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Abstract

We investigate the general case of tile photon distribution of a two-mode squeezed vacuum

and show that the distribution of photons among the two modes depends on four param-

eters: two squeezing parameters, the relative phase between the two oscillators and their

spatial orientation. The distribution of the total number of photons depends only on the

two squeezing parameters. We derive analytical expressions and present pictures for both

distributions.

1 Introduction

Squeezing the quantum fluctuations of the radiation field has been demonstrated experimentally

using various optical systems [1]. Most of them rely on two-mode squeezing [2, 3, 4]. Therefore

the properties of a two-mode squeezed state have been studied extensively [5, 6]. However it

appears, that the photon statistics of such a state has not been investigated in all details. Only

some particular cases have been considered (see for example Refs. [7] and [81). In the present

paper we therefore extend these considerations to an arbitrary two-mode squeezed vacuum and

address the following questions: (i) What is the most general case of the squeezed vacuum of a

two-mode oscillator, and how many independent parameters are needed to describe this state?

(ii) What is the photon statistics in this state? This is of interest in the context of the degenerate

paralnetric amplifier [9] since the mathematical structure of the two-mode distribution function

coincides with the transition probability function of a two-dimensional parametric oscillator [10].
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2 general case of the squeezed vacuum of a two-mode

oscillator

\\;e start our considerations with tile question (i). Tile linear canonical transformation

(a t, a; bt , b) ----* (A t , A; B t, B) (1)

of the creation operators a t, bt and the annihilation operators a, b to their new counterparts A t,

B t and A, B corresponding to the two modes suggests a set of 10 parameters. Indeed, the generic

transformation (1) of the four-dimensional vector (a t, a, bt, b) into (A t, A, B t, B) via a 4 x 4 matrix

brings in 16 complex values, that is 32 parameters. Since a and a t, b and bt ,A and A t, B and B t

are hermitian conjugate of each other, only half of these parameters are independent. Therefore

the number of parameters reduces to 16. The condition to preserve the connnutation relation

[A,B] = 0, [A,B t] = 0, [A,A t] = 1, and [B,B t] = 1 provides additional constraints. Since the

commutator of an operator with its hermitian conjugate is always real, the last two conditions

provide only two constraints, whereas the first two conditions must hold for the real and the

imaginary part separately. This decreases the number of parameters by six leaving us indeed with

10 parameters.

This finding is in accordance with the results of group theory. Reference [ll] shows, that

the group of rotations and squeezing of the four-dimensional phase space, that preserves the

phase'space volume of the two degrees of freedom, consists of 10 generators. Hence there are l0

parameters determining the elements of the real symplectic group Sp(4,R).

But what is the physical meaning of these parameters? They are associated with rotation and

squeezing transformation of phase space of two oscillators. Generic rotations of four-dinlensionai

phase space are described by 6 parameters but the symplectic rotations in four-dimensional space,

that is the transformation preserving the commutation relations, are described by 4 parameters.

They can be represented as a sequence of four rotations. The first rotation given by the trans-

formation e i'_'_¢_, where JI = i(atb- bta) is the angular momentum operator, corresponds to the

rotation in the coordinate space by the angle ¢1. The second and the third rotations are given by

the operator e i¢ata and e ixbib, and correspond to rotations by the angles ¢ and , in the respec-

tive phase-spaces of the two oscillators. The last rotation again can be taken in the form e iM¢a.

Thus the angles ¢1, ¢2, ¢ and X: are chosen to be the parameters of the symplectic rotation.

The general symplectic transformation also includes squeezing. We can represent the generic real

symplectic transformation (1) as consisting of three consecutive transformations: symplectic rota-

tion (4 parameters), followed by independent squeezing of the two modes given by the squeezing

operators

.O, = c_'c°_-°'=//_, .g2= e_c_-_'_li'_, (2)

(2 squeezing paralneters 7"1 and r2) and followed by another real symplectic rotation (4 paralrieters

more). But how many of these parameters govern the two-dimensional squeezed vacuum state?

The first four parametric rotation acting on the completely synnnetric vactlunl state leaves this

state unchanged. Hence 2 squeezing parameters and 4 parameters associated with the second

i_,lalionsdefinethelwo-dinlensiona] squeezed vacliuln stale, hiaddition we can inchide an overall

(lllalltlllll phase factor _'P of this state. All explicit calculation of the gellel'al ('ase of a two-lnode

squeezed vacuum wave function is given in Ref. [12].
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3 Photon statistics for the total number of photons

We now address the question: how many of these l)arameters govern the photon statistics of

such a two-dimensional squeezed vacuum state? In particular, how many of tlmm determine the

probability of (i) counting a total number n of photons in the two modes, and (ii) counting the

number I_1 and _z2 of photons hi the individual lnodes?

In this section we consider the case of (i) and ask for the total number n of photons in both

modes, which corresponds to the surface of a four-dimensional sphere, I 2 ':(p, + x_ + v_ + ,4) = ,,,
centered at the origin of the four-dimensional phase space. The rotation of the phase space does

not alter this sphere and hence only two squeezing parameters are essential. The probability of

counling the total number n of photons for the case of two independently squeezed oscillators

reads
7l

I;Vn(sl'S2) = E _'Vn,(sl)Wn-n, ($2), (3)

nl=O

where 147_,(.sj) is the one-dimensional photon statistics [13]

0

for nj odd

for n i even (4)

of the squeezed vacuum wave function

where

% = tanh'(,'j). (6)

Equation (4) reduces Eq. (3) to

14/2k('31,82) = .V 4.k E Sl 82 _ k-n 1
nl =0 \ nl

l¥2k+l(sl, s2) = 0

where the normalization factor A/" reads

(7)

.V"= lv"V-z_-s,v"i - _. (8)

The odd terms of W,, vanish because of Eq. (4) . The sum in Eq. (7) has been calculated in [121

and the prol)ability of counting n = 2k photons then reads

IV2k(s,, s2) =,Vs_ 2&(-k, 1/2,1;1 - _,1_) (9)

where 2F1 describes the hypergeometric function. For the special case of identical squeezing in

the two modes, that is, .% = .% = s, Eq. (9) yields

I'V.2k(.s) = .Vs k. (10)
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In Fig. 1 we show the photon statistics (9) for various magnitudesof the squeezingparameters
sl and s2. The solid and dashed curves correspond to weak and strong symmetric squeezing

(sl = s2), respectively. In accordance with Eq. (10) the photon distribution then displays an

exponential dependence. Stronger squeezing results in a higher amount of quanta involved. The

dotted curve shows the photon statistic for an asymmetric squeezing.
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Fig. 1. Probability of counting n = 2k photons in a two-mode squeezed vacuunl

as given by Eq. (9). For synnnetric squeezing (dashed line for sl = s2 = 0.5 and solid

line for -_1 = as = 0.99) the curve is a straight line and hence exponential whereas for

asymmetric squeezing (dotted line for $1 = 0.5 and s.2 = 0.99 ) the photon statistics

is non-exponential. Here we have not specified the distribution of the n = 2k photons

among the two modes. Note that W,,=2k+l = 0 which we have omitted for simplicity.

4 Photon statistics in the individual modes

We now turn to the second case and calculate the photon statistics W(n,, n2) = I < n_, n2[*,q > 12

in the individual modes. For this purpose we start from the generic expression of a squeezed

vacuum state Iql,q >, which we produce in the following way:

= ¢o.o(=,,

= _/2 (AaB, - C_) '/4 e-Ax_-Bx_+2CXlZ2+ip

v Tr
(]])

with the vacuum wave function of the two-dimensional oscillator _o,0(xa, x2) = q0(a'_ ) @0(x-2), the

angular momentum operator fly = i(atb- bta) and the operator ('(')) = exp(i')(btb- a)a)) which

describes a mutual phase shift 2-'/between the oscillators. The wave function of a two-dimensional

squeezed vacuum state is a Gaussian described by the three complex numbers A, B, and C, which

are functions of the four real parameters )'1, )'2, ¢, and "). Their explicit dependence is given in

[12]. One also finds there the generic two-mode squeezed vact, um wave filnction depending on two

more parameters that do not affect the photon distribution.
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We contract Eq. (11) with the probability amplitude of the photon energy states ¢,,, (xl) and

_/,,,2(.c2) and arrive after calculating the resulting double integral [12] at

8 exp(-Iln(..,!/n2!)l) (A,B, - '/2
li'(,_,,n_) = 1(2A + 1)(2B + 1)-4C21 × (i2)

4AB + 2A - 2B - 1 - 4C _ (,,,-.2)/2
× ×

4AB- 2A + 2B- 1 - 4C 2

•lAB - 2A - 2B + 1 - 4C _- (,,,+,2)/2
× ×

4AB + 2A + 2B + 1 - 4C 2

_.( -4C )'_× ,/4A8+ 2A+ 2B+ 1 -4c-_4c 2- 4AB + 2A -t- 2B - 1 "

Here PIk denotes the associated Legendre Polynomial. As in Eq. (7) the total number of photons

n = 7_1+n2 must be an even number hence nl and n2 are either both even or both odd. Otherwise

the photon distribution function vanishes.

In Fig. 2 we display the probability to find nl photons in mode 1 and 7_._photons in mode 2.

This is the generic case of the photon distribution of a two-mode squeezed vacuum. It depends

on four parameters: two squeezing parameters, the orientation of the distribution fimction with

respect to our laboratory system, and the correlation between the two modes. Beside the even-

odd oscillations the maxima lie on curves which are symmetric with respect to the main diagonal

nl = n.2. This behavior is similar to the distribution function of a displaced two-mode squeezed

state discussed in Ref. [7, 8].
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:t l¢a

Fig. "2. Probability of counting 711 and _l_ photons in the two-mode squeezed
2_

vacuum calculated viaEq. (12). We have chosen rl =3. r2 =5.0= 5 and') =--.
5" .q

The wavv struclure of lhis dislribution is confined to an angle in the pholon mtmher

plane.
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5 Conclusion

We conclude by summarizing our main results. The wave function of tile two-mode squeezed

vacuum depends on 6 paralneters (besides the phase factor). However only 4 of them, - the

squeezing parameters r_ and 7"2of the two modes, the phase difference 3' between the two oscillators,

and the rotation of the reference system by the angle ¢ - manifest themselves in the generic case in

the distribution of the photons among the two modes. This distribution function can be expressed

explicitly in terms of Legendre polynomials. Only two parameters rl and r2 govern the distribution

of the total number of photons, which we express explicitly in terms of a hypergeometric function.

In conclusion we want to make the remark that similar consideration for N-mode squeezed vacuum

state shows that the photon distribution W(nx, n2, ...,nN) depends on N 2 parameters.
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SECTION 2

QUANTUM MEASUREMENT THEORY
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