in a c~mological  proccess of pair production is completely determind by the 

i a t d  squeezing parameter and is insensitive t o  the n u m k r  of particles in the initid 
. The total produced entropy may r e p r w n t  a significant f rxt ion of the entropy s t o r d  

today in the casmic b l a c k m y  rdiation,  provided pair prductiora o r i d n a t e  from a change 
in the bxkground metric at a curmture scale of the Planck order. Within the formalism 
of q u m d  thermd state it is a h  p o ~ ~ i b l e  t o  dhuas the s t imulaM emission of gavi toas  
from an initial thermal bath,undea the action of the carnie gravitationd bwucksound field, 
We find that  at low enerw the grwiton psodluction is enhanced, if compare$ with spow 
tanmus creation from the m u u r n ;  as a conwuence , the inflation scale must be lowerd, 
in order not t o  e x c d  the o h m &  @agB q u d m p o i e  anbtropy.  This edlpect k important, 
in particular, for mode l  on a symmet~y-breaking tranit ion which  quire, as initial 
condition, a state of thermal quilibdaam a& kmlperataara higher than the inflation w d e  and 
in which inflation has a minimd dur*bra. 

In order to discuss the gavitofa prduction i n d u d  by a cbsmological background transition, the 
stating point is the E n w i d  wave quation for a t perturbation. For the sake of generdity 
we will t&e i h the wiation of atmt [I], w&ch co gotads, in a string 
cwmologicd to a time-dependence of the &adkin-TwEn dilaton field Ht), The 
linearized wave aqludion is then, in the B Dicke (Strinw) frame [I] 

where hi is the graviton field describing a t e u r b a t i o n  on a given curved background, 
represent& by a homogeneous diagonal metric in which d dimensions escpmd with the scde 
factor a ( t )  and n dimension contract with the scale factor b(t): 



(conventions: p, v == 1, ..., D = d + n + 1; i j= l ,  ..., d; a,b=l, ..., n; t is the cosmic time coordinate, 
ad y;j, xb are the metric tensors of two maximally symmetric euclidean manifolds, parametrized 
respectively by "internal" and "external" coordinates xi and y4). 

In terms of the conformal time coordinate 77, defined by dt/dq = a9 equation (1) becomes [I] 

. d-1 
where +! = h i a ~ b t e - *  and V is 

( d - l ) a N  nb" 1 
4- -- + -(d - l)(d - 3) I =  2 6  4 (f)l + L ( n  4 - 2) 

1 1 a'b' 1 a' n b' + -f2 + 5n(d - 1)-- - -(d - 1)-4 - --+' 
ab 2 a 2 b 

This effective potential takes into account the contribution of the expanding dimensions (a' # O), 
of the contacting dimensions (b' # 0) and of the possible variation in time of the gravitational 
coupling constant(+' # 0). In the case of four expanding dimensions (without dilaton field and 
without contracting dimensions) we recover the standard result, a minimally coupled scalar field 
equation. 

The quantum description of the amplification of scalar or tensor fluctuations, as disc 
(for other references see e.g. [ll]), is based on the separation of the field into background 
solution and first order perturbations, and on the expansion of the solution to the perturbed wave 
equation into 1 in) and 1 out) modes. The complex coefficients of this expansion are interpreted in 
second quantization formalism as annihilatioq and creation operators for a particle (b, bt) and the 
corresponding antiparticle (6,6$). The relation between I in) and I out) mode solution can t hua be 
expressed for each mode k as a Bogoliubov transformation between the I in) operators (b, bt, 6, @) 
and the out ones (a, at, iit, 6) [3) 

a* = c+(k)bk + c:(k)6Lk , ii!, = c-(k)bk -I- c;(k)&Ik ( 5 )  

where Ic+12 - Ic-I3 = 1. As noted by Grishchuk and Sidorov (31, by parametrizing the Bogoliubov 
coefficients 4 in terms of the two real numbers r 2 0 and 8, 

c+(k) = coshr(k) 9 cz (k) = ezi@h sinh r(k) (6 )  

the relations (I) can be re-written as unitary transformations generated by the (momentum- 
conserving) b m o d e  squeezing operator Ck, 

(r is the so-called squeezing parameter) as 

(and related expressions for B+, 5, ii) 



The mean number of ~roduced gravitons is then, according to equation (8) 

From equation (5) is possible to compute the spectral energy density 

w is the proper frequency related to the comoving one k by w = k/a(t) where a(t) is the scale of 
the expanding background metric. 

We then insert the known expression of c,(w) in eq.(9) and measure p(w), as usual, in units 
of critical energy density p,, defining Q(w) = p(w)/p,. We have, in four dimensions (D = 4) 
expanding with scale factor a(q) "- 7-" in conformal time [4] 

R,(to) zz 10"' is the fraction of the critical energy density present today in the form of radiation; 
a 3 1 is a coefficient parametrizing (in conformal time) the power-law behaviour of the scale 
factor; HI E H(tl) is the curvature scale at the time tl marking the end of inflation and the 
beginning of the radiation-dominated era; wo 2 10'l8 Hz is the minimum amplified frequency 
crossing today the Hubble radius Hg'; wa 2 lQ2wo is the frequency corresponding to the matter 
radiation transition; wl, finally, is the maximum amplified frequency, related to the inflation scale 
by wl ~ b )  1011(Hl/Mp)112 Hz (Mp is the Planck maw). 

The computed spectra are constrained by the CMB anisotropy, by the pulsar timing data and 
by the closure density. The bounds on the variation of the spectral energy density becomes bounds 
on the variation of the squeezing parameter, which is given by [1],[3] 

(161 is a model-dependent number of order of unity). 

2 Ther modification of the graviton spectrum 
In this picture the crucial assumption is that the initial state of the gravitons is precisely the 
vacuum. The vacuum, however, is not the moat general initial state for a gravity wave or for a 
generic scalar perturbation[5]. We can mimic a generic initial state with a squeezed number state, 
or, better with a statistical mixture of two mode squeezed number states [6]. In particular, any 
inflationary model based on a temperature dependent phase transition require as initial condition 
a homogeneous thermal state. So, a particularly relevant case is that of a thennal mixture of 
number states. Such initial condition will modify the mean number of particles and the spectral 
energy density . 



For the spmtral enerm density we obtain 16) 

Here Po"" PP'"to) is the proper temperature of the initial thermal state, diabatically rescald 
down to the present obwrvaeion t ime to [po is defined in terms of the comoving temperature as 
@(to) = &(to)]. The effect of the initial finite temperature is to enhance graviton production at 
low fquency  with r e s p t  to the high fretquency sector of the spectrum. This effect dewnds on 
the d u e  of the initid temperature which, in the context of inflationw models b 
symmetry breding, is greater t h w  the inflation scale. However, the modification of the s p t m m  
is seleviant only if the inflationwy per id  is not too long (see [6] for a detailed discussion). 

3 Entropy production from the cosmological amplification 
of vacuum fluctuations 

Unlike the particle spetmm, whi& depends on the initial state, the non eq~libriusrp entmpy 
p e h ,  associatd with the p r w w  of paastick production [7], is not d w t e d  by the m i m l a  
choice of the initial conditions. 

It is pmsibb i n d d  to inatduce a rasn qu i l ib r im entraps d i d  
ed states, in which the loss to the reducd demsity mine~x 

disgemioxs in the suductuabnt operators I, 5 whaxse vaarriaarnce! is 
initial d u e  [$I, [9]. In terns of t h w  oprabeors a and G have the 

i 
ak = -eide [ ( a h  r k  - sinh rk)(t - i s )  + (cmh vk + sinh rk)(& - d&)] 

2 (16) 

(the wlative p h e  hm with r e s p t  t n sad$ a way to identifq. the a: aand 5 
operatom with the suductu& ones) arnd the squ number mvehet iona (in the bmis of 

w h e ~  L, and H, Laguem and the W te polynomials, ly @k zz @-3Pb. It 
s b d d  be noted that lations, this wavehction t be simply fmtorized 



in terms of two dwoupled squeezed wcillators in an excited state, which are known to provide 
the usud representation for the on@ mode squ-d n m b r  waveforection. 

It is intemting to point out, in pasing, that the wave functions of a two mode squ-4 state, 
as weU as the trmsition pmbability betwen a generic two m d e  m m k r  state andl a &m mode 
squ-4 nugglbrtr state, in the superfluctua~rt w i a b l a  representation (2 , Z) are the same as the 
co~aponding qumtities obt&nd in the c o n t e ~  of the "sq " Ladau levels p d b m  for the 
elmtron in a uniform m w e t i c  field [12]. Hn the Lmdau 1 lem the two quaturn numb= 
lakllisg the one partick wave functions are the enerm of the electron and the component of the 
angulas momentum pepndiculaas to the plane of the c l w i d  motion of the elmtron. Here the 
two qumtum numkm in the many pwticle wavefunction are rapectively the n u d e r  of gravitom 
with fow-aaaomenturna k (nk) asld with four-momentw -k (n-k). Also to be mentioned is the fact 
that it is pasible, within this fomdism, to comider more generd wavefunctions with nk # n-k 

This is physicdly q u i d e n t  to consider, as initid condition for the gavitons, a state with 
non-zero a m b e r  of pat icla  and non zero four-momentuna. 

The entropy growth for a generic squ naixture of number st&= is the same as for the 
s q u w d  m u u m  [10), 

where p,k is the r d u c 4  density matrix for the mode k, and the integrated entropy over d l  the 
graviton spmtmm is [$I, [9] ( f m  q. (191, (13)): 

whem SV .v [a(t)mV(t)j3 -- m s f  is the usud bld-body entropy of the CMB radiation (in te 

able to e q l i n  the ob94:p"vd cosrmoled 
idation rdiation trmsition is of the order of 

m d e  is bunadd h r a a  the CMB 
okp"vatiofa would seem to mle out 

the enkropy of the ur;livem. On the 
(or the fadiation dominated phase) 

ure, like in the *pmbig- models [2] which mi= 
na tmdy  in duality- string camology, and in which the ure scale can app 

dues (HI 5 MPL) [I] ,[2). 
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TIME-DEPENDENT VARIATIONAL APPROACH IN TERMS OF 
SQUEEZED COHERENT STATES 

-IMPLICATION TO SEMI-CLASSICAL APPROXIMATION- 
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Abstract 

A general framework for time-dependent variational approach in terms of squeezed co- 
herent states is constructed with the aim of describing quantal systems by means of classical 
mechanics including higher order quantal effects with the aid of canonicity conditions de- 
veloped in the time-dependent Hartree-Fock theory. The Maslov phase occurring in a semi- 
classical quantization rule is investigated in this framework. In the limit of a semi-classical 
approximation in this approach, it is definitely shown that the Maslov phase has a geometric 
nature analogous to the Berry phase. It is also indicated that this squeezed coherent state 
approach is a possible way to go beyond the usual WKB approximation. 

1 Introduction 

In many-body problems, a great interest is paid to describe quantal systems in terms of a few 
classical variables because we are especially interested in some particular characteristic motions 
in quantal systems, for example, nuclear collective motions in nucleus and the dynamics of soliton 
models of baryons as the low energy effective theory of QCD. As is well known, in various quantal 
systems, if one takes the limit of "large N", the quantum theories are well described as the classical 
ones [I]. However, since, for example, we are interested in the nuclei as finite quantum many- 
particle systems, it should be noticed that the deviations from classical dynamics can never be 
neglected. 

With the aim of establishing a possible framework for the classical description of quantal 
systems, we give a rather general framework to describe quantal systems by means of classical 
mechanics including the higher order quantal effects. Our basic idea is formulated with the use of 
the time-dependent variational principle utilizing the squeezed coherent states [2], paying strong 
attention to canonicity conditions developed in the TDHF theory [3][4]. 

In this paper, first, we briefly review our time-dependent variational approach with squeezed 
coherent states developed in Refs.[2] and [5]. Secondly, we show that, when we take a semi- 
classical limit in our framework, it is clearly realized that the Maslov correction occurring in the 
semi-classic$ quantization procedure in the usual WKB method can directly be interpreted as 
the Berry phase [6]. Although it has originally been pointed out that the Maslov correction is a 
kind of the Berry phase [7], it is possible to take account of the higher order quantum effects than 
that of the semi-classical approximation in our framework. Furthermore, it is understood that our 
approach is a possible way to go beyond the usual WKB approximation. 



2 Formulation 
In this section, we give the framework of the time-dependent variational approach in terms of 
squeezed coherent states [5][6]. We start with the general squeezed coherent state as 

Here, 10) is a vacuum state with respect to boson operators 6k, and a k  and Bkkl are the time- 
dependent c-number variables. The state I@(P)) is called the squeezed vacuum. In the following 
consideration, we are restricted ourselves to deal with boson systems composed of one kind of 
boson. If we want to  consider the systems described by su(2)-algebra such as the Lipkin model, it 
is enough to express the algebra by the use of two-kinds of boson operators, the representation of 
which is well known as Schwinger boson representation. Then, Bkki is taken as Bkki = Bkbkk1(lC = 
4 2 )  PI. 

With the aid of definitions of coordinate-momentum operators Q = m ( h  + 81) and a = 

(-i)@(6 - at), the above squeezed coherent state can be rewritten as the following Gaussian- 
type state : 

where we. define the following variables as 

q - &(a + a*) , p = (-i)/$ - a*) , 

Here, c-number variable 52 is divided into real and imaginary parts, and for later convenience, 
the part "1" which represents the width of the wave packet of the original vacuum is extracted 
from real part. In the following, we will start with this expression of the squeezed coherent state 
in Eq.(3). Thus, we treat the variables q,p, G and IT as dynamical ones. Here, note that the 
variable G is positive definite and never takes zero. This fact is important in order to present an 
interpretation of the usual WKB approximation within our framework. 

In general, we can calculate the expectation values for arbitrary operators in terms of the 
Wigner transform : 

(@(t)ldl@(t)) = e x p { h ~ } ~ w ( q ,  P) (8) 



Here, the derivative operator 5 and the Wigner transform Ow(q,p) are defined as 

where the relation Q lq) = qlq) is satisfied. The Wigner transform Ow only depends on q and p 
and the variables G and JI are' introduced by the operation of $. 

We need to determine the time-development of the variables q(t), p(t), G(t) and II(t), so that 
the time-development of the state I@(t)) is determined. We can carry this out with th; aiddof the 
time-dependent variational principle similar to the TDHF theory : 

Furthermore, we impose the canonicity conditions developed in the TDHF theory [4] in order to 
extract canonical variables. Taking the freedom of canonical transformations into account, we can 
express the canonicity conditions in the following form : 

where dF = d / d F  is defined and s(X, Y) which represents the freedom of the canonical transforma- 
tion is an arbitrary function of canonical variables X and Y. We can take possible solutions of the 
above canonicity conditions as (X, Y) = (q,p) and (hG, JI). Therefore, the resultant equations 
of motion derived from the time-dependent variational principle are nothing but the canonical 
equations of motion due to the canonicity conditiom : 

Here, the dot denotes the time-derivative and the c-number Hamiltonian function H is defined 
by H = (@(t)l~l@(t)) = e " ~ ~ ( g , ~ ) .  Thus, our main task is reduced to solving the classical 
equations of motion under appropriate initial conditions in the canonical form. As is seen from 
Eqs.(l3) and (14), roughly speaking, the variables q and p represent the classical motion and G 
and H may be regarded as the classical images of quantum fluctuations, 

3 Maslov Phase as Berry Phase 

In this section, we give a relation between the usual WKB approximation and our framework of 
the time-dependent variational approach with squeezed coherent states. Then, it is clearly shown 



that the Maslov correction occurring in the semi-classical quantization procedure in the usual 
WKB method can directly be interpreted as the Berry or geometric phase. 

In our framework, it is necessary to choose the initial conditions for newly-introduced variables 
as the classical image of quantum fluctuations, that is G and II. We adopt two criteria developed in 
our papers [2][6], namely the requirements of "Least Quantal Effects" and "Minimal Uncertainty" 
at initial time. As for the "classical parts" q(t) and p(t), we may select the initial conditions in a 
similar way to the usual TDHF theory [9]. 

Now, if the limit of h -, 0 is taken in Eq.(13), then these equations are reduced to the usual 
classical Hamilton's equations of motion. Thus, it is expected that the variables G and II represent 
the quantum fluctuations around the above-mentioned classical motions. Therefore, it is realized 
that the semi-classical limit in our framework is to take the limit of h + 0 in the equations of 
motion in Eqs.(13) and (14). In this limit, we can solve the equations of motion for G and 11 
in Eq.(14) and express these solutions in terms of the classical orbit (q(t),p(t)). The results are 
obtained as follows : 

where A E dq/dqo, B I dq/dpo, C dp/dqO and D dp/dpo are defined and the variables 
with subscript 0 represent the initial values. Since the variables G and 11 are always accompanied 
with h, the expectation value of Hamiltonian should also be taken into account up to the order 
of h in this semi-classical limit. Namely, as the approximate energy expectation value, we adopt 
H - Hd(q, P) + hHql(q, P, G, 

In the usual WKB considerations, the energy is kept in the classical form which does not 
include h. Therefore, in our framework of the time-dependent variational approach with the 
squeezed coherent states, h J dtHql in the action integral should be combined with the requantized 
phase factor J dt(@(t)lihdJ&l@(t)) in order to compare our treatment with the usual WKB one 
properly. Thus, action function is written as 

AB - AB] -Hcl} (+total time-derivative term) , L C  { P i  + h 4G 

where it is assumed that the classical orbit is a periodic one, the period of which is written by 
Td. According to the requantization procedure similar to the TDHF theory, we set the modified 
action integral except for the part of "energy" to integer n times 27rh : 

We rewrite the above relation as 

where I' is defined and is explicitly calculated with the relation G r IzI2 J2 : 



v : integer 

The above expression is nothing but a requantization condition in the semi-classical approximation. 
Here, z (G) never passes through the point of migin z = 0 (G = 0) as is previously mentioned. 
Then, G or z undergoes the time-evolution accompanied with the classical motion q(t) through 
the variables A and B. The integer v, which corresponds to the Maslov correction occurring in the 
usual semi-classical quantization procedure in the WKB method, appears as the winding number 
around the origin z = 0 associated with the classical motion. These situations are analogous to 
the case encountered for the Berry phase [10][11]. Namely, it is understood that, in our squeezed 
coherent state approach, the Maslov correction or the Maslov "phase" corresponds to the Berry 
phase and the classical orbit plays a role of an "external parameter." The coefficient ./r in the 
Maslov phase I' may be interpreted as a half of the solid angle that subtends at the "singular 
point" G = 0 ( z  = 0). Furthermore, the parameter governing the approximation is h7 so that h 
plays a role of an "adiabatic parameter" in the consideration of the Berry phase. Therefore, it 
is clearly realized in our approach that the Maslov correction has the similar geometric aspect to 
the Berry phase. It is thus shown that the quantum effects are automatically contained in the 
semi-classical limit in our squeezed coherent states approach. 

4 Beyond the WKB Approximation 

In the usual WKB method, the energy of the system is kept in the classical form which does 
not include ti and the quantum effects are taken into account only through the requantization 
condition. On the other hand, in our time-dependent variational approach with the squeezed co- 
herent states, the energy is' the expectation value of the Hamiltonian with respect to the squeezed 
coherent state itself, that is H = ( ~ ( t ) l ~ l ~ ( t ) ) ,  so that the higher order quantum effects of h 
are already included. Thus, under the conception of our squeezed coherent states approach, the 

E ECKART 

EXACT 
I This Case 1 I 

I I 

FIG. 1. The energies are shown in the case of Eckart V(Q) = 
-Uo/cosh2 aQ,  in which we set the parameters (Io = 1 and ru = 0.1 for simplicity. 
"This Case" represents the energy calculated numerically in our squeezed coherent 
state approach. "WKB7' and "Exact" represent the energies obtained by the usual 
W K B approximation and exact eigenvalue of the ground st ate, respectively. 



energy is calculated as follows : First, we analytically or numerically solve the self-consistent 
equations of motion in Eqs.(13) and (14). Secondly, we calculate the energy expectation value 
of the Hamiltonian with respect to the squeezed coherent state which includes the higher order 
effects of ti than the quantum effects in the WKB approximation. 

For example, in the case of Eckart potential, V(Q) = -u0/ cosh2 a ~ ,  the energy expectation 
value calculated numerically in our framework is compared with the exact energy eigenvalue 
and the usual WKB energy in Fig.1. Here, the initial conditions in our approach are taken as 
q0 = po = 0. Therefore, the energy thus obtained corresponds to the ground state one. It can be 
seen from Fig.1 that our treatment gives a fairly good result owing to the incorporation of the 
higher order effects of ti. 

In summary, we have given the framework of the time-dependent variational approach in terms 
of the squeezed coherent states with the aim of describing quantal systems by means of the classical 
dynamics. In our squeezed coherent states approach, the Maslov correction that appears in the 
usual semi-classical quantization procedure is clearly realized as the Berry or geometric phase. 
Furthermore, our approach is a possible way to go beyond the WKB approximation. 
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Abstract 
Decoherence and dissipation in quantum systems has been studied extensively in the 

context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum 
systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann 
to address the Quantum Measurement Problem. Although these models can yield very 
general classical phenomenology, they are incapable of reproducing relevant characteristics 
expected of a local environment on a quantum system, such as the characteristic dependence 
of decoherence on environment spatial correlations. I discuss the characteristics of Quantum 
Brownian Motion in a local environment by examining aspects of first principle calculations 
and by the construction of phenomenological models. Effective quantum Langevin equations 
and master equations are presented in a variety of representations. Comparisons are made 
with standard results such as the. Caldeira-Leggett master equation. 

1 Introduction and Motivation 
Decoherence via coarse graining has been studied in the context of quantum measurement theory 
by Zurek[l] and by Hartle and Gell-Mann[2] as a mechanism which leads to the emergence of clas- 
sical properties. Recent efforts have focused on the decoherence effects of a heat bath, which has 
also been examined in detail in the study of quantum brownian motion. Decoherence is identified 
as the (effective) suppression of interference terms in the density operator (p(x , x') , x # 2). It has 
been pointed out that most of the models which have been considered are somewhat simplistic and 
cannot reproduce the phenomenological features expected of a system which interacts locally with 
a homogeneous and isotropic environment [3]. In this paper I describe the perceived shortcomings 
of existing models and illustrate the construction of a phenomenological quantum master equation 
which contains many features expected from local coupling to a homogeneous environment 141. 

Although decoherence is the most interesting feature of the effects of a heat bath, dissipation 
(and other effects) also generally appear in the dynamics of the density operator: 

ap(x7 t, = Hamiltonian terms + Dissipation terms + . - - g(x, x1)p(x, x'; t). 
a t  

The decoherence term appears as a (spatially dependent) decay term in the evolution equation, 
and can be understood in terms of effective fluctuating forces, or potentials: [5, 61 



Typical models have a quadratic form, g(x, y) oc (x - y)2 for the decoherence term, corresponding 
to a fluctuating force which is independent of position. However, for a local bath one expects 
the correlation function to die off at some characteristic length scale (the correlation length of 
the environment), which has some important ramifications for decoherence. For a quadratic form 
of decoherence, the decay rate of the interference terms in the density matrix increases without 
bound, while for a local model the decay rate saturates at separations (between x and x') much 
larger than the correlation length of the environment, reflecting the independence of environment 
fluctuations at large separations. As it turns out, the quadratic form can be considered a short 
length scale approximation of a more detailed model. 

To consider the decoherence effects of an environment, simultaneous treatment of dissipation 
is necessary since decoherence and dissipative effects both generally arise from the same source 
(the interaction with a heat bath). For simplicity, I consider only linear dissipation, that is 

As an example of quantum dissipative evolution, Dekker[7] has constructed a phenomenological 
master equation which includes ohmic dissipation and quadratic decoherence: 

The Caldeira-Leggett [8] master equation is obtained from a first-principle calculation for the effects 
of a simple thermal bath. With an appropriate choice of parameters for the Dekker model, the 
Calderia-Leggett master equation can be reproduced. 

Many open system models can reduce to the same classical phenomenology, particularly in the 
Markov regime, and yet have significant differences for a quantum sytem in that same regime. To 
illustrate this "richness" of quantum dissipative models, consider a rather generic oscillator bath 
model (following Zwanzig[9]) : 

The classical calculations (the results of which are presumably reproduced in at least some limit of 
the quantum model) are relatively straightforward. The classical fluctuation-dissipation relation 
between the fluctuating forces and the nonlinear dissipation kernal emerges naturally, and in the 
usual Markov limit becomes: 

and a simple langevin equation can (at least in principle) be obtained: 

For a homogeneous environment, the dissipation constant would be independent of position. 
Some observations about the Markov limit are in order. For the classical picture, the spatial 

correlations of the fluctuating forces are irrelevant. After all, the particle can only be in one place 



at one time. For a quantum system one must consider superpositions between the particle at 
different locations, i .e. superpositions between different trajectories for the particle. My point is 
that different models may produce the same classical phenomenology, but have some important 
differences for the quantum case, in particular for the effective decoherence due to the environment. 

In order to help motivate some choices which will be required for the construction of the new 
model, consider a particle locally coupled to a scalar field. This particular model is a natural 
extension of one considered by Unruh and Zurek[lO]. The action for this model is given by: 

This model produces approximately ohmic dissipation in one dimension[8, 111. In addition, one can 
extract from the influence functional the effective correlation function of the fluctuating forces[5, 
111: 

hE2 / ddkk2 {cothLF) cos(wt) cos(k (x - y)) < F(x, T) . F(y, s) > 0 = - 
2(2r)d 

This correlation function results from independent contributions from each mode of oscillation of 
the field. With some of the chasacteristics suggested by this local environment in mind, I now 
turn to the actual construction of the model. 

2 The Phenomenological Model 
The initial form of the evolution of the density orerator is taken to be in the Lindblad[l2] form 
(Schrodinger picture) : 

for which there is a corresponding form for the Heisenberg picture L*[O] which can readily be 
obtained from the cyclic properties of the trace. Fbr a finite dimensional Hilbert space, this form 
is the most general for a completely positive dynamical semigroup. For infinite dimensional Hilbert 
spaces, it is a reasonable starting point. I will be focusing on the nonunitary part of the evolution, 
AL. 

The construction of the model is essentially the determination of the operators V,, subject to 
the constraint that the dissipation is ohmic (expressed as an operator condition). This constraint 
produces the "correct" classical phenomenology, but does not completely determine the model. 
However, linear dissipation almost forces the V, to be at most linear in momentum, that is 

Homogeneity and isotropy also serve to constrain the model. Assuming some sort of mode by 
mode interaction with a field, a reasonable choice is given by: 



The discrete index p has been replaced by the continuous index k. The model is then completely 
specified by the complex functions a and P. 

The resulting nonunitary contribution to the Schrodinger equation is given by the expression: 

The position representation of the new model is given by: 

"""; t, = Hamiltonian terms - (1 d k Y ( 1 -  cos k(x - 2'))) p(x, XI; 1) 
at 

The first nonhamiltonian term is responsible for decoherence. The corresponding noise spatial 
correlation is determined by a(k). The characteristic length should be on the order of the inverse 
of the "width" of la(k)I2 in k space. The second nonhamiltonian term is responsible for the 
dissipation. Clearly the dissipation and other terms are more complicated in this new model. 
However, that would also be expected from a more elaborate first principle calculation. 

By examining the Eherenfest relations of physical quantities using L* , some interesting physical 
features of the new model emerge. By construction, the average position and momentum obey 
relations corresponding to ohmic dissipation: 

where 

With only limited constraints on cr and P (y must be positive), the kinetic energy is seen to be 
t hermalized: 

where 

The effective temperature is determined by cr and P. 



A low length scale approximation of the new model can be obtained by expanding the expo- 
nential terms in powers of k . x: 

p . x, (k . p, p}]  + J&k 'm(a(k)"(k)) x, [k . p, p]].  (19) 
ti 

The lowest nonvanishing terms are second order, which exactly reproduces the Dekker master 
equation for 1 dimension. As a result, we can think of the Dekker or Caldeira-Leggett equations 
as a low length scale approximation for more general models. 

On the other hand, the Caldeira-Leggett master equation, 

can be considered a special case of the Dekker master equation, with the Dxp terms equal to zero 
(which Dekker has argued should be the case) and an additional low momentum approximation 
which ignores the Dxx term. With this type of special case in mind, we can construct a low 
momentum approximation for the new model which includes only the decoherence and dissipation 
terms: 

This would seem to be a likely starting point for applications of this model. However, this 
approximation is not a positive form for the dynamics. 

Finally, I would like to look at the Wigner representation of the new model, which has some 
interesting features. If we expand the terms of the evolution equation in powers of ti (in the same 
manner as is typically done with the potential), 

the lowest order terms correspond exactly to the Wigner representation of the Dekker equation. 
The Wigner representation of the Dekker equation is a standard classical type of diffusion equa- 
tion. This illustrates the idea that the "classical" nature of the system emerges when coherent 
superpositions are not important in the dynamics. In this case, the relevant superpositions are 



between different locations separated by distances on the order of the environment correlation 
length. 

The convolution theorem can also be used to write down the Wigner representation of the 
evolution: 

W(q, p) = (Hamiltonian terms) - - /~#(P-P')w(~,P-P') 
P'Reb* (G) P (%)I 

ti ti2 
la12(k) I. (9 l2 - ( J ~ ~ ~ ) W ( ~ , P I +  J~P~w(P,P-PI )  ti2 

\ I 

Il.Im[a* (f) a (%)I 
ti2 

1 a2 p218(f) l2 + 2 W q , p p ( 2 3 )  + D X X ( ~ ~ - $ ) W ~ ~ P ) + / ~ P ~  n2 (48 

One apparent effect in the new model is a spreading induced by these convolution terms. 
In summary, a new phenomenological master equation for ohmic dissipation and decoherence 

has been constructed which has completely positive dynamics. The new model has the features 
expected from local coupling to a homogeneous environment: specifically, the evolution is istropic 
and translationally invariant. Spatial correlations of the environment appear explicitly in the 
models. The new model also includes previous results as low length scale approximations. 
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Abstract 
We investigate the dynamics of an arbitrary atomic system (n -level atoms or many n-level 

atoms) interacting with a resonant quantized mode of an em field. If the initial field state 
is a coherent state with a large photon number then the system dynamics possesses some 
general features, independently of the particular structure of the atomic system. Namely, 
trapping states, factorization of the wave function, collapses and revivals of the atomic energy 
oscillations are discussed. 

1 Introduction 

The Jaynes - Cummings Model is of principle import-ance in quantum optics. It consists of a single 
atom interacting with a single mode of quantized em field in a lossless cavity. The properties of 
JCM in the region of a strong coherent quantum field are: 

1. Collapses and revivals of atomic inversion oscillations [I]. 

2. The existance of trapping states [2]. (These are initial atomic states which lead to the 
constant mean value of atomic energy in the course of the interaction with the field). 

3. Wave Function (WF) factorization in the trapping states [3]. (This very unusual property 
of the JCM trapping states means that the field and atomic subsystems remain to a high 
accuracy in pure states, in spite of the presence of interaction). 

4. WF factorization for an arbitrary initial atomic state at a half revival time. For this time 
moment the field state is a coherent superposition of macroscopically different states (so 
called Schrodinger cat) [4, 31. 

Here, we address to ourselves the following question: 
Which phenomena from this list will survive for an arbitrary atomic system interacting with a 
strong quantum field ? 



2 What is an arbitrary atomic system ? 

We start with some examples: 

1. many two-level atoms in a cavity (the Dicke Model, [5 ] ) ;  

2. many three-level atoms of arbitrary level configurations in a cavity; 

3. many n-level atoms of arbitrary degeneracy of the levels. 

All these systems are described by Hamiltonians of the form: 

Here, ht , d are photon operators; is the bare Hamiltonian of the atomic system; 2+, k- are 
atomic transition operators. We suppose, that the following commutation relations are valid: 

A h  [A, k+] = R+ [h,  X-] = -x- (2) 

The model formulated in such a way implies the Rotating Wave Approximation and, therefore, 
the excitation number conservation: 

[ H ,  A] = 0, N = hth + A. (3) 

It is usually the case in Quantum Optics. We do not impose any conditions on the commutator 

which leads to a large freedom in the specification of the atomic subsystem. 
We adopt also the exact resonance condition. It means that transition frequencies between 

neighboring levels are equal to the field frequency w. This condition is imposed *ith a sake of 
simplicity (the arbitrary detunings can be also involved in our approach). Stress, that the cavity 
is supposed to be a perfect one. We do not discuss the dissipation processes here. 

3 The classical field limit 
For to approach the classical field limit one has to take a coherent field states (CS) with large 
photon numbers. Then one may substitute 

where a fie" is a CS parameter. Then the quantum interaction Hamiltonian becomes pro- 
portional to the operator 

H~~~ + HCl = eidk+ + ewi4R-. 

Hcl has the sense of the atomic Hamiltonian in a constant ,classical field. We will call the eigen- 
vectors 

kl I p_ >at = A; I p_ >at (4) 
the semiclassical eigenvectors. 



4 Factorization of the Wave Function 

We now formulate our principle result [6]. Let initial atomic state is semiclassical eigenstate and 
initial field state is CS with a large photon number: 

Then the WF will be approximately factorized for the time up to gt N K. The factorized WF has 
a form: 

Here, pn - initial CS amplitudes, C is the energy ground level of the bare atomic system, e-ict 
is a phase factor which we do not write down explicitly here. 

We do not give here the proof of eqs.(6) (see [6]). Instead, let us qualitatively describe the 
system behavior. Eqs.(6) stand that the field and the atomic subsystem remain approximately in 
pure states in the course of the evolution (not in the mixed ones!). However, the two subsystems 
essentially interact. The field evolution depends on the semiclassical atomic eigenfrequency Xi .  
The field state rotates along the circle of radius &? in the phase space slowly loosing the shape 
of the initial CS (spreading in phase). 

The atomic subsystem is rotated by the free atomic hamiltonian ir with the angular velocity 

dependent on the initial photon number E. 
We have proved eqs.(6) by means of the perturbation theory with the operator-valued small 

parameter l/(k + 112) . We neglected the terms of order O(ii-'I2) the amplitudes. However, we 
kept higher accuracy in the frequencies (neglecting the terms of order 0 (11~) ) . It means that 
our approximation holds for times up to gt K. It is a usual situation, that the system dynamics 
is more sensitive to the small corrections in frequencies, than in amplitudes. 

5 Trapping states 

It follows immediately from eqs. (6), that all the semiclassical eigenstates of an arbitrary atomic 
system are trapping states, i.e. the mean value of the atomic inversion does not evolve with time: 

6 

at < 2 I h I 2 >at = const. 

This result holds with the accuracy 0(ii-'I2), due to our accuracy for the transition amplitudes. 



6 Collapses and Revivals 

This phenomenon, discovered initially for the JCM [I] appears for an arbitrary atomic system in 
a strong coherent field. Indeed, an arbitrary initial state of the atomic system can be expanded 
in the basis of the semiclassical eigenstates (4): 

Then, for the atomic inversion we get: 

The atomic inversion is determined by the scalar products of the field states (6): 

This is a direct generalization of the well-known unharmonic series for the JCM, which also 
contains collapsing and reviving Rabi oscillatiorrs. The collapse, revival times and envelopes can 
be easily found. 

The atomic matrix elements entering in eq.(6) are slowly varying functions oscillating with the 
frequency eq.(7). They may modulate the revival envelopes. However, for the Dicke model case 
these matrix elements to be equal to zero if p # q f 1 and the correspondent revivals disappear. 
If p = q f 1 , the atomic matrix elements equ~ls  to 1 just for the time moments of revivals. 

7 Schrodinger Cat. 

For the JCM case there are only two factorized states. An arbitrary initial state leads to the 
superposition of them. The two JCM atomic states I 4 ( t )  >, p = 0 , l  are nothing but two 
different spin-1 /2 coherent states and they can be transformed one to another by rotation. It just 
happens at a half revival time tR/2 [3]: 

and then the system WF is factorized for an arbitrary initial atomic state: 

Therefore, at this time moment the field WF is the quantum superposition of macroscopically 
different states I Bp(t) >, p = 0, l .  

It is clear, that for larger atomic system (say for spin-1) not all different atomic semiclassical 
eigenstates can be transformed one into another by rotation, and the Schrodinger cat is absent 
for arbitrary initial atomic state (as it has been recently noticed in the work [7] 



8 Conclusions 

We have solved the problem of the interaction of an arbitrary atomic system with the strong quan- 
tized em field in a lossless cavity. The key point of our solution is the wave function factorization 
(6) for the specially chosen initial states (4). 

Since these states form a complete basis, this gives possibilities for an exhaustive description 
of the system dynamics. 

Being reduced to the JCM, our results reproduce the treatment of J. Gea-Banacloche 131. 
For the case of the Dicke model, they correspond to the first two orders of the perturbation 

theory proposed in the work [8] and can be treated as a direct generalization of that scheme for 
the arbitrary atomic system. From the mathematical point of view, our treatment is connected 
with the concept of dynamical symmetry group for the quantum optical systems [9]. (Note, that 
this dynamical symmetry is approximate rather than exact one). 

Stress, that our method allows to make explicit analytical calculations of any physical quantities 
for the systems under study. 
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Abstract 

It is well known that the ground state of low-dimensional antiferromagnets deviates from 
NBel states due to strong quantum fluctuations. Even in the presence of long-range order, 
those fluctuations produce a substantial reduction of the magnetic moment from its sat- 
uration value. Numerical simulations in anisotropic antiferromagnetic chains suggest that 
quantum fluctuations over N6el order appear in the form of localized reversal of pairs of 
neighboring spins. In this paper, we propose a coherent state representation for the ground 
state to describe the above situation. In the one-dimensional case, our wave function cor- 
responds to a two-mode Glauber state, when the NCel state is used as a reference, while 
the boson fields are associated to coherent flip of spin pairs. The coherence h f e s t s  itself 
through the antiferromagnetic long-range order that survives the action of quantum fluctu- 
ations. The present representation is different from the standard zero-point spin wave state, 
and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the 
theory, obtained through the Jordan-Wigner transformation, is also investigated. 

1 Introduction 

The Heisenberg model has been extensively studied for many years as a non trivial many-body 
problem in quantum magnetism. For low dimensional systems, the ground state deviates from NCel 
ordering due to strong quantum fluctuations [I]. The determination of this ground state represents 
a fascinating problem, that in one dimension originated a whole branch of Mathematical Physics 
based in the so called "Bethe-Ansatz" technique [2]. However, exact solutions are extremely 
intricate, very often not susceptible of a direct physical intuition, and in the case of the Heisenberg 
model, they are restricted to one dimension. 

In this contribution, we would like to present a novel approach based in a localized description 
of quantum fluctuations. If one takes as a reference the Ising limit, with a ground state of 
N&l type, switching the transverse part of the Heisenberg Hamiltonian may be visualized as 
a disordering process, where pairs of neighboring spins are simultaneously flipped, the ground 
state being a quantum superposition of admixtures contained in the manifold of total S, = 0. 
This effect has been systematically observed in numerical simulations for anisotropic Heisenberg 
chains [3], and was used by Lagos and the author as the heuristic base for the construction of a 
trial solution [I]. To fix ideas, we will concentrate in the case of spin 112, and most of the examples 
will refer to a one-dimensional system. The theory can be extended to arbitrary dimension [4], 



and to arbitrary value of the spin [53. The antiferromagnetic Heisenberg Hamiltonian with axial 
anisotropic exchange can be written as: 

where i, j are site indexes for nearest neighbors, J > 0 is the antiferromagnetic exchange, the S's 
are spin 1/2 operators, and a is the axial anisotropy parameter. Special cases of Hamiltonian (1) 
are: i) cr = 0, the Ising case; ii) cr = 1, the isotropic Heisenberg model; iii) a -, m, the so called 
'XY-model'. 

It is important to stress that the approach that will be proposed here is not perturbative, in 
spite that the Ising limit is considered as a departure point for its formulation. The method works 
successfully in the axial anisotropic regime, and is asymptotically exact for high anisotropy. Near 
the isotropic point, however, a delocalization transition occurs, and the linear spin wave theory 
becomes a better approximation when compared with exact results or numerical simulations [6]. 
However, the treatment can be extended in a variational way to account for the isotropic case, 
or the Heisenberg-XY regime [7]. In particular, for two dimensions, isotropic exchange, and spin 
S = 1/2, the ground energy deviates less than 0.5% [7] from results obtained by elaborate Monte 
Carlo calculations [8]. 

The Wave Function 
The Hamiltonian (1) is said to represent the so called XXZ model, with the axial-anisotropy 
region confined to the interval 0 5 a < 1. In the Ising limit (a = O), the ground state is of N6el 
type. For the infinite chain, there is a broken symmetry, and one of the two possible N4el states 
has to be chosen as a reference state. They both are connected by time inversion, the ground 
state of the infinite system being a doublet in the anisotropic region. The phase transition, with 
the presence of long-range order and a symmetry broken ground state, requires degeneracy. In 
contrast, in finite chains, the spectrum is not degenerate and the ground state is an eigenstate 
of the time-inversion operator (symmetric or antisymmetric, depending on the number of spins), 
with equal admixtures of both Nbl  kets. 

For our developments here, we will choose the Nkel state In/), where the eigenvalues of 
the Sz(m) operators for the linear chain are (-1)". With the usual definition of spin ladder 
operators S* (m) , we define boson-like operators by: 

4 = &{:&N+ C s + ( m ) s - ( m i l )  
m odd 

where N is the total number of sites in the chain. Operators defined by (2) and (3) flip pairs of 
neighboring spins when applied to the reference Nkel state In/). Two sequences with translational 
symmetry are possible, which we label by even and odd. It is apparent that a similar construction 



can be realized with the other NCel state IN)' with S, -+ $ (-l)m+l, interchanging the roles of 
operators (2) and (3). 

In the quasi-Ising limit, the ground state is close to IN, and under this assumption we obtain 
the following algebra for the 4's: 

which are boson-like commutation relations. Within the same approximation, and restricting 
ourselves to the manifold S, = 0, the Heisenberg Hamiltonian (1) can be written as a two-mode 
harmonic oscillator Hamiltonian [I]: 

where E, (a) is the ground state energy. 
The Nkel state satisfies the relations: 

showing that the NCel state, or quasi-classical state, can be represented as a Glauber state [9], in 
terms of the 4's operators. The eigenvalue in (6), that also enters in the definitions (2,3), has 
been chosen so as to cancel the linear terms in Hamiltonian (5). Using a standard notation, we 
define translation operators by: 

~ ( z )  = exp {z$ - ~ 4 + } ,  (7) 

where 4 may be the even or odd operator. A coherent state is thus obtained as: 

Is, 22) = ~ X P  (21 h - a;$!) exp ( ~ 2 4 ~  - z;d!) lo), (8) 

with z1,22 two arbitrary complex numbers. If we write 

we get a closed expression for the N6el state as a minimum uncertainty wave packet of the @s 
operators. Of course, an equivalent representation can be constructed with the Nk l  ket as the 
vacuum, just by shifting the definitions of the 4's in a constant, and thus introducing linear terms 
in Hamiltonian (5). 

Since the N6el state is a well defined state, we would like to represent the ground (0 >, in 
terms of fluctuations over the N6el state IN). This can be accomplished in closed analytic form, 
by inverting expression (8): 

The structure displayed by (9) is quite interesting. Quantum fluctuations over the quasi-classical 
state IN) are induced by the 4's operators. The distribution of fluctuations is Poissonian, the 



anisotropy parameter a being related to the width of the wave packet. For ar sufficiently small, 
the state (9) displays long-range order in spite of quantum fluctuations, but the effective magnetic 
moment is reduced from its saturation value. A vanishing magnetic moment signals at a phase 
transition as a function of the parameter a. 

In spite that the algebra given by (4) is obtained in the Ising limit, the trial state (9) results 
to be extremely accurate in describing the energy and correlation functions in the whole interval 
0 5 a < 1. The one dimensional case represents the most stringent test for the wave function, 
since, as we will sketch below, the accuracy of the method improves with the dimension [4]. The 
energy per spin and the staggered magnetic moment corresponding to our trial state (9) can be 
put in closed analytical form in terms of Bessel functions of integer order [5]: 

The generalization to higher dimensions is rather straightforward [4]. If one assumes that the 
lattice is bipartite, i.e. not frustratedfor N&l ordering, the corresponding boson-like operators are 
defined as: - - 

where R labels sites in a sublattice, ( 6 )  the set of nearest neighbors, and z is the coordination 
number. The reference N6el state IN >, in this case, assigns up spins to the R sublattice, and 
down spins to R + 6. The interesting formula is the analogue of (9) for the ground state: 

Due to the factor in the exponential of (13), one realizes that the importance of quantum 3-1' 
fluctuations iminishes with the coordination number z, and correspondingly with the dimension- 
ality. However, closed form expression for arbitrary dimension and spin have not been obtained 
yet, even for the simplest lattice structure (like the square lattice) [lo]. In spite of the above 
fact, using the Hellmann-Feynman theorem [5], one can show that the error in the energy, as 
calculated with the state (13), is proportional to a4. To go towards the isotropic point and to the 
Heisenberg-XY region, one has to generalize the theory in a variational way [7]. 

3 The Jordan- Wigner transformation 

The one-dimensional Heisenberg model for spin 112 can be mapped onto a spinless fermion model 
through the so called Jordan-Wigner transformation [ll]. The two spin states are mapped onto 
fermion states with occupation numbers 0 and 1. Two fermions can not occupy a single site (one 
may think in a very large on-site Coulomb repulsion), and they hop in a lattice with nearest 
neighbors interactions. The transformation is accomplished by: 



where the C, Ct are fermion operators. We readily obtain the relations: 

that substituted in (1) yield the following fermion Hamiltonian: 

where t s Ja l2 ,  V = J. If J > 0, the fermion interaction V is repulsive. For positive a, 
Harniltonian (15) describes hole-like fermions. An electron-like system is obtained by changing 
a -+ -a. We already know that the properties of the Heisenberg Hamiltonian (1) are invariant 
under such a change 1121. Antiferromagnetic ordering implies that the total number of fermions 
is f , and the fermion ket that corresponds to the N6el state is the one with 

We will call this state (N > to keep continuity with the previous sections. If one translates our 
ground state (9) into fermion language, one gets: 

with 

and mean occupation number given by 

where CY = 2tlV. As in the spin case, most physical interesting quantities can be calculated in 
closed analytical form using the trial ket (16). For the fermion-fermion correlation functions, this 
has been done in Ref.[l3]. A quantity which is important to investigate possible Fermi liquid 
behavior, is the one-particle momentum distribution 1141. In our case, this can be obtained 
analytically with (16), yielding: 

1 
(Nk)/goles = - [l - sin cos k)] , 2 (17) 

for hole-like fermions, and 
1 

(Nk),, = 5 [1+ sin ( 2 ~  cos k)] , (18) 

for a particle-like system. The above distributions display a soft variation with the wave number 
k, and therefore no Fermi liquid behavior. The highly correlated limit CY -+ 0, yields the constant 
value 1 /2, with the complete destruction of the Fermi surface of non-interacting particles. 
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Abstract 
We define the Berry phase for the Heisenberg operators. This definition is motivated by 

the calculation of the phase shifts by different techniques. These techniques are: the solution 
of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent- 
state representation, and the direct computation of the evolution operator. Our definition 
of the Berry phase in the Heisenberg representation is consistent with the underlying super- 
symmetry of the model in the following sense. T'he structural blocks of the Kamiltonians of 
supersymmetrical quantum mechanics ("superpairs") [1,2] are connected by transforniations 
which conserve the similarity in structure of the energy levels of superpairs. These trans- 
formations include transformation of phase of the creation-annihilation operators, which are 
generated by adiabatic cyclic evolution of the parameters of the system. 

1 INTRODUCTION 
The equivalence of the Schrodinger and Heisenberg pictures in quantum mechanics is something 
that is taken for granted. The specific choice of the Schrodinger, Heisenberg or interaction picture 
is usually regarded as a matter of convenience. Berry phase was defined initially and mostly for the 
Schrodinger picture as nonintegrable phase factor appearing in the wave-function after (adiabatic) 
evolution of the system's parameters. Here we investigate how one should define the analog of the 
Berry phase in the Heisenberg representation. 

The traditional introduction to Berry phase includes the following construction. The Hamil- 
tonian for the particular system H(X) is introduced, where the set of parameters, X, is considered 
to be changing adiabatically with time. Until now, most of the applications had in mind the 
discrete, though maybe degenerate, spectrum of the Hamiltonian, for all values of the pararnters. 
Then, after the adiabatic cyclic evolution of the parameters, each eigenstate Gn of a corresponding 
stationary problem 

~ ( x ) G n  = ~n(X)+n 



acquires a nonintegrable phase: q5, 4 ei4n$,. This phase usually admits geometric interpretation 
in terms of some contour in parameter space. 

In the Heisenberg representation, the operators of observables, and not the eigenstates, do 
evolve in time. One can assume, that for particular observable, a(t), the cyclic evolution of 
parameters results in the following relation after the period, T: 

where S is a unitary operator. 
One supposes, that the operator, St, in a basis of the eigenfunctions of the Eq. (I) has the 

It represents what can be naturally called matrix of a Berry phase in Heisenberg picture, 
although now it is a unitary operator, not a number. The rest of this paper is dedicated to 
demonstrating the usefulness of this notion. 

We shall demonstrate for a simple exactly solvable model that this operator can be defined 
consistent with the (super)symmetry of a model. We cannot prove it in a general way, though we 
believe that the following proposition is true for any Hamiltonian H, for which Berry phase could 
be defined. Namely, if there exists the Hamiltonian, ~ ~ ( x ( t ) ) ,  after adiabatic cyclic transformation 
of its parameters it will be transformed into new Hamiltonian, H2, which is a superpair to the 
initial Hamiltonian, HI. The adiabatic theorem reappears in this approach as the identity of the 
eigenvalues of HI, and H2 (however, the degeneracy of zero eigenvalue, in general, may change). 
The wavefunctions, may, however undergo some unitary transformation. 

This is in accord with general ideology of supersymmetric quantum mechanics, which usually 
includes the compound Hamiltonian, M , formed by two simpler Hamiltonians, HI and H2 [1,2,3,4], 

The properties of the Hamiltonians, HI and Hz, are closely related. Normally, these Hamiltonians 
have identical spectral structure, but, perhaps, only a finite number of energy levels. Consequently, 
almost all of the levels of the Hamiltonian W are doubly degenerate. 

Previously [5], in this context, we studied the supersymmetric structure of the Jaynes-Cummings 
Model (JCM). The formal introduction of the supersymmetry in the JCM includes the replication 
of the JCM with a trivial phase transformation performed on the creation-annihilation operators 
of the boson: 

a -+ ei4a, at -+ ate-'6 ( 5 )  

When q5 is a real function of time, the Hamiltonians, Hl and Hz, have identical spectra, and all 
the energy levels of the Hamiltonian H are doubly degenerate. 

The physical meaning of the phase shift, q5, is not clear. It would be desirable to interpret it, 
analogous to Berry's interpretation of the Aharonov-Bohm effect [6], as a manifestation of a Berry 



phase. Indeed, the JCM has a nontrivial Berry phase with potentially observable ramifications 
[7,8]. The interpretation of the phase shift (5) as Berry phase for some cyclic evolution in the 
JCM is not yet proven, however we demonstrate that this is true for somewhat simpler model of 
Section 3. 

Thus, for our purposes we seek the transformations of phases of the Hermitian operators. 
rather than wavefunctions. Therefore, we calculate Berry phase for our model using both the 
Schrodinger formalism for the wavefunctions and the Heisenberg formalism for the operators. Also, 
we calculate the phase shifts by an explicit expression of the evolution operator through SU(1,l) 
group operators. Both approaches are shown to be equivalent as the result of our analysis. 

Because performing the adiabatic cyclic evolution of the system can be, under certain condi- 
tions, a valid quantum measurement, the result of the paper can be put in other form. Namely, the 
distinguishability of the systems described by the Hamiltonians forming a superpair is equivalent 
to the nontriviality of the Berry phase obtained during a cyclic evolution of the system's param- 
eters. The separate measurements of the Berry phase of those two systems during the evolution 
distinguishes these systems. 

The structure of paper is as follows. In Section 11, we make a general definition of the cyclic 
. evolution in the Heisenberg representation. In Section 111, the supersymmetric family of Hamil- 

tonians, similar to the Hamiltonian for degenerate parametric two-photon optical interaction, is 
considered. The calculation of the evolution of the Heisenberg operators shows that besides the 
dynamic phase shift (called self-modulation of phase in nonlinear optics) and amplitude change 
(amplification and de-amplification), there is an additional term. Unlike the previous ones this 
term has a nonzero value in the case of adiabatic cyclic evolution. However, the explicit proof 
of the identity of this phase to the phase, which is obtained by the wavefunction in course of 
adiabatic cyclic evolution is required. This is doqe by obtaining the explicit WKB solution of 
the Schrodinger equation in the coherent state formalism and comparing the results (Section IV). 
Following the recent tradition supported by the papers of Aharonov and Anandan, and Samuel 
and Bhandari [9,10] we identify the "slow" physical time of adiabatic evolution as a parameter of a 
closed contour. This definition is supported by the calculation of the Berry phase from Heisenberg 
equation of motion and through the explicit expression of the evolution operator in Section V. 

2 BERRY PHASE IN THE HEISENBERG PRESEN- 
TATION 

We consider the Hamiltonian, H, with time-dependent parameters, i(t):  

We assume that periodicity and adiabaticity of the evolution of the Hamiltonian can be represented 
in two ways. First, one can follow the evolution of H(t) as a function of the time-dependent 
parameters. In this case, the Hamiltonian will undergo trivial transformation after the evolution. 

The second way is to consider the change of the Hamiltonian as an observable with physical 
meaning of energy under the action of the evolution operator U(t) which is engendered by the 



Hamiltonian H(t) 

In this case the transformed Hamiltonian &(T) can be different, unitarily equivalent to the 
initial Hamiltonian. 

The spectra of these Hamiltonians are therefore identical. However, other features can be 
different. This distinction can be extremely important if there are lines of singularity or other 
topological complications in the space of parameters. 

In the case of adiabatic cyclic evolution, this operator doesn't depend on particular law of 
evolution of the system's parameters and we shall define this unitary operator as Berry phase in 
Heisenberg representation. It implies, that the difference from H(T) and H(T) can be expressed 
in terms of certain phase factors (eigenvalues of the operator U(1")). As a rule, they appear for 
a certain components of the Hamiltonian H. These phases are closely connected with the Berry 
phases in Schrodinger representation, indeed, in the example of the Section 111 they are identical. 

The fact that the Hamiltonians H(t) and H(T) are forming a superpair is of primary impor- 
tan&. One of the simplest ways of representation follows from Eq. (7), which connects H(T) and 

f i ( ~ )  

One can then demonstrate using the formalism of that relationship implies superstructure [2,3]. 
This relation holds only in the case of nonnegative spectra of the Hamiltonians. Thus, we restrict 
ourselves by the Hamiltonians bounded from below, in which case we shift the zero level of energy 
to avoid negative eigenvalues. 

The superstructure could be introduced in more sophisticated ways. A particular example 
would be demonstrated as well. The paper is dedicated to the connection between Berry phase 
and supersymmetry on the example of the simple model. More complicated examples such as the 
Jaynes-Cummings model (JCM) will be studied elsewhere. 

In the paper [ll], the authors proposed the generalization of Berry's concept, interpreting 
their phase, a factor similar to our symbol V (Eqs. (20)-(21)), as a gauge transformation of the 
wavefunction. It is induced by the reparametrization of the Hamiltonian. The main result of 
this paper can be formulated in our language in the following way. The gauge transformation of 
Wilzcek and Zee while being applied to the Hamiltonian, regarded as observable, can result in 
other Hamiltonian, even if the evolution is adiabatic and cyclic. However, both Hamiltonians are 
unitary equivalent and the observable quantities are identical for both of them. The adiabatic 
theorem in the general quantum mechanics formalism is represented by supersymmetry in our 
paper and by the gauge invariance in their formalism. 



3 BOSONIC FIELDS WITH SELF-ACTION: THE SU- 
PERSYMMETRY OF THE SQUEEZING HAMILTO- 
NIANS 

The problem is formulated for the simple model of two identical noninteracting bosonic fields 
described by the Hamiltonian 

The superpair of this Hamiltonian is 

The constant c is defined from the equation 

The system described by the Hamiltonian H in the form (4), where HI and H2 have the form 
(12) and (13), respectively, are supersymmetric. This supersymmetry is generated by the following 
supercharges [5]:  

Hi = q1q2 Hz = 4241 

The second supercharge has the form 



This finishes the formal description of supersymmetry. The procedure of assigning a super- 
symmetric structure for an initial model remind our prescription for the JCM [5]. One should 
make a constant phase shift of the creation and annihilation operators and consider a replica of 
the initial system with transformed operators as a superpair for the initial system. 

The described procedure has an obscure physical meaning. To clarify it we explicitly describe 
the unitary operator, which connects the components of the Hamiltonian in subsequent sections. 

4 THE OPERATOR BERRY PHASE 
Now we are prepared to study the Berry phase of the Heisenberg operators. We suppose the three 
parameters w, ReX, ImX* to undergo adiabatic periodic change in time. First, we calculate the 
nonintegrable phase attained by the wavefunction of the model, described in previous Sections, in 
coherent-state representation. Below, we shall demonstrate, that all the components of the Hamil- 
tonian H, defined by Eqs. (12) and (13) can be obtained from one component of this Hamiltonian 
by applying the adiabatic cyclic evolution of the parameters of the system. Thus, the superpairs 
are connected by a unitary operator, which we call the Berry phase in Heisenberg representation. 
A single component of the Hamiltonian N, corresponds to the Schrodinger equation 

The contribution of the scalar term ho(t) is removed by the transformation 

The wavefunction V is represented in the coherent state formalism by 

where T is time ordering and Icy), I/?) are coherent states: 

ala) = ale) alp) = (slat = (cylcy* (22) 

For the quadratic Hamiltonian (5) the calculations can be done explicitly. The solution 
V(cy*, p, t) of the Eq. (19) in the coherent-state formalism has the form 

where a,b are the parameters of the initial state. As usual for coherent-state representations 
[12], the solution is expressed in terms of auxiliary functions c(t), ~ ( t )  which satisfy the following 
system of the equations [13]: 



with the initial conditions ((0) = 1,q(0) = 0. 
The following system of equations is valid for the functions (, q 

X* i* 
ii - -9 A* + [ih - iw- A* + ~2 - 4 1 ~ l 2 1 ~  = 0. 

i i ( - -i + [ih + iw- + 3 - 41~I~ ] (  = 0. 
X X (25) 

Below we shall demonstrate that WKB-solution of these equations will provide a multiplier 
with a nonintegrable phase. 

The Hamiltonians HI, H2 include the creation-annihilation operators distinguished by some 
deterministic phase shift. For a description of the evolution of these operators we use one of 
the four components of the Hamiltonian H, because all four Hamiltonians are independent and 
unitary-equivalent to each other, 

The Heisenberg equations have the form [14], 

It is again assumed that the parameters w, A, A* are slowly varying periodic functions of time. 
The operators a, at are satisfying the following equations: 

i* i* 
ii - -it + [iw - iw- + w2 - 41X12]a = 0, 

A* A* 

One observes that equations (25), for the functions [,q are identical to the system of equationi 
(28) for the operators at, a. By substitution 

one obtains for operator b and its Hermitian conjugate, if the terms 
( i * / ~ * ) ~ ,  $();*/A*) in the equation for b are neglected 



A* 8 + [iw - iw- + w2 - 41X12]b = 0, 
A* 
X it + [-G + iw- + w2 - 41X12}bt = 0. 
X 

The WKB approximation for the solution of Eqs. (28) yields 

with 

For cyclical evolution of the parameters the contribution of the function f (t) is zero, because 
it is an exact differential. However, the integral of the function $( t )  yields the Berry phase. 

and JB is given by the same expression with k -+ $ = 6 + 8. The initial conditions can be 
chosen in such a way, that the phase transformations of the operators take place as a result of the 
evolution 

a -+ a e U ~ ,  at --, .t,-i+~ 

then 

The calculation of the Berry phase for the model Hamiltonian H is now complete. 
One observes that the superpairs HI and H2, composing the supersymmetric Hamiltonian H, 

are distinguished by the Berry phase. As the Hamiltonian Hz transforms as a result of cyclic 
evolution, the phases () + 8) and (4 + 8 )  evolve in a different way. Berry phase is independent of 
the particular law of evolution, nevertheless it depends on the choice of the contour in parameter 
space. The contours can be chosen in such a way that the following relation is valid [15]. 

Now we have found the geometric phase for the Hamiltonian H using the Beisenberg repre- 
sentation. 



5 THE CALCULATION OF THE BERRY PHASE US- 
ING EVOLUTION OPERATOR 

We have shown that creation-annihilation operators obtain phase shift according to Eqs. (34)- 
(35) as a result of adiabatic cyclic evolution which is identical with the Berry phase gained by the 
coherent phase. The substitution of the transformed operators in the Hamiltonian h gives 

This result can be obtained directly from computation of the action of evolution operator on 
Hamiltonian H. 

One can rewrite the Hamiltonian H in the terms of SU(1,l) operators [16,17]: 

where 
KO = 1/2(ata + aat) ,  K- = a2, K+ = (at)2 

[KO, K+] = +K+, [KO, K-] = -K-, [K+,  K-] = 2Ko. 

To get rid of the T-exponent in the evolution operator: 

one can rewrite it in the form [12]:  

This decomposition expresses the evolution operator in terms of three time-dependent functions 
a( t ) ,  P(t)andy ( t ) .  Using the commutation relations one obtains the following equations for these 
functions: 

The quantity a( t )  satisfies the equation 

Cr + iwa + ipa2 = -ip*, 

which can be rewritten after the substitution a = ( l / i p ) ( $ / + )  in the form 

ti 
K = $exp[:  Jf dr(-- + iw)] 

P 
ti 2 + k[w2 - 41pI2 + iw- - iw] = 0. 
c1 



The equations (43) coincide in the form with the equations (25), (28) which were our starting 
point of obtaining expression of the Berry phase. The phase given by the equation (43) is identical 
to the Berry phase as defined above. Now one can study the behavior of the functions a, P, 7 under 
cyclic adiabatic evolution of the parameters. The function n is the solution of the equation with 
the periodic potential. This implies that this function is quasiperiodic: 

where q 5 ~  is independent of t. Thus the ration n/n is a periodic function as well. 
The function P = -i J dw - ln+ is not periodic. According to Eq. (32) after the cyclic evolution 

,f? changes by a constant q 5 ~  

The function 7 is not periodic as well, however, it is not very important to us here. 
One can now investigate the transformation of the primary Hamiltonian h in course of evolu- 

tion. Since we decomposed h in the sum of three operators KO, K+ , K-, we can consider the action 
of the evolution operator on the single terms of the sum. It is quite necessary for Eqs. (41) not 
to be symmetrical with respect to the functions a, p, 7. We can use the decomposition from Eq. 
.(40) only for the study of the transformation of the operator K- : 

K-(T) = U-I (T)K-(O)U(T). (46) 

The initial conditions of the evolution were chosen as a(0) = P(0) = 0 as a consequence of 
periodicity it implies a(T) = 0. This means that eQK+ and eyK- do not contribute to the periodic 
evolution of group operators. The only term with which changes is ePKO. Taking into account 
their relation P(T) = -q5T one has 

Similarly, choosing a different order of multiplication in the decomposition (40) one gets the 
transformation property for the other operators. 

Consequently, the Hamiltonian H is transformed under the evolution as 

This expression is the same one we obtained from the WKB solution of the operator equations 
(28). The phase shift is identical to the phase shift gained by coherent-state representation of 
the wavefunction. The reconciliation of all methods proved the correctness of the definition of 
Berry phase in Heisenberg picture. Because all of the components of the Hamiltonian H can be 



obtained through the constant phase shift of the creation-annihilation operators or sign reversal 
of the phase factors O,r$ we finish up with the proposition that the trivial phase shifts in the 
supersymmetric Hamiltonian can be regarded as the Berry phases. 

CONCLUSION 
The present paper proposes the following definition of Berry phase in Heisenberg representation. 
Berry phase is the unitary operator connecting the Hamiltonian of the system with the initial 
Hamiltonian after adiabatic cyclic evolution of the system's parameters. We study the simplest ' 

model in which this unitary operator is independent of the particular quantum numbers of the 
system and reduces to a certain c-number phase factor. This definition is motivated by the iden- 
tification of this number to the adiabatic phase factor gained by the wavefunction of the system 
in coherent-state representation. Since the model is exactly soluble, the direct computation of the 
evolution operator is possible and it confirms the calculations made by two other different meth- 
ods: the WKB solution of the Heisenberg equations and the WKB-solution of the Schrodinger 
equation in coherent-state representation. This definition allows us to interpret the supersyrnmet- 

' 
ric compound Hamiltonian as if it has been formed by images of the initial Hamiltonian, obtained 
as a result of an adiabatic cyclic evolution over a different contours in a parameter space. 

... 
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Abstract 

This paper presents a theory for quantum light propagation in a single-mode fiber which 
includes the effects of the Kerr nonlinearity, groupvelocity dispersion, and linear loss. The 
theory reproduces the results of classical self-phase modulation, four-wave mixing, 
and classical soliton physics, within their respective regions of validity. It demonstrates the 
crucial role played by the Kerr-effect material time constant, in limiting the quantum phase 
shifts caused by the broadband zero-point fluctuations that accompany any quantized input 
field. Operator moment equations-approximated, numerically, via a terminated cumulant 
expansion-are used to obtain results for homociyne-measurement noise spectra when dis- 
persion is negligible. More complicated forms of these equations can be used to incorporate 
dispersion into the noise calculations. 

1 Introduction 

Optical fibers have long been considered for the generation of squeezed-state light, starting with the 
pioneering work of Levenson and coworkers in the mid 19807s, who observed 0.58 dB of continuous- 
wave (cw) squeezing [I], to recent measurements exhibiting over 5 dB of short-pulse squeezing 121. 
In this paper we present a theory for quantum light propagation in single-mode optical fiber. Our 
development, which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and 
linear loss, is guided by two overarching principles: the theory must include all relevant prior re- 
sults, both classical and quantum mechanical, and, within reasonable limits, it must accommodate 
arbitrary input states. This theory [3] is an extension of our prior work on quantum propagation 
in a dispersionless, lossless, Kerr medium 141. In that earlier study it was shown that a material 
time constant is crucial to a correct description of quantum nonlinear phase shifts beyond the 
four-wave mixing regime, a conclusion similar to that reached by Blow and coworkers [5]. The use 
of a finite Kerr-effect time' constant is retained in the current treatment of lossy, dispersive fiber. 

This paper is organized as follows. In Section 2 we review quantum propagation in a Kerr 
medium, concentrating on the structure of the theory and the necessity of a finite Kerr-effect time 
constant. We recount the principal result of 141, namely the limits on squeezed-state generation 



in lossless, dispersionless fiber. Section 3 expands this theory to incorporate dispersion and linear 
loss via a split-step approach. Section 4 introduces the terminated cumulant expansion (TCE) 
as a technique for closing the infinite chain of coupled moment equations generated by the full 
theory. Using the TCE, the limits on quadrature-noise squeezing in lossy, dispersionless fiber 
are quantified. Finally, in Section 5, we discuss the relationship of our approach to other quan- 
tum propagation theories for single-mode fiber, focusing on the necessity of the Kerr-effect time 
const ant. 

2 Quantum SelfiPhase Modulation 

Our attention, in this section, is restricted to a linearly polarized field propagating in a lossless, 
dispersionless, single-mode fiber that exhibits the Kerr nonlinearity. Classically, the refractive 
index in this fiber can be written as follows, 

where z is the axial coordinate along the fiber, t is time, no is the linear refractive index, n2 is the 
Kerr coefficient, A is the fiberls effective cross-sectional core area, and E(z, t) is the normalized 
complex envelope of the single-mode field within the fiber. The field normalization we employ is 
such that E(z, t) has units 4-. Note that the introduction of the photon energy, hw, 
is strictly a convenience at this classical stage; it has no quantum significance as yet. 

Input Plane Output Plane 
(z=O) (z=L) 

Fig. 1. Schematic configuration for Kerr-effect 
propagation in lossless, dispersionless fiber. 

The classical propagation problem in lossless, dispersionless, Kerr-effect fiber is sketched in 
Fig. 1. The fiber is excited, at z = 0, by an input field EIN(t) that launches a +z-going wave 
E(z, t) satisfying E(0, t) = EIN(t). In a reference frame moving at the group velocity, v,, the 
complex field envelope within the fiber satisfies the following differential equation [6], 

dE(z, t') 
=i~E*(z,t')E(z,t')E(z,t'), f o r z 2 0 ,  

dz 

where t' = t - zlv, is the retarded time, 



is the nonlinear, phase shift per unit length per unit photon flux, and X = 2nc/w is the center 
wavelength of the light. The iiitensity is a constant of motion for Eq. 2, so it is easily shown that 

Using the initial excitation condition bhat specifies E(0, t'), and directing our attention to EouT(t) = 
E(L, t), the field coupled out of the fiber at x = L, we obtain the classical input-output relation 
for a length L lossless, dispersionless fiber exhibiting the Kerr nonlinearity, namely, 

where 
r = KL, 

is the nonlinear phase shift per unit photon flux and, for convenience, we have dropped the Llv, 
group delay. 

Two well known results follow directly from Eq. 5: spectral broadening through self-phase 
modulation (SPM), and four-wave mixing (FWM). As an immediate consequence of Eq. 5, we 
see that an optical pulse propagating through the fiber acquires a time-varying phase shift, which 
is proportional to the pulse's intensity. The derivative of this time-varying phase constitutes an 
intensity-dependent instantaneous-frequency variation, implying, for sufficiently intense pulses or 
long fibers, significant spectral broadening. On the other hand, when the input field comprises a 
strong monochromatic pump, ETN, at frequency w plus weak sidebands at frequencies w f  0, FWM 
couples the sidebands. The input-output relation for classical FWM can be obtained, from Eq. 5, 
by replacing the exponential term with its two-term Taylor series approximation, and assuming 
that all nonlinear phase shifts other than the pump x pump term are small: 

where ~ ( t )  = E(t) - EP for the input and output fields. 
In the quantum theory of the Kerr interaction the photon-units complex field envelope, E(z,  t), 

becomes a photon-units field operator, E(Z, t). The input field ~ ~ e r a t o r - ~ ~ ~ ( t )  = ~ ( 0 ,  t)-is a 
single-spatial mode, multitemporal-mode free field, and hence must satisfy the following 6-function 
commutator rule [7], 

[EIN (t) 9 E i N  (u)] = 6(t - 21) , (8) 

for photon-units field operators. The output field ~ ~ e r a t o r - ~ ~ ~ ~ ( t )  E E( L, t)-is also a single- 
mode free field, whose commutator must therefore mimic Eq. 8. This requirement is automatically 
met by quantizing Eq. 2 as follows, 

~ E ( z ,  t') 
dz =i~~t(~,t')~(~,t')~(z,t'), for z > o .  

Quantum FWM emerges from Eq. 9, in a manner that ensures commutator preservation, by 
decomposing the input field operator, EIN(t), into a onumber pump, EL, plus a 6-function 

A 

commutator field operator, eIN (t) . Then, assuming that all nonlinear phase shifts other than the 



pumpxpump term are small, Eq. 9 can be linearized and solved to yield the quantum version of 
Eq. 7, namely, 

Equation 10 is commutator preserving, does not require a Kerr-effect time constant, is consis- 
tent with the classical FWM theory, and agrees with experimental results in fiber squeezed-state 
generation [I]. 

We find that it is not possible to treat quantum SPM from Eq. 9, in a way that recovers the 
classical limit, without a modification of the theory. To highlight the failing of instantaneous- 
interaction quantum SPM, let us calculate the mean output-field for a coherent-state input field 
[4]. By direct substitution, 

can be shown to be the solution to Eq. 9, leading to 

as the quantum version of Eq. 5 under an instantaneous Kerr-interaction model. The output mean 
field, 

for a coherent-state input field reduces to 

because a coherent-state input field obeys the eigenfunction relation 

For the rest of the calculation we employ a limiting argument, 

where we have exploited the characteristic function for coherent-state photon counting [8] to obtain 
Eq. 17. 

Equation 18 predicts that the instantaneous Kerr nonlinearity has no effect whatsoever on the 
mean field of a coherent-state input, regardless of how large the classical, peak nonlinear phase shift 
becomes! This result contradicts the classical theory, Eq. 5, and, more importantly, it contradicts 



experiments which have confirmed the classical spectral-broadening predictions. In retrospect, 
the failure of Eq. 9 to reproduce SPM in the appropriate limit should not be too surprising as it 
arises from applying an instantaneous, spectral-broadening nonlinearity to a quantized field whose 
vacuum-st ate fluctuations extend to infinite bandwidth. 

The classical SPM result can be recovered from our quantum mean-field calculation by intro- 
ducing a phenomenological Kerr-effect time constant, TK, as a lower-bound for T in Eq. 16. In 
particular, with T = TK > 0 and r/rK << 1, Eq. 17 becomes 

- t 
EOUT(t) * exp (~T/TK) d7 IEIN(T) 12] EIN(~) [ LTK 

whenever TK is smaller than any classical time scale present in the field. 
To incorporate TK into our quantum propagation theory for the lossless, dispersionless, Kerr 

effect in single-mode fiber, we employ the following partial mode expansion for the input-field 
operator: 

where { 6iN. : -oo < n < oo ) is a set annihilation operators, and 

( 0, otherwise, 

is a c-number, TK-secOnd duration, rectangular pulse. Suppressing the L/v,-second group delay, 
the same expansion applies to the output field operator, '@*uT(t), with the input annihilation 
operators replaced by the output annihilation operators, {&,OUT : -00 < n < oo). These output 
annihilation operators are related to their corresponding inputs by 

for -oo < n < oo, 

which should be compared with the instantaneous quantum Kerr model, Eq. 12. 
Equations 20-22 comprise a coarse-grained time model for quantum Kerr-effect propagation 

in lossless, dispersionless, single-mode fiber. Introducing the Kerr time-constant as a simple phe- 
nomenological parameter, TK, is arguably a distasteful ad hoc procedure, but the known existence 
of finite Kerr response times plus the inconsistency of an instantaneous quantum Kerr model mit- 
igate against this deficiency. A more important consideration with respect to Eqs. 20-22 is that 
they are fundamentally incomplete; { J(t - nrK) : -oo < n < oo ) is an orthonormal temporal 
mode set, but not a complete orthonormal mode set. Hence, in the coarse-grained time model, 
the input field commutator obeys 

[&N (t) '@iN (u)] = srK (t, U )  

i f ( n - l ) ~ ~ S t , u < n ~ ~ , f o r n a n i n t e g e r ,  

0, otherwise. 



This expression is not the Sfunction commutator that a photon-units field operator should possess. 
However, as will be made clear below, it can be a reasonable approximation thereto. Moreover, 
from Eqs. 22 and 23, we see that the co.arse-grained time quantum theory is consistent in that it 
preserves S,,-function commut ators-we have that 

Given the approximate nature of the coarse-grained model's field commutator [4], what con- 
ditions suffice to ensure the accuracy of this model's moment predictions? Clearly, this model is 
a poor approximation for field dynamics occurring on time scales comparable to TK, or, equiv- 
alently, over bandwidths of the order of rgl. We expect TK to fad in the interval 1-100 f s t o  
match the known time scales of n2-so our quantum input field, EIN(t), must not have excited 
(non-vacuum state) modes at these time or bandwidth scales. Furthermore, because SPM causes 
spectral broadening, we must check that this same timelbandwidth scale condition is satisfied 
by the output field operator, EOuT (t) . Finally, we must limit any photodetection measurements 
that we make on the output field to be insensitive to ~ ~ u ~ ( t ) - b e h a v i o r  at TK time scales or T;' 
bandwidths. When all three of these conditions apply, we believe the coarse-grained time quan- 
tum Kerr model-with a proper value for rK-should capture the full behavior of quantum Kerr 
propagation in lossless, dispersionless, single-mode fiber. 

The output mean-field derivation-with a Kerr time-constant rK-is virtually identical to the 
analysis of the inst ant aneous-interaction case. We find that 

where we have defined the complex number, h, according to 

i R =  [exp(i+,) -I]TK, for 4, =r/rK. 

Equation 25 bears a striking similarity to the classical formula, Eq. 5. Indeed, the two would be 
identical were R = r to prevail. 

We know that r is the classical nonlinear phase shift per unit photon flux. Because TK is the 
time duration of a single, rectangular-pulse mode in our coarse-grained time model, we have that 
4, is numerically the classical phase shift produced by one photon in such a mode. Equation 25 
applies to a coherent-state input field-which has vacuum-fluctuation noise in all its modes-so 
it is fair to regard $,, physically, as the quantum nonlinear phase shift that is due to the vacuum 
fluctuations of a single mode. 

The predictions of the quantum and classical theories are nearly coincident when we have 
r = Re(R) and IIm(R)I << 1. These conditions hold for 4, << 1, as can be seen from Fig. 2, 
where we have plotted Re(R)/r and Im(R)/r vs. 4,. Assuming TK = 1 fs, a 1 km fused silica 
fiber will have 4, w 10-3rad; from Fig. 2 we conclude that Eq. 25, the quantum coherent-state 
mean field, will then be in excellent agreement with Eq. 5, the classical mean field result. For 
4, > 10-'rad, there is a pronounced divergence between Re(R) and r, caused by the intrinsic 
periodicity of R. Viewed as a function of $,, Eq. 26 shows that R is periodic with period 27r. 
Physically, this periodicity constitutes a quantum state-recurrence for Kerr-effect propagation in 
lossless, dispersionless fiber and occurs when L = L, - 27rTK/~; for TK = 1 fs and fused-silica 



fiber this implies L, lo4 km, an experimentally inaccessible value for our assumptions of zero 
loss and zero dispersion. 

, Fig. 2. Logarithmic plots of &(R ) /rand I ~ ( R  ) / r Fig. 3. Minimum and maximum low-frequency, 
vs. ,. The coherent-state mean field of coarse homodyne-measurement noise spectra for a cw, 
grained time SPM reduces to the classical SPM coherent-state input vs. fiber length. The solid 
result when R x r, , is the quantum nonlinear curves are the coarse-grained time SPM the- 
&ase shift, i.e., the Kerr-induced phase shift of ory; the dashed curves are the instantaneous- 
one photon per -second mode. interaction FWM theory. The parameter values 

employed are: = 1.06 pm; A = 3 56 x 10- l1 m2; 
n;! = 3 2 x 10- 20 m2/W; pIN = 1 W, and = 
1 fs. 

Expressions for the quantum output moments, up to the second order, have been derived for 
Gaussian-state inputs [4]. We note that these moments yield the correct results in the appro- 
priate limits. Specifically, when 4, << 1 they are in agreement with the quantum FWM results. 
Furthermore, if we let R --+ r and S,, (t, u) -+ 0 and use classical covariances in lieu of quan- 
tum covariances throughout, e.g., (EiN (~)EIN(u)) 3 ETN (t) EIN(u), etc., the resulting equations 
agree with classical stochastic SPM results. We note that none of these classical formulas depend 
on the Kerr-effect time constant, r ~ .  This is fully consistent with our assumption that the spec- 
trum of the classical input excitation and the implied output-field spectrum are both narrower 
than r ~ l .  Under these circumstances we expect-in a classical t heory-t hat the Kerr interaction 
is effectively inst ant aneous. 

The implications of the full theory are readily ascertained by examining the output field's 
homodyne-detection statistics. An ideal homodyne measurement on EOUT (t) yields a photocurrent. 
whose statistics are proportional to those of the following abstract quantum measurement: 

where 4 is the local-oscillator (LO) phase. As is conventionally done in cw squeezing experiments, 
we shall focus on the minimum and maximum values of the homodyne-noise spectra as  the LO 
phase is varied. 



For a coherent-state input, both the instantaneous-interaction FWM and the coarse-grained 
time SPM theories imply frequency-independent homodyne spectra out to frequencies comparable 
to ril. In Fig. 3 we have plotted Smc (0) and Smm (0) , vs. fiber length L, for both theories. These 
curves assume n2 = 3.2 x 10-~'m~/W, A = 3.56 x 10-11m2, X = 1.06pm, PIN - ~ J I E ~ ~ ~ ~  = 
1 W, and, for the coarse-grained time case, r~ = 1 fs. Quantum FWM predicts complete noise 
suppression for one quadrature component, S,in(0) --+ 0, as the fiber length becomes infinite. 
Moreover, this transpires at minimum uncertainty product, Smin (0)Smm (0) = 1. These FWM 
features are clearly evident is Fig. 3; for long enough fibers, however, they are at odds with our 
coarse-grained time SPM theory. According to Fig. 3, the coarse-grained time SPM theory has 
an Smin(0) which reaches a nonzero minimum at L x 500m, and increases, for longer fibers, 
substantially above the coherent-state' value of unity. 

The precise location of the minimum in the low noise quadrature depends on r~ with higher 
values of r~ extending the region of agreement between the instantaneous interaction FWM and 
the coarse-grained time SPM theories. For various technical reasons, e.g., guided acoustic-wave 
Brillouin scatter, it is not feasible to perform such an experiment using a cw field. Nevertheless, 
the physical conditions corresponding to the minimum in Fig. 3, namely 1 Watt input power and 
roughly a 500-meter-long fiber, seem well within the realm of possibility for pulsed experiments. 
In fact, modeling Shelby's soliton-squeezing experiments [9] by using his peak intensity as the 
intensity in our cw theory, we find that conditions are right for a rK-dependent deviation from 
quantum FWM. However, accurate analysis of a short-pulse experiment-especially one based 
on solitons-must surely account for groupvelocity dispersion. In addition, a realistic quantum 
propagation theory for long fibers should address linear loss. 

3 Inclusion of Dispersion and Loss 

A split-step configuration for incorporating group-velocity dispersion (GVD) and linear loss (LL) 
into quantum propagation analysis for a Kerr-nonlinear fiber is shown schematically in Fig. 4. An 
infinitesimal length of fiber at z is divided into two sub-segments. The first sub-segment exhibits 
only the Kerr nonlinearity and linear loss; the second has neither Kerr effect nor loss, but suffers 
from dispersion. 

Let E (2, t) be the coarse-grained time, +z-going, photon-units field operator within the fiber, 
i.e., as before we have the mode expansion 

Over an infinitesimal, Sz-meter-long fiber segment, the split-step procedure leads to the z-to- 
(z + 62) annihilation operator transformation, 

Bn(z+6z)= 5 h[n-m;Sz]&m(z), for - m < n < m ,  
m=-w 

(29) 

where 

dn(z) E exp [i(~Sz/rK)&k(z)B~(z) + (a/2)Sz] &(z) + JcllSz&(z), for -m < n < m ,  (30) 



characterizes SPM and LL alone over the dispersionless sub-segment, and 

- % ~ z ,  for n = -I., 1, 
27, 

1 + 9 6 2 ,  for n = 0, 
T~ 

I 0, otherwise, 

is a discrete-time impulse response accounting for the dispersive sub-segment. In Eqs. 28-31, we 
have suppressed the groupvelocity delay, and we have introduced the fiber's dispersion coefficient, 
P2, and its power-attenuation coefficient, a. More importantly, with the inclusion of a Langevin 
noiseoperator in(z) required by the presence of the LL these equations preserve the 6,(t, u)- 
function commutator of a coarse-grained time input field operator, GIN (t). SO, if we drive the fiber 
at z = 0 with such an input-forcing E (0, t) = E I N  (t)-and then iteratively apply Eqs. 28-31, we 
will arrive at an output field operator, EOuT(t) - E(L, t) at z = L with a proper coarsegrained 
time commutator. Furthermore, because the unitary operators that transform the (6, (z)} into 
the {in (a)} are known, as are the operators for changing the {in (z)} into the {d, (z + Sz)}, we 
can-in principle-calculate all the measurement statistics for EOUT (t), given any state of EIN (t). 

Input Plane Output Plane 
(z=0) f (z=L) 

K = Kerr Nonlinearity 
L = Linear Loss 
D = Group Velocity Dispersion 

Fig. 4. Schematic split-step configuration for in- 
clusion of groupvelocity dispersion and linear loss 
into the coarse-grained time SPM theory. 

We note that the only aspect missed in this split-step approach is a term proportional to the 
commutator of the Hamiltonians governing each step. It can be shown that this commutator is 
finite and its contribution goes to zero in Sz2; hence, in the limit of Sz -4 0 this is an exact 
theory. Taking the limit of Sz - 0, the differential equation for the mode operator is 

+ n ( )  for 0 5 z 5 L, -co < n < co. (32) 

The coarse-grained time cannot be suppressed-it is essential to preventing the mean-field contra- 
diction exhibited in Sect. 3.1-but it can be hidden. Returning to field operator notation, Eq. 32 



can be recast as 

with the obvious, implied definitions for the rK-approximation to the second partial derivative 
with respect to time and for the Langevin noise field-operator. 

Equation 33 is extraordinarily appealing. Converting it, naively, to continuous-time classical 
form by merely dispensing with the operator carets, dropping the Langevin noise source, and the 
TK subscripts, we obtain 

a P2 d2 a 
-E(z, t) = i ~ E * ( z ,  t)E(z, t)E(z, t) - i--E(z, t) - -E(z, t), 
dz 2 dt2 2 (34) 

the well-known starting point for the classical theory of solitons in fiber [6]. 

4 Moment Propagation and the Terminated Cumulant 
Expansion 

Although it is possible to calculate the exact state transformation for the preceding quantum 
theory, it is a daunting numerical task in almost all cases of interest. Thus, we have elected to 
follow a much simpler and restrictive course--moment propagation. Taking the expectation value 
of Eq. 33 we find that the mean field develops according to 

d .P2 a:K Q 
-(E(z, t)) = i6(et(z,  t ) ~ ( z , t ) ~ ( ? ,  t)) - 2--(~(z, t)) - ?(b(z, t)), 
dz 2 a,,t2 

which illustrates the fundamental problem of moment propagation-the Kerr nonlinearity couples 
each moment's differential equation to those of higher order. For example, in the single time case, 
the differential equation for the moment (Etk (t, z) (t, z)) includes terms containing the moment 
(etk+' (t, z) E'+' (t, 2)) , leading to an infinite progression of coupled differential equations. 

This infinite linkage of moment equations can be broken, in an approximate way, through 
a terminated cumulant expansion (TCE). (A brief review of cumulants-for classical random 
variables-is found in the Appendix. Here, we rely on normally-ordered quantum cumulants.) In 
the T C E K  expansion, all normally-ordered quantum-field cumulants beyond the K-th order are 
set to zero: 

( (n [ e t ( z ,  t)lmk JJ[E(z, t)lnk)) = 0, when x ( m k  + nx) > K. 
k k k 

(36) 

The T C E K  assumption provides low-order moment expressions for all field-operator moments 
beyond K-th order. For example, the third-order cumulant relation, 

( ( E  t )  t))) = ($I(,, t)E2(z, t)) - 2 ( ~ ~ ( t ,  t ) ~ ( z ,  t ) ) ( ~ ( z ,  t)) 
- (et(z,  t)) ( ~ ~ ( 2 ,  t)) + ,2(Et(z, t)) ( ~ ( z ,  t))2, (37) 

affords the following explicit expression for the TCE-2 expansion: 

( ~ ~ ( z , t ) ~ ~ ( z ,  t)) = (Et(z, t))(E2(z, t)) +2(Et(z, t ) ~ ( z ,  t ) ) ( ~ ( z ,  t)) -2(Et(z, t ) ) ( ~ t ( z ,  t))2. (38) 



Substitution of this expression into the mean-field equation, Eq. 35, eliminates the third-order 
moment and leads, ultimately, to a closed system of differential equations for 

The accuracy of the TCE approximation depends upon both the initial state and its subsequent 
propagation. For a Gaussian state, such as a coherent state, all cumulants of order three or higher 
vanish. Moreover, a Gaussian state remains Gaussian under linear propagation-even if it is lossy 
and/or dispersive-so, for example, TCE-2 is exact for Gaussian-state inputs in the four-wave 
mixing limit. Higher-order TCE approximations track deviations from a Gaussian state, hence 
they should prove useful for Gaussian-state inputs even beyond the four-wave mixing regime. This 
is demonstrated, quantitatively, in Fig. 5, where we compare coherent-state input, homodyne- 
noise output spectra for a lossless, dispersionless Kerr-effect fiber computed via TCEK,  with 
the exact solution presented in the previous section. The coarse-grained time SPM curveP(ex,act 
solution) represents a state that is very nearly Gaussian state up to the point of its minimum-noise 
curve departs from the instantaneous-interaction FWM curve. (As noted above, coherent-state 
FWM is always a Gaussian-state case.) The TCE-2 approximation misses the mark, as it always 

. represents a minimum-uncertainty Gaussian state, which is plainly a bad approximation to the 
exact solution. However, the TCE3 approximation captures the essential nature of the exact 
solution, viz. it correctly predicts the minimum noise level and its subsequent rise to the shot- 
noise-level. As expected, the TCE-4 and TCE5 approximations show slightly better performance, 
but the meager improvement they provide hardly justifies their added computational burden. 

Fig. 5. Minimum and maximum low-frequency, 
homodyne-measurement noise spectra vs. ,/2 
( , = 2 for a fiber of length 325 x lo5 km, 
k = lfs) at 1.55vm in a dispersionless, lossless 

fiber. QPM denotes the exact calculation, FWM 
the four-wave mixing approximation, and TCE 
the terminated cumulant expansion (K = 2,3,4,5 
shown). The input field is a 1-Watt, coherent 
state; 0 dB is the coherent-state noise level. 

Fig. 6. Minimum and maximum low-frequency, 
homodyne-measurement noise spectra vs. ,/2 
( , = 2 for a fiber of length 325 x lo5 km, 
k = lfs) at 1.55 vm in a dispersionless fiber. SPM 

denotes the exact, lossless calculation, and TCE 
the terminated cumulant expansion (K = 3,4,5 
shown) with 0.2dB/km linear loss. The input field 
is a 1-Watt, coherent state; OdB is the coherent- 
state noise level. 

Armed with the TCE approximation, we can obtain homodyne-noise spectra for situations in 
which the exact calculations we thwarted by moment linkage. Consider propagation in a lossy, 



dispersionless Kerr-effect fiber. In Fig. 6 we have plotted the exact SPM result for the lossless 
case (solid curve) and the TCE solutions (dashed curves) for a fiber with a power loss coefficient 
of 0.2dB/km. The regions of overlap follow the same trends seen in Fig. 4, and predict a 4dB 
increase in the noise level over the lossless case. 

Inclusion of dispersion couples time slots and greatly increases the complexity of TCE moment 
calculations, even with a coherent-state input. If we address N time samples of the field, there 
are (19N + 15N2 + 2N3)/3 complex moments, or (35N + 30N2 + 4N3)/3 real quantities, to track. 
Each real quantity obeys one of 23 types of differential equation, which contain anywhere from 
5 to 87 terms. For N = 100, there are thus 717,300 moments, or 1,434,500 real quantities, to 
be computed. We are working on these calculations at present, and expect to be reporting our 
results in the near future. 

5 Conclusions 

We have presented a general theory for quantum propagation of an optical field in a lossy, dispersive 
Kerr-effect fiber. Our approach leads to equations that are continuous in space, but discrete in 
time. The time granularity is set by a phenomenological Kerr-effect time constant needed to 
properly recover the known results of classical self-phase modulation. Other theories have been 
developed that describe propagation in such a fiber [11],[16], but ours is the first for which a 
material time constant has been specifically employed to temper the instantaneous interaction. 
It has been argued that the presence of dispersion provides a much more constrictive bandwidth 
limitation than ril, thereby eliminating the need for this Kerr-effect time constant [17]. We 
disagree, but in the interests of brevity, we shall confine our remarks to a few brief points. First, 
it has been shown that there is a four-wave mixing region in which dispersion enhances squeezing 
[la]; here we may expect that dispersion exacerbates the need for a finite TK to correctly determine 
the validity limit of FWM. On the other hand, if there are propagation regimes-such as soliton 
propagation-wherein dispersion renders a finite Kerr-effect time constant unnecessary, then that 
impotence should appear in our calculations, i.e., our noise results should be insensitive to the value 
we assign to TK. Note that, even with loss and dispersion, the value of TK is irrelevant to linearized 
noise analysis, and this includes the linearized noise theory of quantum solitons. Finally, the 
theory we have presented handles the case of an arbitrary field, in either the normal or anomalous 
dispersion regimes, and is more encompassing than those restricted to soliton propagation. 

Appendix 

For a real-valued classical random vector 2 - (XI, X2, . . . , X,) whose joint characteristic function 
is qh(3 = (exp(i8. a)), the cumulants are defined by: 

where the cumulant generating function is a($ - ln(qh(3). Higher order cumulants contain 
information of decreasing significance [lo]. 
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Abstract 
Quantum fluctuations in a nondegenerate optical parametric amplifier (NOPA) are in- 

vestigated experimentally with a squeezed state coupled into the internal idler mode of the 
NOPA. Reductions of the inherent quantum noise of the amplifier are observed with a min- 
imum noise level 0.7 dB below the usual noise level of the amplifier with its idler mode in 
a vacuum state. With two correlated quantum fields as the amplifier's inputs and proper 
adjustment of the gain of the amplifier, it is shown that the amplifier's intrinsic quantum 
noise can be completely suppressed so that noise-free amplification is achieved. It is also 
shown that the NOPA, when coupled to either a squeezed state or a nonclassically correlated 
state, can realize quantum tapping of optical information. 

1 Introduction 
It has been known since the date when optical amplification was first realized that fundamental 
principles of quantum mechanics play an important role in the noise performance of a linear 
amplifier [I, 23. For example, it was found [3, 41 that even in an ideal case when all the classical 
noise is eliminated, "extra" quantum noise from an amplifier's internal modes will add to the 
amplifier's output thus preventing noise-free amplification and degrading the output signal-to- 
noise ratio (SNR) relative to that of the input. Such "extra" quantum noise would destroy any 
coherent quantum superpositions that are often encountered in the microscopic world, should one 
try to amplify the microscopic quantum superposition to a macroscopic scale so as to produce a 
paradox such as Schrodinger's Cat [5]. 

However, Caves pointed out in a systematic analysis [6] of quantum noise in a linear amplifier 
that noiseless amplification is possible with a phase-sensitive amplifier (for which the gain depends 
on the phase of the input signal). On the other hand, for a phase-insensitive amplifier, although 
extra noise cannot be avoided as stated above, it may be rearranged, according to Caves' analysis. 
More specifically, a phase-insensitive amplifier is described by a general quantum model [6, 73: 



where t~"+'"~ is the annihilation operator for the input and output signal, G is the power gain 
of the amplifier and k is an operator related to the internal modes of the amplifier and satisfies 
[k, k t ]  = 1 - G. The quantum fluctuations in k will give rise to the "extra noise" added to the 
output signal. From Eq.(l), one can derive Caves' uncertainty relation [6] 

where Ai E ( ( A ~ ; ) ~ ) / G  is the input equivalent noise added to the quadrature-phase amplitudes 
Xi(i = 1,2), with XI E (h+ht)/2,X2 E (h-dt)/2i,kl E (E'+kt)/2, and k2 E (k-Pt)/2i .  Thus 
the noise in amplification in one quadrature-phase amplitude where the signal is encoded can be 
suppressed while the extra noise demanded by Eq.(2) is mostly coupled into the unused conjugate 
quadrature, with their noise product satisfying Eq.(2). By following this line of reasoning, it was 
suggested 18, 9, 10, 111 that by coupling the amplifier's internal modes to a squeezed vacuum 
instead of the usual vacuum state, the suppression of added noise for one quadrature can be 
achieved as stated above. 

In the analysis of Caves, it was assumed that the input field hi" is independent of the internal 
modes of the amplifier described by E'. On the other hand, the situation will be totally different 
if ~ i n  and k are correlated. Notice that the quantities in Eq.(l) are amplitudes of the relevant 

fields. Thus interference between the amplitudes of 2" and F may give rise to cancellation of 
their quantum fluctuations and lead to noise reduction in the amplifier's output. Quantum noise 
subtraction has been realized with various kinds of correlated quantum fields [12, 13, 141. 

The distribution of information in the modern age requires division of incoming information 
into identical pieces for sharing by many users. An optical tap is a kind of information divider 
by optical means, with which one can extract the needed information while at the same time 
leaving the information readable by other users down the line [15]. The challenge is of course to 
tap the information without degradation of the signal-to-noise ratio (SNR) for both tapped and 
transmitted information. An optical divider or tap is usually a four-port device with two inputs 
and two outputs (the law of quantum mechanics requires there to be an extra input). A typical 
divider is simply a beamsplitter: information comes in one input and is divided into two outputs. 
However, the uncorrelated quantum noise from the other unused port will add to the outputs and 
degrade their SNRs. On the other hand, it is known that quantum noise can be suppressed with 
a squeezed state. Shapiro thus suggested [15] to couple the unused port to a squeezed vacuum to 
reduce its quantum noise. Another technique is to use two correlated quantum fields as the two 
inputs. Quantum correlation between the two inputs will subtract out the quantum noise in the 
outputs. Such techniques can be used in any four-port system for information division. 

In the following sections, we will mainly discuss quantum fluctuations in a nondegenerate 
optical parametric amplifier (NOPA) which has only one internal mode called "idler". In section 
2, we first describe an experiment in which we couple a squeezed light field into the internal idler 
mode of the NOPA and demonstrate quantum noise reduction by the scheme of rearranging the 
quantum noise between two conjugate quadrature-phase amplitudes. In section 3, we will discuss 
quantum noise cancellation in amplification with a correlated quantum statk where noise-free 
amplification can be achieved with moderate correlation. In section 4, we will consider the NOPA 
as a four-port system (2 inputs and 2 outputs) and show that it can be used as a quantum optical 
information tap when the inputs are coupled either to a squeezed state or to a correlated quantum 
state. 



2 Quantum Noise Reduction in Optical Amplification 
with a Squeezed State 

A nondegenerate optical parametric amplifier (NOPA) is an optical amplifier that utilizes nonlinear 
coupling to convert energy in a pump beam(s) to a signal beam. It can be realized in either three- 
wave mixing or four-wave mixing processes. Besides the pump beam(s) and the input-output 
signal beams, another beam called "idler" is coupled to the pump and signal beams at the same 
time. This idler beam labled as gn corresponds to the so-called internal mode of the amplifier 
discussed earlier. In terms of the quantities in Eq.(l), fi = d m  f@t and G is related to the 
pump beam. Fig.1 shows a NOPA with a coherent signal input and its idler mode coupled to 
a squeezed vacuum generated by a squeezer. Detailed descriptions of each device usedin the 
diagram can be found in Ref.[l4b]. In the linear operating regime (small input signal), the pump 
beam is undepleted and does not contribute any extra quantum noise to the output [16].  his 
Eq.(l) becomes 

&out = & ;in + ,/= jpt. (3) 
We can rewrite Eq.(3) with the quadrature-phase amplitude &(8) e e-" + 2teie (c = a, b) as 

If the fields d and % are independent of each other, the output noise of the amplifier is then given 
by 

N ~ ( ( B  = G ~: (e )  + (G - i ) ~ p ( - e ) ,  ( 5 )  
where Nj(0) ((a - (A))2) (i = a, b). 

si@ in s ipd out 

SQUEEZER I 

FIG. 1. Diagram for the experiment of quantum noise reduction with a NOPA. 
The shaded part of the noise circle for the amplified signal corresponds to amplified 
input signal noise and the rest of the noise comes from the extra noise contributed by 
the amplifier's internal modes 



Usually, the idler mode 8 is coupled to empty vacuum and NP(-81 = 1, resulting in extra 
noise G - 1 in the output. On the other hand, with the idler mode b coupled to a squeezed 
vacuum, for the squeezed quadrature of 8 = 8-, we have Nb- = Nf'(-O-) < 1, thus the extra 
noise at the output due to the idler can be reduced. For the other quadrature, however, the extra 
noise will be enhanced. Therefore, as we change the phase and look at different quadratures, 
we will obtain a phase-sensitive noise level for the output with noise reduction at some phases 
and noise enhancement at other phases, as shown in Fig.2, where we plot the signal output noise 
level as a function of local oscillator phase. It is found that the minimum noise level in the 
phase-sensitive curve ii drops below the phase-insensitive curve i, which is the output noise level 
when the idler mode is coupled to the vacuum, thus demonstrating quantum noise reduction in 
the amplification process. The phase-insensitive curve i (QG) also gives a measure of quantum 
noise gain as compared to the vacuum noise level go (G, E !DG/QO) [14b]. The dashed trace iv 
corresponds to the output noise level expected for a lossless system with perfectly squeezed idler 
at the same operating gain of the amplifier. To better quantify the noise reduction, we tune the 
phase to 8 = 8- and block and unblock the injected squeezed light field. When the squeezed light 
is blocked, it corresponds to a vacuum st ate coupled to the idler mode. In Fig.3, we plot the output 
noise level as we turn "ON" and "OFF" the squeezed light. By performing the same measurement 
at different gains of the amplifier, we can plot the amount of noise redution A- Q(8,)/QG 
against the quantum noise gain G, as in Fig.4. The best noise reduction of -0.7 dB is observed 
at G, = 2.6 (4.2 dB). The solid curve in Fig.4 is a theoretical prediction for our system with 
0.3% internal round-trip loss for the NOPA and with 30% external loss (mainly propagation and 
detection losses), as determined by independent measurements [14b]. The amount of squeezing 

-2 
8- 8,+n 

LO Phase, 8 
FIG. 2. Spectral density of photocurrent fEuctuations for i- generated by NOPA's 

signal output Gout as a function of the local oscillator phase 8. Trace i is the amplified 
noise level QG when the idler mode is in a vacuum state, while trace ii corresponds to 
the case when the idler is in a squeezed vacuum state. Trace iii is the vacuum noise 
level lPO and the dashed trace iv corresponds to the output noise level expected for a 
lossless system with perfectly squeezed idler. 



Time (s) 

FIG. 3. Amplified noise level of the signal output for NOPA. "OFF" correponds to 
the output noise level QG for a vacuum state coupling to the idler mode. "ONn gives 
the output noise level a($-) for a squeezed state input to the idler. The noise levels 
are referenced to the vacuum noise level !Po. 

FIG. 4. Quantum noise reduction A- for the amplified output signal as a function 
of the detected quantum noise gain G, for a squeezed idler input of N- = 0.52. The 
solid curve is the theoretical prediction for our system and the dashed curve ii is for a 

t lossless system with perfect squeezing for the idler. 



that is coupled into the idler mode is also directly measured to be Np(8,) = 0.52. Thus all the 
relevant parameters in the theory for our experiment are measured independently. It is seen that 
the experimental data fit the theoretical prediction quite well. The dashed trace ii corresponds 
to the maximum possible noise reduction with a coherent signal input in a lossless system with 
perfect squeezing coupled to the idler mode (Np(8,) = 0), in which no extra noise is added to 
the amplified output. 

3 Cancellation of Quantum Fluctuations in Optical Am- 
plification with Correlated Quantum Fields 

In the discussion of last section, we assumed that the quantum fluctuations in the signal input 
and the amplifier's internal idler mode are uncorrelated. When their quantum fluctuations are - 
correlated, however, we cannot write the output noise as in Eq.(5) because the correlation between 
2F-8)  and .,@(-8) may result in cancellation (or enhancement) of their fluctuations through 
destructive (or constructive) interference. 

The quantity to describe the degree of correlation between fields 8 and 6 is the correlation 
function defined as 

Assume that aka and aZb are positively correlated, that is, Cab > 0 and that the fluctuations 
of field h are smaller than or equal to that of field &, that is, iVa = (612xa) 5 (A2&,). We will 
encode the signal only into the field h ((K) A # 0 and (%) = 0) because it has less noise. 
The signal-to-noise ratio (SNR) for the field b is then Ra = A2/iVa. On the other hand, because 
the two fields are correlated, we have for the noise in the difference of the two fields: 

where we have minimized Nd by choosing the optimized coefficient Am = ( A A ~ A J ~ ~ ) / ( A ~ ~ ) *  
A, = Cab when ( ~ 2 2 . )  = (a2%). Thus the noise in the difference of two fields is smaller than the 
noise in the single field b. So the optimized signal-to-noise ratio (SNR) is & = (*a-~mkb)2/~d = 
A2/Na(l - Czb) if both B and 6 fields are employed. Obviously, > &. 

Next let us consider the situation when the fields b and & are injected into the signal and idler 
ports of the amplifier, respectively. We adjust the phase of the pump beam so that Eq.(4) becomes 

Thus the amplified signal becomes 

The noise of the amplified signal output is calculated as 



FIG. 5. Diagram for a beamsplitter. 

which reaches minimum value of 

Naz\ = G ( ( A ~ ~  - X,A%)~) = G ( A ~ ~ ~ ) ( I  - Czb) = GNd, (10) 

when d ( ~  - 1)/G = A, = Cab. Note that Eqs.(8) and (9) are for the signal beam alone; mixing of 

the field 8 with the field & as required for Nd has taken place within the amplifier itself. Combining 
Eqs.(8,10), we obtain for the output SNR 

Therefore the output SNR Rpt is equal to the input SNR Rd (and > R,) with the signal amplified 
by the gain G. No extra noise is added in the amplification process. However, noise-free ampli- 
cation can only be achieved at some specific gain G = 1/(1 - A:) determined by the correlation 
function Cab between the two fields 8 and &. When the two fields are close to perfect correlation 
with A, = Cab + 1, the gain G can be arbitrarily large. 

4 Quant urn Optical Information Tapping with Squeezed 
States and Correlated Quant urn Fields 

The concept of quantum optical information tapping was first discussed by Shapiro [15] for a 
beamsplitter with squeezed state coupled to one of the input ports. Consider a. beamsplitter 
shown in Fig.5, where the input port ii2 is in a squeezed state with the degree of squeezing 
denoted by S. A coherent signal of size A is injected into the other port labled as 2cl with input 
SNR RF = A2. It can be easily calculated [15] that for a beamsplitter with transrnissivity T and 
reflectivity R, the output SNR at both output ports are given as 

The efficiency of this information tapping scheme can be quantified [17] as the ratio of the output 
SNRs to the input SNRs: 



2 
which has maximum value of - 

1+S 
when T = R = 112. It is seen that 

for squeezed state input at port 2 (S < 1). On the other hand, for classical state (S L: I), we 
always have q < 1 [lg]. Thus Eq.(13) is the criterion for realization of a quantum tap for optical 
informat ion. 

Quantum information tapping can also be achieved for a beamsplitter with correlated quantum 
fields &,I as the two inputs. For this case, let us assume the two fields have the same noise level, 
that is, ( ~ ~ 2 ~ )  = (A2Xb). For a beamsplitter, we have for the quadrature of the fields: 

where we only write down the X-quadratures, in which information is encoded. 
It is easy to show that Kt = RF when R/T = A: = C,2b as before in Section 3. For output 

port 2, we find 

Thus the information tapping efficiency 

Therefore quantum optical information tapping is achieved with correlated fields. Notice here we 
choose R, T so that RiUt = RF. Of course, we could choose R, T to maximize q.  However, q will 
never be close to the perfect value of 2 even for perfect correlation. This is because of the plus 
sign in Eq.(l4b) required by unitarity for any beamsplitter; and it can not be changed to a minus 
sign no matter what you do with the relative phase of the two fields. In the following, we will see 
a different situation for the NOPA. 

For the NOPA, there are also two inputs (signal and idler) and two corresponding outputs, as 
shown in Fig.6. With proper phase adjustment of the pump, the input-output relations for NOPA 
are given as 

&out = f i  &in - m Pnt, 

signal in signal out 

FIG. 6. Diagram of NOPA as a four-port device. 

A -  am 1 
F 

A - 
f l  bi" 

NOPA 

idler in idler out 
(GI 

1 g u t  
F 

1 
/ bw' 

A 



or in terms of the quadrature-phase amplitudes 

First, let us assume that a coherent signal of size A is injected into the signal port for amplification 
and squeezed state of squeezing S is injected into the idler port. The input SNR is then Rin = A2. 
From the input-output relations in Eqs.(lG), we can calculate the output SNRs as 

> 

Hence the information tapping efficiency '1 has the form of 

G + (G - 1) 2G(G - 1)(1+ S)  + S 2 
'1 = - N- for G2 >> S. (18) 

G + ( G - 1 ) s  G S + G - 1  G(G-1)(1+S)2+S 1+S 

, Thus quantum optical information tapping is possible (9 > 1) as long as S < 1. When G2 >> S, 
'1 approaches 2/(1 + S), which is the same as the result of Shapiro [15] for a beamsplitter. Of 
course, in this process, the signal is amplified. 

As for the situation with correlated quantum fields as the inputs, for the parameters discussed 
in section 3, we know that R,"ut = Rd. From Eqs.(lG), we can easily find out Riut for the idler 
output. For the parameters given in section 3, we have 

and 

( ~ ~ 2 r ~ )  = (I - x;)[(A~~:) - ( A ~ ~ E ) ]  + G N ~  = G N ~  for (~'2:) = ( A ~ R ~ ) .  

Therefore, Riut = Rd(G - 1)/G and 

where the second equality follows since G is chosen as in section 3, namely, G = 1/(1 - C:,,). 
Eq.(19) shows that we can always realize quantum optical information tapping in NOPA with 
correlated quantum fields. 

In fact, for any linear four-port device with two inputs and two outputs, we can realize quantum 
optical information tapping with input of either a squeezed state or a correlated quantum state: 
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We derive the quantum limits for an atomic interferometer in which the atoms 
obey either Bose-Einstein or Fermi-Dirac statistics. It is found that the limiting 
quantum noise is due to the uncertainty associated with the particle sorting between 
the two branches of the interferometer. As an example, the quantum-limited 
sensitivity of a matter-wave gyroscope is calculated and compared with that of 
laser gyroscopes. 

Matter-wave intederometq dates from the inception of quantum mecharmics, i.e., 
the early electron diffraction experiments [I 1. More recent neutron interferometny ex- 
periments have yielded insight into many h n d m e n t a l  aspects of q u a n t m  mecharmics 
[2]. Presently, atom interferometq has been demonstrated and holds promise as a 
new field of opties - matter-wave optics [3]. This field is particulasly interesting since 
the potential sensitivity of matter-wave interferometers 143 f m  exceeds that of their 
Eght-wave or "photon" antecedents [5]. 

However, as was emphasized at the recent Solvay conference on quanatm optics, 
there is at present no paradigm available for calculating or es tha t ing  the quantlun 
noise limits to matter-wave interferometers, and therefore we have no basis for esti- 
mating the potential sensitivity of devices based on matter-wave interferometrgr (e.g., 
gyroscopes) [6]. 

In order to motivate the analysis and derive the quantum lhits, we proceed as fol- 
lows: First, we "set the stage" by considering a simple gyroscope and deriving the rota- 
tion-induced signal in matter-wave optics. Next, we proceed to develop the theory for 
atomic interferometers, cast in an operator formalism that is well suited to a quantum 
noise analysis, and then we obtain the quantum noise limits for matter-wave interfer- 
ometry. Finally, we compare current laser gyroscope sensitivity to that of near-term, 
matter-wave devices. 

We begin by considering an idealized atom interferometer used as a rotation detector 
or gyroscope, as shown in Fig. 1. From this diagram it is easy to see that the atomic 
path difference between the upper branch a and the lower branch P is given by Sd = 

ZrSZt, where G? is the angular velocity of the interferometer, r is the radius of the circle, 



FIG. 1. A schematic illustration of an interferometer with semicircular arms to be used as 
a rotation sensor or gyroscope. The loop rotates with an angular frequency l2 about an axis 
through its center and normal to the loop plane. The path difference between counter- and 

z r copropagating beams can be easily seen to be 6-4 = ri2 -, where v is the atomic velocity. v 
From these considerations the phase shift of Eq. (21) follows immediately. We may then 
use this result to estimate the minimum detectable rotation rate pin, Eq. (23). 

v the particle velocity, and t = nr l v  is the particle transit time through the inter- 
ferometer. This readily translates into a Sagnac phase difference of Sqap = k (A, - Ap) 
= 2 d R l %  v = 2ARIR v, where 2 = 7i I mu is the atomic de Broglie wavelength [7] and 
A the area enclosed by the arms. The phase signal is then given by q signal , - 
2A mRIA; independent of the interferometer shape as long as A is the total area 
enclosed. This expression holds for both atom and light interferometers, if, in the - 
photon case, we define an effective photon mass my implicitly by my d2 = ti o. Now, 
since the "mass" of a photon is governed by optical energies of a few electron volts - 
and atomic masses are of order lo3 MeV - we see that matter-wave gyroscopes 
potentially have a signal that is enhanced by many orders of magnitude, compared to 
light (laser) gyroscopes. Thus motivated, we next consider a detailed analysis of phase 
sensitivity in matter-wave interferometry. 

2. A Simple Model 

In accordance with current experiments [3], let us consider the model illustrated 
in Fig. 2. There, we see a stream of N atoms passing one-at-a-time through a beam 
splitter into a simple interferometer with upper and lower branches labelled a and P, 
respectively. Upon recombining the two beams, we inspect the resultant interference 
pattern for phase shifts induced, say, by a gravitational potential between the two 
branches or a net rotation of the system. As in the optical dual [5], one might expect 
that the overall sensitivity of the device will be limited by the quantum limits imposed 
by particle number fluctuations AN on the phase noise A q  in the interferometer. P t  is 



defector a 

;> 

*I 

detector b 

FIG. 2. We illustrate a scheme whereby a stream of N atoms is sent through a simple 
interferometer during a measurement time t,. The atoms are split a t  beam splitter 1, 
follow paths a or P, are reflected off the mirrors, and are then recombined a t  beam 
splitter 2. The recombined atoms are detected a t  upper detector a or lower detector b 
where interference fringes are recorded. 

often stated that dN is to be associated with the fluctuations in the arrival time of 

atoms in the input beam, i.e., AN - 6 where A is the mean number of particles. 
However, we shall show that the particle ber noise arises not from fluctuations in 
the input beam intensity but rather from beam splitter uncertainties pertaining to the 
lack of knowledge of which path, a or P , the atom has taken through the interfer- 
ometer. 

3. The Quantum Signal 

Let us continue developing our simple model depicted in Fig. 2. We assume that, 
upon reflection from a beam splitter surface, the particles undergo an unimportant 
phase shift that we take to be ~ 1 2 ,  but that in reality depends upon the structure of the 
beam splitter. Upon passage through a beam splitter, however, the atom undergoes a 
phase shift of qi, i = 1,2, for the first and second beam splitter, respectively. The 
cumulative effect in the interferometer of these various processes on the atomic wave 
function y is depicted in Fig. 3, and leads to a wave function va corresponding to  the 
upper detector and yb for the lower detector, namely 

where 8, - z12 + kRa + q2 , and Bb - KRa + cpl + +'Pz, and where, without loss of gener- 

ality, we let cpl = q2 = z . Here, k is the atomic wave number and la and Rp are the 



FIG. 3. Chasing phases through the interferometer accounts for ac 
in the upper or lower detectors. The phase shift upon reflection is apbihary, but we choose 
it here to be z/2 for simplicity. Upon transmission, a phase shift of 91 or 92 k assumed 
for beam splitter one or two, respectively, and without loss of generality we take 91 = 
92 = z. 

path lengths through the upper and lower branches, respectively. We imagine now 
that the beam is recombined by the second beam splitter and then the detectors a and b 
s h o p  in Fig. 2 count the number of atoms as they arrive in the recombined upper 
beam or lower beam, respectively. If we label N atoms with the index i = 1, .. ., N, as 
those sent through the interferometer during a measurement time t,, then the appro- 
priate state vector @,$ for the ith atom in the interferometer, after recombination, 
is given by 

where here (pap - k(da - +. We see that this state is an appropriate superposition of 

the number states J l a ,  Ob ) and 1 0 ,  , lb ) corresponding to an atom incident on the 
upper or lower detectors, respectively. The state vector for the N-atom state is 
then constructed via a direct product of the individual atomic states, namely 

" f A 

Let c ,i and c , where 0 = a, b, be the creation and annihilation operators, re- 

spectively, for the number states ina, nb ) i ,  where, corresponding to number op- 
A ^f " erators nqi - %i cqi , the eigenvalues na and nb are O or 1. Then the number opera- 

A 

tor No for the number of. upper or lower atoms is determined by 



A 

and the operators c obey the commutation relations 

where the plus or minus sign indicates Bose or Fermi statistics, respectively. %he 
statistical nature of the atoms. will be impodant in circumstances where the density 
of particles in the interferometer is so large that there is more than one atom. at a 
time within a single coherence length, or if the atoms are injected in a correlated 

A 

manner into the input ports [91. The expectation values (NJN of these number oper- 
ators, Eq. (4), are given by 

This yields the expression for the mean number of atoms in the a and P branches as 

These expectations constitute the signal; we proceed to calculate the noise. 

4. A Calculation of Poisson Noise 

As noted earlier, it is frequently stated that number fluctuations dN in the in- - 
terferometer should be just noise of the form 4% due to fluctuations in the input 
beam. Let us briefly investigate this hypothesis. A reasonable assumption is that the 
distribution of the N atoms in the input beam is Poissonian with a distribution func- 
tion P, , given by 



where H is the mean number of particles in the beam. The signal or expectation 
A 

value of the operators No is then given by 

where H = n Pn, and the upper and lower terms in braces are associated with 
n 

detectors o = a and o = b ,  respectively - a convention we shall use throughout. 
Hence, the fluctuations accompanying this signal are determined by the root 

A 

variance (dNd, which is found to be 

Now, to get a determination of minimum detectable phase shift, one usually 
equates the signal, Eq. (9), to the noise, given by Eq. (10). Regardless of the choice of 
qap, we see from Eqs. (9) and (10) that upon equating signal to error, the phase de- 
pendence cancels out and we have no determination of the minimum detectable 
phase. The point is that Nis not a random number, since we have the constraint N, 
+ Nb = N = constant, and fluctuation3 in the incoming atomic beam do not de- 
termine sensitivity. In other words, precise knowledge of the value of N obviates the 
need for a Poisson analysis, since N is clearly not a random variable. What, then, is 
the limiting noise mechanism in the interferometer? 

5. The Quantum Noise 

We compute the quantum noise fluctuations using the second quantized formal- 
A 

ism developed earlier. Recalling the definitions for the number operator N, Eq. (4), 
7 

and the state vector I@)N, Eq. (3), and using the commutation relations, Eq (5), we 
may write, 



where, as before, the upper and lower terms in braces correspond to cr = a or b, re- 
spectively, and the f sign refers to the statistics of the particles: a plus sign for bosons 
and a minus sign for fermions. We note that the last, statistics-dependent term of Eq. 
(11) is the sum of non-negative matrix elements and so itself is non-negative or non- 

, positive, according to the plus sign or negative sign, respectively. A quantitative 
analysis of the contribution of this statistics-dependent term requires a specific model of 
the coherences between a t 0 . 1 ~ ~  in a dense beam. However, one can qualitatively state 
that for sufficiently high densities the use of fermionic atoms will tend to lower the 
quantum noise limit. This is because the last term will be negative. Bosons will have the 
opposite effect. Detailed analysis of the statistics-dependent contribution is beyond the 
scope of this letter, and will be left to a later work. Hence, since, in current experi- 
ments, the beam intensity is so low that there is only one atom at a time within a single 
coherence length. In this case, the statistics-dependent second term in the last line of 
Eq. (11) is zero, and we are left with the result 

We notice that this result depends on the total number of atoms N and not the mean 

number TE as in the Poisson-distribution argument given before. Now, the signal in 
either branch Nu is given by Eq. (7). 

The quantum fluctuations in phase Aqap in the measured phase difference qap 
may be determined by [B] 



a result that is independent of p This independence might appem swf-jising at OEP ' 
first, but it is a direct result of the fact that the quantum nunnber state noise (BNJ is 
proportional to  the slope of the signal QVd for the upperAower n er states cornid- 
ered here. (See, in p d c u l a r ,  reference 8.) Again, we stress th is not the eqec- 
tation value but rather the total number of atoms detected in the measwement h e  
t,. This is not then the expression' one would expect from application of the uneer- 
tainty principle, for in that case N would have to be replaced by m). We re- 
emphasize that it has not been clear what form of the uncertainty p~nciple one 
should even use in an atom interferometer [GI. For light, the so called 
uncerlainty principle, BpMT 2 1,  yields for a coherent state Ap g 1 / (2V) - where the 

expectation (AT) and not the total number N is used. For atoms it is not obvious a t  d 
what the relationship should be, and we have shown that the resdt is lunezrpected in 
that Eq. (13) depends on the total number N , that is precisely known for the atom 
interferometer, and where (iV) has no meaning. In contradistinction, in a laser 
interferometer, it is impossible t o  know the total number of photons and only the 
mean can be specified. Hence, the atom result, Eq. (13), is quantitatively, 
qualitatively, and philosophically different from the optical result. Hence, Eq. (13) is 
indeed a novel.resultt We note that B. Yurke obtained a similar result for F 
using spin algebra techniques [9]. 

6. Compagping Laser and Matter G p o s  

We conclude by applying this result t n  the gyroscope problem. Let us note that the 
atom number N is given by j t,, where j is the atomic flux (in atoms per second) hit- 
ting the detector. We have fi-om Eq. (14) the minimum detectable phase shift, pmin = 

signal 2/1/j%and equating this to  the signal derived earlier, p = 2AmR/'i)i, we find 
the minimum detectable rotation rate amin is given by 

h 1 $pin __ - (matter). 

This should be compared to the same result obtained from using an optical inter- 
ferometer in which the flux j is given by the power P divided by the photon energy fiw 
[5,71, in other words 

where my is the effectme photon mass, defined by my-= t io lc2 .  In Table I we com- 
pare and contrast properties of the matter-wave and laser light interferometers in 
order to gauge their effetiveness in measuring R min. As mentioned before, we note 



that the typical photon effective mass gives an increase in sensitivity of 10". This 
mass factor, however, is offset by the low particle flux available for atoms. 'FBais fact 
increases the laser moscope sensitivity over that of matter-wave devices by a factor 
of around lo2. In addition, the atoms make about one &round trip" through an 
interferometer, whereas in a ring laser gyroscope the photons make many (= lo4) 
circuits around the ring and yield an additional sensitivity fador of lo4 in favor of the 
laser system. 'This still leaves the matter-wave device 104 times more sensitive. 

mary then, we conclude that the phase uncertainty arising in an atomic 
intefierometer arises fkom atomic nunaber fluctuations associated with the sorting of 
the particles between the two s of the interferometer. Applying our results to an 
interferometer used as a gyroscope, we find that a matter-wave moscope can be ex- 
pected to be more sensitive to rotation by some four orders of magnitude than present 
laser devices. 

TABLE I. Compared and contrasted are different properties of matter-wave and optical 
gyroscopes in terms of their sensitivity to phase differences - or equivalently - rotation 
rates. We see that the high mass of atoms initially contributes an increase of sensitivity 
of 10l0, but that the low atomic beam intensity, compared to photon beams, removes some 
of this advantage, as does the reduced number of round trips possible in an atom 

4 interferometer. Nevertheless - a typical factor of a 10 increase in rotation sensitivity 
can still be expected using atoms rather than photons. 
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Abstract 

In the optical measurement of the Bloch vector components describing a system of N two- 
level atoms, the quantum fluctuations in these components are coupled into the measuring 
optical field. This paper develops the quantum theory of optical measurement of Bloch vector 
projection noise. The preparation and probing of coherence in an effective two-level system 
consisting of the two ground states in an atomic three-level A-scheme are analyzed. 

1 Introduction 
The properties and generation of an opticd squeezed state have been interesting subjects of study 
for a number of years. The Bloch vector model of a two-level atomic system interacting with 
a laser field, and the use of angular momentum components Jj to represent the N two-level 
atoms [I], have also been widely investigated. It is known that quantum systems with dynarnical 
variables in the form of nonlinear products of the position and momentum operators are different 
from those involving only the position and momentum operators. For instance, in a system 
of N twolevel atoms, described by a Bloch vector spin angular momentum 3, the uncertainty 
relation, AJ1 . A J2 2 $ 1  (33) 1, depends on the quantum state of the system, as opposed to that 
of Ax Ap 2 $ for the two quadrature phase components of an optical field [2]. The quantum 
fluctuations in atoms hence provide an interesting system for the study of uncertainty relations, 
and are of practical importance. For example, the fluctuations in an atomic system contribute to 
noise that can in principle, limit the accuracy of atomic frequency standards 131. 

As a simple example, let us consider the spin model for a single two-level atom with a ground 
state 11) and an excited state 12). The Bloch vector operators are 

where 
h i  i ) ,  i, j = 1,2. 



These operators obey the usual commutation relation for angular momentum operators, 

where rijk is the Levi-Civita symbol. It is easy to show that i describes a spin-f system. 
For a superposition state 

e 0 
Irp) = cos - 11) + ei4 sin -12), 

2 2 
where 8, and 4 are some angles, we have 

Clearly, the vector r = ((il), (i2), (83)) falls onto the surface of a sphere of radius i. The fluctua- 
tions in the components of s are, 

1 
( A )  = ( i )  - ( )  = - - ( 4 )  j = l,2,3, 4 (4) 

with the fluctuation in the total Bloch vector 

It is also easy to show that 
1 

(A;:) ' (AS:) 2 a l ~ i j k ( & ) 1 2 .  
Now let us consider the situation for N two-level atoms. If there is no mutual interaction 

between the atoms, the system can be described by the total spin angular momentum operator 

We assume that all atoms are in the ground state 11) initially or, equivalently, the system is in 
the angular momentum eigenstate IS = $, S3 = - $) (Fig. la). Now we have 

and 

We hence obtain 



FIG. 1. Bloch vector for an N-atom system. In a), all atoms are in state II), and 
the mean total Bloch vector (So) points down. b), (So) is rotated about an axis n to 
(S1). The cones represent the fluctuations in Bloch vectors. 

As is shown in Fig.la, the uncertainty in S forms a cone centered on (So), pointing inversely 
along axis r3, with a conic angle be r: @. When a resonant laser field is applied, the Bloch 
vector S is rotated from (So) to (S1), by angle 8 about an axis n in the 0rlr2 plane (Fig.lb). 
Now all atoms are in a superposition state as given in Eq.(2), and one can show that the mean 
square fluctuations in the components of the Bloch vector S are N times of that given by Eq.(4). 
Now let us take a closer look at ~ i ~ . l b :  When the Bloch vector S is rotated from (So) to (St), 
the cone representing the fluctuations in S is also rotated. The projection of the base of the cone, 
which represents the fluctuation, onto an axis, say rl, is merely 

One can obtain similar results for the fluctuations along other axes. The fluctuations in the 
Bloch vector components are hence the projections of the Bloch vector uncertainty onto the 
corresponding axes. It has been pointed out that the shape of the cone (Fig.lb) can be altered, 
and turned to an ellipse, by introducing a non-uniform interaction between the external field with 
the atoms [4], or by mutual interaction between the atoms. We see from Eq.(?) that the noise 
in the Bloch vector component along rl reaches a minimum point at 0 = 5 and 4 = 0 when the 
component is maximized. Yet the shot noise in the radiation field from the atomic medium is 

j proportional to f i  and also maximized. It is predicted that the total noise consisting of the shot 
noise and the Bloch vector projection noise would reach its minimum value at 8 = % [2]. 



2 Theory 
In this section, we develop the quantum theory of optical measurement of atomic Bloch vector 
projection noise. We will consider the experimental situation of A-three-level atoms in a beam 
interacting with spatially separated laser fields. In a A-scheme three-level atom (Fig.2), we as- 
sume that dipole transitions between states 11) and lo), and 12) and 10) are both allowed, with 
resonant frequencies, ~ 1 ,  wo2, and transition dipole moments dol, do2, respectively. We assume for 
simplicity that dol and do2 are orthogonal. First, a resonant optical pumping field is applied to 
pump all atoms into state 11). Two co-propagating off-resonant laser fields of frequencies ~ 1 ,  u2, 

polarizations el, e2, respectively, are applied downstream to prepare the atoms into a superposi- 
tion state of 11) and 12). Level 10) adiabatically follows the ground state amplitudes and can be 
eliminated. Hence, we are left with an effective two-level system consisting only of ground states, 
which do not spontaneously decay. At a later point in the atomic beam, a probe field of frequency 
w, and polarization e2 is applied. This induces an el-polarized radiation field, oscillating between 
states 10) and 11) which is homodyned with an external local oscillator field of frequency wl. We 
will show that the homodyne output is proportional to the atomic Bloch vector components and 
carries its noise characteristics. 

FIG. 2. Level diagram of a A-scheme three level atom. 

We first treat the preparation process of the atomic ground state superposition. As illustrated 
in Fig.3.a, in the lab frame, atoms in the beam moving along axis z with speed v, enter the 
coherence preparation region I, between x = 0 and x = xo. It is more convenient, however, to 
calculate the atomic state in the atomic center-of-mass (CM) frame. Let us consider an atom that 
appears at an arbitrary position x in the probe region .?I, at time t'. Referring to Fig.S.b, we see 
that the atom entered region I at a previous time t'- x/v and exits region at time t' - (x - xO)/v. 

We start from the effective Hamiltonian 

and the interaction 
P=-- hQole-'~ltlo)(ll - - h002 e-iyll 

2 2 10)(2) + H.c., (9) 



where we take 

(a) Lab frame 
- X 

0 Xo x, X , + L  

(b) CM frame 

FIG.3, Schematic illustration of the experimental situation in a) the Lab frame, and 
b), in the atomic center-of-mass frame. Regions I and 11 are the coherence preparation 
and the probe region, respectively. 

as the Rabi frequencies for the applied laser field given by 

elEl e-i',,lt e2E2 e-i*t E(t) = - 
2 +- 2 

+ C.C. . 

Taking the energy of state lo), $ = 0, the atomic state takes the form 

I$(t)) = ao(t) 10) + al(t) eiwlt 11) + a ~ ( t )  eiw2t 12). 

We obtain from the Schriidinger equation, 

where 
Aj E wj - Woj, j=1,2 

are the detunings. When SZ1, R2 << Al, Az, we may adiabatically eliminate level 10) by defining 



where 

Eq.(ll) then becomes 

The initial condition of the atomic state as given in Eq.(lO) is 

or that the atom is in state 11) when entering region I at time t' - xlv. 
When the atomic ground splitting w21 << A1, A2, and A1 k: A2, (Qoll w lQ021, we may define 

the light shift frequency 

the Raman Rabi frequency 

and the net detuning 
A E Al -A2  = (w1 -w2) -wzl. 

Eq.(13) can be readily solved by changing variables 

which yields when A << I@,(. 

Hence we obtain the atomic state for an atom which leaves region I at time t' - (x - xo)/v and 
will arrive at position x at time tl, as 

X - 20 2-20 e i $ ( t l - T )  e i w l ( t ~ - ~ )  1 1 )  1$(t1 - 7)) = Al(tl - -) 
V 

- e 0 ,-i(bl -w)(tl-  T )  - cos - 11) + ei%in - 
2 2 12) 7 



where 

is the Raman Rabi area. All common time dependent phase factors in Eq.(17) are left out, as 
these will not affect the atomic coherence (eI2). 

Now let us closely examine the probe region. As illustrated in Fig.4, a probe field 

EP e-iwt 
&p(t) = e2 y + C.C. 

is incident onto the atomic beam at region 11, and introduces an interaction Hamiltonian 

for the j-th atom at position x at time t. Here Q2 = (doz. e2)Ep/ti is again the Rabi frequency for 
the probe field, and = 10) (21 is the Schrcdinger picture operator for the j-th atom. 

FIG. 4. Schematic diagram of the homodyne detection of the probe-field-induced 
Rarnan transition field. 

It is convenient to use Heisenberg equations in the atomic CM frame for operators &)(z, t), 
etc.. which are 

and 

where 7 is the spol~taneous decay rate of state 10). 7 is small in the experiment so that noise 
terms in Eq.(20) will be neglected. Eq.(19) can be readily solved for the evolution between times 



t' - ( x  - xo)/v when the atom leaves the preparation region I, and t' in the atom frame: 

( j )  2 - $0 iwl [t-tt+ F]. # ( t )  = (t' - -) e 
v (21) 

@(t)  is now determined from @(t' - (z - xo)/v) whose expectation value will be evaluated for 
the atomic state I$(t' - ( x  - xO)/v))  in Eq.(17). Using Eq.(21), Eq.(20) is solved 

-a; eiwlt' eiw)l 1 x - xo W -2- 
2 

6g) (t' - + iA2 

where we assumed that 7 (x  - xo)/v >> 1. 
Note that in the lab frame, the j-th atom is at position x at time t'. Hence we obtain from 

Eq. (22) the atomic polarization 

where 

~ ( x ,  t') cx dlo bg) (2,  t3 + H.c., 
j 

under the assumption that the detuning A2 >> 7,  the spontaneous decay rate. 
Now if the atomic dipole moment dlo and hence P are orthogonal to the polarization of the 

probe field E,, the optical radiation field due to the atomic polarization P 

can be separated using a polarizer from E,. Were kl is the optical thickness of the atomic beam. 
Adding the vacuum field & of the same polarization as E*, we obtain for the positive frequency 

part of the total output field from the atomic medium 

&lY(t) = 4+' (1)  + hi+) ( t )  (26) 

where 
e-iwl A (j) x - 20 a+) ( t )  = iT&,(t) C 6 1 2  ( x ,  t - -)- 

j 
v 

7cx a k l p  (do2 ' e2) (do1 . e l )  
hA2 

is a dimensionless scattering coefficient, where p is the number density of the atomic beam, and 
el,  ez are the polarization unit vectors of the probe field E, and the scattered field Eat, respectively. 

E~~~ is mixed with a local oscillator field Em(t) .v Em e-'wlt in the homodyne detection 
scheme illustrated in Fig.4. The output signal n can be written in the operator form as the 
difference of photo-currents Pl and 1 2 ,  

6 ( t )  = Q t )  - Q t )  
a ELo ( t )  . EL:! ( t )  + ELO ( t )  E! ( t ) .  



Using Eq.(27), and (17) for the atomic state, we obtain 

where (bg) (t - y)) is evaluated for the atomic state i$(t - T)) given in Eq.(17). The photo- 
current difference (6 (t)) can be written in terms of the Bloch vector components (sl), and (s2) of 
Eq.(l). Then Eq.(29) can be further simplified 

(fi (t)) = MlTEEoEp 1 sin 9 cos[(wl - w2 - wzl) - (x - 20) 

v + 401, 

where M is the number of atoms in the probe region, and 4o some reference phase. Eq.(30) gives 
the usual Ramsey fringe pattern [5]. 

Now let us evaluate the fluctuations in the atomic Bloch vector components. We calculate the 
power spectrum of the homodyne output signal n (t) 

1 
S(w) = - / d r  (fi (t) ti (t + 7)) e-iwT. 

27r 

After some algebra, we obtain 

under the assumption that the net detuning A is small so that A . zl/v << 1, where xl is the 
distance between the preparation region I and the probe region II. I E L ~ ~ ~  is the intensity of 
the local oscillator field, and the intensity of the probe field in units of photon number per 
second. A(w) is a spectral function that centers at w = 0, with a spectral width of order of the 
transit bandwidth of the probe region. - 522),+., = cos 9, and (512 + &21)cp = sin 9 cos are 
components of the Bloch vector expectation values evaluated for the atomic state 19) given in 

Eq.(2). 
Now let us closely examine the four terms in Eq.(32). The first term is clearly due to the shot 

noise in the homodyne process. The second term is the reduction of vacuum shot noise level due 
to Raman absorption. It can also be viewed as the shot noise associated with the spontaneous 
Raman transition. The third term is proportional to M2, and centers at w = 0, represents the 
power spectrum of the stationary Ramsey fringe signal of Eq.(30). The last term is the phase #- 
dependent Bloch vector projection noise given in Eqs.(4) and (7). 

3 Summary 

In this paper, we developed the quantum theory for the experimental study of the Bloch vector 
projection noise. Eqs.(30) and (32) are the primary results. In a A-three-level atomic system, when 
two off-resonant Raman fields are applied, the upper state adiabatically follows the ground state 



amplitudes and the A-scheme is hence reduced to an effective two-level system. Decayless ground 
state coherence is prepared. By probing with one optical transition, and detecting the induced 
transition between the other ground state and the upper level with a homodyne technique, we can 
measure the Bloch vector components as given in Eq.(30). The photo-current difference in the 
homodyne scheme also yields the noise characteristics of the Bloch vector components as given in 
Eq. (32). 

An experimental study is currently being conducted using a wide-angled supersonic ytterbium 
(Yb) atomic beam. The 556 nrn transition of 17'Yb 'S -+3 P transition is used. In a 2.6 kG 
magnetic field, the '"Yb ground states of nuclear spin I = i are split by 2 MHz and form a 
A-system with the upper state IF = f ,  F3 = i). Doppler shifts in the corresponding o+ and 
?r transition in the wide angle atomic beam are Zeeman compensated [6] simultaneously by a 
quadrupole magnetic field. With this technique, the transition linewidth is narrowed to a few 
MHz for an interaction path length 1 of 2.5 cm. The Ramsey fringe pattern of Eq.(30) has been 
observed. 
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Abstract 

We present a theoretical investigation on new and interesting properties of the phonon 
polarization field in solids. In particular, non-classical aspects of the phonon population 
and an experimental scheme that would enable one to detect them will be discussed. 

1. Introduction 

In recent years much interest has been devoted to the investigation of quantum effects that have 
no classical analogs, of which optical squeezing is the most ubiquitous one 111. In view of the successful 
generation and detection of squeezed states of the electromagnetic (e.m.1 field it is natural to ask 
whether analogous states exist and can be observed for other boson fields. Condensed matter exhibits 
a variety of bosons that, via the interaction with an external field, can be excited into a squeezed 
state in much the same way as done with photons. 

It was previously pointed out 121 that in a phonon-polariton [3,41, a mixed mode in which an 
optical phonon is coupled to a photon, the photon component exhibits non-poissonian quantum 
statistics and optical squeezing [2,51. Owing to the quadratic nature of the transformation that takes 
one from coupled bare phonons plus bare photons to a polariton, where phonons and photons appear as 
exactly dual particles, we demonstrate that the phonon component of a polariton exhibits analogous 
properties. We further analyse an experiment that would enable one to detect such delicate features 
in solids with an appreciable effect. 

Many topics in solids combine wave and particle aspects. Exactly as the photon describes the 
particle nature of the e.m. field, the phonon describes the particle nature of a lattice vibration [6]. 
Under certain conditions these two excitations may interact: at resonance, transverse optical phonons 
and photons couple and the character of the propagation inside the crystal is entirely changed. The 
pioneering work of Pekar [n, Fano [41, and Hopfield [81 has shown that eigenstates of the coupled 
system of a lattice vibration and radiation are composite particles made of photons and phonons, i.e. 
phonon-polaritons (polaritons hereafter). This represents the quantomechanical equivalent of the 
classical work of Huang [91 who first derived the dispersion for infrared active optical lattice 
vibrations of a cubic ionic crystal, showing that the actual modes propagating in the crystal are 
radiation-lattice coupled waves. A typical dispersion curve (no spatial dispersion) for a polariton is 
shown in Fig. 1 below. 

3. Squeezed states 

Squeezed states are quantum states in which the fluctuations in one of the phase quadratures of 
the field are reduced below the vacuum noise limit [I]. Single and two-modes squeezed states have 



been extensively studied [I], and experiments [I] have already 
demonstrated their realizability in the case of an e.m. field. 

A 

If 6l and bl denote two independent bosons, one can 
introduce [2] a two-mode squeezed state for the mixed boson 

f l  = a14 +p1il as a displaced state of the squeezed vacuum 

B(y12) and $&,(r)are two-mode displacement and squeeze 
operators 1101, respectively, whereas the other symbols have 
their usual meaning. r ,  the squeeze factor, mediates the 

k coupling between the two modes 1 and 2. In the states I yI2) 
Fig.2 Schematic polariton energy these modes become so tightly correlated that they no longer 
spectrum. u p  ~p denote upper fluctuate independently by even the small amount allowed in a 

coherent or vacuum state [I]. 
and lower dispersion branches. wT 

and wL are transverse and logitudinal 4. Nan-cln~sicnl ~honons  
phonon resonant frequencies. 

The objective of this section is to show that a polariton 
state is a non-classical state and that the phonon counterpart 
associated with it exhibits non-classical features. We will 

restrict ourselves to two-mode polariton coherent states. In particular, these states are most suitable 
to describe the actual experimental scheme which we will discuss below. They can be constructed 

[2,11,12] from the polariton vacuum defined as ~ k l O ) p D ,  = 0, fi,, being the polariton 

transformation [8] 

Iqtk12 =Iykk~,  + e2i) y;ksr12 yields the average number of polaritons in the state (2), where the 

Ykkds are the eigenvalues of the bose operator fkk = kk +eid &,. The 6's and 6's are 
respectively photon and phonon bare field annihilation operators. The real parameters 

(a: ,P:,x:, Q, rk) are mode and material dependent [21. 

One should focus at this point on the structure of the polariton vacuum state. It has been the 
object of an exhaustive study not only by us [2,131, but also other workers I141 though within different 

contexts. In this rather interesting work a crucial common result emerged: the polariton vacuum lo),, 
is unitarily related to the bare particles vacuum 10) by a transformation of squeezing {1,101, that is 



rk gives the amount of squeezing in the mode k. It is then clear from Eq.s (2) and (3) that a polariton 
coherent state is an instance of the two mode squeezed state defined in Eq. (11, 1 and 2 referring to 
counterpropagating wavevector modes. 

It also follows from Eq.s (2) and (3) that for those kls for which S n 1 the state 117,,),, reduces 

to a bare particle coherent state, obtained by displacing the bare vacuum 10); but for those kts for 

which S # 1, owing to purely quadratic terms in the photon and phonon creation and annihilation 

operators, I q*t)pol acquires a significantly more complicated structure. The non-classical character of 

a polariton state is clearly related to the parameter 5. Owing to the wide breadth of values that r, 
can take on [2,5,151 one presume to create a polariton state with strong enough non-classical character 
so as to produce a sensitive result in the detection process. To this extent we recall from the results 

reported in [I51 that, for a GaSb crystal, rk may vary across the polariton spectrum between values 
bigger than 1 to values that are even two orders of magnitude smaller. 

Non-classical phonons in a polariton would be commonly characterised by a non-classical 
probability density distribution of the number of phonons in the polariton state [1,16]. In a polariton 
coherent state, unlike a polariton number state, no definite number of polaritons exists, but a well 

' defined probability corresponds to each polariton number with a distribution of probabilities known 
to be classical [1,2,161. Nonetheless, the distribution of its phonon component is in general not 
classical, with the most striking effects occurring where the squeezed structure of a polariton is mist 
enhanced. 

Fig.2 Probability distributions for observing n phonons in a Gdb-polmiion [ I S ]  for the two 

modes k, = 10 cm-' [r, = 2.03 (left) und kk, = 5.5.  lo3 cm-' [r, = 5 . lo-'] (onset) 

The phonon number distribution in a polariton coherent state consists indeed of two contributions 1151, 



a Poisson one (l"::F) whose structure remains as such through the whole spectrum, and an oscillating 

one (~1) whose size depends on the polariton dispersion. For those modes k's for which rk = 0 (Fig. 

Poirs. 
2 onset) Pcoh reduces to the Poisson distribution PCoh (classical limit), whereas for those k's for 

which rk # 0 (Fig. 2) the component @: will contribute with strong oscillations in the large n side 
of the distribution (non-classical limit). In this limit, quasi-periodic oscillations give rise to a 
remarkable effect of "quantization" in the phonon population which appears to be a distinctive non- 
classical feature of the phonon field in the polariton state (2). The two limits are illustrated in Fig. 2 
through a numerical evaluation of Eq. (4) for GaSb polaritons [15]. 

5. Detection 

The objective of this section is to address the question of how to probe the nonclassical 
characteristics of the phonon field of a polariton discussed above. Probing the phonon number 
distribution associated with a specific structure of the polariton state is problematic if one decides to 
use particle-counting techniques analogous to those generally employed in the optical domain. 
Conversely, it would be possible to probe directly the non-classical structure of the polariton state 
that yields a nonclassical phonon density distribution. 

The idea consists in establishing coherence between two scattering processes that involve the 
gbsorption of two different wavevector phonon modes. Coherence would then produce constructive or 
destructive interference depending on whether the polariton is in a non-classical or classical state. 
Thus a measurement of the rate with which the probe scatters off of the phonon field of a polariton 
would provide a signature of the non-classical character of a polariton state. 

This idea can be implemented as follorvs. Let a two-mode polariton be excited in a crystal, the 

modes referring to counterpropagating wavevectors of magnitude Ikol and frequency O,. Then let a 
two-components probe beam, having high coupling efficiency to the phonon part of the polariton 

(neutrons e.g.1, impinge on the crystal: both probe components have incident energy Oh,, but different 

wavevectors kd and k, (Fig. 3). The kinematics of the scattering process is described simply by the 
general conservation of energy and momentum (wavevector). Taking advantage of these laws, the 
input probe beam can be arranged so that the incoming probe is scattered into a given output state 

lout),  only when absorption off of the modes ko and -ko occurs as schematically illustrated in Fig.3. 

Fig.3 Scattering processes 
involving the absorption of 

Wine= Wf -Wo Win== W f - W o  two counterpropagating 
A A - L  a a -L --L A 

k,= kf - k o  k ,=  , k f + k o  , w phonons with energy a,,, 

and wavevectors ko and 

4 + -k,. With the probe in the 

- k0' w o  i - state l i n ) , ( ~ ~ .  5), the two 
processes can coherently 
interfere when the phonon 
field is squeezed. 



Now let the detector be arranged so that only a probe in a final state of momentum kf and energy Wf 

be detected and let the incoming probe be in a coherent superposition of states with wavevectors kd 

and ks, 

A,B and (Ppr are respectively the real amplitudes and relative phase of the two components probe. 
These parameters can be all made to be controllable. 

The relevant scattering rate (lowest order), when a polariton is initially excited into a coherent 
state, is 

denoting by f O the scattering amplitude for the process. The rate consists of two parts: one 

Poiss 
independent of ro = rko arising from the classical part of the distribution and one ro-dependent 

coming from the oscillating counterpart @z (cf. Eq. 4). The relative size of these two contributions 
does play a significant role in determining the magnitude of the scattering rate. Namely, when 

polariton modes I ko l are populated for which is ro = 0 Eq. (6) is approximated by 

In this case we can show 1151 that for suitable values of the amplitude A there exists a phase (Pp, for 

which oP"bS' + 0 SO that the lowest-order scattering can be completely inhibited. On the contrary, 

when polariton modes I kol are populated for which is ro # 0 the second contribution (- s: ) in Eq. (6) 

is not negligible and can be shown to be always positive defined [151. For these modes the rate turns 

out to be always greater or equal to &sc', but never 0. 

Hence rate measurements would permit one to discern the non-classical and classical character of 
a polariton coherent state. Destructive interference, able to suppress the rate with which a probe is 
scattered, is a signature of a classical polariton state, conversely constructive interference, yielding in 
principle a nonvanishing rate, is exhibited when the polariton state is non-classical (squeezed). 

6. Discussion 

Squeezed states, a familiy of pure quantum states having no classical analogue, have appeared 
in the literature since 1960's. In particular, extensive theoretical investigations for the realization of 
squeezed states of the electromagnetic field are also of long lasting. Only recently was the 
experimental realization of squeezed light with fewer quantum fluctuations than the vacuum 
achieved. To date there have been no reports, however, of the existence of non-classical states in 
condensed media; but the situation appears to be rather favorable for polaritons. This crystal mixed 



quasiparticle appears to be indeed a promising place where to look for non-classical states of light 
and other bosons, such as e.g. phonons, especially if extremely low loss crystals can be obtained. 

A further extension of this work would include considerations on the physical origin of the non- 
classical effects discussed above. Intermode correlation resulting from the quadratic transformation 
that takes one from coupled bare photon plus bare phonon to polaritons is a plausible origin for the 
squeezed structure of a polariton state and ultimately for the non-classical features of the phonon 
component associated with it. 

In a real material elementary excitations and quasi-particles normally experience dissipation 
and phase destroying processes that may degrade the structure of the non-classical state inside the 
medium. For a complete treatment and in view of the possible experimental realizability of our 
findings the model presented here should further be extended to include various dissipative processes 
that randomize the phase of coherent superposition states on very short time scales. Such an 
investigation would afford the inclusion of irreversible couplings on the basis of the master equation. 

Nonclassical states have great fundamental significance and are extremely appealing in their 
own right as a test of basic quantum theories as well as perhaps for practical applications. The idea 
of searching for non-classical states of phonons in solids is certainly expected to add a new dimension 
to the search for nonclassical behaviour. 
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Abstract 

The model describing three coupled quantum oscillators with decay of Rayleigh mode 
into the Stokes and vibration (phonon) modes is examined. Due to the Manley-Rowe rela- 
tions the problem of exact eigenvalues and eigenstates is reduced to the calculation of new 
orthogonal polynomials defined both by the difference and differential equations. The quan- 
tum statistical properties are examined in the case when initially: the Stokes mode is in 
the vacuum state; the Rayleigh mode is in the number state; and the vibration mode is in 
the number or squeezed states. The collapses and revids are obtained for different initial 
conditions as well as the change in time the sub-Poisson distribution by the super-Poisson 
distribution and vice versa. 

Introduction 

Recently quantum st atistical properties of scattered light in the Raman process have attracted 
considerable interest.[l, 21 In particular, the anticorrelation between the Stokes and Rayleigh lines 
in the resonance scattering have been examined[3, 41, and the generation of squeezed light have 
been considered.[5, 6, 71 At the same time, the strong quantum fluctuations of energy have been 
observed[8, 91 experimentally. It is known that the Raman scattering is an example of optical 
parametric process in which one of the interacting waves is a medium vibration mode of boson 
type[lO] (phonons). In the case of condensed matter, such a mode is usually in thermal equilibrium 
with a given temperature. The state of that mode is determined by different mechanisms of micro- 
scopic interactions in the medium and in some cases can lead to a strong number fluctuation.[ll] 
An example is provided by a polariton-type system in which the equilibrium state is a squeezed 
one. [l2] Evidently, the statistical properties of vibration mode must have influence on the statistics 
of scattered light. 

In this paper we consider the quantum properties of scattered light, and its dependence on the 
type of statistical distribution function of the vibration mode in the Raman scattering. For 
simplicity, we suppose the resonance steady state process with generation of inelastic Stokes 
component only. The initial state of Rayleigh mode is assumed to be a number state, while 
vibration mode can be initially in a number state or in a squeezed vacuum state. The Stokes 
field is initially in the vacuum state. The simplest model of three bounded oscillators is used for 
description of process under consideration.[l3] Using the representation of Schrodinger equation 
in terms of new orthogonal polynomials[14, 151, we examine the dynamics of the Mandel's factor 

'On leave of absence from Bogolubov Laboratory of Theoretical Physics, JINR, Dubna, Moscow Region, Russia 



of scattered light, and show the qualitative difference between two choices of initial states of the 
vibration mode. 

The rest of this paper is organized as follows. We first introduce the model Hamiltonian for 
which we calculate the dynamical properties. Evaluation of the eigenvalues and eigenfunctions, and 
a discussion of how to construct the time dependent Mandel's factor is given in the next section. 
We then present our results, and conclude with an emphasis on the experimental implications. 

2 Raman scattering model 
To discuss some of the interesting statistical properties of light we study the Raman scattering 
model described by the Hamiltonian 

where a+ and a$ are the creation operators for the Rayleigh and Stokes modes, respectively, with 
the corresponding frequences w and w,, b+ is the creation operator for the vibration mode with 
frequency wb, and y is the coupling constant. We consider here only the Stokes process because we 
will examine the case of low intensity initial field for which anti-Stokes component is negligible. 

As a consequence of the Manley-Rowe relations, an exact eigenstate of the above Hamiltonian 
can be-chosen as 

n 

where I... >, is the number state of g-th mode. The coefficients ATym are determined by the 
recursion relation[l5] 

[(n - j) (j + 1) (m+ j + l)]'I2 = xn"A;" - A::: [(n - j + 1)j (m + j)]*12 

Here xntm = (Enym - wTn - w,m)/y, and Envm is an eigenvalue of the Hamiltonian corresponding 
to the eigenstate given above. The above relation [eq. (3)] can be represented in the form 

Pz (x) = x P;lm (x) - q;ym P;l;l (x) ; with qj = (n - j + l ) j (m + j), 

defining some orthogonal polynomials P(x), which can be expressed in terms of the Bernoulli 
polynomials B as 

where the coefficients @ satisfy 

j - ) = j j j -  , and @;,j+i(n - j ) i  = jPi-i,j . 

In terms of the polynomials P(x),  the equation for eigenvalues E has now the form 

P;~:(X) = 0 ,  



while the coefficients of the eigenstate given by eq. (2) are determined by the expression 

The coefficient Xo is determined from the normalization condition. 
Having constructed the solution to the eigenvalue and eigenstate problem, it is not hard to 

examine the dynamics of the system. In order to discuss our results, we shall use the time- 
dependent Mandel's Q-factor defined as 

Here af and a, are the Bose operators for the Rayleigh mode, %(afa,) is the time-dependent 
number variance, and < ... >t denotes a time-dependent expectation value. Q(t) is positive in 
the case of super-Poisson statistics and negative for sub-Poisson number distribution. Zero value 
corresponds to the coherent state (Poisson distribution). Q-factors for the other modes may 
be defined similarly. The time dependent terms in the Mandel's factor must be calculated as 
corresponding expect at ion values with time dependent wave function. 

Fig. 1. Q-factor for Rayleigh mode initially in a number state with n = 2 (solid) 
and n = 10 (dashed), while the vibration mode is in a number state with m = 2. 

3 Results and discussion 

We have obtained qualitative differences in the quantum statistical properties of the Rayleigh 
mode depending on the initial state of the vibration mode. Using a number state for the Rayleigh 
mode, we consider uncorrelated (number state) and correlated (squeezed state) phonons in the 
vibration mode, and calculate the time evolution of the Mandel's Q-factor for the Rayleigh mode. 



In Fig. 1 we show Qr(t) when the Rayleigh mode is initially in a number state with n = 2 and 
n = 10, indicated by solid and dashed lines, respectively. The vibration mode is also in the number 
state with m = 2. We observe that for a small value of n Q,(t) periodically fluctuates between 
sub-Poisson and super-Poisson statistics. As n is increased, quantum statistical distribution of the 
Rayleigh mode becomes more of super-Poissonian. The situation is qualitatively different, when 
the vibration mode is a correlated one described by a squeezed state as shown in Fig. 2. Here 
the squeezed state of the vibration mode is prepared such that the mean number of phonons is 
2, viz., lvI2 = 2. Solid, and dashed lines refer to the Rayleigh mode in the number state with 
n = 2 and n = 10, respectively. Here, we note that the distribution of photons remain mostly 
super-Poissonian, for large enough n. Similar results are obtained when the Rayleigh mode is 
initially in a coherent state. 

To render the description of the vibration mode more realistic, we also use the Bose distribution 
at a given temperature. Here the mean number of phonons m may be regarded as a parameter. 
In Fig. 3 we show Q,(t) when the Rayleigh mode is initially in a number state with n = 2. Solid, 
dashed, and dotted lines refer to vibration mode parameter m = 0.1, 1, and 10, respectively. 
We observe that for small values of m (low temperature) Q,(t) periodically fluctuates between 
sub-Poisson and super-Poisson statistics. As m is increased, quantum statistical distribution of 
the Rayleigh mode becomes entirely super-Poissonian. 

We have also carried out calculations with large numbers of n, and observed the collapse-revival 
phenomenon occurs in the system for large enough n. Since an increase in n implies an increase 
in the number of terms in the various sums, it is not surprising to observe the collapse-revival 
patterns as in the case of the Jaynes-Cummings model.[l7, 181 It should be noted that similar 
behavior was obtained in the numerical calculations of Drobny and Jex[19], for the case of initial 
coherent state of the Rayleigh mode. In this connection, we emphasize that the collapse-revival 
phenomenon is a general property of the model described by the Hamiltonian irrespective of the 
initial state of the Rayleigh mode. 

Fig. 2. Same as Fig. 1 when the vibration mode is initially in a squeezed state with 
parameter lvI2 = 2. 



We have obtained a qualitative difference in quantum statistical properties of scattered light 
depending on the statistics of the vibration mode. Our choice of initial state of the vibration 
mode can be considered as simulating correlated and uncorrelated phonons, and also phonons at 
finite temperature. We conclude stating that the experimental investigation of quantum statistical 
properties of scattered light in the Raman correlation spectroscopy with different types of incident 
light (e.g., in the number state or strongly sub-Poissonian) may yield important information about 
the correlations in the medium as well as in the molecules. 

Fig. 3. &-factor for Rayleigh mode initially in a number state (n = 2). Solid, 
dashed, and dotted lines indicate vibration mode parameter f i  = 0.1, 1, and 10, 
respectively. 
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Abstract 

For a dissipative system with Ohmic friction, we obtain a simple and exact solution for 
the wave function of the system plus the bath. It is described by the direct product in two 
independent Hilbert space. One of them is described by an effective Harniltonian, the other 
represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the 
wave function of the system whose energy is dissipated by its interaction with the bath. No 
path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner 
line width theory follows easily. 

The simplest example of a dissipative system, an harmonic oscillator coupled to the environ- 
ment, which is a bath of harmonic oscillators, has been the subject of extensive studies[l-151. 
We shall show in the present paper that in a special case, the Ohmic case (to be defined later), 
the dissipative system can be exactly treated both classically and quantum mechanically, thereby 
clarifying the sense in which the wave function is describable by an effective Hamiltonian. In this 
treatment path integral technology is not needed, and our presentation is self-contained. 

We consider the problem discussed by Caldeira and Leggett (CL)[l], an harmonic oscillator 
system (the dissipative system) with coordinate q, mass M, and frequency (wi + Aw2)lI2, inter- 
acting with a bath of N harmonic oscillators of coordinates xj, mass mj, and frequency wj., where 
Aw2 is a shift induced by the coupling already discussed by CL. The Hamiltonian of the system 
and the bath is: 

The dynamic equation for operators in the Heisenberg representation leads to the following set 
of equations of motions: 

+permanent Address: Department of Physics, Notheast Normal University, Changchun 130024, P.R.China 

507 



Now, applying the Laplace transform[2] (the bars are our notations for the Laplace transform, s 
is the Laplace transform of time t), equations (2), (3) can be used to eliminate bath variables Ij 
to obtain the equation for q 

where qo, qo, xjo, xjo are the initial values of the respective operators in the Heisenberg represen- 
tation. Assuming the number of bath oscillators is large enough so that we can replace the sum 
over j by an integration over wj, the coefficient of the last term can then be separated into two 
terms: 

where p(wj) is the bath oscillator density. Following an argument similar to the one pointed 
out by CL[l] , the requirement that the system becomes a damped oscillator with frequency wo 
and damping rate 9 in the classical limit, known as the "Ohmic friction" condition, leads to the 
following constraint : 

By observing eq.(4) and eq.(5), it can be shown that the second term of eq.(3) leads to damping 
with the damping constant 9, while the first term of eq. (5) represents a frequency shift. If the 
frequency renormalization constant Aw2 is chosen to satisfy: 

the frequency is shifted to wo. Then equation (4) is simplified, and its inverse Laplace transform 
gives the quantum Langevin equation, valid at time t >= 0+: 

with the Brownian motion driving force: 

sin wjt 
f ( t )  = - C ~ j ( x j ~  C O S W ~ ~  f xjo-) . 

j W i  

During the derivation, in order to carry out the integral in eq.(5), we used the requirement of the 
inverse Laplace transform that s must pass all the singular points from right of the complex plane, 
and hence real(s) >0. 

Equation (8) and (9) are the equations of a driven damped harmonic oscillator, the solution 
of which is well known as a linear combination of the initial values at qo, qo, xjo, and xjo : 



and here w = (w: -r,1~/4)l/~ is the frequency shifted by damping. (All formulae are correct whether 
w is real or imaginary. To avoid a minor detail of the initial value problem, we have redefined the 
initial time as t=O+.) The explicit expression for bjll bj2, ail, Qi2, Pijl, and Pij2 are well known 
in freshmen physics. 

We emphasize that the use of the Laplace transform instead of the Fourier transform allows 
us to express q(t) and xj(t) explicitly in terms of the initial values, as in eq.(lO) and eq.(ll). 

The equations (10) and (11) serve as the starting point of subsequent discussions. We will 
proceed to find the ~ r e e n ' s  function of the full system,and hence the solution of the wave function 
in Schoedinger representation. The result tells us in what sense the damped oscillator is described 
by an efective Hamiltonian without the bath variables and gives its specific form, it also shows 
that under .this condition, the wave function can be factorized, and the main factor relevant to 
the damped oscillator is a solution of the Schoedinger equation with an effective Hamiltonian. 

Equations (10) and (11) are correct both in classical mechanics and in quantum mechanics in 
the Heisenberg representation. We notice that q(t) and xj(t) are both linear superpositions of 
qo, qo, Xjo,  kjo with c-number coefficients. The commutation rules between q(t), q(t), xj(t), i j ( t )  
are k(t) ,  Q(t)] = , [xj(t), ( t  = $, and operators q(t) and ((t) commute with xj(t) and 
xj(t). One can prove these commutation rules by two ways: (a). By direct computation, using 
the fact -that at t=O, they are correct. (b). By the general principle that q(t), b(t), xj(t), kj(t) 
are related by a unitary transformation to qo, qo, x;o, and ijo.  

Equation (10) and (11) show that the operators q(t) and xj(t) can each be written as a sum 
of two terms: 

where Q(t) and ci(t) are linear in qo and qo and independent of xjo and xjo, and tj and Xij(t) 
are linear in xjo and kjo, and independent of qo and go. Thus Q(t) and C;(t) are operators in 
one Hilbert space SQ, while t j( t)  and Xij(t) are in an independent Hilbert space Sx, and the full 
Hilbert space is a direct product SQ @ Sx. 

We shall first analyze the structure of SQ. We write that: 

To explicitly show that we are discussing the SQ space, we define Qo 1 qo, Qo e Po. The eigen- 
function of Q(t) with an eigenvalue denoted by Q1, in'the Qo representation, is easily calculated 
to be: ( M ) [ iM 

U Q ~  (Qol t )  = 2Th sin wt exp -- 2ha2 ( a i ~ :  - 2QoQl+ d(Qi1 t))] 1 



with 4 as an arbitrary phase, i.e., a real number. This eigenfunction is related to the Green's func- 
tion G(Q1, Qo;t,o) E< QilU~(t)lQo >, by uQl(Qol t) =< QolU;'(t)IQi > =< QOJU&(~)~QI >= 
G*(Ql, Qo; t, 0), where we denote the evolution operator by U(t), which is unitary when we choose 
the eigenvectors of Q(t) to be orthonormal. Thus we have: 

i 
Mwe sqt iM 

G(Q1, Qo; t1 O) = ( ) P [ ( I  - 2QoQl + $(QI.~))] 

Next, we shall determine the arbitrary phase q5(Q1,t), which is the phase of the eigenvectors 
of Q( t )  Using eq.(16), we find the commutation rule for Q and Q: 

Thus we define the canonical momentum P(t) as: 

and get the commutation rule: [&(t), P(t)] = ih. The eigenfunction of P(t) can be calculated in 
two ways: (a). We can calculate the eigenvector of P(t) in the Qo representation using eq. (20) 
and then use the Green's function eq.(18) to transform it into the Q(t) representation; (b). The 
commutation rule [Q(t), P(t)] = ih requires that ~ ( t )=- ih&,  so the eigenfunction of P(t) with 
eigenvalue PI is e x p [ i a ~ ] .  By comparing these two solutions, the arbitrary phase q5(Ql, t )  in the 
Green's function is determined to within a phase q5(t), which is independent of Q1. $(t) is an 
arbitrary real function of time, except that $(O) = 0 so that it satisfies the condition that at t=O, 
the Green's function becomes S(Q1 - Qo). Thus we obtain the Green's function in the SQ space: 

Mwebt 
exp - + b2e"Qi - 24001) - ] . (21) G(Q1, Qo; t.0) = ( 2wih sin wt ) [ iM 2ha2 

It is then straight forward to derive the Hamiltonian HQ using the following relation: 

and remembering that the matrix elements of UQ and U;' are the Green's function and its 
conjugate. The result is: 

p2 1 2 7; 2 HQ = e-qt- + -Mwoe Q + $(t) . 
2M 2 (23) 

Since q5 is arbitrary except that q5(O) = 0, we can take $(t) = 0. Therefore we have derived the 
well known effective Hamiltonian for the dissipative system. We emphasize that the expression for 
HQ is here derived, while in usual literature it is introduced by more or less heuristic arguments. 

Next, we shall analyze the effect of the bath. Similar to eq. (17) we obtain the eigenfunctions 
B~, l (~jol  t) for tj. Using Dirac's notation we have: Q~ug,  >= Q1luQ1 >, & l O , ,  >= tjllOtjl >. 



Thus luQ > IT @ (Btj > is an eigenvector of q(t), with eigenvalue of Q + 6. In other words, 
j j 

the eigenvector of q(t) with eigenvalue q is (q, {tj} >= (u > ~ @ 1 6 t ,  >. 4 - x t ,  j 
j 

If initially the wave function is 1 Qo >= > > @ lxjo >, to calculate the wave function at 
j 

time t ,  we should expand Qo in terms of the eigenvectors Jq, itj) >, i.e., we should calculate 

Then the wave function in the Schoedinger representation at time t is 

Notice that $(Q, t) of eq.(24) is the wave function in the Schoedinger representation with the 
effective Hamiltonian eq.(23). Hence we have connected the effective Hamiltonian approach to the 
dissipative system problem with the other approaches that take both the system and the bath into 
account. We also notice that even though our Q(q, itj), t) is in a different representation from that 

of Q(q, {xj), t), the usual probability interpretation is still valid: J J ... J I Q ( ~ ,  {b},t)12 >dt j  is 
j 

the probability density of finding the particle at q. Since this solution is very simple, it provides a 
simple way to analyze other complicated problems, e.g., study the influence of Brownian motion 
on interference, which we shall not elaborate because of space. 

Under certain conditions, eg., at low temperature and when the system q is in highly excited 
states so the range of q is large enough that for all the values of tj which do not have vanishingly 
small probability, q B I x tjI, we can approximately write: Q(q, {GI, t) = $(q, t) xj(&,t). 

j j 
That is, the wave function is factorized, the dissipative system q can be described by the wave 
function $(q, t) only, and the Brownian motion can be ignored. Therefore it is interesting to 
examine the width of the argument of the wave function $, due to the Brownian motion, i.e., 
the mean value of (xtj)2 at time t. It can be calculated using its expression in the Heisenberg 

j 
representation as introduced by (10) and (18). At temperature T, this width is : 

This width is zero initially, then approaches its final equilibrium value in a time interval of the 
order of l/q. At low temperature limit, the equilibrium width is simplified to: 

If the damping rate q is much smaller than the frequency of the oscillator wo, this width happens 
to become the same as the width of the ground state of the system 6/(2rnw). 



Finally, it is interesting to see the distribution of the dissipated energy of the harmonic oscillator 
in the bath, and check if it agrees with the Weisskopf-Wigner line width theory[l6] For simplicity, 
we assume zero temperature. To calculate the energy dissipated by the system into the j'th bath 
oscillator, we use eq.(ll) and its derivative to obtain the expression of xj(t) and pj = mjij(t), 

which are then substituted into the expression of the energy of the j'th oscillator: hj = & + 
$ m j w ~ ~ ~ .  We then calculate the expectation value of hj, assuming initially the system is in the 
n'th excited state, and the bath oscillators in the ground state. We calculate the contribution to 
the expectation value of hj from the system, by keeping only terms which depend on qo, and qo. 
The result is then the energy disspation by the system into the j'th oscillator. When multiplied 
by the density of states p(wj) eq.(6), it gives the dissipated energy spectrum. It is a function of 
wj, with a narrow peak near the resonance wj = w, if the damping is small, i.e., if 7 << w. It is 
oscillatory with a frequency of 2wj. Its time average over a period is : 

where A(wj) varies slowly near the resonance, i.e., over the width 712 of the peak it changes very 
little. Therefore, we can replace wj by w near the peak, and the result is simplified to: A(w)  z 1. 
Thus eq.(29) shows that the dissipated energy has a Lorenzian distribution near the resonance, in 
agreement with the Weisskopf-Wigner line width theory. 
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Abstract 

Some features of the excitation of multilevel quantum systems under the action of elec- 
tromagnetic pulses which are shorter than the inverse frequency of interlevel transitions are 
considered. It is shown that the interaction is characterized by a specific type of selectivity 
which is not connected with the resonant absorption of radiation. The simplest three-level 
model displays the inverse population of upper levels. The effect of an ultrashort laser pulse 
on a multilevel molecule was regarded as an instant reception of the oscjllation velocity 
by the oscillator and this approach showed an effective excitation and dissosiation of the 
molecule. The estimations testify to the fact that these effects can be observed using modern 
femtosecond lasers. 

1 Introduction 

Progress in ultrashort pulse technique allows production of laser pulses of 5-10 femtosecond dura- 
tion, i.e., of a few periods of elecl~romagnetic wave [I]. The interaction of so short light pulses with 
matter must differ from the case of quasi-monochromatic resonant radiation because the pulse du- 
ration becomes shorter than the inverse frequancy of the transitions between vibrational levels of 
molecules w i l  or optical phonons in crystals, and under such conditions the result of interaction is 
practically independent of the real structure of matter. In particular, a Raman-active medium can 
be effectively excited by a single femtosecond pulse because its wide spectrum initially contains 
Stokes and anti-Stokes components of the field [2, 31. 

We shall discuss here two effects which may occur if the light pulse is shorter than the time 
of vibrational transitions between molecule levels, i.e. under the condition ~ ~ w d  << 1. The first 
effect displays a specific selectivity of vibrational excitation of molecules by ultrashort light pulses; 
which is not connected with resonant properties of matter. The second effect is a possibility of 
effective excitation of high vibrational levels and even dissosiation of molecules in the field of an 
ultrashort electromagnetic pulse. 



2 Selectivity of Molecule Excitation by Nonresonant Pulse 
Radiation 

The selectivity of molecule excitation is connected with the fact that the probability of transitions 
between molecule levels cannot be presented already as a function of slowly varying amplitude 
E(t) of the light field similar to the case of quasimonochromatic resonant radiation but depends 
on its real temporal structure &(t). The equations for ultrashort pulse propagation, in their turn, 
impose restrictions on such integral values as J_', E(t)dt. As shown in Ref [4], the "area" of 
electromagnetic wave of limited aperture in a free space goes to zero, Jr, E(t)dt = 0. It results 
from the Gauss' integral theorem in the case of electromagnetic wave propagation in a space 
without electric charges. If prim is a dipole moment of the transition between levels m and n, the 
amplitude of the transition n -+ m in the dipole approximation is of the form 

and tends to zero for ultrashort pulses. 
It means that excitation of vibrational levels of molecules by femtosecond pulses is mainly due 

to two-quanta processes over distant virtual levels 

1 
where rnm = - pnkpkm ( + ) is a composite matrix element responsible for 

2r3 k Wkn - W Wkm + W  
Raman effect at the transition n + m, and the probability of excitation in the second order 
perturbation theory is proportional to the pulse energy J:, I E(t)12 dt # 0. Thus, an ultrashort 
pulse provides "inverse" selectivity of molecule excitation - the transitions forbidden in the dipole 
approximation are stimulated much more effectively than the allowed ones. 

As an illustration let us consider three-level quantum system, i.e. three lowest levels of the 
deformational vibrations of the C02 molecule (00'0,01'0 and 02'0). The model assumes that the 
condition of the ultrashort interaction Tpwij << 1 holds for i,j=1,2,3 and the other levels are distant 
in the energy scale, i.e. lwik - wl >> ql, k # 1,2,3. Levels (1) and (3) are of the same parity and 
the transition between them is forbidden in the dipole approximation. 

The condition rpwij << 1 implies of course that the interaction of an ultrashort pulse with 
matter is coherent (rp << TI, T2, pulse duration is shorter than times of longitudinal and transverse 
relaxcation) and can be described by equations for the probability amplitudes of the molecule to 
be at the level j(=1,2,3): 

Let the system be at the ground level (1) at the initial instant of time, i.e. al(t = -w) = 1 
and a2(t = -00) = a3(t = -m)  = 0. Under the action of ultrashort pulse, the transitions onto 



level (2) occur due to the fast oscillating field E(t) which do not have a constant component, but 
transitions onto level (3) occur due to the interaction quadratic in field and E2(t) # 0. We can 
assume that during the interaction the redistribution of population will be provided mainly by 
the transitions over level (3). Indeed, by integrating the second equation and saving here the 
amplitudes 61 and 63 whose time dependence is slow with respect to E(t), one obtains 

In other words, the population of level (2) is small (a2 - pijE/Kw) because of a nonresonant 
interaction of this level with the field of the ultrashort pulse. After substitution of a2(t) into the 
first and third equations one can obtain equations for slow components of the amplitudes iil and 
?i3, which do not contain parameters of dipole transitions 1 4 2 and 2 -+ 3: 

It is interesting to note that the solution of these equations 

iil(t) = cos @(t.), 
ii3(t) = i sin @(t), 

coincides formally with the solution for resonant coherent excitation of two-quanta transition, 
although in our case the interaction is nonresonant in principle. 

The population of molecule levels after the action of ultrashort pulse is determined by the 
following expressions: 

These equations display an evident selectivity of the interaction of an ultrashort light pulse 
with the three-level quantum system which produces the population inversion on the transition 
3 + 2. If the energy of an ultrashort pulse corresponds to the value of the rotation phase 
!l!, = 3 J:, ~ E I ~  dt = f (2n + I), n = 0,1,2,. . . the quantum system will be moved onto the 
upper level (3) and all the energy stored can be picked up, for example, by two sequential T-pulses 
which are resonant to transitions 3 + 2 and 2 -, 1. 

Let us make some estimations for the molecule C02 .  It can be easily shown that if the initial 
population n2o of the level (2) is not equal to zero, the inversion on the transition 3 + 2 appears 
if Q, > (n20/nlo)1/2. For a COz molecule hw32 N fiwZl N 700cm-I and under normal conditions 
n20/nlo z 10%. Using data on Raman cross section (r13 21 cm3, X = 488 nm 151) one can 
estimate that a 10-femtosecond pulse provides inversion between vibrational levels 02'0 and 01'0 if 
its power exeeds 1012 W/cm2. This value can be easily satisfied by modern femtosecond technique. 



3 Dissociation of Molecules by Femtosecond Pulses 
The possibility of effective excitation of high vibrational levels makes topical the problem of 
transformation, for example, dissociation of molecules under the action of ultrashort laser pulse. 
Usually, collisionless excitation and dissociation of molecules by resonant radiation are investigated 
on the basis of the chain of equations for amplitudes of population probabilities of vibrational 
levels. This analisis is very complicated because of a large amount of levels which should be 
under consideration. In our case the condition T~W,,,,, << 1 means that the result of interaction 
is not sensitive to the real vibrational structure of molecule spectrum and makes it convinient to 
investigate directly the equations for waive functions of vibrational Harniltonian regarding it as a 
function of the distance between nuclei. The statement of the problem is quite similar to that 
solved by A. Migdal on excitation and ionization of atom after its nucleus received an instant 
impact [6, page 1781. For simplicity we consider a two-atom molecule and assume the pulse to 
be so short that during its action the nuclei acquire some velocity but their positions relative to 
electrons have no time to change. If at the initial instant of time the molecule is at  the ground 
state then just after the pulse action it remains at the same vibrational level and its wave function 
is related to the initial one as 

where P = - a  (s) !rm_ I ~ ( t )  J2 dt is the impulse transmitted to molecule under the action of 
ultrashort 6-pulse; KO is polarizability of the molecule, Q is vibrational coordinate. 

The quantum state described by the wave function yo(&, oo) is not already a stationary state of 
the molecule after receiving an instant impulse P. The transition of the system to the stationary 
state is accompanied by excitation of the upper vibrational levels and the probability to find 
molecule at the level v is determined by the coefficient of expansion of cpo(Q, oo) into series in 
terms of the stationary wave functions of the vibrational Hamiltonian: 

It is evident that the higher the pulse energy and consequently the transmitted momentum P, 
the more is the difference between the quantum state of the molecule just after the pulse action 
and the stationary state and the higher are the levels to be involved into transition of the molecule 
to its stationary state. 

Let us display it in framework of the model of anharmonic Morse oscillator, i.e. a particle 
of mass M which is moving in a field wth potential energy U ( R )  = D (e-2ffR - 2e-"Rd) [6]. The 
spectrum of positive energy of this particle is continuous and corresponds to a dissociate molecule. 
In the negative energy region there is a finite series of vibrational levels which is convergent to the 
dissociation energy D: Eu+l - Ev = hwo - v - hawo, where wo = (El - Eo)/h = a(JZii;lZT- a t r ) / ~  
is the fundamental frequancy of the oscillator and Awo = cr2h/M is the anharmonism of the 
molecule. The wave functions of Morse oscillator i re  of the form cp, (Q) .v e-el2ts F (-v, 2s + 1, t), 

2 2MD c e - o ~ ,  s + v = SO = a + 1 N and N is a total number of the oscillator levels. where 6 = ,ti Awo 2 - 
The problem of excitation of anharmonic oscillator levels by an ultrashort radiation 6-pulse 

has an exact solution. The probability of finding the molecule at the level v is 



or, neglecting the difference between so and N, - has the form 

1 2 m  where /3 = P(ah)-I ln- [ ah ] N J?? 1 E 1' dt. 
For weak ultrashort pulses (P -, 0) the probability of exciting vibrational levels is small and 

proportional to the square of the pulse energy: 1 - woo = p2$/ (2~) .  
With elevation of the pulse energy the population of high vibrational levels increases and, 

therefore, the dissociation of the molecule becomes more probable. In the limit of superpower 
ultrashort pulses (,8 >> 2N)  the probability of dissociation is exponentially close to unity: 

Thus, under the action of femtosecond laser pulse molecules can be effectively excited on high 
vibrational levels, and moreover, when the pulse energy exceeds the threshold 

the inversion takes place between levels v and v-1. 
In conclusion let us present some estimations. ?or the CO molecule which is active in Raman 

scattering we shall estimate the energy of the laser pulse which provides inversion between the 
lowest levels (v = 1) 4 (v = 0). Using data on Raman cross section (ano/aQ 3 10-16m2, X = 
488 nm[5]) and spectroscopic parameters (D = 83777 em-', a = 2.3904 A-') [7] we can estimate 
the pulse energy required for the inversion to be of the order of 0.1 J/cm2. 

The last estimation is connected with the energy of the ultrashort pulse which is necessary 
for an effective (wD N 1) dissociation of a two-atom molecule. As an example we consider the 
molecule of J2 whose dissociation energy is relatively small (D z 1.5eV) and is of the same order 
of magnitude as the spectral width of a femtosecond pulse. From the condition ,8 2 2N we can 
obtain that the pulse energy required for dissociation exceeds 1 J/m2. This requirment is much 
stronger than the one for the inversion on the lowest levels but it can be satisfied by the modern 
femtosecond technique. 
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Abstract 

Two results concerning photon pairs, one previously reported and one new, are summa- 
rized. It was previously shown that if the two photons are prepared in a quantum state 
formed from [A) and IA') for photon 1 and IB) and IB') for photon 2, then both one- and 
two-particle interferometry can be studied. If v; is the visibility of one-photon interference 
fringes ( i  = 1,2) and 012 is the visibility of two-photon fringes (a concept which we explicitly 
define), then 

v; + 5 1. 

The second result concerns the distinguishabilit:. of the paths of photon 2, using the known 
2-photon state. A proposed measure E for path distinguishability is based upon finding 
an optimum strategy for betting on the outcome of a path measurement. hfandel has also 
proposed a measure of distinguishability PD, defined in terms of the density operator p of 
photon 2. We show that E is greater than or equal to PD and that v2 = (1 - E ~ ) ' / ~ .  

1 Introduction. 

The idea of an entangled quantum state of a composite system - i.e., a state not factorizable 
into a product of one-particle states - was discovered by Schrtidinger in 1926, and has been 
intensively studied as a result of analyses by Einstein-Podolsky-Rosen and Bell. A very convenient 
method for preparing entangled photon pairs by parametric down-conversion in laser-pumped 
nonlinear crystals was discovered by Burnham and Weinberg in 1970. Their discovery permitted 
the development of two-photon interferometry by Mandel and his school, Alley and Shih, Franson, 
Rarity and Tapster, Chiao and his school, and others.' 

For subsequent discussion. it will be useful to refer to a schematic two-photon apparatus (Fig. 
I), in which a pair of photons emerges from a source S, one of which propagates in beams A and/or 



A', and the other in beams B and/or B', where the locution ''and/orW is a brief way of referring to 
quantum mechanical superposition. For the work on path distinguishability that we shall report, 
this partial description of Fig. 1 provides the essence. For the work on the complementarity of 
one-photon and two-photon interference, some further elements are indispensable. There is an 
ideal symmetric beam splitter H I  upon which each of the beams A and A' impinge, from which 
emerge beams U2 and L2. We can speak equivalently of a photon "emerging" in beams U1, L1, 
U2, L2 or of its LLdetection by an ideal photo-detector" in the respective beams. Finally, there are 
vasiable phase shifters 41 and $2 inserted in beams A and B. 

FIG.l. Schematic two-particle four-beam iilteferoineter 

2 Complementarity. 

It was noticed in the past, for instance by Harne and Zeilinge~.~ t11a.t when the photon pair is 
prepared in the entangled stake I * ) ,  

then probabilities of single detections in the va.rious elllerging 11ea.m~ a.re independent of phase 
shifts q51 and q2? specifically. 

1 
P(&-1) = P ( L , )  = P(L-2) = P(L , )  = , . - (2)  

whereas the probabilities of joint detection depend on ol and 0 2 .  specifically, 

1 
P(ullT2) = P ( L l L 2 )  = -[1 - C O S ( $ ~  + 

4 ( 3 4  

Since the probabilities in Eqs.(Sa. b) vary from a minimum of zero to a non-zero maximum value, 
while those of Eq.(2) do not vary a.t all. it is reasonable to extend standard optical terminology 
and say that the visibility of one-photon "fringes" is zero and the visibility of two-photon fringes 



is unity, where "fringe" is a generic way of referring to the dependence of detection probabilities 
upon variable phase shifts. When the quantum state of the two photons has the product form 

then 
1 

P(Ui) = 5(1 - sin&), i = 1,2, 

1 
P(Li) = Z(l + s ink ) ,  i = 1,2, 

and the probabilities of joint detection are the products of respective single detections: 

1 
p(UlU2) = P(U1)P(U2) = $1 - sin&)(l - sin&), etc. 

It is reasonable to  say in this case that the visibility of one-photon fringes is unity, but the visibility 
of two-photon fringes is zero (the latter statement in spite of the fact that P(UlU2) does vary with 
$1 and $2, because of the consideration that this variation is not a genuine two-photon effect but 
is derived from the one-photon variation). 

The two extreme cases of I@) and I@) suggest that there is a complementarity of one-photon and 
two-photon interference visibility. Jaeger, Horne, and Shimony3 raised the question of a general 
complementarity relation, holding for any two-photon state expressible in terms of IA), IA'), 1 B), 
I B') . A necessary condition for investigating this question was to define explicitly the "one-photon 
visibility" v; (i = 1,2) and the "two-photon visibility" y 2 .  The former is straightforward, simply 
adapting the standard optical concept introduced by Rayleigh. We state it here only for the beams 
Ul and U2, but parallels hold for L1 and L2 

For vl2 Jaeger et  al. suggested 

The "corrected" joint probability P ( u ~ u ~ )  is defined as 

where the second term on the right hand side removes the variability that is derived from the 
single probabilities P(Ul), P(U2) and the third term is a correction against excessive subtraction 
in order to agree with intuition in the extreme cases of I*) and I@) .  



In order to exhibit the desired complementarity relation, it is essential to calculate vi and vll  
in the most general two-photon state that can be prepared with IA), IA') as basis states for photon 
1 and IB), I B') as basis states for photon 2, namely, 

Note that only three phase angles A, p, v are used, because an overall multiplication by a phase 
factor does not change the quantum state, and this fact can be used to choose the coefficient of 
1A)IB) to be real. In Ref. 3 it was fallaciously argued that a basis change of 

ip' - IA) = erld) , IA') = e IA') , 

1 B) = e'" 18) , I B') = eid 1 B') , 
can be used to express 10) in terms of IA), (A'), I B), I B') with real coefficients. But Prof. Sheldon 
Goldstein pointed out to us (private communication) that in general only two of the three phase 
angles in Eq.(lO) can be eliminated by a basis change, and therefore the greatest simplification 
that can be achieved in full generality retains one explicit phase angle, for instance, 

So far, we have not demonstrated a complementarity relation for the general case of Eq.(12). We 
therefore report the result in the restricted case of T = 0, which we have investigated. As stated 
in Ref. 3, Eqs.(29-32), we obtain 

whence 

or equivalently, 

Inequalities (15a,b) are our expressions of the complementarity of one-photon and two-photon 
visibilities. Although we have derived them only for the special case of T = 0, we are confident 
that they hold for any T and hence for the most general 10). Work is in progress on this important 
question. 



3 Path Distinguishability. 

We return now to Fig. 1 and ask a new question. Suppose that we are allowed to make any 
observation on photon 1, which is the left-going photon that propagates in A and/or A'; what is 
the best procedure for predicting which detector will be triggered by photon 2, if ideal detectors 
are inserted in beams B and B'? This question is related to a question recently raised by Mande14 
concerning the distinguishability of the path of a photon that propagates in beams B and/or B'. 
There is, however, an important difference between Mandel's question and ours. He assumes only 
that one knows the density operator p characterizing an ensemble of photons in the beams B 
and/or B', and he asks for a measure of distinguishability expressed in terms of p. By contrast, we 
ask for a measure of distinguishability based upon the quantum state 10) of the pair of photons 
1 and 2, together with the outcome of an arbitrary measurement upon photon 1. It is possible to 
compare our result with Mandel's, because when 10) is given a density operator for photon 2 can be 
calculated5 by tracing out the appropriate variables of photon 1. But, of course, if only p is given, 
there are many possible preparations of an ensemble of photons propagating in beams B and/or B' 
that would yield the same p. In other wcrds, the preparation of the ensemble provides additional 
information that is not included in p. Consequently, we anticipate a discrepancy between Mandel's 
measure of path distinguishability and ours. 

As a preliminary to our proposed measure of path distinguishability we suppose that an ob- 
servable O is measured on photon 1. Since the space of states that we have allowed for photon 1 
is two-dimensional, there is no loss of generality if we restrict the observable 0 to the form 

where 141) and (42) are orthonormal kets in the space spanned by (A) and IA'). (We are grateful 
to Prof. Lev Vaidmm for suggesting that we consider any 0, rather than just (A)(AI - IA')(AII 
as in our original preprint.) The eigenvalues of 0 are +1 and -1. Now formulate a strategy for 
betting on whether the detector in team B or in beam B' is triggered, letting the strategy depend 
upon the quantum state ( 0 )  of the photon pair and the outcome +1 or -1 of measuring 8. If in 
a single case the correct detector is predicted, the observer wins one unit of utility; if the wrong 
detector is predicted, the observer loses one unit of utility. Once the strategy is specified, it is 
straightforward to calculate from ( 0 )  the average gain per bet. Let Eo be the largest average gain 
thus calculated as the strategy is varied but O is fixed. Finally, our measure of distinguishability 
of paths, which we shall label E, is defined as 

E = rnaz Eo (over the set of allowed obserz~ables) . (17) 

E is thus the qua.nt.um mechanical estimate of the gain per bet when the optimum allowable 
strategy is followed, the bets being made concerning paths B and B'. 

To ca,lcula.te Eo we first rewrite I@), assumed to be normalized, as 

I@) = lx1)lB) + 1x2)1B1> , (18) 

where, as before, IB) and (B') are orthonormal, but Ill) and 1x2) need not be; however, 



With no loss of generality we can assume that 

which can be achieved, if necessary, by interchanging the labels B and B' of the two paths of 
photon 2. Then we can write 

1x2) = .\/XI) + 1x3) , (214 

where 

and 

If we define 

then the I%;), defined by . . 

are orthonormal. Furthermore, 
Ni( l+ !XI2) + N3 = 1 . 

Any basis in the space of allowable states of photon 1 can be expressed as 

where 
Ip12 + +vI2 = 1 . 

This basis defines the observable O of Eq.(16). It will also be useful to write 

an observable in the allowable space of states of photon 2; clearly D is observed to have values +1 
and -1 according as photon 2 is detected in path B or B'. 

If O is the observable chosen to be measured, then there are four pure strategies for bets on 
the path of photon 2: 

(1) If 0 = +1, predict B = +l; if O = -1, predict B = -1. 
(2) If 0 = +I, predict B = -1; if O = -1, predict B = +l. 
(3) Predict B = +1 regardless of the vaIue of 0. 
(4) Predict B = -1 regardless of the value of 0. 



In addition to these pure strategies there are mixed strategies, consisting of following (I), (2), 
(3), (4) with arbitrary probabilities summing to unity. But since the game is not being played 
against a rational o ponent, the average gain in a mixed strategy cannot exceed the maximum of 
the average gain E i  of the pure strategies: i = 1,2,3,4. These are calculated as follows: 

E:) = P(O = 1 and B = 1)+ P ( O  = -1 and B = -1) 

where 

(3) Et)  = P(B = -1) - P(B = +1) = -Eo . (30) 

Note that Eg) and Et)  are independent of 0. Then 

Eo = m a s { l ~ ( ~ p ~ ~  - Iv12) - TIpIIvI C O S ( ~ A  + 0" - Op)l , IS - 2~31). (31) 

In view of Eqs.(l7) and (31) one finds the measure E of path distinguishability by investigating 
Eo as p and v are varied, subject to Eq.(24c). We first note that for any (0) there is an 0 such 
that 

1~8'1 r I E ~ ~ ) I  , 
so that the second option in Eq.(31) can be neglected when we maximize over all possible 0. To 
prove these statements, it suffices in Eqs.(24a,b) to let p = 1 and v = 0, determining an 0' such 
that Eqs.(26), (27), (28) yield 



and 
IE~!I = INl(l - IA12) - N31 . 

Since Nl and N3 are non-negative, and (1 - IAI2) is non-negative by Eq.(2lc), we obtain 

the rhs being the same as IE$)~ for all 0. E is therefore obtained by maximizing the first option 
of Eq.(31) for allowable p and v, and the result is 

By Eqs. (27a), (27b), and (23) E can be rewritten as 

We can now make a comparison with Mandel's4 measure of path distinguishability Po. Mandel 
notes that in a two-dimensional Nilbert space, any density operator p can be expressed uniquely 
in the form 

p = PID PID + PD PD , (38) 

where p~ is diagonal in the I B) ,  I B') basis, i. e. 

(after adaptation to our notation), 

and 
PID 2 0, PD 2 0 .  

Since p~ is a diagonal density operator in the specified basis, one can prepare an ensemble with 
a definite proportion c ~ l  in the state I B)  and a definite proportion c22 in the state I B') such that 
this ensemble is represented by p ~ .  It is this consideration that leads Mandel to identify PD as 
the degree of path distinguishability when p is given. Mandel also shows that 

where p;j is the i jth matrix element of p in the I B) , I B') basis. 



Now let us consider the 10) of Eq.(18), which we can rewrite as 

By the standard procedure for writing the density matrix of particle 2 of a two-particle system: 
we obtain (with the help of Eq.(23)), 

p11 = Nl , 

Hence, Eq.(37) can be rewritten as 

which can be shown as follows to be greater than or equal to PD of Eq.(42). 

Proof : First note that if x and y are real numbers in the interval [O,1] which sum to unity, 
then 

1 
X Y S ~ ,  (46) 

from which it follows that 

Furthermore, since, by Eq.(23) 

we have 
1 

Ip12l = NllXl 5 5 . 
From Eqs.(47) and (48) we obtain 

where the lhs of this inequality is E2 and the rhs is Pi. Since both E and PD are non-negative, 
it follows that 

E > P D .  (50) 

We note that when E is unity, so is Po: that is, perfect distinguishability (in our sense) on 
the basis of the two-photon state 10) implies perfect distinguishability (in Mandel's sense) on the 
basis of the density operator. There is an intuitive reason for this agreement: E = 1 implies that 
there is perfect correlation between the behavior of photon 1 and the entrance of photon 2 into 
IB) or IB'), but perfect correlation requires the orthogonality of 1x1) and 1x2) in Eq.(18). This 
orthogonality, in turn, guarantees that the density operator of photon 2 is diagonal in the I B), I B') 
basis. 



If we look at the other extreme, however, we find that Po = 0 does not imply that E = 0. 
Again there is an intuitive reason. When PD = 0, then p is a pure case, derived from a quantum 
state of the form 

I$)  = clB) + cllB1) , (51) 

so that 

Then 

and this vanishes if and only if lc12 = !dl2 = f . But when the amplitudes of JB) and JB1) in the 
pure state I$)  are equal, there is no strategy for betting on the path that will yield a net gain on 
the average. On the other hand, when lcI2 and (dl2 are unequal, the strategy of betting on the 
path associated with the larger coefficient will yield a net gain on the average. The advantage 
of our E over PD is the ability of the former to take advantage of inequalities in the amplitudes 
associated with the two paths. 

Mandel also relates path distinguishability to the visibility v2 of the interference pattern, where 

He obtains the inequality 
212 < PID = 1 - PD , 

with equality holding only when pll = p22. We obtain from the expressions for E and v2 in 
Eqs. (45) and (54) the equation 

which holds for any preparation of an ensemble of photons in states IB) and IB1) derived from 
a two-photon state of the form 10). Hence, for the preparation of photon 2 that we have been 
studying, the visibility vz is a natural measure of path indistinguishibility. 
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We recently proved a theorem extending the Greenberger-Home-Zeilinger ( G m )  
meorern from multi-particle systems to two-particle systems. This proof depended upon 
an auxiliav assumption, the E P W  assumption (Emptiness of Paths Not Taken). 
According to this mumption, if there exists an Ehstein-Rom-Podo1sb (EPR) element of 
reality that dekmines that a path is empty, then there can be no entity associated with the 
wave that travels this path (pdot-waves, empty waves, etc.) and repom s o m a t i o n  to the 
mpE@de, when the paths mombine. We produce some fu&er evidence in support of 
this assumption, wfich is c true in quan~um theory. The alternative is that such a 
port-wave theoy would have to vblate EPPI localitgr. 

g to extend the GMZ (Greenberger-Norne-Zeilinger) Theoremly2 
down to two-particle sys&ms3, we produced a proof that b e  realized depended on a 
assumption, wKch went beyond the lEPR (Einstein-Podolsb-Wosen) assumptions4. 
assumption was the EPW assumption-- the Emptiness of the Paths Not Taken. 
asswption ruled out the possibility of any kind of information-bearing entity traveling 
down a path, provided one could produce an EPR element of reality connected with the 
path being empty. The EPR criterion depends on one being able to perform an experiment 
far away, without in any way affecting any particle that could possibly be travelling down 
this path. Then if this experiment shows that the path is empty, the path must be truly 
empty, according to EPR, since one has not interfered in any way with anything along the 

fact of emptiness is then an "element of reality", because it is true independently 
an experimenter might later do that might interfere with the path or particles 

along it. 
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One might be tempted to the E P m  assumption rules out m y  kind of 
h k d e m c e  at all, as when a p d  bough  a h a m  splitter, and the two paths ane 
l ae r  raombined and i n k ~ e ~ .  But for a single particle, one cannot pmduce an element of 
~ & t y  connected with the path, because any measurement on the particle to deternine 
which path it takes will necessdy disturb it. So the E P m  assluanptlon does not apply to 
one-particle systems. But for a two-particle system, one may make a masurement on one 
paureicle that determines which path the second particle takes, and here the EPNTF 
assumption does apply, and it gives results that accord with quantP4m theory. Further 
westions conce g the applicabiliv and plausibility of the EPEdT assumption are deal& 
with in Ref. (3). The reason that the assumption is worth exploring in detail is that &ere 
are other theories, such as pilot wave theories, that compek d& qua-  theov and that 
do depnd  on idomtion-be g empty waves for their effects. It should also be poin~ted 
out that an alternative, complementary approach to this not along the lines of 
GHZ, has been taken by L. Hardy, who can prove that for percentage of p h c l e s  
in the beam, the GHZ theorem must be true for two particless. 

SITUAmON IN QU ORU 

One can easily show that within quantum thmry if a path is empty, it is truly ernpv, 
wGch means that if the amplitude for a particle to be travelling along a path is zero, then no 
infomation can be itted along that path. For example, in Fig. ( 1 )  we depict a em 
device which takes an incoming wave function that can be along either of the paths 1 or 

The particle enters from the left and exits to the right. 
There is a phase shifter of angle a located on path 1, 

2, with amplitudes a or b respectively, and converts it into a wave function travelling along 
the paths 3 and 4, with amplitudes c and d respectively. 

Since the device is unitary, its most general form is 
eiD .sin 

y)[;) e"D+" 'sin 

If now a phase-shif&g device, that shifts the by a, is placed into beam 1, the 
incoming beam will change from amplitude a to aeia . An infinitesimal change in a will 
produce the result in beams 3 and 4, 

& = eiA cosy aeiai &, 
= ae'"i &, 

One sees that both of these terms will be zero if a is zero. This result shows that if the 
beam 1 is empty (i.e., a*), there is no way to transmit any change in a to any amplitude 



dowrpsbem of beam 1, even if fie= is a u~tsary comecdon k twmn the bms. gfi% 
res\nla is easily generdized to any number of p h c b s  md  mpllmdes. It shows that 
according to q u m t m  mechanics, no infomation can be &ansmitBd &rough an empw 
hm. This of coum is elze e w n d d  content of fie E P m  mmpdon.  

We are s s m h g  that q u a n m  theory gives 4 ;omt  s s d t s  and that it is the b d e n  
of my  dtemative theoay to reproduce these ~ s d @ ,  The =arson &at h e  &aussion c w o t  
stop here is that one might choose wot to believe q u m m  m w h d c s  and say t h a  & e ~  are 
hdmd alternative ways to produce the md@ of the thmergr withoa h g  the Isni&q 
and &eariq of the theov. We shall show that m d ~ - p d c l e  suppeqosi~om place a h a v  
burden on any such theory. 

ON PASSED &ONG E 

We will now show that if one msumes that a hem is empv, as an EPW elernem of 
rea~ty,  but one still insists that it can c q  infoma~on, then if this infomation c m  be 
operationally transmitted to another beam, this in foma~on  can violate the unceaaintgr 
principle. 

We shall work out a particular example, but it is obvious that the thrust of the 
ugument is very general. Consider a particle at rest that can decay into tws phcles,  as the 

. one at point 0 in Fig. (2). The two 

h intederence pattern is produced by measuring coincidences 
between detectors A, B, and C. 

particles come off in opposite directions, and are restricted by slits to the two sets of 
directions, a-a', and b-6'. So the state of the system after decay is 

w =*(I..') +lbb')). 
The primed particle paths are directed through a beam-splitter at F toward the detectors B 
and C. (We assume, for unitarity, that the reflected ray picks up a 900 phase). The paths 
of the unprimed particle are directed toward a screen with two slits, such that path a leads 
to one slit, E l  while path b leads to the other slit, E2. Each of the slits is of width d, and 
they are separated by a distance D, such that D >> d. The diffraction pattern formed at a 
distance L from the slits is picked up by the detector A. We also assume that L >> D, and 
that the position of A is given by x, as measured at L, perpendicularly from the center of 
the slits (see Fig. (2)). 

An important feature of multi-particle beams that applies here should be noted. If 
the detector A is moved as a function of the distance x, there will be no diffraction pattern 



obseaared, as there will be no single particle interference from this setup. Only if A is 
monitored in coincidence with the detector B or @ will a pattern apperu= We shdl c o ~ m  
this below. The reason we have used this two-particle setup to produce diffraction is 
that we can remove the beano-spgter at F. Then if detector B fires, we know that the 
partick had a e n  the path a', and so its p m e r  must have taken the path a. Thus &is 
particle must have entered the slit El and there will be only a one -p~ ic l e  interference 
panern at A, of mgdar  width 8 = il / d ,  where we assume for convenience that h d .  
Similaly, if detector @ fires, we know the particle must have entered the slit E2 and will 
also produce a one-particle interference pattern at A. Since we can deermine wkch path 
and slit the u n p h e d  particle takes, without in any way htederirng with the particle, ~s 
howledge is an EPR element of redity. h other words, according to EPR, it is an 
objecai.ve fact. So even if we do not bother to remove the beam-splitter at F, EH"W would 
conclude that the element of ~ a l i t y  exists, beGause we could have removed the split&r 
~ t h o u t  ~ w e i n g  the particle, and so the particle actually takes one slit or the other. They 
would conclude that because the p h c l e  takes one path or the other, but quantum theoy is 
powerless to describe this fact, that quantum theory is therefore an incomplete theoq. 

But of course, according to quantaun theory, whether we remove the km-spf imr  
or not is a crucial fact, one that completely changes the context of the e x p h e n t .  E we 
remove it, then indeed the particle is in one path or the other. But if we do not remove it, 
the particle cannot be described as being in either path. 

If we perform the experiment with the beam-splitter in place at F then the wave 
function ty becomes (we are also including a n/2 phase shifter at at, purely for 
computaliond convenience) 

+ (p(kx)(ieH1 IAa') + eW2 I A ~ ' ) )  

= +(p(kx ]a)(i(eW1 + eU2 )( 4 + (eH2 - e" )(c)). 
The pmbab%Q for cobciderat counts at A and B, or at A and C i s  

2 kAf 2 %  P, = l(p(kx)(2 cos 7, PAC = l(p(kX)r sin 2 

Aa = e, - e2. 
In this equa~on (p(kx) represents the Fourier Trmsform of the single slit patkm produced 
by each of the slits, Qr wsch 8 = A/ d, and it is much wider than one of the ~o-part jc le  

a, whose width is of order 8 = A/ D. So in fact, in the region of the cenwd 
the term kilt /  2 = nDx/ LA contributes, g>(k,) can be considered to be a 

constant. (In this region, the minimum xm of the cosine term occurs when the argunment 
equals d 2 ,  or xm = LA l 2 D 5  LO, and 8 = A 1  2D.) One can e x p e ~ e n t a l l y  isolate this 
central maximum from the others, and since both slits c o n ~ b u t e  to it, one has Ax = D ,  
while Lipx = p0 = pill D = fit D. Thus this central maximum is of the order of a m i n h m  
uncertainty packet. Note also that if one only triggers the detector A, ignoring the dewton 
B and C, one will get a number of counts independent of the path difference At beween 
the beams, P, = P, + PAC = const., which proves our original assertion that one must 
count coincidences to see the interference pattern in this experiment. 

For the case when one removes the beam-splitter, one has only the top equation 
above for y , 



y -+ C(kx)(iew l~a ' )  + e y ~ b ' ) )  
If then counter B fires in coincidence with A, one knows that the unprimed particle is in the 
beam a' and similarly if counter G f m  it is in beam b', and so the coincidence counting 
rates will be P, = i ( ~ ( k ] ~ ,  PA, = iIp(k)(l, which will be a constant on the scale of the 
two-particle pattern, but will fall off as 8 = ill d .  This is consistent with the uncertainty 
principle, since in this case, the particle is going only through one slit, so that 
A X - d , A p - p 6 -  Ald. 

Now we come to the point of the argument. What if one were to believe that in the 
case of an ordinary single-particle two-slit experiment, when one can detect into which slit 
the particle enters one will obtain single slit patterns, as quantum theory predicts? But 
when one does not know which slit the particle enters there is some kind of information- 
bearing pilot wave that carries the information about the second slit, so that even though the 
particle travels through one slit only, nonetheless it is aware of the existence of the second 
slit through the intermediary of the pilot wave, and so one gets a two-slit diffraction 
pattern. It is for this case that we have devised our experiment above. For we can produce 
the EPR element of reality needed to prove the particle takes only one beam, by removing 
the beam-splitter. However if one believe., that the element of ~eality persists when one 
does not remove the beam splitter, and also that a pilot wave of some sort carries 
information about the second slit, so that the diffraction pattern can occur, we believe that 
this leads to a contradiction in our experiment. 

In our experiment, if one accepts another principle of EPR, that of locality, then one 
must accept the fact that the unprimed particle receives no information that can tell it 
whether in fact the beam splitter at F has been removed or not. So there is no way for the 
particle to know how to evaluate the information obtained from the pilot wave. Does it lead 
to a diffraction pattern or not? In an ordinary one-particle experiment, there is no way to 
observe that the particle has actually taken one slit or the other. But in our experiment, we 
can provide that information without disturbing the particle approaching the slit. According 
to the EgNT assumption, when one of the paths is truly empty in the EPR sense, there can 
be no information transmitted along the other path. The negation of this assumption 
implies that some information can be carried along this other path. If this is so, are there 
any experimental implications of this? If not, it is merely an idle statement. 

The way to exploit these facts is to assume that the beam-splitter is present, but that 
there is another detector present, in beam b'. This detector will fire if the particle takes 
beam b: If it does not fire, then we know that the particle is in beam a-a'. But there will 
be an empty wave in beam b-b'. Since the detector has not fired, the empty wave will 
presumably pass along to the beam splitter at F. Does it share any of its information with 
the other beam? To decide this, we assume that there is some parameter P that determines 
how much information the pilot wave carries along one beam when it is known that the 
particle takes the other beam, through the other slit. In that case, the particle will produce a 
coincidence count probability for the counters A and B to fire, 

P * f lp(kx]21e"1 +/3e"212, 

where p varies between 0 and 1. 
This would lead to a diffraction pattern with a contrast of C = 28/(1+ p2). Not 

only would this disagree with quantum theory, but also with the uncertainty principle 
directly, since then (Ap)2 - [p2 (RI D ) ~  + (1 - p2)(hl d)'] , while (Ax)2 - d2,  since one 
knows which slit the particle actually took. For finite P,  this violates the uncertainty 



principle, giving in the limit of j9 + 1 the m d t  h d g  + AdlD<<ti. The alternative is that 
the theov must violate EPR locality. 

The argunnent suppo*g the EPNT s s u  article syskm is even 
stronger thm for two particles. A g h  we shall atnple, but the resuls 
are generalizable. Consider a particle that decays If the particles are of 
the same mass, and when they are counted, it is has the same energy, 

they will come off at 1200 apart. They are now restricted by slits to three sets of 
tions, a-ar-a", b-br-b", and c-cv-c". particle 1 is unprimed, particle 2 is primed, and 

paPticle 3 is double-phed. If particle 1 takes path a, then 2 must take path a', and 3 takes 
path a", etc.) (See fig. (3)). This is a simple generahation of the two-particle process in 

D E F  

F" D' 

ter With Three Tri- 
A particle at 0 decays into three particles which take the possible paths a-ar-a", b- 
br-br', or c-cr-c". The three paths for each particle converge at a tritter, and then 
pass to one of three detectors. Each particle has one phase shifter in one path, a$, 
or y . In the second part of the experiment, a detector is placed at X to determine 
whether the particles have taken the paths c-c1-c". 



the previous example. Each particle is now refocussed into a unitary 
(We have previously called such devices "multi-ports", or "cri#ers", 
way device is a "tritter"6- Such devices can emulate an unitary transfornation of 
the system.) For simplicity, our particular tritter is taken to hasre a specific unitary 
transformation (see Fig. (4)). If the beams 

out  

We call this device a "trider". The three input beams a, 
6, c, are transformed unitarily into the output beams d, e, 
I 

a, b, c, are the incident beams, and d, e, f, are the outgoing beams, they will be related by 
rhe relations 

I4 -9 *(Id)+le)+lf)). 

21d13 w h e ~  1, A, = e , and p = e4"'I3 axe the cube roots of unity, and 
p2 =a.a2 =p,ap=i, 
p*=il ,A*=p,l+A+p=O. 

The actual setup is as shown in Fig. (3). mere is a tritter in the path of ewh 
particle. There is also a phase shifter, of phase a in beam a,one of phase /3 in beam b', 
and one of phase y in c". The initial wave func of the three p h c l e s  Is 

eial ao'n") + eipl bb'b") 
Each of the tritter outputs goes to a detector, labelle r particle 1, and similarly, 
with primes, for the other particles. The amplitude after passing through the' tritters and 

I E) + (F))((D') + 1 E') + (F))((D") + (E") + IF")) 

+eiraD) + d E )  + YF))(~D')+ pl E')+ A1 F'))(1DM) + PIE")+ YF"))]. 
From this one can calculate the output to any set of detectors. 

Rather than write down all possible outputs explicitly, we shall merely as an 
example write down all those that involve the counters D and D', namely DD'D", DD'E", 
and DD'F". They are 



+etc. 
So for exmple, the probability of w m h g  a coincidence in the detectors DD'D" is 

PDwDu = & (3 + 2 cos(a - p) + 2 COS(B - y) 9 2 cos(y - a)). 
The significant point here is that the counting rate associated with this set of coinsidence 
counts depends symmetrically on the phase shifts a,P,y. 

As with the two-particle case, coincidences ounters will lead 
to a diffraction pattern of counting. If one looks at only two one), one will 
find a flat rate. For exmple, if one adds the rates (mplitu&s r the thnee comts 
given above, one will get for the probability of a count in EID', 

PDD, = PDDtDn + Pm,p + PDD, = CQW~. 

NOW assume that a dewtor is placed into the beam c at point X, so that if it fires, 
one knows that the this path, and therefore that particle 2 took path 
c', and particle 3 to hes the path as an EPR element of reality, as one 
can determine the les by intercepting the third one. Thus in this 
experiment, the EPNT assumption applies and says that if a particdar path is empty, then 
there is no entity associated with this path that can carry infomation through the system if 
the paths later happen to rejoin. 

We shall be interested in the case where the detector is installed at X, but it does not 
fire. h this case, one knows that the particle is not located along the paths c-cl-c". In 
other words, this set of paths is empty. Because the phase shifter y is located in the path 
c", the EPEdT theorem would predict that when the counter X does not fire, the counting 
rate for coincidences cannot depend upon the angle y . The counter X will fire 113 of he  
time. If we keep the same nomalimtion as before, so that the total probability for events in 
which X does not fire is 2/3, then the wave function reaching the set of trims is 

iyx = &(eialaa'a") + eg 1 bb'b")). 
Thus we see already that, quantum mmhanically, it cannot depend on y .  The wave 
funstion reaching the counters will be 

e ia (p)  + IE) + IF))(IIY) +IF) +IF'))~D")+IE")+ I F ) )  

+eifl(lq + nlE) + @))(la) + ap3 + pl~) ) ( Io")  + a1 E") + F") 
Now the probability for a coincide ce in DD'D" will be 

eia + eg )I WD") + etc 

P,, ,,. = & (1 + cos(a - B)). 
Not only is this independent of y but by a suitable choice of angles, one can make the 
result either greater or less than the result when the detector X was absent. For example, 
when a = P, then Px,DvDn = XI, while if y = a = B, then PDD,Dw = but if 
a=p= yi-;lc,then PDD,Du =XI. 

So, because there exists an element of reality connected with the fact that the path 
containing y is empty, this probability no longer depends on y . However, if one looks at 
Fig. (4), one sees that the phase shifter y lies in the beam c", while the detector X lies in 
the beam c. So according to EPR locality, there is no way in which particle 3, on one of 
the double-primed paths, could be made aware of whether the counter X has fired or not, 
or even whether it is present or not. Thus if there existed a pilot wave that sampled the 



double-phed patlhs, there is no way in which it can have been notified to change the 
n the infomaeion it trier. In fact, the 
o renm &tween the thae now there is 
a label 8Mached to the particle expressing the EPR element that the path of the particle 
e x c l u ~  c". h d  the existence of this element &so must be respo for the fact that the 
resulting count rate no longer depends upon y . Similarly, the unprimed particle, one of 
whose paths contains the detector X, has no knowledge of y at all, and neither does the 
primed particle. So connected with this experiment can be explained by the 
EPNT assumption, but to be extremely implausible if one accepts EPR locality, 
and ~ E e s  on a pilot wave type of explanation. Of course, if one drops EPR locality, one 
can use the Bohm-Hiley theory7 to explain these events, as it is equivalent to quantum 
theosy, and non-local. 

We believe that if one accepts that pilot waves can exist in a local theory, then one 
mecessasily will produce effects that violate quantum theory. The alternative EPNT 
assumption rules out such effects, even in two-particle systems, and is consistent with 
quantum theory. 
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Abstract 

Two types of Einstein-Podolsky-Rosen experiments were demonstrated recently in our 
laboratory. It is interesting to see that in an interference experiment (wave-like experiment) 
the photon exhibits its particle property, and in a beam-splitting experiment (particle-like 
experiment) the photon exhibits its wave property. The two-photon states are produced from 
Type I and Type 11 optical spontaneous parametric down conversion, respectively. 

We wish to report two EPR [I] type experiments. The first one is a two-photon interference 
experiment in a standard Mach-Zehnder interferometer. Another one is a two-photon beam 
splitting type experiment for the measurement of polarization correlation. It is interesting to 
see that in the interference experiment (wave-like experiment) the photon exhibits its particle 
property, and in the beam-splitting experiment (particle-like experiment) the photon exhibits its 
wave property. 

I Two-photon interference in a standard Mach-Zehnder 
interferometer. 

A pair of photons with different colors ( XI = 632.8 nm, X2 = 788.7 nm, 155.9nm difference in 
center wavelength) is directed to one input port of a Mach-Zehnder interferometer. Coincidence 



measurement is d e  between the two output ports of the interfaometer with the help of a 
300 psec coincidence time window. The interference behavior was studied in a wide range of 
the optical path dliRerence of the interferometer from white light condition, AE 0, to about 
AE 127m (2 2 - 103 times the coherence length of the down converted beams). Whea the 
optical delay of the intederometer is greater than the coincidence time window, the arslpEtuds i;2i 
which one photon follows the longer arm and the other follows the shorter arm of the intefperometa 
are 'cut off? by the coincidence time winaow. The particle property of the photon is demonstactd 
by means of more than 50% interference visibility. 

Ar laser 

Figure I- 1 : Schematic diagram of the experiment. 

The experimental arrangement is shown in fig. 1-1. A lOcm long Type I phase matching KDP 
crystal pumped by a single mode 351. lnm CW Argon ion laser line is used to generate collinear 
photon pairs at wavelengths 632.8nm and 788.7nm. The coherence length of the pump beans 
was measured to be longer than 5m. The 351.lnm pump beam and the down converted b& 
were polarized in the extraordinary and ordinary ray directions of the crystal, respectively. A 
Glan-Thompson prism was used to separate the collinear down converted photon beams from the 
orthogonal polarized 351.lnm pump beam. Before the 351.lnm laser line was sent to pump the 
parametric down conversion, a quartz dispersion prism was used to separate out the radiation 



lines of the laser plasma tube which are close to the 632.8nm and 788.7nm wavelengths. 
The collinear 632.8nm and 788.7nm photon pair was then injected into a standard Mach- 

Zehnder interferometer. The optical path differences of the interferometer AL = L - S can 
be arranged to be shorter or longer than the coherence length, Icoh, of each beam of the down 
conversion field and the coincidence time window, c . AT&%. The collinear photon pairs were 
injected onto the beamsplit ter with an incident angle of about ten to twelve degrees (near no 
for which the reflected and transmitted intensities of the 632.8nm and 988.9nm beams were 
measured to be equal (50% - 50%) within 5%. 

Geiger mode avalanche photodiode detectors, operated at dry ice temperature, were used to 
record coincidences in the two output ports of the Mach-Zehnder interferometer. Each of the 
detector has a narrow band interference spectral filters. The central wavelengths of the filters are 
632.8nm and 788.8nm with bandwidths of I.4nm and 1.7nm9 respectively. The output pulses 
from detector A and detector B were then sent to Nl, N2 counter and a coincidence circuit to 
record coincidences. The coincidence time window ATmin was about 300psec. 

We collected data for three regions of interest. In the first region, AL < lcoh, i.e., the o p t i d  
paths difference of the interferometer are equal to within the first order coherence length of the 
signal and idler. In the second region, Zcoh < AL < c . ATcoin. In the third region, AL > 
c .  ATcoin. The following reported data are all direct measured values without any noise reductions 
or theoretical corrections. 

(1). The first region, AL < lcoh. 
Fig. 1-2 shows the normalized counting rate of Nc when the optical path difference changed 

from white light condition to about 4pm. In this region, Nl and N2 both showed clear single 
wavelength, 632.8nm and 788.7nm, respectively, first order interference pattern. However, Plr, 
shows a complecated interference pattern with 632.8nm9 788.7nm, and the beating and the sum 
frequencies. The interference visibility is close to 100% with the 300psec coincidence window. The 
solid curve in fig. 1-2 is a theoretical fitting of equation (1-10). Fig. 1-3 shows a typical first order 
interference pattern of iV2 for detector B. The interference visibility is about 90%, with a period 
corresponding to wavelength 788.7nm. 

Fig. 1-4 shows the typical interference patterns of Nc at AL E ll5pm. The 1V, p a t t a  in 
fig. 1-4 is different than that in fig. 1-2 in two ways, (A) the interference visibility is reduced and, 
(B) the beating component and the 632.8nm and 788.7nm components of the moddations ase 
reduced and the sum-frequency modulation becomes predominant. The solid line in fig. E4 is a 
theoretical curve resulting from Gaussian spectral filter functions in equation (1-10). The singIe 
detector counting rate is reported in fig. 1-5. The interference visibility is reduced to about 42%. 

(2). The second region, Iah < A L < c . AT,;,. 
In this region both Nl and N2 become constant, however, Nc shows clear interference with the 

sum frequency. Fig. 1-6 shows the interference pat tern of N, for AL 0.5cm. Compare to the 
300 psec coincidence time window and the coherent length of the down converted beams, which 
satisfying lcoh < AL < c ATcOin. The interference visibility is 44% f 3% with modulation at a 
wavelength of 351.lnm. In this region, all the measured interference patterns have modulation 
visibilities close to but less then 50%. 

(3). The third region,AL > c . ATcoin. 
The interference patterns of N, in the final region of interest, AL > c . ATmm, is presented in 

fig. 1-7. An interference visibility of 75% f 3% was measured at AL S 43cm with an interference 



BS position relative to = 0 (pm) 
Figure 1-2: Normalized coincidence counting rate of Neat near white light condition (AE S 0). 

The beting frequency,with 3.2pmperiod, and sum frequency, with 35l.lnmperiod, are evide3t 
from the graph. Signal and idler frequencies, at periods 632.8nm and 788.7nm also contribute 
The solid line is a theoretical curve of Eq. (1-10). 

BS position relative to A= 0 ( ~ m )  

Figure 1-3: Single detector counting rate N2 at near white light condition (AL Z 0). 
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BS position relative to AL= 11 5 p m  (pm) 

Figure 1-4: Normalized coincidence counting rate of N, at AL 2 115 pm. Compared wirh 
fig. 1-2, the beating component and the wl and w2 components of the modulation are reduced 
and the sum-frequency modulation becomes predominant. The solid line is a theoretical cum-e 
resulting from Gaussian spectral distributions in Eq. (I- 10). 

200000 

180000 

a 160008 -- 
a, 140000 a 
5 120000 
C 
S 

100000 0 
rC 

0 80000 
;u" 

60000 
E 
7 
Z 40000 

20000 

0 ' I I I I I I I 1 
0.0 0.5 1 -0 1.5 2.0 2.5 3.0 3.5 

BS position relative to AL- 1 1 5 pm (pn) 
Figure 1-5: Single detector counting rate N2 at AL Z 115 pm. 



period of 351.1nrn. When AL increased to about 127cm, the interference visibility was me 
to be 56% Jt 3%. In this region, no interference modulations were found for Nl and N2. 

In our earlier paper [2J a general theory for a two photon interference everiment in two 
interferometers was developed. The experiment was suggested by Franson [3]. Eqerimental study 
for two independent interferometers have demonstrated more than 50% interference visibility by 
using short time coincidence time windows [4, 51. The theory for this experiment is s i d a r .  The 
coincidence counting rate is calculated from the field fourth order correlation function: 

G(rlt2, r2t2; r2t2, rltl) =< E{-)E~-)E~+)E{+) > (I - 1) 

where E!') is the positive frequency part of the electric field in the Heisenberg picture evaluated 
at the position rj and the time tj. E!-) is the hermitian conjugate of E;+), 

a j  is the destruction operator of the photons in the jth beam and f j  is the pass band of the filter in 
the beam peaked at Qj. We take nl + 522 = up, the pump frequency. In this experiment the filters 
are chosen so that each detector only detects one of the down converted beam, i.e., $21 - n2 >> a 
the band width of the filters. 

The average coincidence counting rate is given by 

h!, = - lc dtidtz~(rit1, r2 t~7 ~ 2 ~ 2 ,  rltl)S(tl - t2, A T - )  
(1 - 3) 

= ) SI,T dtldt2 I (0 I E!' )(tl)> ~ p ) ( t 2 )  I 8)  I 2  S ( t l -  t2, AT'in) 
where S(t9 ATcG,) is a coincidence detection fuilction, ATmin is the coincidence time window, and 
the integrals are over the detection time T. A two photon amplitude, which is dso called effective 
two-photon wavefunction, is defined in (1-3) by, 

The two photon part of the state that emerging from the down conversion crystal may be 
taken to be [6], 

&~s(wI+ w2 - wp)ai(wl)af (Y) 1 o > (I - 51 

where the 5 function indicate a perfect frequency phase matching condition. The wave n m b a  
phase matching condition is implicit in the choice of the location of the pinholes and the detedors. 
Substitute (1-4) and (1-5) into (I-3), it is straight forward to show that, 

'@(tl, t2) = A(tl9 t2) + A(t1 - AT, t2 - AT) + A(tl, t2 - AT) + A(tl - AT, $2) (1 - 6) 

where A(tl,t2) is calculated in (I-8), AL = c - AT is the optical path difference in the two 
of the interferometer. The f is t  (second) term is the amplitude for which both photons follow the 
short (long) path through the interferometer, and the third (fourth) term is the amplitude for one 
photon follows the short (long) path and another photon follows the long (short) path. A simple 
calculation using Gaussian filters 



where ~j is the bandwidth of the jth filter, gives 

where IC is a constant. 
If we now substitute equations (1-6) and (I-?) into (1-3) and take 

s ( t ,  ATcoin) = exp(- I t I /2ATcoin) 

the average counting rate may be written in the form 

where 

where A = 1/(4CATdn), C is a constant that need not concern us. We remind the reader that the 
error function erf c(x) +O as 3: + 00 and er f c(x) + 2 as s + -00. The key point to understand 
the behavior of the coincidence counting modulation is the variation of the J's with the increase 
of AT = AL/c  

( 1 ) .  For AL < kwh, JO = Jl = 2 J+ = 25-. From (I-lo), the coincidence counting rate R, has 
oscillations at w l , ~ ,  and their sum and difference frequencies. The visibility is 100% in this case 
As is seen in fig. 1-2. As AL increases J1 and J+ rapidly decrease becoming negligible when AL is 
approaching kwh, the coherence length of the down converted beam. This can be seen in fig. 1-4, 
when AL = 115pm which is about one half of the coherence length lmh, the beating component 
and the 632.8nm and 788.7nm components of the modulations are reduced and the s u m - h u e ~ c y  
modulation becomes predominant. 

(2). l,h < AL < c - AT-in, as AL increases to be greater than lWh both J1 and J+ are zero 
and we left with 
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Figure 1-6: Normalized coincidence counting rate of Nc at AL S 0.5 cm for a AT& = 
300psec time window. The beating modulation and the wland w2 modulations have completel~ 
disappeared. A visibility of (44 f 3)% was measured. 

8s position relative to A i = 43 cm @m) 

Figure 1-7: Normalized coincidence counting rate of Ncat AL Z 43cm. The observed ( 7 5 2  31% 
interference visibility marks the quantum interference effect. The modulation at X = 0.351pm 
the sum frequency of the signal and idler light quanta. 



which indicates that the modulation is only at the sum frequency. The modulation visibility can 
only approach to a maximum value of 50%, this is because the contribution of the last two t 
in Jo which arise from the state amplitudes in which one photon follow the longer and the o tha  
the shorter path of the interferometer. Fig. 1-6 clearly shows this modulation. 

(3). AL > c . ATcoin. In this region, the interference pattern looks the same as in case (2)- 
however, the interference visibility increases to more than 50%. This is because of the vanishg of 
the last two terms in Jo, the interference visibility is predicted to be 100% in idealized experimentd 
conditions. This interference behavior is clearly demonstrated in fig. 1-7. 

The above simple theory of the quantum mechanical model provides a good quantitative pm- 
derstanding of what is happening in this experiment without the introduction of any artificial 
parameters. In the region of AL < Zcoh, all J'S contribute to the interference pattern, which is not 
distinguishable from a classical model. In this region the first order interference pattern appears in 
both Nl and N2 counting. The coincidence modulation may explained as the result of the product 
of Nl and N2 modulations. When AL increases, J1 and J+ approach zero due to the vanishing of 
the factor exp(-C2AT2). This effect may be considered also to be a classical wave behavior. h 
the second region, lcoh < AL < c . ATc0in, the coincidence interference behavior shown in (1-12) is 
expected. Since the wl and W* beams never meet at the same detector because of the filters, and 
each beam does not interfere with itself when A L > Zcoh, the coincidence modulation is a non-lod 
two photon interference effect. In the third region, it is by now well known that under condition 
AL.> e . ATcoin, the interference is a purely quantum effect. It is impossible to have a classid 
model to explain the coincidence counting rate modulation of more than 50%. Mathematically the 
increase of the visibility is due to the vanishing of the factor exp(-AT12 AiF,oin) in Jo .  P h y s i d ~  
this is due to the cut off by the coincidence time window of the state amplitudes in which one 
photon follows the longer path and other the shorter arm of the interferometer. This is equivalent 
to the projection of a quantum entangled EPR stbte [S, 81 

~ E P R  = A(t1, t2) + A(t1 - AT, t2 - AT) (I - 13) 

from the initial state. For AL > c ATcoin, the entangled two-photon EPR state (1-13) is realized 
by the measurement, which takes advantage of the particle nature of the light quanta in a wavelike 
experiment. 

II Einstein-Podolsky-Rosen-Bohm Experiment B y  
Splitting A Pair of Orthogonally Polarized Photon. 

Type I parametric down conversion has drawn a great deal of attention since the first application 
[9] of it in an Einstein-Podolsky-Rosen-Bohm experiment [lo]. The experimental study of Type If 
photon pairs was performed before Type I in our laboratory. However, the experimental results 
seemed to suggest that the orthogonally polarized signal and idler photon pair do not have the 
expected quantum entanglement. This phenomenon has troubled us and many other physicists 
with whom we have communicated in the past [l 11. The entanglement of the Type I1 photon 
pair was demonstrated recently in our laboratory under two experimental conditions: (1) using 
a thin nonlinear crystal and (2) detecting coincidences in narrow spectral bandwidth [12, 131. In 



this section, we wish first to report the experimental study of this crystal length and detection 
bandwidth dependent entanglement of Type I1 down conversion. Then we report an experimental 
study of entangled two-photon EPR-Bohm states in Type I1 down conversion with linear, cirdar 
and elliptical polarizations. 

BBO 
Type II 

At- laser 

Figure 11-1: Schematic experimental set up. 

The experimental set up to study the effect of crystal length and detection bandwid& 
dent entanglement is illustrated in fig. 11-1. A single mode CW Argon ion laser line of 351.14am 
was used to pump a BBO (/3 - BaB204) nonlinear crystal. The BBO was cut for a TyBe 
phase matching condition to generate a pair of orthogonally polarized signal and idler photo- 
collinearly and degenerately in 702.2nm wavelength. Two BBO crystals with lengths 
and 0.5mm, respectively, were used in the experiments. The 702.2nm pairs were sep 
the pumping beam by a UV grade fused silica dispersion prism, then directed collinearly at a OW 
normal incident angle to a polarization independent beam splitter which has 50% - 50% dection 
and transmission coefficients. In each transmission and reflection output port of the beamqIitter 
a Glan Thompson linear polarization analyzer followed by a narrow bandwidth interference spec- 
tral filter were placed in front of a single photon detector. The photon detectors are dry ice cooled 
avalanche photodiodes operated in Geiger mode. The output pulses of the detectors were then sent 



to a coincidence circuit with a 3nsec coincidence time window. The two detectors are separaeed 
by about 2m, so that compared to the 3nsec coincidence window, the detections are spacelike 
separated events. The coincidence counting rates were studied as functions of angles and d2, 
where 8; is the angle between the axis of the ith polarization analyzer and the direction, which 
is defined by the *ray polarization plane of the BBO crystal. Keep in mind that a right-hand& 
natural coordinate system with respe-ct to the ki vector as the positive direction is employed for 
the discussions in this paper. The following form of coincidence rate as a function of B1 and B2 
was observed in the experiments, 

R, = &(cos 281 sin 282 + sin 281 cos 2B2 - p sin el cos B2 sin 82 cos B1) (11 - 1 )  

where p is a parameter which depends on the crystal length, the detection bandwidth, and the 
group velocities of the Q - e beams inside the crystal. If p = 2, eq. (11-1) reduces to, 

R, = & sin2(& - 82) (n - 2) 
which is the expected quantum correlation for the entangled two-photon EPR-Bohm state 

19) quantum mechanically indicates a two-photon polarization state which is a superposition of 
the quantum probability amplitudes: 

(1) / o - ray transmitted)@ 1 e - ray reflected) 
(11 - 4) 

(2) 1 e - ray transmitted)@ I o - ray ref leded) 

when the orthogonally polarized photon pair meets the beamsplitter. On the other Band, if p = 0 
the interference cross term does not contribute. State (11-3) can not be concluded and no s i p  of 
the entanglement of the pair can be seen from the measurement. 

Fig. 11-2 reports the measured values of p for BBO crystals with lengths of 5.65mm and O.5mm 
for different bandwidths of the filters. Note that for the 5.65mm BBO crystal p was always sub- 
stantially less than 2 for the filters that used in the measurements. For the 0.5mnz BBO, p = 1-98 
was achieved with a lnm bandwidth spectrum filter. The solid curves are the fits to a theore%id 
model which will be presented below. The values of p were obtained from the measurements of 
coincidence rate as functions of O1 and 82. Fig. 11-3, fig. 11-4 are typical mmuremerats wBich 
reflect the different coincidence behavior for 5.65mm and 0.5mm BBO crystals. In fig. XI-3, 81 
was set to 4S0 and the coincidence rate was mapped out as a function of $2. In fig. 11-4, both 81 
and 82 were changed, keeping the sum of el and 82 equal to 90°. In both fig. 11-3 and fig. 114 the 
filters were Inm bandwidth. By fitting many similar curves, p = 0.72 f 0.07 and p = 1.98 -+ 0.04 
were determined for 5.65mm and 0.5nzm crystals, respectively. 

For Type I1 down conversion the two photon part of the state that exits the down conversion 
crystal may be calculated from the standard theory for parametric down conversion to be [6], 

where w and k represents the frequency and the wave vector for signal (I), idler (2), and pump 
(p). The frequency phase matching condition is explicitly displayed by the delta function, and the 
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Figure 11-2: Crystal Length and Detection Bandwidth Dependent Entanglement. The 

curve is a fitting of the theoretical mode. 
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Figure 11-3: Coincidence Measurements for Linear Polarization States when elwas set equal to 

45". 



wave number phase matching condition is implicit in the choice of the location of the deteckors, in 
this experiment we consider collinear down conversion. The function $(w) is determined from the 
standard theory of down conversion. It depends on the length of the crystal, and D = c/u, - c/h. 
We shall refer to D as the two-photon dispersion. The subscript indies o and e for the a a t i o n  
operators indicate the ordinary and extraordinary rays of the down conversion, traveling &ng 
the same direction as the pump, the i-direction. The coordinate axes z and y are chosen dong 
the the polarization direction of the o-ray and the e-ray, respectively. 

The fields at  the detectors 1 and 2 are given by 

where aj is the destruction operator of the photons, j = o,e, i is in the direction of the ith 
linear polarization analyzer axis, i = 1,2, at and a, are the complex transmission and 
coefficients of the beamsplit ter. The function f;(w ) , i = 1,2, is the spectral transmission &cimt 
function of the filter in front of the ith dctector. 

The counting rate cabn be written in terms of the square of the effective two-photon wave 
function (I-3), which has been used in the calculation of the first experiment. It is straight 
forward to show from (11-5),(II-6), 

\k(tl, t2) = at~[Bl go B2 - &A(tl - 71, t2 - 72) + 2 e  Z2 - doA(ta - 72, tl - TI)] (11 - 7) 

where 

where we have assumed that the filter fi and f2 are peaked around ill and R2, respectively, where 
621 + i12 = ~ p .  For simplicity we take them to have the same shape so that f'(w) = fi(w + fix) = 
f2(w + 622). $ can be computed from the standard theory of optical parametric down conversion- 
Taking the origin of the coordinates at the output side of the crystal, and letting $'(w) = $(w+fl~), 
we find 

The average coincidence counting rate is given by (1-2). In the following calculation we a s m e  
S(t, AT,;,) = 1 for a 3nsec time window (tl - t2 << AT,,;,). Taking the filters to be Gaussian 

it is not difficult to show that the coincidence counting rate becomes 

R, = Rd[cos 2B1 sin 282 + sin 281 cos 202 - p sin 81 cos O1 sin O2 cos 02] (n - 11) 
where 



with 

(II - 13) 
C- = I< dt[2er f c ( t )  - er f c(s + t )  + er f c(t - s)I2 

where erfc is the error function, I< is a constant, and parameter 

s = UDL.. (I1 - 14) 

The only parameter that p depends is s ,  which shows the dependence on cr, the bandwidth ofthe 
filters, D, the two-photon dispersion, and L, the length of the crystal. By sketching the integrals, 
it is not difficult to show that for a very long crystal p S 0, because C+ - C E 0, and for a short 
crystal p Z 2, because C r 0. 

The functions in (11-13) are eas3.y evaluated numerically and fit the data accurately with no 
free parameters. The solid lines in fig. 11-2 are the theory curves for 5.65mm and 0.5mm BBO 
crystals. The curves agree with the measured values of p within reasonable experimental emr- 
One can achieve p 2 2 with bandwidth filters less than Inm for a 0.5mm BBO thin crystal. 

Using a 0.5mm crystal and a lnm bandwidth filter to achieve p = 2, measurements for t w c ~  
photon polarization entangled EPR states were made. The use of a quarter wave plate asd a 
beamsplitter easily can demonstrate the quantum mechanical entanglement of arbitraq a p l i d  
polarization states in Type 11 down conversion, The experimental set up is the same as in fig. E- 
l, except a qumter wave plate is placed after the 0.5rnm BBO crystal. If the fast 

wave plate is oriented at angle @ with respect to the direction, the orthogon 
tion states 1 X) and I Y )  are transformed to orthogonal elliptical polarization s t a s -  

After the beamplitter a two-photon entangled state with elliptical polarizations is produced, 

I e) = I / &  -i sin 
(n - 115) 

where state 19) is a superposition of the quantum probability amplitudes: 

( 1 ) .  (cos @ I X') - i sin @ I Yf))transmitted 8 (sin @ 1 X') + icosa [, Y t ) ) r e  f lected 

(2) .  (sin @ I X') + i cos I Yf)transmitted €3 (cos @ I X') - i sin @ I Y'))reflected 

when the orthogonal elliptical polarized photon pair meets the beamsplit ter. 
The coincidence counting rate for linear polarization analyzers is then, 

R, = &[sin 2(2@)  cos 2(6; + 6;) + cos 2(2@) sin '(6; - &)]  (n - 16) 

where 6: is the angle between the axis of the ith polarization analyzer and the IX,') direction. Care 
has to be taken to follow the rules of natural coordinate system, especially for the reflected 
Note that the direction of IX;) is opposite to that of [ X i ) .  
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Figure 11-4: Coincidence Measurements for Linear Polarization States when B1 + O2 = 9 0 . w ~  
preserved. 
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Figure 11-5: Coincidence Measurements for Circular Polarization EPR-Bohm State. 
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Figure 11-7: Coincidence Measurement for Elliptical Polarization State with Quarter Waveplate 

oriented at 71.5'. 



If @ = 0°, state (11-15) becomes state (11-3) which is a two-photon linear polarization entagled 
state. Quantum correlations given by eq. (11-2) were observed experimentally, see fig. 11-3 and 
fig. 11-4, with modulations about(98 f 2)%. 

For 9P = 45". State (11-15) becomes the circular polarization EPR-Bohm state, 

The expected quantum correlations 

were measured experimentally. Fig. 11-5 reports the measured results. The modulation is about 
(98 f 2)%. 

When the quarter wave plate was set to @ = 26.5O and 71.5", fig. 11-6 and fig. 11-7 report four 
typical measurements which were taken under the conditions: 6; f 6; = 90°. The solid lines in 
these figures are the theory curves of (11-18). Note, here, we use 8' system to define the angles for 
the analyzers. 

Contrary to the coincidence counting rate, the single detector counting rate remains consat  
for all the above measurement. Fig. 11-8 reports a typical counting rate for detector 2 in a 
measurement. 

A pair of orthogonally polarized light quanta enters a single port of a beamsplitter, if one of the 
photons, for example the transmitted one, is detected to be linearly polarized in a certain direction, 
4, the other one can be predicted with certainty to be linearly polarized in the direction 02. This 
makes the experiment EPR type argument. Addition to this argument, it is also'interesting to see 
that O2 is not necessarily perpendicular to 01, the value of 82 depends on the EPR state prepared 
by the observer. 

5000 

0 
0 60 120 180 240 300 360 

@ 2 (Deg) 
Figure 11-8: Single detector counting rate. 



This simple beam-splitting experiment is a particle-like experiment. Eq. (11-4) is b 
argument that the photon can be either transmitted or reflected by a beamsplitter. On the other 
hand this simple beam-splitting type experiment demonstrated the wave property of the photon- 
The 100% modulation of the coincidence counting rate is essentially an interference superposition 
of the two-photon amplitudes in (11-7). The overlap and non-overlap of the amplitudes A(il - 
q, t2 - T2) and A(t2 - 7-2, tl - q) is a good measure of the wave packet picture of the photon, which 
results the crystal length and detection b'andwidth dependent of the two-photon entanglement. 

We wish to qhank D.N. Klyshko for many useful discussions. This work was supported partially 
by the Office of Naval Research Grant No. NO0014 - 91 - J - 1430. 
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Abstract 

The generation of entangled states of two systems from product states is discussed for the 
case in which the paths of the two systems do not overlap. A particular method of measuring 
allows one to project out the nonlocal entangled state. An application to the production of 
four photon entangled states is outlined. 

1 Introdact ion 

The importance of non-local entangled states in the study of the Einstein-Podolsky-Rosen paradox 
(EPR) has been stressed by Horne, Shimony, and Zeilenger (GHZ) [I]. These states are entangled 
states of two or more particles in which at least one pair of particles has space-like separation. Such 
states may be produced from independent sources by allowing the particles to scatter from one 
another' and then separate, or by allowing their paths to overlap spatially such as by passing pairs 
of photons through a single beam splitter. The generation of entangled states from independent 
particle sources in which the entangled particles overlap has been discussed by Yurke and Stoler 
121, and by Tan, Walls and Collett [3]. We consider the case in which the entangled particles are 
produced from independent sources and never overlap. 

2 Independent Sources With Path Overlap 

We briefly review the work of Yurke and Stoler. Two independent sources each emit a particle 
which is passed through a beam splitter and phase shifter. The detection system consists of a pair 
of detectors, labeled 1 and 2. Each detector is composed of a beam splitter which directs each 
particle to one of two particle counters denoted by R and G. The initial input state is a product 
state, 

(!J >= (a >I Ip > 2 .  (1) 

After passing through the system this state may be written as 



where the i9s come from the reflection off the beam-splitters. If we consider the case in which only 
the R detectors register, the only part of the state that we look at is 

which is an entangled state. By varying the phase shifters, interference between the two terms can 
be detected. This interference occurs because there are two distinct paths from the input state to 
the detection state that can not be distinguished by the detectors. From this point of view [4] the 
fact that "vacuum" enters the system through the beam splitters plays no role since the detectors 
do not see the vacuum states. 

3 Independent Sources Without Path Overlap 

We now turn to a different method of generating entangled states in which the independent 
sources are independently detected. The particle paths never cross. The entanglement is obtained 
by selective detection and the interference is caused by varying the phase shift in each path in a 
specific way. We shall see below that this allows us to consider the generation of an EPR state of 
the type envisioned by GHZ. We illustrate this technique for the simplest case, namely, two spin- 
112 particles. The input to the system is two independent particles polarized along the positive 
z-axis, 

I ! P > = I + z > 1 I + z > 2 .  (4) 

Each particle is passed through a separate Stern-Gerlach apparatus which splits each state vector 
into a superposition of states polarized along the x-axis. After passing through the system we 
have 

where the phase shifter effect has been included. Multiplying (5) out gives 

Then we project this onto the detector states 

1 
lDk >= I + zk >= - ( I  + x >I, + I  - x >2),  k=1,2. JZ 

The amplitude for detecting particle 1 at detector 1 and particle 2 at detector 2 is: 

which is still a product for independent choice of phases. Now if we choose O2 = + n, then the 
second pair of terms in (8) cancel and the first shows interference as el is varied, 



This is equivalent to producing the entangled state given by the first two terms of (6). 
In this case the two independent particles never meet. Were the interference is between the 

pair of particles that went through the phase shifter and the pair that did not. From the point of 
view of indistiguishable paths, it is the paths of these two-particle states that are indistiguishable. 
Another way to look at this particular example is to note that the choice of the angles makes the 
first two term in (6) total spin 1 states and the second two form a total spin 0 state, the detector 
only detects the spin 1 part of the state. 

This argument can be generalized to more than two particles and can be used to form the 
basis of many-particle interference experiments to test the theorem of Greenberger, Worne and 
Zeilenger [5]. The use of projection operators to pick off parts of state vectors, which is redly 
what measurements do, is nothing new. It is fundamental to quantum theory. What is different 
is the means of picking off nonlocal entangled states from independent particles. 

4 The Theory of the Four-Photon Experiment 

We now apply this to a possible four- hoto on interference experiment. We wish to show how 
' 

one can produce the highly correlated state necessary to carry out the experiment envisioned by 
Greenberger, Horne and Zeilenger. In fig. 1 we show the experiment envisioned. It is a double 
Franson interferometer [6]. The coincidence counting rate is proportional to 

where the integrals are over the duration of the measurement. The function S expresses the fact 
that the coincidence time window is one when t2 - tl , t3 - tl and t4 - tl are all less than some 
small coincidence time t,,;, and rapidly goes to zero when this is not true. 

where j=I and I1 . The middle two terms can be discriminated against for L - S = A L if 
A L/c  >> t,,;,. Then we can confine ourselves to considering 

The amplitude in (12) is still a product, 

1 
@z(tl, t~)@zz(t3, t4) = -&{Qz(Lz, Lz)Qzz(Lzz, LIZ) + Qz(Sz, Sz)@~z(Szz, Szz)) + 

{Qz(Lz, Lz)*zz(~zI, SII) + * z ( ~ I ,  SZ)QZZ(LIZ, LII)]). (13) 

This is in a form similar to that of (5). We now want. to show how the last term in curly brackets 
can be made to vanish. 

We have shown elsewhere [7] that the two-photon wave function is of the form 



The function u(t) describes the correlation of the photon pair in space and time. Its width is 
determined by the single photon bandwidth. This is usually fixed by filters in the output beams 
of the down-conversion crystal. The function v(t) is of the form 

It expresses the fact that the pair is created somewhere within the overlap of the crystal and the 
pump beam. In general, if the pump beam is nearly monochromatic, A will be a slowly varying 
function of time. 

Using these facts, the second term in curly brackets of (13) can be written as 

The key point is that we can choose the path lengths so that 

making the relative phase between the two terms in the bracket of (16) negative. Since A(t) is 
constant over the measurement time this term will vanish. The first term in curly brackets has 
two terms with a relative phase of Rp(ALz + ALzz)/c which, under the condition stated, becomes 
n + Stp2Uz/c. Therefore varying the path length while keeping their difference fixed allows one 
to see interference with oscillations at half the pump wavelength. 

The above experiment is for space-time variables. There is a more convenient way to proceed 
using the polarization of the photons. 
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coincidence 
counter 

Figure 1: A pump beam enters two crystals which each produce a pair of photons by optical 
parametric downconversion. Each photon passes through an interferometer and is detected by 
one of the four detectors (Dk). A coincidence counter (C) gives a count only when all four 
photons arrive within a fixed time window. 
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Abstract 

A variant of a Franson's two-photon correlation experiment is discussed, in which the 
linear polarization state of one of the photons depends on the path followed in the interfer- 
ometer. It is shown that although the path difference is greater than the coherence length, 
the photon can be found in a polarization state represented by the superposition of the 
polarization states associated to the paths when there is coincident detection. Since the 
photons, produced via parametric down-conversion, are fairly well localized in space and 
time, the situation in which one of the photons is detected before the other can reach the in- 
terferometer raises an intriguing point: it seems that in some cases the second photon would 
have to be described by two wave packets simultaneously. Unlike previous experiments, in 
which nonlocal effects were induced by means of polarizers or phase shifters, in the proposed 
experiment nonlocal effects can be induced by means of variable absorbers. 

Ever since Bell's theorem [I] and the important paper by Clauser, Horne, Shimony, and Holt 
[2], different experiments have been performed related to quantum mechanical nonlocality. In 
these experiments the photons of a correlated pair either are made to impinge on polarizers [3] 
or are made to pass through phase shifters [4,5]. Here I would like to discuss an experiment 
(represented in Fig. 1) in which nonlocal effects can be induced by means of variable absorbers (or 
variable beam-splitters). It is a modified Franson's experiment f5]. in which a half-wave plate 
(X/2), a two-channel polarizer, and two variable absorbers (As  and AL) have been included. 
Photons yl ancl yz, produced via parametric down-conversion, are in the same polarization state 
[6], which I will assume as being parallel to x. The orientation of the half-wave plate is chosen 
so that after passing it y2 is in a different polarization state, perpendicular to the state it was 
in. As has been shown [7], when there is coincident detection, the packets following the long 
(L2) and the short (S2) paths interfere. In the present proposal the relative amplitude of these 
packets is varied at  a distance by means of As and -AL. For our purposes, we only need.to 
consider a field with one polarization component. When the beam-splitters H I ,  H2. Hi and Hi;  
the absorber As; and the half-wave plate are removed, yl and 72 can only follow the short paths. 
and the coincidence ra.te between the detectors at sites 1 and 2 is given by [8] 

where It) is the state of the field at  time t ;  .@z)(t) is the annihilation part of the electric field 
operator at the detector at  site 2; and so on, and k is a proportionality constant. If, instead 



of removing the beam-splitters, they are replaced by mirrors and - 4 ~  is removed, yl and 7 2  can 
only follow the long paths, and the coincidence rate between the detectors at sites 1 and 2 is 
given by 

-(-I -(+I -(+I Ro = k(tlE2, (t) B!-,'(t) El, ( t)  E,, (t)lt) . 
-(+I 2p ) ( t )  and Es (t) are related by the expression 

-(+I . -(+) EjL (t) = e'+~ Ejs (t - AT) , j = 1,2, (3) 

where AT = (L - S ) / c ,  with L = L2 = L1 (S = S2 = Sl) representing the length of the long 
(short) path, and 4j is a phase shift. Since L - S is much greater than the coherence lengths of 
the wave packets associated with yl and 7 2 ,  

and 

Since AwAT << 1, where Aw is the uncertainty in the sum of the frequencies of yl and 7 2 ,  it 
can be shown that [5] 

where wl + w2 = wlo + wzo f Aw, and wlo(w20) is the central frequency of yl(y2). 

FIG. 1. Franson's experiment in which a half-wave plate, a polarizer, and two 
absorbers have been included. 

To represent the action of the absorbers, I will introduce a parameter 8, such that: 

-(+I @i:'(t) % sin 6 Els (t) (7) 

and 
-(+I - (+I  EIL (t) % C O S ~  EIL ( t )  . (8) 

Therefore, the transmissivities of the absorbers are varied in a correlated way. The field operator 
at site 1 in the experiment represented in Fig. 1. will then be given by 

*(+) 1 - ( + I  Ei ( t )  = 5 - [sine El, (t)+cosO ~ i l ) ( t ) ]  . (9)  



If b is the orientation of the polarizer and L(b ,x)  = y, then when the half-wave plate is in 
place, the field operators at sites 2" a.nd 2'" are given by 

-(+I a -(+I -(+I 
E2,, ( t )  = - [sinv E2$ (t) + cosy EZL (t)] 

2 (10) 

and 
P -(+I --(+I g!$!(t) = - [cosv EZs (t) + sin9 EZL (t)] , 
2 

where a and ,G' are phase factors. 
It is then easy to show, using (I), (3), (4), ( 5 ) ,  (6), (9), and (10) and choosing + +2 = 

-(WID + wzo) AT + 2nn (n is an integer), that the coincidence rate between the detectors at 
sites 1 and 2" is given by 

-(-) -(-I --(+I --(+I Ro RglI1 = k(t lEzl1 (t) El (t) El (t) E2,, (t) It) = - cos2(8 - cp) . 
16 (12) 

Similarly, 
--(-I -(+I -(+I Ro R;,,, = k(tlg$,)(t) El (t) El (t) E2,,, (t)lt) = - sin2(@ - 9 )  . 

16 
(13 

We see from (12) and (13) that, for coincident detection, whenever we have detection at site 
1, if 7 2  follows the direction to 2, it impinges on the polarizer in a polarization state parallel to 
c, such that L(c, x) = 8. (12) and (13) then follow from Malus' law. We can also easily verify 
that whenever we have detection at site l', if y2 follows the direction to 2', it also impinges on 
the detector in a state parallel to c. By a similar procedure we also easily verify that whenever 
we have detection at site 1(l1), if 72 follows the direction to 2'(2), it impinges on the detector 
(polarizer) in a polarization state parallel to d, such that L(d, x) = -8. Since yl and 7 2  are 
fairly well localized in space and time [9], these results are totally counterintuitive. 

The nonlocal aspects of the experiment I am discussing can be made more evident by com- 
paring the following two situations. In the first, the beam-splitter HI is removed. To simplify 
the argument, we can consider the ideal situation in which all photons are detected. We then 
easily see that 

1 2  2 Rilll = - sin 6' sin 9 
8 (14) 

and 
1 

~ , , , ,  = - cos2 6' cos2 y , 
8 

which correspond, respectively. to the possibilities "yl and 72 following the short paths" and 
LL 71 and 7 2  following the long paths". In the second situation Hi is in place. Then, whenever ;l 
is detected, we know that, if Hi were not in place, yl would have been detected either at site 1 
or at site 1'. Thus, 7 2  must either follow the long or the short path. as when Hi is not in place. 
according to the locality assumption, since, it is irrelevant whether Hi is in place or not. As a 
consequence, one must have 

in strong disagreement with (12). I11 particular, when p = 7r/4. (16) leads to R;,,, = 1/32. 
whilst (12) leads to %trl  = (1/16)cos2(4 - 7r/4). where 0 5 6' 5 n/3.  



As I have emphazised elsewhere [7], the situation in which yl is detected before 72 can reach 
the interferometer raises an intriguing point: it seems that y2 would have to be described by 
two wave packets simultai~eously. Iihen y is detected before 72 can reach the interferon~etes. 
the possibilities corresponding to "both photons following the long paths" and to "both photons 
following the short paths" remain indistinguishable, and results (12) and (13) are still obtained. 
(If this were not so, special relativity might be in trouble, since the detections of and -12 

are events separated by a space-like interval. Therefore, the order in which they occur depends 
on the Lorentzian frame in which the experiment is being described. On the other hand, the 
detection rates must be Lorentz invariant quantities). The packets associated with 72 correspond 
to the following two possibilities: (Ll)yl follows path L1; and (S1) yl follows path S1. These 
packets are split at H2, producing four packets. The packet following L2 in possibility (L1) 
- packet (L2, L1) - interferes with the packet following path S2 in possibility (S1 ) - packet 
(Sz, Sl) - producing a packet (I) in a polarization state different from those that would have 
occurred, had 7 2  followed either path L2 or path Sz. It is in this pacliet (I) that 72 is to be found 
when there is coincident detection. In the experiment that I an1 discussing, the anlplitudes of 
the packets (L2, L1) and (S2, S1) depend on the parameter 8. 111 the previous esperiments, one 
acted either on the polarization [3] or on the phase [4,5] of the correlated photons to induce 
nonlocal effects. In the present proposal. the action is on the amplitudes. If we were to act also 
on the phases, polarization states different from those discussed here could be produced. 

This experiment could be performed using the recently improved time resolution techniques 

[lo]. 
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THE STRONG BELL INEQUALITIES 
A PROPOSED EXPERMENTAL TEST 

Edward S. Fry 

Physics Department, Texas A&M University 
College Station, TX 77843 

All previous experimental tests of Bell inequalities have required additional assumptions. 
The strong Bell inequalities (i.e. those requiring no additional assumptions) have never been 
tested. An experiment has been designed that can, for the first time, provide a definitive test 
of the strong Bell inequalities. Not a d y  will the detector efficiency loophole be closed, but, 
the locality condition will also be rigorously enforced. The experiment involves producing 
two 19%g atoms by a resonant Raman dissociation of a mercury dimer ('%Ig2) that is in an 
electronic and nuclear spin singlet state. Bell inequalities can be tested by measuring ane lm 
momentum correlations between the spin one-half nuclei of the two lg9Hg atoms. The 
method used to make these latter measurements will be described 

1 Introduction 

Due to low detector efficiencies, previous experimental tests of Bell inequalities have required an 
auxiliary assumption in order to derive an experimentally testable A new experimental 
concept has k e n  developed that makes it possible to test the strong Bell inequalities (Bell inequalities 
without any auxiliary assumptions). It also leads directly to an extension that rigorously enforces 
locality. 

This approach is an ex erimental realization of Bohm's version of the Einstein-Podolsky-Rosen 
Gedankenexperiment. m 7  6P Instead of photon pairs, it involves measurements of the correlations 
between angular momentum components of two atoms (actually spin one-half nuclei) of the isotope 
'"H~. A brief description of the roposed experiment was recently published,r71 and a very detailed 
discussion has also been provided. 81 

In general, the measurement of components of spin suggests the use of Stern-Gerlach magnets. For 
spin one-half particles, there are two possible projections, + ("spin-up") and - ("spin-down"), of the 
spin on the axes of the magnets. As indicated in Figure 1, the magnetic field gradient deflects each spin 
one-half particle into one of two detectors depending on the projection of its spin on the magnet axis. To 
measure a spin component of a particle in any specified direction, one simply rotates the axis of the 
corresponding magnet to that direction. However, such an approach is unsuitable in the present work 



for two reasons. Arst, to enforce Einstein locality, it would be necessary to rotate a magnet to an 
direction in a time short compared to the time it takes light to travel from one magnet to the other 

- a few nanoseconds. This appears to be physically impossible. Second, based on available magnetic 
fields and the magnitude of the nuclear magnetic moment, the deflection produced by 19%g nuclear 
spins is so small as to preclude this approach. 

Stern-Gerlach Stern-Gerlach 

FIG. 1. Schematic of a Stem-Gerlach apparatus for measuring spin correlations. The 
diagram assumes spin one-half particles and the magnets are oriented for measurements of 
the spin components of both particles in the Z direction. 

Other approaches to the measurement of spin components are possible. lFor example, a Bell 
inequality involving roton spin correlations has been tested using proton-proton scattering to determine 
the spin components!91 However, this type of approach requires several auxiliary assumpfons. 

Efficient detection of atoms is combined with spin analysis in the approach to be described here. 
This approach takes advantage of the hyperfine structure interaction in 1 9 9 ~ g  atoms in order to select 
nuclear spin components via electric dipole transitions. Detection efficiency is sufficiently high to cbse 
that loophole. And finally, this approach permits a very rapid change in the direction of the masmment 
of spin components; hence Einstein locality can be enforced. 

2 Overview of the Proposed Experiment 

The 19%g atoms are produced by a stimulated Rarnan excitation to a dissociating state ofthe X'Z~  
ground state of a 19?Hg dimer. The total electron and the total nuclear spin angular momenta are both 
zero in the initial rotational state of the Hg dimers, and are not changed in the dissociation process. The 
two mercury atoms resulting from the dissociation are both in ground states. Since the electronic 



angular momentum is J=O and the nuclear spin of 1 9 9 ~ g  is I=1R, each ground state atom therefon has a 
torisl m p l w  momenmm F=1/2. The component of total angular momentum (which is therefore the 
component of nuclear spin) in any given direction is measured by orienting excitation laser beams at 
253.7 nm in that &=tion and using polarization selective excitation of one of the &man sublevels. 
lFoP left chulady polarized excitation, only atoms whose component of angular momentum, Mp=+l/%, 
in the direction of laser beam propagation are excited. Similarly, right circularly polarized light only 
excites atoms with Mp=- 112. Excited atoms are photoionized via an auto-ionizing state using a laser at 
197.3 nm. The resulting photoelectrons and ions are detected using Channeltron electron multipliers. 
Assuming a mercury atom has been detected if EITHER an electron OR an ion is observed, then the 
overall detection efficiency for the Hg atoms is greater than 96%. Figure 2 shows a schematic of the 
expfiment h&cabg  the relative directions of the dimer, atom, and laser beams. 

Dimer Excitation 
Laser Bearm: 266 

FIG. 2. Schematic of the experiment showing the direction of the mercury dimer beam 
together with a pair of the dissociated atoms and their respective detection planes. Relative 
directions of the various laser beams are also shown. 

Rates for simultaneous detection (coincidence rates) of the two atoms are measured for components 
of their angular momenta in the directions and e2, respectively (i. e. in the directions of the 
excitation laser beams). A set of four angles can be chosen that give a maximum violation of the strong 
Bell inequality.[7* This experiment also lays the foundation for an experiment that enforces locality 



since a combination of a Pockels cell and a beamsplitting polarizer can be used to stochastically change 
the k t i o n  of the exciting laser beams on the nanosecond time scale. 

3 Measurement of the Nuclear Spin Components 

Figure 3 shows the relevant energy levels of the mercury atom,[101 and the comsponding transitions 
at 253.7 nm for spin analysis and at 197.3 nm for detection via photoionization. The f ~ s t  transition is 
fiom the (6s2)6's0 (F = x) ground state (level 1) to the ( 6 ~ 6 ~ ) 6 ~ ~ ~  (I? = x) state (level 2); the 
second transition is from level 2 to the (6p2) 3 ~ o  autoionizing state (level 3). Atom detection is via both 
the resulting ion and the photoelectron. 

Assuming a Fano profile for the autoionizing transition, a calculated value for its oscillator strength, 
and a measured value for its width, a theoretical value of -2.3~10-l4 cm2 is obtained for the peak cross- 
section.[79 *] This is an unusually large cross-section, but is consistent with measured cross-sections for 
analogous transitions in ~d.["] Since both transitions are so strong, laser pulse energies of only 60 pJ 
and 250 pJ, respectively, are sufficient to ionize all the atoms in a few nanoseconds. 

FIG. 3. Relevant energy levels of the mercury atom,[lol and the corresponding transitions 
for detection. 

As shown in Figure 2, the laser beams for spin analysis have a wavelength of 253.7 nm and lie in 
planes perpendicular to the direction to the source. They are at angles el, 82 to the +Z-axis. The angles 
el, €I2 of these laser beams define the directions in which each atom's angular momentum components 
is observed. 

If we choose some arbitrary direction as the quantum axis for our system, then the quantum numbers 
for the two components of angular momentum in that directiop are M~&1/2 (for an F=1/2 ground state 



1 9 9 ~ g  atom). If the 253.7 nm laser beam is propagating in the direction of the quantum axis and has 
right circular polarization (o+), then MF must increase by one in the transition. Thus, only ground state 
atoms for which the projection of the angular momentum in the direction of laser beam propagation is 
M p l R  can be excited to the 6 3 ~ i  (F = j /Z )  state and ionized; see Figure 4. Similarly, for left 
circular polarization, only atoms with M ~ + 1 / 2  are excited and ionized. In summary, by choosing an 
arbitrary direction and using a circularly polarized excitation laser, a Hg atom with either component of 
angular momentum in that direction can be selectively detected. 

- - - -  

FIG. 4. Analysis scheme with right circularly polarized light. Since M ~ ~ s t  increase by 1 8 in the transition, only ground state atoms with MF-1R can reach the 6 Pl (F = x) state. 

4 Summary 

The use of electric dipole transitions to measure the component of nuclear spin of 1 9 9 ~ g  in an 
arbitrary direction has been described. Its application to a definitive experimental test of the previously 
untested strong Bell inequalities is discussed. This novel approach makes it feasible to rigorously 
enforce Einstein locality. 
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We give a definition of locality in uantum optics based upon Bell's work, 
and show that locality has been vio 7 ated in no experiment performed u 
now. We argue that the interpretation of the Wigner function as a proba 
density gives a very attractive local realistic picture of uantum optics 
provided that this function is nonnegative. We conjecture t % at this is the 
case for all states which can be realized in the laboratory. In particular, we 
believe that the usual representation of "single photon states1# by a Fock 
state of the Hilbert space is not correct and that a more physical, although 
less simple mathematically, repi'esentation involves density matrices. We 
study in some detail the experiment showing anticorrelation after a beam 
splitter and prove that it naturally involves a positive Wigner function. Our 
(quantum) predictions for this experiment disagree with the ones reported in 
the literature. 

1. What is Ilocallty 3 

The purpose of this paper is to investi ate the conditions for the violation of 
locality in quantum optics. We shall s 71 ow that these conditions are rather 
stringent and have not been fulfilled in those experiments where violations 
of locality have been claimed. 

The first problem is that several, quite different, meanings have been given 
to the word "localit I' (or "nonlocality"). In fact, there are people claiming 
that quantum mec K anlcs never redicts non locality because it forbids 
sending signals at superluminal ve P oeity. On the other hand, some authors 
include auxiliary hypotheses, related to the Clauser et al. [ I ]  
"no-enhancement" assumption, as a part of the concept of locality. With such 
a definition there are a lot of locality violations in the predictions of 
quantum o tics. Here we shall use somethin intermediate between these 

work. 
b 9 extremes. e shall define locality in the fol owing form based on Bell's 

We should consider an EPW (Einstein-Podolsky-Rosen) experiment where 
some correlation is measured between properties, like spin, of two 
separated particles. Locality is satisfied ~f single probabilities ( 
and coincidence probabilities (p 4 ) can be obtained from a locaP%i$$eet)l 
variables (LHV) model, i. e., i? there are hidden variables, collectively 
represented by h,  which determine the above probabilities by means of 



integrals of the form 

the functions PCJ, FP4 and W fulfilling the conditions : 

Normalization: I w ( ~ )  d h = l  (3) 

Positivity: W(h) 2 8, P3(h9e1 ) 2 0, P4(h,82) 2 0 (4 
Boundedness: P3(h981) I "$ P~(h,82) I 1. (5) 

2. How to test lacality 3 

A test of localit involves performing an experiment where quantum optics 
predicts the vio tion of some genuine Bell inequality. Genuine means that 
the inequality can be derived from the conditions (1) to (5) alone, without 
adding auxiliary assumptions like "no-enhancement" : 

P3(h,01) I PA (1) , P4(h,82) I P2(h) not assumed. (6) 

Here PA (h) and P2(h) mean detection probabilities when no selector (e.g. 
polarimer) is inserted between the source and the detector. 

Then, we stress that it is impossible to test locali in experiments 
measuring coincidences alone. In fact, it has been poss le to construct a 
general LHV model iving the same coincidence probabilities as quantum 
optics for every EP 1 -type experiment in which only coincidences are 
measured [3]. Genuine Bell inequalities, therefore, should necessarily involve 
both singles and coincidences. In this respect, we do not agree with the usual 
statement that there are loopholes in the experiments to disprove LHV 
theories, because the word "loophole" sug ests that the experiments have 
only practical difficulties. The fact is that t ese experiments have not been 
designed to test genuine Bell inequaltities, but inequalities involving 
addit~onal assumptions, like (6). Therefore they can only refute restricted 
families of LHV models, namely those fulfilling those assumptions. 

We also point out that a necessary condition [4] for the violation of locality 
is the existence of an entangled quantum state, i.e., a nonfactorable 
wavefunction. There are some experiments, where violations of locality have 
been claimed, which do not even fulfil this condition (e.g. the state vector 
(2) of Ref. 5 is factorable). 

3. Single photon interferometry 

The simplest "entangled state" in quantum o tics appears in experiments of 
interference of a single photon (see Fig. I) [ 8 1. In an experiment of this class, 
a photon v2 is sent to a beam splitter represented by a dashed line in Fig.1). I, The state of the radiation field after t e beam splitter is 



which exhibits entangiement between a "single photon statew and the 
"vacuum state". In the anticorrelation ex eriment, represented in Fi 
coincidences are predicted between the 8 etecton PMr and PMt, whi 
to prove that the photon goes undivided into one channel. 

FIG. 1. Triggered experiment [GI. Atoms in the source S produce pairs of 
photons. The detection of the first hoton of the cascade produces a gate L during which the photomultipliers, P t and PM,, are active. The probabil~ties 
of the detection during the gate are pt P: Mt/N and pr = N,/Ni for singles and 
pc = NCINl for coincidences, Nj being the de 1 ection rates. 

In the recombination experiment the two beams, produced at the beam 
splitter, are recombined at another beam splitter where they arrive with a 
drfferent phase ( which may be chan ed by means of the phase shifter) and 
the detection probability at one of t 71 e outgoins channels depends on that 
phase difference. The standard way to "explain' this phenomenon is to say 
that there are two possible routes for the photon and that, according to 
quantum theory, "possibilities intepfere". However, this is not a scientific 
explanation at most, it may be considered as a poetic sentence or a 
practical rule \ . Later on we shall see how the phenomenon may be really 
explained uslng the Wigner representation of quantum optics. 

4. The Wigner representation as a Bscal hidden variables model 

In order to understand the meaning of entanglement in quantum optics, we 
calculate the Wigner function of (7) and we obtain 

W = N ( 2 1 at + a, l2 -1 ) exp( - 2 1 at l2 - 2 1 a, l2 ), N = normalization (8) 

This function does not factorize, but this presents no problem; we may 
interpret W as a 'oint probability distribution for the ampl~tudes a t  and a,. 
We see that, in t b e W~gner representation, entanglement is just correlation, 
an obviously classical concept. Of course, there is another very well known 
roblem, namely that (8) is not positive definite, as a probability should be. h e shall return to this difficulty in detail later on, but for the moment let 

us ignore it proceed as if W were a genuine (non-negative definite) 



probability. 

In the Wigner representation fields propagate like in classical optics. In 
fact, the equations involving creation or annihilation operators become, in 
the Wigner representation, similar equations between field amplitudes: 

The picture that emerges is that of light as pure (Maxwellian) waves, but 
with a real zeropoint (background) radiation. Then, in the single photon 
interference experiment there is always "somethingf@in both channels, 
because both at z 8 and ar z 0. 

Anticorrelation can be understood as a result of the interference between 
signal and zeropoint at the beam splitter. In fact, as shown by Eq. (9), the 
amplitudes of the fields in the outgoing channels contain a part coming from 
the signal (channel 1 and a part coming from the zero oint (channel 8, 
arrow from below in iig. I). The superposition of amplitu 8 es at channels r 
and t should produce interference, which will depend on the relative phases 
of the incoming channels. However, in any case the interference will be 
constructive in one channel and destructive in the other one, b conservation Y of energy. Now, quantum optics predicts that detectors are on y sensitive to 
the intensit above the zero oint level, which explains why there is Y E detection on y in one channel. etection sensitive only to the intensity above 
the zeropoint level follows from the the normal ordering prescription of 
quantum optics. In the Wigner representation normal ordering becomes a 
subtraction of the zeropoint, as shown by the equality 

In this way we have a transparent picture of the anticorrelation, without any 
need of "photons". The explanation of the interference in the recombination 
experiment is rather easy, because we are dealing with a 
of radiation. Interference is produced between (corre 
zeropoint at the second beam splitter. What we want to 
the only problem of the Wigner function is the lack 
entanglement. If the Wigner function of an entangled 
is not because it contains correlation, but because it is not positive definite. 

5. The meaning of enhancement and other nonclassical effects 

Now it is eas to understand wh "no-enhancement" (see Eq. (6) ) is violated. E K In fact from q. (7) it follows t at 

and this intensity may be greater than the intensity Il of the incoming 
signal, if the relative phase of E l  and Eo is zero. A similar phenomenon 
happens at a polarizer. It is enough to assume that the detection probability 
increases monotonically with the ~ncoming intensity to explain the origin of 



The existence of a real zeropoint electromagnetic radiation is, therefore, 
crucial for the explanation of enhancement. On the other hand, all LHV 
theories in which "no-enhancement" holds true have been refuted b the 
performed experimental tests of Bell's inequalities [7-93. Consequent Y y we 
may conlcude that LWV theories not involving zeropoint field are the ones 
actually refuted by these experiements. If one is fond of LHV theories, one 
should therefore look for theories involving a real zeropoint. It is very 

interpretation above suggested, belongs to this class. 
Bood that the Wigner represention of quantum optics, with the probabi istic 

i 
In the wave interpretation of quantum optics that we are suggesting (taking 
a positive Wigner function as a probability distribution the interpretation d of the nonclassical states of light is also transparent. ccording the usual 
definition, "nonclassical states of light" are those not havin a positive B Glauber-Sudarshan (P) representation. That is, for nonclassica states, the 
P-representation either does not exist or it is not non-negative definite. In 
contrast, any classical state of light has a positive P-representation, 
P({a.}), which may be interpreted as a probability distribution of the 
amplifudes of the normal modes of the radiation. If we assume that there is 
a zeropoint radiation having a probability distribution Wo({P.)), in addition 
to the classical radiation, the question arises: What is #he probability 
distribution of the full radiation present?. The answer is obvious, in every 
normal mode the total am litude, y-, will be the sum of both amplitudes, i.e. 
yj = a j  + Pj. Then the progability distribution of the full radiation will be 

This is just the Wigner function, which is known to be related to the 
P-function by Eq.(12). Therefore, classical states of light are those where 
the zeropoint is not modified; some additional radiation is added on top of 
the zeropoint. Consequently, "nonclassical states" are those where the 
zeropoint is modified. 

6. Solution of the positivity problem 

A very simple solution of the positivity problem, the problem that the 
Wigner function is not positive definite for all quantum states of light, is to 
sssume that only states with a positive Wigner function may be 
manufactured in the laboratory. That is, we assume that quantum states 
with a negative Wigner function are just mathematical constructions useful 
as intermediate steps in some calculat~ons. Two main objections may be put 
to this assumption, namely that some of tqese forbidden states have been 
actually produced, e.g. single photon states, and that there are other 
representations in quantum optics, e. . the Q -or positive P- representation, 
which are always positive and there r ore better candidates than the Wigner 
function. We shall devote the remainder of the aper to answering the first 
objection. The answer to the second is that the d' igner function has a number 
of properties that make it the only good candidate. To quote just one, it is 
the only phase-space distribution which evolves according to a classical 
Liouville equation for any Hamiltonian quadratic in the creation and 



annihilation o s. The Biouville 
Hamiltonian o from the uantum one 9, symmetrical o ng t e standard 
replacing the operat aj' ) by the classical 
the amplitude fi aj*  e the canonical 
coordinate aj. 

Now for the first objection. In the first place we point out that we do not 
ose to inter ret the Wigner function throughout quantum mechanics as a 
ability distri ution in phase space. For instance, we do no% apply it to 
lectrons in an atom. We make the proposal just for the electromagnetic 

field. In contrast with what happens tn particle uantum mechanics, in R quantum optics most of the states of the radiation ave a positive Wigner 
function. For instance, this is the case for the vacuum, the coherent states, 
the chaotic state (thermal light and even the squeezed states. Amongst the I usual states of light, practlca ly only Fock states (number states) have a 
non-positive Wigner function. Then the uestion arises: can pure Fock states 9, really be produced in the laboratory?. W at we conjecture is that Fock states 
are never produced as pure states, always as mixtures having a positive 
Wigner function. For instance, if we have a beam of "single-photon signalsn 
such that within a time window w the probability of a signal is p << 1, then 
the state corresponding to the window is not the single photon state I I>, but 
the mixture represented by the density matrix p = (1 - p) I 0> e 0 + p I 1> < 1 1. I The associated Wigner function is positive provided p e 112. 1 p > 112 the 
probability of having more than one photon within the window becomes 
relevant and again the Wigner function is positive. It may be ar ued that, P with some effort, it is possible to monitor the single photon signas in such 
a way that the probability of having one in a time window is close to one 
whilst the probability of having more than one is negligible. We shall return 
to this later on. 

7. Positivity sf the Wigner function in parametric down coasverslan 

There is a general argument showing that the Wigner function may be taken 
as positive in all experiments involving parametric down conversion. These 
experiments involve one or several nonlinear crystals where, in quantum 
language, the rocess takes place of converting a single photon of frequency R 0 0  into two p otons of frequencies o and 0 2  = coo -w 1 . The quantum 
Hamiltonian contains terms with an anni h ilation operator of the first t pe of r photons and two creation operators. However, in all practical calcu ations 
the incoming beam (the pumpin ) is taken as classical, and the annihilation P operator is replaced by a c assical amplitude. Consequently, the full 
Hamiltonian becomes quadratic in the operators of creation and destruction 
of photons. 

Now, it is well known that the Wigner function evolves accordin to a 
classical Liouville equation whenever the Hamiltonian is quadratic. 8 n  the 
other hand, the Liouville equation preserves positivity, in the sense that if 
the Wigner function is positive at a time then it remains positive at any 
later time. As the initial state (before switching on the umping) is the 
vacuum, whose Wigner function is positive, the Wigner P unction remains 
positive forever. We should point out that the action of devices like lenses, 



mirrors, beam splitters, etc. is linear and, consequently, ail of them 
preserve the positivity of the Wigner function. 

It is possible to argue that, strictly speaking, the Hamiltonian associated 
with the nonlinear crystal is cubic rather than uadratic, and a cubic 
Hamiltonian does not guarantee the positivity of the % igner function. This is 
true, but then the "nonclassicalw effects due to negative values of the Wigner 
function should be relevant in those experiments where a clear disagreement 
is obtained with %he (approximate) quantum predictions obtained using a 
cDassical pumping. No experiment of this type has been pedormed to our 
knowledge. 

I 

8. State of the beam produced in an atomic source 

In the following we investigate the positivit of the Wiqnea functim in 
experiments involving photon beams produce 2 by an atom~c source. As a 
typical example we consider the experiment by Grangier e l  al. [6], 
represented in Fig. 1 where the authors claimed to have produced single 
photon signals, which seems to imply negative Wigner functions. 

. For simplicity we consider atoms with Wo states: 1 g2 (ground) and I e2 
(excited). If at time t=O we have I e> I O> (excited atom plus radiation 
vacuum), then the evolution gives (to first order pe~urbation theory) 

where N is a normalization constant, j labels the radiation mode and A+(t) is 
the creation operator of a (localized, multimode) photon . 
If we consider many atoms, which arrive at the source, are excited there (by 
the action of a laser) and decay at times t l  , t2, ... ts, ..., we should represent 
the atomic beam by the state vector 

If the state of the outgoing atoms are not controlled, (14) is not the correct 
representation of the physical situation. In fact, we must take the partial 
trace of p =Iy> eyI over the atomic states, which leads to 

Furthermore, if the emission times are not controlled, we must average over 
the times t l  , t2,. . . 
After some algebra [I 11, we obtain that the final density matrix is 

P chaotic = nj ( Znj njnj (t + iij)-"j-' lnj><njl } 

which represents chaotic light, no matter how weak is the beam. The. average 
photon number in mode J, nj, is related to the coefficient cj .Essential for 



the result (16) is to take into account the interference between "photons" 
coming from different atoms. 

It is interesting that the Wigner function of (116) is positive definite, a well 
known property of chaotic light. 

The quantum predictions for the correlation and recombination experiments 
can be easily obtained. The recombination experiment shows interference 
with 100% visibility, which is not strange because the state (16) 
corresponds to "classicalw light that can be treated by standard wave optics. 
The correlation experiment gives for the ratio of the coincidence probability 
to the product of singles: 

a = Pcoinc. (pr pt)-l = 2 if detection window << lifetime of excited atom 

a = Pcoincs (pr pt)-l = 1 if detection window >> lifetime of excited atom 

For intermediate situations we get values of a between 0 and 1. This result 
can be also ex lained classical optics, as is well known since the early f work of Brown- wiss [I who showed experimentally the photon bunching 
properties (i.e., a > 1 ) chaotic light. 

9. "Single photon signals" in an atomic beam 

The procedure used by Grangier et al. [6] in order to manufacture single 
photon signals was to monitor the photons by detecting them in coincidence 
with partner photon emitted by the atom in a cascade. Of course, our two 
state model for the atom is no longer adequate because a cascade implies at 
least three atomic states. However, it is still ap ropriate to represent the 
state of the beam by Eq.(15) provided that, in a 8 dition to taking the partial 
trace of the density matrix over the atomic states, we average over all 
emission times except one, say to. 

We get a "sin le phdon signal" superimposed to the chaotic light, which may 
be represente d by the density matrix 

Psingle photon = N { P chaotic + A+(t'tO) P chaotic A(t-tO) 1 (1 9) 

The interesting result is that the Wigner function of (17) is positive. 

A straightforward but lengthy catcuiation[.i 1 gives the quantum prediction 
for the commented experiments. With t e parameters of the actual 
experiment 161 ( that is a coincidence window about twice the atomic 
lifetime) we predict that, when the beam is very intense, the "single photon" 
effect is lost and we get the asymptotic value a + 1.57 (pure chaotic light). 
In the performed experiment[6] values a > 1 are not observed because, in the 
actual ex erimentai conditions, the spacial coherence in the detector is 
lost[l2]. \owever, we think that rather modest improvements of the 
a paratus will allow observing our prediction of interference between I: p otons emitted by different atoms[ll J. 



We have shown that the interpretation of the Wigner function as a 
probability distribution provides a very attractive local realistic view of 

uantum optics. The main difficulty for this interpretation is the fact that 
t 'F, e Wigner function is not positive definite for some quantum states. We 
conjecture that all states actually realizable in the laboratory have a 
pos~tive Wigner function. In particular we have shown that this is the case 
for two typical situations where it is claimed that '@single photon states" 
are produced, namely parametric down conversion and light beams produced 
by a (weak) atomic source. In the second case we argue that the correct 
representation of the light beam is by means of a density matrix, rather than 
a pure quantum state. We do not accept the so-called ignorance 
interpretation of the density matrix, that is as a probability distribution on 
the set of pure quantum states. On the contrary, we assume that most of the 
pure quantum states are not physical states. 

Even if the above conjecture is correct, and the Wigner function of all 
physical states of light is nonnegative, some problems remain. We do not 
understand yet the processes of emission and detection of light or, more 
generally, the interaction of light with atoms. That is, we do not have a local 
realistic theory of atoms. In particular, we do claim to interpret the 
Wigner function of the electrons in the atom as a probability distribution. 

We acknowledge financial support of DGICYT Project No. PB-92-0507 (Spain) 
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Abstract 

The proof of Nature's nonlocality through Bell-type experiments is a topic of long- 
standing interest. Nevertheless, no experiments performed thus far have avoided the so-called 
"detection loophole," arising from low detector efficiencies and angular-correlation difficulties. 
In fact, most, if not all, of the systems employed to date can never close this loophole, even 
with perfect detectors. In addition, another loophole involving the non-rapid, non-random 
switching of various parameter settings exists in all past experiments. We discuss a proposal 
for a potentially loophole-free Bell's inequality experiment. The source of the EPR-correlated 
pairs consists of two simultaneously-pumped type-I1 phase-matched nonlinear crystals and a 
polarizing beam splitter. The feasibility of such a scheme with current detector technology 
seems high, and will be discussed. We also present a single-crystal version, motivated by 
other work presented at this conference. 

In a separate experiment, we have measured the absolute detection efficiency and time 
response of four single-photon detectors. The highest observed efficiencies were 70.7 f 1.9% 
(at 633 nm, with a device from Rockwell International) and 76.4 f 2.3% (at 702 nm, with 
an EG&G counting module). Possible efficiencies as high as 90% were implied. The EG&G 
devices displayed sub-nanosecond time resolution. 

1 Introduction 
It is now well known that quantum mechanics (QM) yields predictions which are inconsistent with 
the seemingly innocuous concepts of locality and reality. This was first shown by Bell in 1964 [ l ,2]  
fpr the case of two quantum-mechanically entangled particles, e-g., particles in a singlet-like state; 
which do not possess definite polarizations even though they are always orthogonally polarized. 
As implied by Einstein, Podolsky, and Rosen (EPR) [3], i t  is straightforward to  construct local 
realistic models that explain certain features predicted by QM (e.g., the total anti-correlation 
between detectors measuring the same polarization component of the two particles). The quan- 
tum mechanical contradiction with local realism becomes apparent only by considering situations 
of non-perfect correlations (i.e., measuring the polarization components at  intermediate, non- 
orthogonal angles). More recently, Greenberger, Horne, and Zeilinger (GHZ) [4] and Mermin [5] 
have shown that QM and local realism are incompatible even a t  the level of perfect correlations, 



for certain states of three or more particles. Mmdy has also presented a clever gedanlcen experi- 
ment using electron-positron annihilation to achieve a contradiction with local realism without the 
need for inequalities [6], and has recently proposed adll optical analog which may allow a feasible 
experimental implementation [7]. Unfortunately, none of these ingenious extensions and general- 
izations of the work of Bell reduces the experimental requirements for a completely unambiguous 
test. In fact, ail of them seem to mandate even stronger constraints on any real experiment than 
do the original two-particle inequalities. One exception is the recent discovery that the detec- 
tion efficiency requirement can be reduced by employing a state of two particles that are not 
maximally-entangled, i.e., with an unequal superposition of the two terms [S]. 

Experimentd tests of Bell's inequalities have been extended to new systems, some relying 
on energy-time or phase-momentum entanglement [9-121; nevertheless, regardless of the type of 
entanglement employed, no test of Bell's inequalities to date has been incontrovertible, due to 
several loopholes which severely reduce the true impact such an experiment might yield. One of 
these, the angular correlation problem, has essentially been solved by turning to down-conversion 
light sources over cascade sources, leaving the fast-switching loophole and the detection loophole. 
The former concerns the space-like separation of the different parts of the experiment. Clearly, 
no claims about nonlocality can be made if the pre-detector analyzers are varied so slowly that 
a signal traveling at the speed of light could carry the analyzer-setting information back to the 
source or to the other analyzer before a pair was produced or detected. To close this loophole, the 
analyzers' settings should be rapidly and randomly changed. Only one Bell-type experiment, that 
of Aspect et al. [13], has made any attempt at all to address this locality condition, but even in that 
experiment the loophole remains. Although the experiment used rapidly-varying analyzers, the 
variation was not random, and it has been argued that the rapidity of the polarization switching 
was not sufficient to disprove a causal connection between the analyzer and the source [14, 151. 

The detection loophole arises from the non-unity detection efficiency in any real experiment 
(efficiencies in past tests were at best lo%), so that only a fraction of the emitted correlated pairs 
is detected. If the efficiency is sufficiently low, then it is possible for the subensemble of detected 
pairs to give results in agreement with quantum mechanics, even though the entire ensemble 
satisfies Bell's inequalities. Due to the non-existence of adequate detectors, experiments have so far 
employed an additional assumption, equivalent to the fair-sampling assumption that the fraction 
of detected pairs is representative of the entire ensemble [16, 171. In order to experimentally close 
this loophole, one must have detectors with sufficiently high single-photon detection efficiencies. 
Formerly, it was believed that 1183% (= 2 4  - 2) was the lower efficiency limit. However, one 
of us (P. H. E.) has shown that by using a non-maximally entangled state (i.e., one where the 
magnitudes of the probability amplitudes of the contributing terms are not equal), one may reduce 
the detector requirement to ~ 6 7 % ~  in the limit of no background [8]. 

High-efficiency single-phot on detectors 
The highest single-photon detection efficiencies to date have been observed using avalanche photo- 
diodes in the Geiger mode; until recently these have been limited to about 40%. We have measured 
efficiencies as high as 76%, and there are indications that these may be improved to 80% or even 
90% 118, 191. The technique used to measure the absolute efficiency of a single-photon detector 
is now fairly well known. It was proposed by Iclyshko 1201, and first used by Rarity et al. [21] 
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FIG. 1. A simplified schematic of the setup used to measure absolute quantum 
efficiencies. The 10-cm-long KDP crystal is pumped by the 351-nm line from an argon- 
ion laser. The smaller iris and interference filter on the path of the trigger photon serve 
(through phase-matching and energy conservation constraints) to define the path of 
the conjugate photons, which are all collected by the bottom detector (modulo losses 
en route). The outputs of the detectors are amplified and fed into the START and 
STOP channels of a Time to Amplitude Converter/Single Channel Analyzer. The 
coincidence rate output, as well as the two singles rates, are measured with a counter 
and stored on a computer. By comparing the coincidence and trigger singles rates, the 
efficiency of the bottom detector may be determined. 

to characterize a silicon avalanche photodiode. The pairs of photons produced in spontaneous 
parametric down-conversion are highly correlated in time, and reasonably well collimated (i.e., 
constraining the direction of one photon of a pair determines within a few milliradians the direc- 
tion of the other). One photon of each pair is directed to a "trigger" detector, and the collection 
optics are arranged to catch all of the "conjugate" photons with the detector whose efficiency is 
to be measured (see Fig. 1). The singles count rates at each detector (Rt and I&) are measured, 
as well as the rate of coincidence counts (Rt,,) between the detectors. In the ideal limit of no 
accidental counts (arising from photons from diflerent pairs "accidentally" arriving within the co- 
incidence timing window) and no background events (from unwanted external light, dark counts 
within the detector, or electronic noise), the efficiency of the "conjugate" detector is simply the 
ratio of coincidence rate to the "trigger" detector singles rate: qc = Rt,,/Rt . In the presence of 
accidentals, A, and trigger detector background, BG, the formula is modified slightly: 

In practice our correlated photon pairs resulted from pumping a potassium di-hydrogen phos- 
phate (KDP) crystal, cut for type-I phase-matching. The down-converted photons typically exited 



the crystal at a few degrees with respect to the axis of the pump beam. Using irises and filters to se- 
lect the trigger photons, we were able to measure the efficiency at the wavelength pairs 702-702nm 
and 632nm-988nm (the energies of the down-ionverted photons must sum to the energy of the 
parent ultraviolet photon at 351nm). We ned four single-photon detectors: two Single Pho- 
ton Counting Modules (SPCM-200-PQ, EG&G), and two Solid State PhotoMultipliers (SSPM, 
Rockwell Internationd Corp.). The former devices use Geiger-mode silicon avalance photodiodes 
specially manufactured to have a very low "k", the ratio of hole- to electron-ionization coefficients 
[22]; our devices were also custom modified to employ a high overbias voltage of 30V. The SSPMs 
are also silicon devices, but operate using impurity-band-to-conduction-band impact-ionization 
avalanches, yielding a very sensitive response in the infrared. The avalanches are localized within 
areas several microns in size, and do not in general lead to device breakdown, so that these devices 
are capable of distinguishing between single-, doubb-, etc. photon detections [23]. 

The highest observed efficiencies were 70.9f 1.9% (with an SSPM, at 632 nm), and 76.4f 2.3% 
(with an SPCM, at 702 nm). We believe these to be the highest reported single-photon detection 
efficiencies in the visible spectrum; they are important for quantum cryptography and loophole- 
free tests of Bell's inequdties, as well as more prosaic applications such as photon correlation 
spectroscopy and velocimetry. It is im.portant to note that associated with each of the detectors 
there are other sources of loss, which may yet be improved. Notably, the SPCM detector is 
housed in a can with uncoated glass windows, and the detector surface itself was broadband 
anti-reflection coated. Using multi-layer, wavelength-specific coatings, it should be possible to 
essentially eliminate losses at these interfaces, implying a detection efficiency of > 82%. Moreover, 
a higher overbias is expected to increase the efficiency even further. The plastic optical fibers used 
to couple the light into the SSPMs were measured (after dismantling the apparatus) to possess 
unexpected losses-correcting for all of these losses would suggest SSPM efficiencies as high as 
93 f 7%. (Since then, relative measurements of SSPM efficiencies of 90 f 5% have been observed.) 
Work is currently underway to improve the fiber coupling scheme. In addition to high efficiency, 
a useful single-photon detector must have a low level of background, or noise. The SPCMs are 
internally cooled to about -30°C, and have rather small active areas (only (0.1mm)2); their dark 
count rates are correspondingly low, typically 65s-l. The SSPMs are cryogenically cooled to 6 K, 
but have much larger active areas ( ( ~ m r n ) ~ ) ;  typical dark count rates are 7,000s-l. 

Previous measurements of the time correlation of the photon pairs have shown that they are 
emitted within $0 fs of each other [24]. Therefore, they can be used to accurately measure the 
intrinsic time resolution of single-photon detectors, by mapping out the coincidence rate as a 
function of electronic delay time. We found that the time profile for coincidences between the 
SSPM and the SPCM consisted of' a main 3.5ns-FWHM peak preceded by a smaller peak by 
llns. A s i d a r  time profile between two SPCM's displayed only one peak, with 300ps FWHM. 
Afterpulses were detected in the SPCM9s at a level of less than of the counting rate, with an 
expontentid falloff time-constant of 4 . 5 ~ ~ .  

Proposed EPR-source 

Even with unisefficiency detectors, the down-conversion schemes used until now are inadequate for 
a completely unambiguous test of Bell's inequalities, because they must perforce discard counts. 
In the simplest of the down-conversion Bell-inequality experiments [25, 263, non-collinear corre- 





FIG. 2. Schematic of a novel arrangement in which a loophole-free test of BeU's 
inequdties is feasible. a) An dtraviolet pump photon may be spontaneously down- 
converted in either of two nofinear cryst&, producing a pair of orthogondy-pol&zed 
photons at half the frequency. One photon from each pair is directed to each output 
port of a polasizing beam splitter. When the outputs of both crystals are combined 
with an appropsiate relative phase 6, a true singlet- or triplet-Eke state may be pro- 
duced. By using a half waveplate to effectively exchange the polarizations of photons 
originating in crystd 2, one overcomes several problems arising from non-ideal phase- 
matcEng. An additiond mirror is used to direct the photons oppositely to separated 
analyzers. b) A typical analyzer, including a h a  waveplate (HWP) to rotate the polar- 
ization component selected by the analyzing beam splitter, and precision spatid filters 
to select only conjugate pairs of photons. In an advanced version of the experiment, 
the HWP could be replaced by an ultrafast polarization rotator (such as a Pockels or 
Kerr cell) to close the space-like-separation loophole. 

lated photons were directed through equal path lengths to opposite sides of a 50-50 beam splitter, 
aligned so that the transmitted mode of one photon coincided with the reflected mode of the con- 
jugate photon, and vice versa. A half waveplate prior to the beam splitter was used to rotate the 
polarization of one of the photons (which were initially horizontally polarized) by 9Q0. Coincidence 
rates between detectors looking at the two output ports were recorded, as a function of the orien- 
tation of polasizers at the detectors. In only measuring coincidence rates, the experimenters were 
able to effectively create a singlet-like state by discarding cases where both photon exited the same 
port of the beam splitter. However, it should be stressed that because of these discarded terms, 
the detection efficiency is inherently limited to 50% (unless the detector can reliably distinguish 
one photon from two), and no indisputable test of Bell's inequalities is possible. A similar problem 
arises in the single-crystal Bell-inequality experiment presented at this conference [27], as well as 
in experiments based on energy-time entanglement [Ill and phase-momentum entanglement [12]. 
We propose here a setup which should permit for the first time closure of the loopholes. .A very 
different experiment by Edward Fry is just underway [28], using for the first time atoms from dis- 
sociated mercury dimers as the correlated particles. The advantage is that detection efficiencies 
of 95% are possible by photoionizing the atoms and detecting the photoelectrons, 

A schematic of our proposed source is shown in Fig. 2a [29]. Two nonlinear crystals are simul- 
taneously punnped by a coherent pump beam to induce spontaneous parametric down-cornersion; 
the pumping intensity can be independently varied at each crystal. The crystals are cut for type-I1 
collinear degenerate phase matching (i.e., the down-converted photons are collinear and orthogo- 
nally polarized, with spectra at roughly twice the pump wavelength). For example, we envisage 
using 1-cm long crystals of beta-barium borate (BBO), pumped by the 325-nm line from a HeCd 
laser incident at 54O to the optic axis. For clarity, we first assume a monochromatic pump beam 
(at frequency 2wo), and a single-mode treatment of the down-converted photons. Then the state 
after the crystals is 



where we have omitted higher order terms (for the very unlikely case in which more than one 
pump photon down-converts; by reducing the pump intensity, the contribution of these terms 
can be made as small as desired). A includes the down-conversion efficiency into the modes 
we are considering, and also the pump field strength; f represents a possible attenuation of the 
pump be- incident on crystal 2. The state (2) describes a photon pair [one photon polarized 
horizontally (H), the other vertically (V)] originating with probability amplitude A/ in 

crystal 1 and with probability A~/JW in crystal 2. We now combine the modes from the two 
crystals at a polarizing beam splitter. For an ideal polarizing beam splitter, incident p-polarized 
light (horizontal in Fig. 2) is completely transmitted, while incident s-polarized light [vertical 
(out of the plane of the paper) in Fig. 21 is completely reflected; therefore, one photon of each 
pair wil l  be directed to output port 3, while the conjugate photon is directed to output port 4. 
Including a phase shift 6 = 2woAx/c (where Ax, the difference in path lengths, may be varied by 
moving one of the mirrors slightly) between the two non-vacuum terms of (2), we then have 

. where we have omitted the (predominant, but uninteresting) vacuum term and the prefactor 
A/ Jm. For the balanced case (f = I), and for 6 = 180°, (3) reduces to the familiar singlet- 
like'state. (In practice, one should probably use a triplet-like state (6 = 01, as this is far less 
sensitive to cross-talk effects in the polarizing beam splitter-see below.) Note that this contains 
no non-coincidence terms that must be intentionally discarded to prepare a singlet-like state. The 
source may thus find application in quantum cryptography [30,31], as it doubles the signal-to-noise 
ratio of most previous down-conversion EPR schemes. 

With the above source of correlated particles, one can now perform a polarization test of Bell's 
inequalities. Polarization analysis is performed using an additional polarizing beam splitter after 
each output port of the interferometer, and examining one or both channels of each analyzer 
with high efficiency detectors (see Fig. 2b). "Rotation" of these analyzers can be effectively 
accomplished by using a half waveplate before each one to rotate the polarization of the light. If 
the detectors are far separated from each other and from the source, and one uses some rapid, 
random means to rotate the light before the analyzers, (such as a Pockels or Kerr cell, whose 
voltage is controlled by a random signal), then one can close the space-like separation loophole. 
The signal could be derived, for instance, from the decay of a radioactive substance, or even from 
the arrival of starlight. Note that since the down-converted photons are emitted within tens of 
femtoseconds of one another [24] (unlike the photons in an atomic cascade), the limiting time 
factors will be the detector resolution (expected to be less than 10 ns) and the switching time 
(which can also be on the order of nanoseconds). 

4 Other considerations 

It has been shown that by using a non-maximally entangled state (i.e., one where the magni- 
tudes of the probability amplitudes of the contributing terms are not equal), one may reduce 
the detector efficiency requirement [8]. The basic idea is that by making one term of (3) have 
a greater amplitude than the other, one effectively polarizes the source. For example, if f is a 



red number 5 1, then a photon travelling to port 4 possesses a net horizontal polarization, while 
a photon t r avang  to port 3 appears somewhat vertically-polarized. By appropriately choosing 
the polarization-analyzer angles, one may reduce the contributions of the singles rates, while still 
violating a Bell's inequality, even for q as low as 67%. It should be noted, however, that the mag- 
nitude of the violation is reduced as f is reduced, increasing the relative importance of undesirable 
background counts. A background level (e.g., from any stray light or dark counts) of less than 1% 
is desired. 

One problem that arises in the above scheme is the effect of walkoff of the down-converted 
photons in the birefringent parent crystal. While the birefringence of the nonlinear crystal is 
essential for achieving phase-matching, it also results in a relative displacement of the two down- 
converted photons: they propagate in the same direction after exiting the crystal, but are separated 
by a distance d = L tan p, where L is the propagation distance inside the crystal, and p is 
the htra-crystd angle between the ordinary and extraordinary beams. Consequently, after the 
polarizing beam splitter, the position of a detected photon partially labels its origin, degrading 
coherence. Remmhabiy, insertion of an extra half waveplate after one of the crystals to rotate the 
po l~za t ion  by 90" avoids this problem. Photons from either crystal exiting port 3 of the beam 
splitter would be i~ t i a l l y  extrmr&nary-polarized; photons exiting post 4 of the beam splitter 
would be initidy ordinary-polarized. A similar situation occurs due to longitudinal w&off: After 
propagation through some length of the birefringent down-conversion crystal, one of the down- 
converted photons wil% " p d  ahead" of its conjugate. In the absense of the h& waveplate, one 
could in principle determine from which crystal a given pair of photons originated by examining the 
timing of the coincident detection. This dlisting~shability of contributing paths removes quantum 
interference, just as in the transverse w&off situation considered above. (This same effect was 
discussed by Sergienko et al. at this conference [32].) Fortunately, the extra h& waveplate also 
removes this longitudinal w&oE effect. With the waveplate, an infidtely-fast detector boking 
at the originally extraordlinay-polarized photons would always trigger before the detector looking 
at the originally ordinary-polarized photons; hence, interference remains. The waveplate also 
removes difficulties arising from finite bandwidth and vector phase-matching considerations [29]. 

For a plme-wave pump, the phase-matching constraints for down-conversion imply that with 
careful spatial filtering, one can in principle collect only conjugate pairs of photons from the 
crystals (i.e., essentially no unpaired photons, aside from stray light). Once we allow a more 
realistic, gaussian-mode pump, then this is no longer possible. For identical, finite-sized collection 
irises, there will always exist situations where one photon is detected while the other is not (even 
aside from the problem of inefficient detectors). This effect is mitigated by collecting over a larger 
solid angle. In particular, in order to keep the losses less than 2%, we must employ irises which 
accept light out to 30 times the pump divergence angle. For example, if we employed a 325-nrn 
pump with a beam waist radius (l/e2) of 3.5 mm, then we would need to accept all half-angles 
up to 1 milliradian. (In practice, this could be accomplished by use of a precision spatial filter 
system in each output port; see Fig. 2b.) 

We have also investigated the effects of using various non-ideal optical elements. One of these 
investigations bas led us to a novel interference effect. In considering an imperfect recombining 
polarizing beam splitter, we discovered that the singlet-like state is much more sensitive thar, the 
triplet-like state to beam-splitter "cross talk", when f = 1. By "cross talk" we mean the situation 
where photons exit the wrong port of the beam splitter (i.e., some fraction of the incident p 
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FIG. 3. The two processes that can lead to the final state of both photons going 
toward the same detector are indistinguishable; thus, we add their probability ampli- 
tudes. We assume that f = 1, and for simplicity that the transmission and reflection 
amplitudes are 114 and i/a, respectively. When 6 = 0 (triplet-state), there is 
destructive interference. 

polarized light is reflected, while some fraction of the incident s-polarized light is transmitted). 
Whenever this happens, we once again have a situation in which both photons can leave the same 
output port of the beam splitter - just as in the experiment discussed at the beginning of Sect. 3, 
this reduces the effective efficiency, making it more difficult to violate Bell's inequalities. However, 
in the special case for which the percentage of cross-talk for the two polarizations is equal (one 
example is the case of a non-polarizing 50-50 beam splitter), there is quantum interference which 
prevents the two photons from exiting the same port of the beam splitter; the interference only 
exists for the triplet arrangement (6 = 0°), not the singlet case (6 = 180") [see Fig. 31. This is, in 
some sense, the complementary effect to one in some one-crystal experiments (see, for instance, 
[24, 33]), in which the two-photons from a down-conversion crystal always take the same port of 
a 50-50 beam splitter. It would be interesting to demonstrate this phenomenon experimentally. 

Using a scheme that was motivated by two of those presented at this conference [34, 351, it is 
possible to produce this EPR-source using only one down-conversion crystal. The key is to reflect 
the pump beam back through the crystal (see Fig. 4). Although this scheme has the advantage 
that it reduces the number of optical elements (most importantly the number of crystals) it does 
have a few difficulties not present in the 2-crystal approach. First, one must use an isolator to 
prevent the pump from coupling back into the laser. Next, the return path must be kept short 
compared to the pump coherence length (typicdy 10 cm for a HeCd laser), to maintain coherence 
between the processes in which the down-converted pair originated from a left-going or a right- 
going pump photon. Findy, one must find very good dichroic mirrors to separate the pump beam 
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FIG. 4. Proposed one-crystal scheme to produce EPR-state. 

from the down-converted photons. One solution is to use high-quality prisms (not shown in Fig. 

4)- 
In conclusion, with the setup described herein it should be possible to produce an indisputable 

violation of a Bell's inequality. We have examined the effects of background, imperfect polarizing 
beam splitters, and phase-distorting optics. For X/2O-flatness optics, a background level of 1%, and 
custom-selected polarizing beam splitters (with an extinction ratio of at least 500: I), numerical 
calculation predicts that a violation should be possible as long as the net detection efficiency is 
greater than 82.6%. Naturally, all optics would be anti-reflection coated to minimize reflection 
losses; including a 0.25% loss for each interface, and the 2% loss from the gaussian nature of 
the beam, this means that the bare detector efficiency needs to be at least 88.6%, which may be 
achievable in light of our recent measurements [18, 191. Of course, for a safety margin, one would 
like it to be even higher. 
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simple settheoretical arguments. Recently another attempt has been made by Lucien Hardy [6] 
who showed that the probability for a contradiction of the GMZ-kind can be greater than zero for 
a two-particle system. 

Nevertheless none of these approaches has provided a general argument based on the concepts 
of locality and reality which explicitly demonstrates the origin of the discrepancy between local 
realism and quantum mechanics. Thus our aim is to show the essential restrictions of local realism 
by discussing the results of a general two-particle experiment using the assumptions of locality and 
reality. As evident consequences the conditions for the fulfilment of these restrictions are equivalent 
to Bell's inequality. 

2 Predictions based on the knowledge of correlations 

We consider the following experimental setup (cf. Fig. 1): A source emits the two parts of a 
system in opposite directions. Measurements with the possible results +l and -1 are performed 
on each part by two observers A and B. Each of them may select one of two possible values of a 
measurement parameter a and P,  respectively. As a consequence four different experiments can 
be made, corresponding to the four different combinations of the measurement parameters al, a2 
and &, P2.  

FIG. 1. The experimental setup consists of a source which emits the two parts of 
a system in opposite dia-ections. Measurements with the possible results +1 and -1 
are performed on each part by two observers A and B. Both A and B have a knob 
which selects one of two possible values of a measurement parameter. In such a way 4 
different experiments can be made (cf. table I). 

We assume that all four experiments have been made. The results are listed in table I. 

TABLE I. The correlations of the results of the 4 experiments are listed. They mi ht f have been observed in actual experiments or calculated by quantum mechanics. Pi is 
the probability for different results in experiment i. In consequence the probability for 
equal results Pp is 1 - Pf. 

Experiment I A I B I Correlation 



In experiment 1 with the parameters adjusted to a1 and PI the observers A and B got different 
results with probability pf . In experiments 2, 3 and 4 the probabilities for different results are 

# #  P, , P, and Pf, respectively. 
Knowing the correlations which have to be expected either from previous experiments or 

quantum mechanical calculations, A is able to predict the possible results of B and vice versa. 
This means that after A has for example performed a series of n measurements with the setting 
a1 he can infer all possible results of B on the basis of his experimental data and the knowledge 
of the correlations in experiments 1 and 2 by the following reasoning. 

Predicted results of experiment 4 I 
FIG. 2. A procedure is shown by which observer A (B) after having performed 

a series of n measurements is able to predict the results of observer B (A) for the 
two alternative settings of the measurement parameter /3 (a). The actually measured 
results of observers A and B are listed in the two boxes. By changing a corresponding 
number of signs (ni = pf n for experiment i) of the measured results the predictions 
are in agreement with the calculated or previously observed correlations listed in table 
I. Nevertheless it turns out immediately that the predicted results of experiment 4 
are consistent with the actual correlations of experiment 4 (cf. table I) only if the 
inequality n, + n, + n, 2 n, (equivalent to Bell's inequality) is fulfilled. 



If B selects the parameter h (experiment 1) the probability for different results has to be Pf (cf. 
table I). For n m this means that nl = Pf n results have to be different. By reversing nl 
signs of his results A arrives at a series of possible results of B which correspond to the known 
correlations. Because there are different ways of changing nl signs of n numbers A ends 

up with a list of nl!(tLnl)! different predictions for the possible outcomes of B's measurements. In 
the same way A is able to infer the possible results B could get, if B selects P2 (experiment 2) by 
changing nz = ~f . n signs of his results. In Figure 2 the results of A are listed in the box in row 
A,, . The predictions he derives from these data are symbolized by vertical lines in rows BPI and 
BAS Each line corresponds to one way of changing nl and n2 signs, respectively. By this means 
the predicted results correspond to the known correlations. 

Now let's assume that observer B actually selects the parameter PI and performs a series of n 
measurements. In figure 2 his results are listed in the box in row Bpi. Of course they correspond 
to one of the predictions by A. 

Not knowing what A has done observer B himself predicts all possible results A could get if 
he selects the parameter a1 (experiment 1) or a2 (experiment 3) (cf. table I) by considering all 
possible ways of changing nl or n3 signs of his results. Again the actual results of A correspond 
to one of the predictions by B as it is shown in figure 2. 

Bell's inequality 
In the previous section we have shown how it is possible for A to predict all results B could 
obtain and vice versa. In the following we are going to apply the locality assumption that "no real 
change can take place in the second system in Consequence of anything that may be done to the 
first system" [I]. Moreover we assume in agreement with realistic approaches that "unperformed 
experiments have results" [7] or in other words that predicted results have the status of potential 
reality. 

If we now ask what A could have measured if he had selected the parameter a2 (experiment 3) 
instead of a1 (experiment I) ,  we just have to take into consideration the predictions by observer 
B to find the answer. Based on his actual results and the known correlation in experiment 3 (cf. 
table I) observer B has predicted all results A could have got if he had chosen a 2  (cf. figure 2). As 
a consequence of the locality assumption the results of B, which are the basis of his predictions, 
are independent of anything that may be done by A. Because of this independence all of B's 
predictions have the status of potential reality, which means that if A had selected a2 he actually 
would have got one of the results predicted by B. 

In the same way we find the answer to the question what B could have measured if he had 
selected the parameter P2 (experiment 2) instead of P1 (experiment 1) by considering the predic- 
tions by observer A (cf. figure 2). It is important to notice that because of the locality assumption 
we can make independent use of the predictions by B and A to answer the question what A and 
B could have measured if they had selected a2 and P2,  respectively. 

Since we know all possible results A and B could have got if they had chosen a2 and P2, 
respectively (experiment 4 ) ,  we may now try to find out if these results are consistent with the 
known correlation of experiment 4 Pf (cf. table I). For this purpose we take one of the results B 
could have got if he had selected P2 (row Bp, in figure 2), change nz signs to get the actual results 



of A (box in row A,,), change nl signs to get the actual results of B (box in Bp,) and change n3 
signs to end up with one of the results A could have got if he had selected 0 2  (row A,, in figure 
2). Of course we could also do the same thing the other way round but anyway the results A 
could have got are connected to the results B could have got by the following transformation rule 
(cf. figure 2): Reverse n2 signs in the first, nl signs in the second and n3 signs in the last step 
or the other way round. Doing this the maximum number of signs one can change is simply 
m, + n, + n3. This result of local realistic reasoning is consistent with the observed correlation 
in experiment 4 if and only if n, + n, + n, >_ n, = ~f n . If this condition is violated, then 
not a single pair of the predicted results of experiment 4 (cf. figure 2) is correlated in agreement 
with experience because there is no pair with more than nl + n2 + n3 different signs. 

It follows immediately that this condition is equivalent to Bell's inequality: 

We get (3) by adding inequalities (1) and (2) and using the definition of the expectation value of 
the product of the results Ei in experiment i (i = 1,2,3,4). 

4 Discussion 
We have shown that just by discussing the possible results of a general two-particle experiment 
in a local realistic way one is directly led to a condition for the consistency between quantum 
mechanics and the concept of local realism. 

The crucial point in the argumentation is on the one hand the assumption that A's and B's 
data are determined locally, which means that A's (B's) results are completely independent of 
the measurement parameter selected by B (A). On the other hand by assuming that unperformed 
experiments have results A's and B's predictions can be combined in order to get a prediction of 
experiment 4 (unperformed). It turns out that this kind of counterfactual reasoning is inconsistent 
with the results one obtains by actually making experiment 4. 
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Abstract 

We report a new two-photon polarization correlation experiment for realizing the Einstein- 
Podolsky-Rosen-Bohm (EPRB) state and for testing BeIl-type inequalities. We use the pair of 
orthogonally-polarized lighr quanta generated in Type 11 parametric down conversion. Using 
lnm interference filters in front of our detectors, we observe from the output of a 05mm 
B - BaB204 (BBO) crystil the EPRB correlations in coincidence counts, and measare an 
associated Bell inequality violation of 22 standard deviations. The quantum state of the 
photon pair is a polarization andoe cf ,,he spin-l/2 singlet state. 

1 Introduction 
The Einstein-Podolsky-Rosen-Bohm (EPRB) gedanken[l, 21 for two quantum particles has played 
an important conceptual roIe for viewing quantum-mechanical correlations that provide intrigue 
and challenge to classical intui~ion. In brief, the EPRB correlation considered here is contained 
in a tweparticle, two detector setup in which a measurement is first made on one particle at 
one detector of a parameter thzt is indeterminate prior to the measurement. This outcome then 
implies with certainty the outcome of the measurement on the second particle. Demonstrations 
for spin-112 quanta[3], for photon polarization states [3,4, 5, 6, 7, 81, and more recently for other 
variables [9, 10, 11, 121 have all shown these EPRB correlations in the coincidence registrations 
of two detectors. 

The same quantum-mechanical state of two particles that generates an EPRB experiment also 
provides an enhancement of observed coincidence rates beyond a maximum bound set by Bell's 
two postuIates[l3, 31. Violatiozs of Bell-type inequalities are one application of EPRB states. 



We have fomd a new and convenient way to generate quantum states that exhibit these EPRB 
wmelations[I, 23, with an associated violation of two-particle Bell-type inequalities[l3, 31. Our 
mwe 51 the pair of light quanta generated in parametric down conversion with Type 11 phase 
&&img. The pair is incident on one port of a nonpolarizing beamsplitter with output ports 
mntdiieing two linear analyzer-detector packages. The pair is orthogonally polarized, without the 
nged for an interferometer or retardation plates. Our Bell Inequality violation in polarization 

'ables is as large as 22 standard deviations. 

2 Experimental Method 
Our experimental configuration is shown in Fig. 1. A 351.lnm unfocussed Argon ion laser line is 
incident on a Q.5mm long BBO crystal oriented to achieve Type 11 phase matching in parametric 
down conversion, with the 702.2nm wavelength collinear with the pump. Pairs degenerate in 
propagation direction and frequency emerge from the BBO crystal and separate from the pump at 
a quartz prism. They are split at a nonpolarizing beamsplitter and sent to two Glan-Thompson 
analyzer-detector packages. Coincidence counts are collected in a 6nsec coincidence time window 
from two avalanche photodiode detectors operating in the Geiger mode. 

Coincidence counts collected in a large time window are 

for a constant No and parameter X that is not a priori equal to two. Indeed, for filters of bandpass 
greater than lnm, or for a BBO crystal of greater length (5,65mm), X was found to be less than 
two. We discuss this bandwidth and' crystaI length dependence elsewhere in greater detail. For the 
present conditions (filters with FWHM of lnm, crystal length 0.5mm), the large visibility (> 99%) 
in Figs. 2 and 3 is predicted from (1) only for X nearly two. We obtained X = 1.98 f 0.04. 

This value of X is within la of 2, for which (1) reduces to sin2(B1 - B2), a function of only the 
difference angle, - B2 This dependence on only one variable specifies an invariance with respect 
to the other, often referred to as a rotational invariance[3, 71. 

This rotational invariance is a key property of our quantum state. Either the o-ray or the e-ray 
Gould trigger either detector, making detection of single counts ideally independent of analyzer 
angle. Once one detector has fired, the conditional probability of registering an event in the second 
detector is given by the coincidence probability, which for X = 2 can be rewritten as oc ws2(B1 - 
O2 + 90 deg). This is Malus' law for detection of a linear polarization at angle el - B2 + 90 deg. 
The polarization at the second detector is known with certainty to be linear at this angle after 
the first detector has fired. This is a correlation of the EPRB type. 

The A-dependent mixing term in (1) foils any interpretation specifying the o-ray to be local- 
ized at detector 1 and the e-ray at detector 2, or vice-versa. Both of these quantum-mechanical 
amplitudes are present, and their interference generates the A- dependent term of (1) that rep- 
resents an overlap of "0-ray resolved at Dl, e-ray resolved at D2" (- cosBlsinB2) with "e-ray at 
Dl, o-ray at D2" (- sinBlcosB2). 



3 Results 
We use the (coincidence c o d  expression (1) to exhibit Bell inequality violations. This application 
of (1) proceeds without any necessary regard to the underlying mechanism procfucing the X- 
degendent interference term. 

For the X = 2 singlet state andog, we measured the Be11 inequality expression as derived by 
Redmm[l4,3) 

I Nl2(4) - fi2('4) 15 0.25, 
N12(-, -) (2) 

for 4 = el - e2 = 22.5 deg (see Table I). 
It is possible to avoid exhibiting the aforementioned symmetry properties used to derive (2) 

by testing a more general Bell inequality form. We proceed fkom the inequality[l5,3,8] 

in which the Glauser-Horne no-enhancement assumption[l5] has already been imposed, and in 
which probabilities have been converted to coincidence counts N12 accumulated in some time 

. interval. 
Although we have generated violations of (3), we advocate a stronger version in which the 

transmission losses of the analyzers are recognized and removed. The basis for this is a generalized 
version of the no-enhancement hypothesis, in which the passive, polarization-independent analyzer 
losses are assumed not to affect the behavior of the source whose coincidence properties are under 
study. We note that these analyzer losses must be controlled[l5,3,16] in a rigorous Bell inequality 
test. For our purpose here of exhibiting the coincidence behavior of the source, we use this 
generalization to alter (3) to the form 

We deduced a choice of four angles (4 = 22.5 deg, 6$ = 135 deg, 8; = 67.5 deg, 8; = 90 deg) that 
would violate (3) or (4) maximally. Coincidence counts (Table 11) in eight minutes are collected 
for these angles. Table 111 shows the deduced violation in these counts of both (3) and (4). 

As has been noted[S], violations of (4) occur for any greater-than-zero value of the left hand 
side. For a relevant figure of merit in judging Bell inequality violations, we advocate the quantity 
Q-1, for Q the ratio of the term of (4) in square brackets to the term in parentheses. For Q-1>0, 
the form (4) is violated. We compare in Table I11 the measured Q-l to the prediction generated 
fiom A. As another consistency check, we list the ratio q2N12(01, -) : q1N12(-,02), which should 
be 1:1, within experimental error. 

In conclusion, we have identified a new source useful in realizing the EPRB gedanken and in 
testing Bell Inequalities. We achieve the EPRB correlations by virtue of a coincidence probability 
or sin2+ for q5 = $ - 02. We obtain a violation of the form (2) for polarization variables that 
is 22 standard deviations and limited here only by accumulation time. The quantum state is 
entangled[l?] in polarization variables, leading to an interference term in coincidence counts that, 
because of EPRB correlations and Bell-type inequality violations, is manifestly quantum in nature. 
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FIG. 1. Experimental Setup. Pairs from collinear Type I1 down conversion in a 
BBO crystal are separated from the pump at a prism and directed to a 50:50 beam- 
splitter. The coincidence registrations in detectors 1 and 2 are recorded as a function 
of the angles O1 and O2 of the Glan Thompson analyzers, for each bandwidth filter 
installed in front of the detectors. 
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Table L BeU hequakity Measurements for 4 = 22.5 deg. 

Tabb II. BeU Ineguallity Measurements. 

Table HII: Bell Inequality Violations Using Counts of Table I%. 
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The Relation Between Physics and Philosophy 

Abner Shimony 
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It is an honor to be invited to give the banquet talk at this Workshop. The invitation by Profs. 
Shih and Rubin provides an opportunity to present to a new audience some theses to which I am 
devoted. I hope that you will hear some things that you have more or less believed for a long time 
but have never heard articulated explicitly. 

Working physicists, I believe, almost inevitably have strong philosophical interests, regardless 
of whether they have taken courses labeled "Philosophy" and whether they have liked what they 
have sampled. Their interest is implicit in the discipline of physics itself. Peter Bergmann, in the 

. introduction to his Basic Theories of Physics I attributed to Einstein the view that "a theoretical 
physicist is . . . a philosopher in workingman's clothes." I would omit the adjective "theoreticaln 
and apply the characterization to experimentalists as well. This claim depends, of course, on a 
conce$ion of what philosophy is. I propose the following: philosophy is the systematic search 
for perspective, for connections among aspects of the world, and for depth of explanation. Some 
physicists are drawn into their profession from the beginning because they have been convinced by 
a few revealing examples that the procedures of physical investigation help to achieve perspective, 
connections, and depth of explanation. These are philosophers from the start. Others are drawn 
in because of their fascination with specific phenomena. In my case, the onset of curiosity about 
the physical world, so far as I can recall, came at the age of four, when I saw my father siphoning 
wine out of a barrel, and I was amazed that the wine went up in the siphon before it descended. 
But even if the route to professional physics is via wonder at specific phenomena, an approach 
to philosophy, in the sense mentioned, is unavoidable, because the physicist's understanding of 
phenomena goes beyond the phenomena themselves to underlying causes and to connections. 

There are various ways to subdivide the discipline of philosophy, but the following will be 
convenient for our purposes: 

1. epistemology, which assesses claims to knowledge; 
2. metaphysics, which considers what kinds of things exist and what are the basic principles 

governing them; 
3. theory of value. 

I'll put greatest stress upon the relations between physics and metaphysics, because they are richer 
and more surprising than its relations to epistemology and value theory. 

Epistemology : 
Among the many problems of epistemology I shall focus on these: (i) what is the proper 

formulation of scientific method, and to what extent is that method rationally justified? (ii) To 
what extent can we disentangle subjective from objective contributions in our experience of the 
world? There were serious and highly intelligent figures in the history of thought, like Descartes, 



who maintained that these and related questions in epistemology had to be answered before the 
substantive work of the sciences could begin, because a foundation is necessary before constructing 
the edifice of science. We can confidently say, I believe, that this architectural metaphor was 
mistaken, because all attempts to establish the foundations of knowledge without any substantive 
assertions about the world seem to have failed. Instead, work on the theory of knowledge and 
work on substantive science had to proceed in tandem, and - judging by the spectacular successes 
of the natural sciences - we can say that somehow human beings are capable of this remarkable 
and somewhat paradoxical intertwining of investigations. 

As to problem (i), concerning scientific method, the great breakthrough occurred in the six- 
teenth and seventeenth centuries, and was inseparable from the development of the new physics 
and astronomy of Copernicus, Kepler, Galileo, Huygens, and Newton. It had been known from 
the time of the great Greek philosophers, and probably in a vague way many millennia earlier, 
that somehow human beings can learn by sense experience and also by reasoning. The division 
between Plato and his followers, on the one hand, and Aristotle and his followers on the other, con- 
cerned the primacy of sense experience or reason. In the work of the new physicists, culminating 
in Newton's Principia, the interplay of the contributions of experience and reason was clarified. 
These physicists recognized that human beings are not so constituted that they can have direct 
sensory experience of the fundamental structure of matter or of the fundamental forces among 
material things. However, if tentative propositions about fundamental physics are formulated in 
mathematical terms, then logical and mathematical reasoning leads to conclusions that can be 
checked by sense experience, notably the trajectories of terrestrial bodies and the apparent po- 
sitions of planets in the celestial sphere. Newton's successful prediction that the orbit of Saturn 
would be distorted when that planet is close t c  Jupiter, and Halley's successful prediction of the 
recurrence of a comet, and other spectacular verifications of predictions, indirectly confirmed the 
tentative propositions about fundament a1 physics which were incapable of direct check. Thus, 
in tandem with the substantive advance in physics and astronomy was the demonstration of the 
power of the scientific method summarized above, called the "hypothetico-deductive method." 
This method was not discredited by the significant refinements of scientific methodology in the 
centuries that followed, notably enrichment with probability theory. Reflection upon scientific 
practice was largely responsible for these refinements, since it was noticed by Gauss, Bessel, and 
others that experimental data are subject to random errors, and they realized that in addition to 
the dominant causes of a natural phenomenon there are always innumerable small perturbations 
that cannot be completely catalogued and yet can be treated rationally in terms of probability 
distributions. Further refinements of scientific method have been made in the twentieth century, 
and there are still controversial questions concerning inductive inference. Nevertheless, I would 
maintain that the great revolutions of physics of the twentieth century were accomplished essen- 
tially with a classical methodology. The propositions of relativity theory, quantum mechanics, 
elementary particle theory, etc. were established by applications of the hypothetico-deductive 
method, refined somewhat by probability theory, without a methodological revolution. 

As to problem (ii), concerning the disentanglement of subjective from objective factors in ex- 
perience, there was not - so far as I can see - a single critical breakthrough, but rather a long, 
intricate, progressive, and still incomplete development. As the human observer was recognized 
to be a natural system, the experiences of that observer could be studied as the termini of causal 



chains, some of which are initiated within the observer, while others are initiated externally. Of 
course, all external stimuli eventually impinge upon the neural and psychic machinery of the 
observer. The naturalistic point of view regarding the human observer has made it possible for 
psychologists and neurophysiologists to understand such matters as optical illusions, the limited 
range of the visual and auditory spectra, and the distortion of perceptual judgments by emotional 
and conceptual bias. In turn, such understanding of the subjective element in experience permits 
scientists to take counter-measures, by instruments and procedures of observation, in order to en- 
hance the revelation of objective factors in experience. Of course, the ultimate subjective elements 
of experience, such as sensory qualities, are entirely beyond present science, and will continue to be 
mysterious until we have a scientific world view that can accommodate consciousness. There has 
been, however, a capital negative achievement concerning the subjectivity of experience: namely, 
an accumulation of evidence that the structure of space and time are not imposed upon experi- 
ence by the operation of the human mind, as Kant maintained in his doctrine of transcendental 
idealism. Kant's primary argument proceeds from the apparent necessity and universality of ge- 
ometrical propositions, understood not as mere statements of a formal calculus but as assertions 
about physical space. The invention of non-Euclidean geometry by Lobatchevsky and Bolyai, the 
demonstration of its consistency relative to Euclidean geometry by Klein, and the success of its 
incorporation in general relativity theory are devastating to Kant 's argument. Furthermore, when 
his exemplary geometric instances of synthetic a priori judgments are undercut, then his further 
claim, that the principles of causality, substance, etc. are necessary because they are imposed 
by the mind, is seriously weakened; and it is weakened even further by the triumph of a non- 
deterministic physics. In other words, the epistemological explanation of the basis of science - 
which was a major part of Kant's program -is undermined, and we are driven to recognize that in 
so far as science is valid, even as an approximation, it is so because it is a quite good description of 
the world as it is. The foregoing anti-Kantian argument is regrettably condensed, but it suffices to 
point to my next thesis: that there are important connections between physics and metaphysics. 

Metaphysics: 
This thesis may be disconcerting to many people, because the word "metaphysics" is commonly 

used as a pejorative by physicists, even by those who are sympathetic to epistemology. Until the 
beginning of the eighteenth century there were great scientists who were also metaphysicians, like 
Aristotle and Leibniz, and a case can be made for adding Newton to the list. The historical 
consequence of Kant's work at the end of the eighteenth century and Hegel's at the beginning 
of the nineteenth was a rift between science and philosophy, regardless of their intentions; and 
Hegel's grandiose and obscurely reasoned attempt at a "System" of thought engendered a negative 
reaction among many careful and critical scientists. The positivism of Mach and the Vienna 
Circle was a consequence of the quest for clarity of expression and rigor of demonstration, and 
to some extent it was a reaction against the excesses of Hegel. The enterprise of systematic 
philosophy - aiming at perspective, connections, and depth, as I proposed at the beginning of 
my talk - became generically suspect, because of the weaknesses of exposition, the excessive 
claims, and the remoteness from scientific practice of the most influential systematic philosopher 
of the nineteenth century. The Vienna Circle, which originally called itself the "Mach verein," was 
nearly unanimous in its condemnation of metaphysics as nonsense and its desire to purge scientific 
discourse of any residue of metaphysics. At the time of the great scientific revolutions of the early 



twentieth century, positivism was a pervasive influence among scientifically oriented philosophers 
and philosophically oriented scientists. It is not surprising, then, that many of the revolutionaries 
gave an anti-met aphysical interpretation to their discoveries. Einstein for a long time expressed 
great sympathy with Mach's ideas, and some of his expositions of special relativity centered 
around the operationalist analysis of space-time concepts like "simultaneity." Heisenberg's initial 
formulation of quantum mechanics dispensed with position and momentum, which he regarded as 
unobservable on a microscopic scale, and tried to express his theory in terms of observables like 
frequency and intensity. Both Einstein and Heisenberg eventually deviated from positivism and 
both espoused some form of physical realism - Einstein in his argument for "elements of physical 
reality" and Heisenberg in a statement that the wave function of an atom can be regarded as a 
description of the atom as a "thing-in-itself." But Bohr to the end of his life gave interpretations 
of quantum mechanics with a positivistic flavor, e.g., saying of the wave function that "we are 
dealing here with a purely symbolic procedure, the unambiguous physical interpretation of which 
in the last resort requires a reference to a complete experimental arrangement." Bohr believed that 
the philosophical implications of quantum mechanics are epistemological, concerning limitations of 
human knowledge and renunciations of unitary pictures of the kind offered by classical physics. His 
consistent playing down of metaphysical interpret ations of quant um mechanics reflect a pervasive 
suspicion of metaphysical speculation in the scientific community, and it is therefore not surprising 
that he maintained a strong grip upon the attitude of physicists towards quantum mechanics 
until fairly recently. I have to confess that in spite of my thesis about the relation of physics 
to metaphysics, I have respect and sympathy for the positivists' pursuit of clarity of concepts 
and rigor of demonstrations. I am skeptical, however, that criteria for the meaningfulness of 
sentences, such as "verifiability," "confirmability," or "falsifiability." can be formulated a priori 
without drastically damaging scientific investigation. Mach was right that there was an obscurity 
in Newton's concept of "absolute motion," but the reason is Galilean invariance, which precludes 
an absolute distinction between rest and uniform rectilinear motion; however, Galilean lnvariance 
is entirely consistent with a clear concept of. absolute acceleration. In sum, the clarification of 
scientific language must proceed in tandem with the progress of scientific knowledge, analogously 
to the linkage of scientific methodology and substantive science. If physics has progressed to the 
point where some of the traditional metaphysical problems can be formulated with precision, and 
even subjected to experimental treatment, then we are presented with a wonderful opportunity, 
that ought not be neglected because of a suspicion of the sterility of metaphysics. And I contend 
that modern physics has reached such a stage of development. We are fortunate enough to be 
invited to a great feast of ideas, and it would be a self-defeating austerity to decline the invitation. 

Here is a partial list of results of modern physics having metaphysical implications. Of course, 
all of these results are subject to modification as science progresses, but it is most unlikely that 
any of them will cease to be good approximations (in the sense of the correspondence principle) 
to their successors. For this reasons, the implications that we can draw from them are likely to 
have a quasi-permanent status. 

I. Modern physics (broadly understood to include chemistry) has established the granular 
character of matter, the present candidates for elementarity being quarks, leptons,. and various 
bosons. That the immense variety of kinds in the natural world can be understood in terms of 
combinations of these elementary units is a great vindication of the atomic vision of Democritus. 



But the modern qualifications of the Democritean vision are as important metaphysically as 
the vindication, especially that none of the elementary units is immortal, but all are subject to 
creation and annihilation in allowable processes; and that certain quantities, notably energy and 
momentum, are conserved in all of these transformation processes, and others are approximately 
conserved. 

2. The overwhelming evidence that the quantum state of a physical system is a complete 
description of it, without any need or place for supplementary "hidden variables," implies that 
various features of the quantum formalism must be attributed to individual physical systems and 
not just to ensembles. There is objective indefiniteness, because in any quantum state some 
physical variables have no definite value; there is objective chance, because the different behav- 
iors of various systems with the same quantum state cannot be attributed to differences among 
hypothetical hidden variables; there is objective probability, because the chance behavior of an en- 
semble of systems in the same quantum state conforms to definite probability distributions. These 
three properties conjoined are called"potentiality," in Heisenberg's terminology. That the state 
of a physical system involves potentialities and cannot be fully understood in terms of actualities 
is one of the profound metaphysical implications of quantum mechanics. This interpretation of 
the quantum formalism, it may be noted, is entirely different from Bohr's, which is epistemo- 
logical in character. For instance, the unceertainty principle is not interpreted in Bohr's fashion 
as a limitation upon human ability to measure both position and momentum, but rabher as an 
acknowledgment of the objective fact that position and momentum cannot both be actual. 

3. Quantum mechanics also has a remarkable implication for the relation between parts and 
wholes. There are states of composite systems, called "entangled" by Schroedinger, that cannot 
be expressed as the product of states of the individual components. Entanglement is manifested 
by the occurrence of correlations that cannot be accounted for by product states. By contrast, 
classical physics is pervasively analytic and characterizes the state of composite systems in terms 
of the states of components. Thus quantum mechanics has brought an unprecedented kind of 
holism into our view of the natural world. 

4. When the parts of a composite system are spatially separated, the entanglement of its 
state implies a kind of non-locality: there is correlated behavior that cannot be explained by any 
propagation of causal influences that is not superluminal. Nevertheless, the probabilistic nature 
of quantum mechanics ensures that this kind of non-locality cannot be used to send a signal faster 
than light. For this reason, quantum non-locality can be characterized facetiously as "passion at 
a distance" rather than "action at a distance." In ways that are not fully understood, however, 
we can tentatively say that quantum non-locality requires some modification of classical ideas of 
causality. 

5. The combination of quantum mechanics with the intrinsic indistinguishability of elementary 
particles of a given type leads to the conclusion that that a system of n identical integral spin 
particles are in an entangled fully symmetric state (except in the special case that all are in 
the same one-particle state), whereas n identical half-integral spin particles are in an entangled 
anti-symmetric state. There are important differences between these two types of entanglement, 
especially that the Pauli exclusion principle holds in the latter case and not in the former. In either 
case, however, the status of the individual particle is problematic. The individuality or thisness 
(Latin "haecceitas") does not seem to be manifested except in interactions with macroscopic 



systems, as emphasized in Frisch's famous article, "Take a photon." (I suspect, incidentally, that 
the word "haecceitas" has seldom if ever occurred at a physics conference since the seventeenth 
century, but I use it to emphasize again the thesis that modern physics throws some light upon 
traditional metaphysical problems.) 

5. Gauge field theories provide strong constraints upon the interactions permitted among 
elementary particles. This is an advance of great importance, since a perennial obscurity of the 
Democritean point of view has been the nature of interactions. 

6. Both the special and the general theories of relativity transform our conception of space 
and time. The special theory asserts an inseparability of space and time in a much stronger 
sense than in classical kinematics. Classically, space-time is a four-dimensional affine space, with 
metric properties restricted to space separately and time separately, whereas the space-time of 
special relativity is a four-dimensional metric space (with a three-one metric). General relativity 
envisages a dynamical interaction of space-time with matter, instead of regarding the former as a 
fixed arena in which material dynamics occurs. 

7. The interface of physics and biology has a metaphysical implication of great significance: 
. that all biological processes not involving mentality can in principle be understood in terms of 

physical interactions. Even the program of pre-biotic evolution - of understanding the emergence 
of mutually catalytic molecules and eventually explaining the evolution of the genetic code in 
terms of ordinary physical processes - is very promising. I should note that the qualification 
"not involving mentalityn was not inserted for the purpose of hedging but for the positive reason 
that, in my opinion, a further scientific revolution is needed in order to understand the place of 
mentality in the natural world. 

8. Elementary particle theory and cosmology already have, or are on the verge of having, 
profound metaphysical implications. But since the assessment of these implications is beyond my 
expertise, I encourage others to make them explicit. 

Finally, I wish to warn against construing this list of metaphysical implications as indicating 
that all is settled or nearly settled in fundamental physics, and that we need only read off the 
corollaries in order to do philosophy properly. Rather, there seem to me to be dark clouds showing 
the need for radical changes in physical theory. One dark cloud is the problem of the reduction 
of the wave packet, which I prefer to call the problem of the actualization of potentialities. Of 
course, the advocates of many-worldgand decoherence theories say that there is no such problem, 
but I am skeptical of their solution (which obliterates the distinction between potentiality and 
actuality), not for reasons of sophisticated physics, but because of a straightforward philosophical 
analysis of the relevant concepts. The outcome of this philosophical analysis is to provide a 
motivation for a modification of quantum dynamics, such as the stochastic modification advocated 
by Pearle, Ghirardi-Rimini-Weber, Piron, Karolyhazy-Frenkel, Gisin, Percival, Diosi, Penrose, 
and Bell. They all hope to provide a physical, rather than an epistemological, explanation of the 
actualization of potentialities. Here is an instance in which philosophical considerations may turn 
out to provide valuable heuristics for physical investigations. Another dark cloud is the problem of 
mentality. Before one takes too literally the phrase "theory of everything," applied to the hoped- 
for theory that explains all forces of nature, the spectrum of elementary particles, the values of 
all parameters, and the structure of space-time, one should inquire whether such a theory could 
even in principle account for the immediacy of consciousness. 



Theory of value: 
I shall say little about the relation between physics and theory of value, partly because of my 

lack of expertise. However, I do have a few strong opinions. There is, I believe, a real danger 
that our emotional and moral senses will be dulled by the advance of technology. The case is 
not hopeless, and the humanities and social sciences have serious suggestions for confronting this 
danger. But I think that the natural sciences can also make a contribution. A sense of wonder is 
one of the great motivations of the investigations of science, and the discoveries of science should 
provide much new nourishment of the sense of wonder. If physics is to offer an antidote against 
emotional flattening, however, it is essential that its discoveries be understood as revelations of 
the real structure of the world, to a good approximation, and not just as recipes for making 
laboratory predictions. My personal experience is that penetrating even a little into the secrets of 
the universe provides an emotional satisfaction that is like the satisfaction traditionally provided 
by religion. I suspect that others share this experience. 
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