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1. Summary and Overview

This reportsurveysdifferent technologiesandapproachesto realizesensorsfor image

warping.The goal is to studythefeasibility, technicalaspectsandlimitations of makingan
electronic camerawith special geometrieswhich implementscertain transformationsfor

imagewarping.This work wasinspiredby theresearchdoneby Dr. Judayat NASA Johnson

SpaceCenteron imagewarping.
The studyhaslooked into different solid-statetechnologiesto fabricateimagesen-

sors.It is found that amongtheavailabletechnologies,CMOS is preferred over CCD tech-

nology. CMOS provides more flexibility to design different functions into the sensor, is

more widely available and is a lower cost solution. By using an architecture with row and

column decoders one has the added flexibility of addressing the pixels at random, or read out

only part of the image.

Several kind of image pixels have been investigated, ranging from simple CCD cells,

and photodiodes to active pixels. An interesting possibility is to use a parasitic bipolar

transistor together with a MOS transistor in weak inversion to obtain a large dynamic range.

This is made possible through the logarithmic compression offered by the MOS transistor in

weak inversion. This allows the sensor to be used under a wide range of illuminating

conditions, as encountered in real life situations. The disadvantage of such a pixel is a

reduced contrast, fill factor, sensitivity and increased noise and size.

The minimum dimension of a pixel depends on the technology used (minimum

feature size) and the complexity of the pixel. In general, the more functionality one builds

into the pixel the larger the size will be. A typical pixel which consists of a photodetector

with an addressing switch has a size of about 18ktmx18gm in a 2 p.m technology. The fill

factor is about 25%. These dimensions can be considerably reduced by going to a more ad-

vanced technology. A 1.2p.m and even 0.8 gm CMOS technology is widely available at

moderate cost. The minimum pixel size in a 0.8 gm technology will be about 9].tmx91am and

will double if one includes the logarithmic compression circuit.

Several manufacturers were contacted: ORBIT, MOSIS TM and IMEC. IMEC is the

only one which has a complete CCD technology. These manufacturers were chosen because

they allow prototyping of small volumes at a relatively low cost. ORBIT delivers 36 samples

of a 9.6x9.6 square mm 1.2_m CMOS chip for $20K All manufacturers draw the geometries

on a grid of 0.1ktm and allow to draw lines of 0, 90, and 45 ° orientation. Lines of other

orientations will be approximated to the nearest grid point.
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2. Introduction

People suffering from field defects in the foveal part of the retina could benefit from low-

vision aids which remap the image on the functional part of the retina. Dr. Juday and his

group at NASA Johnson Space Center have done innovative work on the mathematical

modeling of conformal mappings which could be used as guidelines to warp the image

around the scotoma 1. In addition, Juday's group developed an image remapper that can

implement any of these transformations and can serve as a test vehicle to be used with pa-

tients suffering from scotomas 2. Tests on such patients are in progress at the University of

Houston under the guidance of Dr. D. Loshin. These preliminary tests seem to indicate that

an improvement in reading speed has been observed when warped images are presented to

patients as compared to unmapped ones 1.

The question arises whether special cameras can be designed and fabricated which

realize the required transformation in real time. This would result in a small and light

weight low-vision aid for visually impaired people. The purpose of the study whose re-

sults are reported here is to look into the feasibility and provide technical feedback of mak-

ing such a dedicated sensor with current integrated circuit technologies. Also, the goal is to

provide information about possible geometries, such as minimum and maximum pixel size,

shapes of the pixels, fill factor and other limitations of current technology. However, the

goal of this study was not to design such a camera, as this will to a large extent depend on

the findings of the clinical studies. These studies which are still in progress will indicate

what transformations and geometries are optimal.

In order to address the above items, the following topics have been studied and re-

ported on:

1. Overview imaging technologies

2. Commercially available technologies, layout rules and prices

3. Pixel geometries and sizes

4. State-of-the-art in image sensors

5. Specific issues related to sensors for image warping.
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3. Imaging Technologies - an Overview

Solid-State image sensors can be fabricated in a variety of technologies of which the

following are most popular: Charge-Coupled Devices (CCD), Complementary Metal Oxide

Semiconductor (CMOS) technology, and a combination of CCD and CMOS. All of these

approaches are based on the well known planar silicon integrated circuit technology. The

difference between them is the presence of particular layers and implants that allow the fab-

rication of specialized structures, such as CCDs, which require two or three polysilicon

layers in addition to a buried channel implant. A CMOS process generally does not support

the fabrication of CCD structures or vice versa. However, there are some processes avail-

able that support both CCD and CMOS devices. These will be discussed later on.

In the following a brief discussion of the basics of CCD and CMOS technologies will

be given. Emphasis will be put on the advantages and disadvantages of each approach, as

well as its limitations. This will help in understanding which technology to choose.

a. CCD technology

Charge-Coupled Devices are basically tightly coupled metal-oxide-semiconductor

(MOS) capacitors 3. Fig. 1 shows such a structure that consists of a p-type semiconductor

substrate. When a positive (in case of a p-type substrate; negative for n-type) voltage

(typically 5-10V) is applied to the gate of such a capacitor, the semiconductor substrate near

the surface will be depleted of its majority carriers. Minority carriers (electrons in case of p-

type substrate) can now be stored underneath the gate oxide at the surface of the semicon-

ductor where the potential is maximum. These electrons can be supplied electrically or gen-

erated optically. In the latter case, one assumes that the top electrode is transparent. The

amount of stored charges will be proportional with the light intensity. However, one has to

realize that this structure is in non-equilibrium. In order to restore equilibrium, minority

carriers will also be thermally generated and collected at the semiconductor surface along

with the optically generated "information" charge. Fortunately, this generation process is

relatively slow (several milliseconds). If one pulses the gate voltage regularly (dynamic op-

eration), one can mininaize the anaount of thermally generated charges which constitute the

dark current.

If one applies a sequence of pulses on neighboring gates, the charges can be trans-

ported from one gate to another. The gates can be driven by three- or four-phase clocks.
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Thus, a CCD is basically a dynamic analog shift register. If one uses the CCD as an im-

ager, the top electrode must be transparent (a thin poly-silicon layer e.g.) so that the inci-

dent photons can penetrate the silicon substrate. The minority carriers of the photo-gener-

ated charges will flow towards the surface and collected under the gates. Afterwards, the

charges are read out quickly in a serial-parallel fashion by clocking the gates appropriately.

There are several architectures possible of which the frame transfer and the interline trans-

fer layouts are most popular (see section 5a).

Tv01Tv02 vg3
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Figure 1: Schematic cross section of a 3 phase CCD cell.

In order to improve the transfer efficiency, most CCDs employ buried channels. This

is accomplished by using an ion implantation in the channel which causes the maximum

potential in the substrate to move away from the surface. As a result, the minority carriers

will not be in contact with the surface, which is advantageous for a better transfer effi-

ciency. Also, CCD processes have additional layers (ion implanted) to prevent blooming

(overflow of charges to the neighboring cells) and improve the image quality. This results

in quite sophisticated processes.

Advantages of CCD technology can be summarized as follows:

- small pixel size is possible (example: 6_m x 6 lain)

- good fill factors

- good quantum efficiency

- large formats, large arrays (example for HDTV; up to 4K x 4K illustrated)

- good signal to noise ratio (example: 80 dB)
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- one common output amplifier which eliminate fixed pattern noise.

- combination of sensor with charge domain signal processing elements for realizing

on-chip vision tasks

- image transformation can be implemented by the geometry of the pixels

Disadvantages are:

- complex and expensive technology

- not widely available processes

- requires almost perfect transfer efficiency

- radiation softness

- no random addressing of pixels: serial or serial/parallel read out.

- less flexibility to realize functions in the charge domain

- complex driving circuits that can consume a considerable amount of power: CV2f

- some processes require voltage levels for clocks larger than 5V mandating clock

amplifiers; the shape of the clocks are critical for good transfer efficiency.

b. CMOS technology

Complementary Metal Oxide Semiconductor (CMOS) technology is by far the most

used technology to fabricate microelectronic circuits 4. It consists of both NMOS and

PMOS transistors by making use of a well implantation. Fig. 2 shows an example of a n-

well CMOS process. The transistors are similar to the MOS structures found in CCDs ex-

cept that it has a diode on both sides of the MOS capacitor. The voltage applied to the gate

controls the amount of minority charges underneath the oxide at the semiconductor interface

(channel) and thus modulates the resistance of the channel. In its simplest form, a MOS

transistor can be regarded as a voltage controlled resistor or current source, depending on

the mode of operation. For digital applications, one is only interested in two states, i.e.

when the resistance is very large, corresponding to an open circuit (transistor is off) or

when the resistance is small (transistor is on). The presence of both NMOS and PMOS

transistors allows us to make logic gates that consume no DC power (except for a small

amount due to the leakage current). This is one of the most important advantages of CMOS

for use in digital applications. However, CMOS is equally attractive for the fabrication of

analog circuits. The presence of both N and P type transistors gives a lot of flexibility and

allows you to make high gain amplifier stages.
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Although CMOS hasbeendevelopedfor digital andanalogintegratedcircuits, it is

possibleto makephotosensitivedevices.Thediodesof thesourceanddrain,or of thewell

to substrate,canbeusedasphotodetectors.In addition,thesource-well-substratestructure

allowsusto makea(parasitic)verticalbipolartransistor,asis shownin Fig. 3.The bipolar
transistorhasaninherentcurrentamplification,typically 100,thatmakesit moresuitable

source Vg drain

!

n-well J ,
>

p-silicon

Figure 2: A schematic cross section of a PMOS transistor in a p-well CMOS process

for low light level applications. One can convert the photo generated current into a voltage

by feeding the current into a diode-connected transistor, as is shown in Fig. 3. The advan-

tage of using a transistor over a resistor is that one can accomplish a nonlinear compres-

sion. For instance, if the diode-connected transistor operates in the weak inversion, the

voltage will be a logarithmic function of the current and thus the incident light intensity. As

a result of the logarithmic compression, one can measure the light intensity over typically 6

orders of magnitude, as may be encountered in real-world scenes. One should however

keep in mind that the price to pay for this large range, is the reduced image contrast. The

problem of reduced incremental sensitivity at any light level can be overcome by incorporat-

ing adaptation, similar to a local automatic gain control mechanism 5. The above example

illustrates the flexibility and some of the advantages of CMOS, i.e. one can work in both

the current and voltage domain and make use of the transistor to modify or condition the

signals. Examples of functions are: compression, amplification, filtering, inversion, mul-

tiplication, addition and subtraction.

The photo elements in a CMOS process can be used in two modes: photo conductive

or integrative mode. The example of Fig. 3 corresponds to the photoconductive mode,
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whereonehasacontinuouscurrentwhoseintensityvarieswith the light intensity.In the

integrative modeoneintegratesthephotocurrentonacapacitor(usuallytheintrinsic ca-

pacitorof thephotodiode)for acertaintime.Thisresultsin achargepacketon thecapaci-
tor or a voltageover thecapacitor,asillustratedin Fig. 4. After a fixed time (calledinte-

gratedtime), thevoltageor chargeis sampledfor furtherprocessingor read-outpurposes.

Thelattermethodis basicallywhatis donein a CCD imagesensor.The characteristicsof

eachmodeof operationaresummarizedbelow:

Continuousmode:

- asynchronousoperation

- nonlinearcompressionpossible
- continuoustimeoperation(nosamplingrequired):lessnoisedueto lackof clocks

suitablefor continuoustimesignalprocessing

- fewercontrolsignals

- higherfixed patternnoisedueto pixel to pixel variations

Integrativemode:

synchronousoperation,clockrequired
signalintegratedonacapacitorduringintegrationtime

- moresensitive(by integratinglongtimes)

emitter_ Si02 '

[ collector p-silicon I

a°
b,

VDD

Vout

Figure 3: a. Parasitic PNP bipolar transistor in a pwell CMOS process and b.
Phototransistor with MOS load.
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VDD

\ Reset

Figure 4: Photodiode used in the integrative mode

A CMOS based imager can be randomly addressed by using X-Y address decoders and

switches to address the individual pixels. This can be an advantage over CCD imagers

which allow only serial output formats. An example of such an architecture will be shown

in section 5b. On the other hand the random switching can introduce noise, and cause non-

uniformities. The fill factor is usually smaller than in CCDs because one needs transistors

to address the photo detectors. In particular, if one incorporates additional transistors at the

pixel site, such as to obtain amplification, contrast detection, etc. (often called active pixels)

the fill factor may be as low as 10%. In addition, the pixel size increases considerably and

thus reducing the resolution of the image sensor. A summary of the main characteristics of

CMOS based imagers is given below.

Advantages of CMOS-based imagers:

- relatively simple, agressively scaled and widely available technology

- less expensive than CCD technology

- random addressing of pixels possible; pan or zoom on a selected number of pixels

- active pixels possible (incorporating processing functions: compression, amplifica-

tion)

smart sensors: combination of sensor with signal processing functions on the focal

plane

simple driving circuits; can be easily incorporated on-chip; clocks and control sig-

nals are at the 5V levels

- allows camera system on a chip.
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Disadvantages of CMOS-based imagers:

- larger noise levels than CCDs in particular fixed pattern noise

- large capacitance of the read-out line

- non-uniformity

- cross talk between pixels

- smaller fill factor

- larger area per pixel, particularly for active pixels

c. GGD/GMOS technology

Previous discussions indicated that CCD technology is the leading choice for the fab-

rication of high quality, high resolution image sensors. On the other hand, CMOS is the

technology of choice for impIementing vision chips that incorporate image processing

functions such as amplification of pixel signals, edge detection, filtering, orientation detec-

tion, motion detection, in addition to the photodetectors,.

The continued demand placed on the CCD imager to realize higher performance with

reduced pixel size, increased sensitivity and chip size reduction requires more complicated

technologies. As a result, CCD and CMOS technologies are gradually converging. By in-

corporating a couple of additional layers it is possible to fabricate both CCD and CMOS

devices on the same chip. This allows for combining the best of both technologies. One can

now integrate the photo sensitive part (CCD) with the logic and clock drivers (CMOS) on

the same chip. One can also combine charge domain and current/voltage domain processing

circuits in order to make smart image sensors with better performance or more functions

than what is possible in a CCD or CMOS process only.

Major manufacturers have or are developing CCD/CMOS technologies. As mentioned

above, these technologies are not usually available for outside customers. However, a few

companies are making CCD/CMOS processes available. One such company, Orbit

Semiconductor, Inc. of Sunnyvale, CA, is offering through their "Foresight" service, a 2

gm n-well CMOS process with two polysilicon layers. Both layers can be used to make

transistors (in contrast to most two layer processes which allow the second poly-layer to be

used only as an electrode for capacitors and not as the gate of a transistor). This process

also provides an option for a buried channel implant (at an additional cost). This process is

basically a CMOS process that is modified to make CCDs. This implies that it does not

provide all the features an optimized CCD process has, stlch as special implants to improve
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charge storage, transfer, to reduce blooming, etc. However, it allows one to make CCDs

combined with CMOS circuits to make smart sensors. As of this writing Orbit has not of-

fered this process in a 1.2 lam version. In addition, MOSIS © (MOS Implementation

Service) is also offering the above Orbit process.

Another CCD/CMOS process is made available through IMEC (Interuniversity

Micro-Electronics Center in Leuven, Belgium). IMEC recently introduced their 1.25 Bm

CCD/CMOS process. In contrast to the Orbit's Foresight process, this is a CCD process

that incorporates CMOS devices. As a result it is geared more towards the fabrication of

CCD imagers with on chip drivers and processing circuits.

d. Other technologies

Imagers with photoconductive overlayer

With the increased demand for higher resolution (HDTV) and performance, the pixel

size is continuously shrinking. This poses problems of sensitivity, noise and reduced opti-

cal aperture ratio. One way to alleviate these problems is to use a photoconversion over-

layer. This layer consists of a photosensitive material on top of a CCD or MOS structure. A

typical example of such a layer is amorphous hydrogenated silicon (a-Sill(i)). The main

advantage of this structure is that one can increase the photosensitive area to almost 100%

which results in high sensitivity and a reduction of aliasing or dead space in the sampling

plane. One can also use materials that are sensitive outside the visible region, such as in the

infrared to make night vision sensors.

As this approach has clear advantages, the disadvantages are the increased complexity

of the technology, high cost and limited availability of commercial processes.

4. Commercially Available CCD and CMOS Processes

Here we will concentrate on the processes that are easily available for outside users:

i.e. Orbit's 'Foresight' process, MOSIS and IMEC's CCD/CMOS process. The goal is not

to give an exhaustive list of the design rules since this would quickly become too detailed,

but also because some of these are proprietary and can be obtained after signing an agree-

ment with the respective companies. We will point out what the critical dimensions are that

determine the minimum pixel size as well as the overall sensor geometry. This will help us

understand the limitations of the technology. It should be pointed out that there are many
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moreCCD processesin usein themajor CCD manufacturers'laboratoriesthat areoften

moreaggressivethanthosedescribedhere.However,thesearegenerallynot availableor

would beveryexpensive.

a. Orbit's 2 _m double poty n-well CMOS process with buried layer option

Available processes and prices

Orbit's Foresight Program is a low cost silicon wafer fabrication program that pro-

vides fast turn-around runs 6. The low cost is achieved by putting multiple designs onto a

single mask as is done on a mullet-project wafer. The cost of one run (typically $50-80K)

is now divided by the number of different projects on the wafer. The turn-around time is

typically 4 to 5 weeks, including packaging, which is considerably faster than with

MOSIS. The standard processes supported by Orbit are:

1.2 _tm double poly double metal CMOS n-well and p-well

1.2 _m double poly double metal CMOS with npn transistors in the n-well

- 2 _tm double poly double metal CMOS n-well and p-well

- 2 _tm double poly double metal with npn transistors in the n-well and buried

channel for charge coupled devices.

The prices are very economical as is shown below (effective July 1, 1994)

Name Die Size(mm) Project Size No. of Parts Price

Tiny 2.4x2.4 fixed 40 pads 12 $3.5K

Small 4.8x4.8 4.6x4.5 12 $1 OK

Medium 7.2x7.2 7.0x6.9 24 $15K

Large 9.6x9.6 9.4x9.3 36 $20K

Note: 2 pm buried channel implant option for BCCD. add 25%.

Geometrical design rules

Orbit has its own design rules to take optimal advantage of its processes. However,

Foresight's standard processes support also the public domain MOSIS and DOD CMOSN

design rules. The DOD CMOSN (scalable 2/1.2_tm) standard cell library with RAM and

ROM generators is available from Orbit at a minimal cost.
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The following table gives the critical design rules of the 2 btm double poly double

metal n-well CMOS process. This process is capable of supporting buried channel CCD

and npn bipolar transistors in the n-well. The process requires 13 drawn layers. According

to Orbit's support engineering, geometries can be drawn on a 0.1 }am grid. Lines under 45

degrees are possible. This implies that curved geometries will be approximated to the clos-

est 0.1 lam grid point.

TABLE I • Key design rules of the 2..29_._ORBIT CMOS process

LAYER RULE MICRONS

N-well width 3.0

Active

Poly 1

BCCD

Polv 2

Contacts

Metal 1

Via

spacing

width

spacing

to well

N-well overlap N+

width

spacing

width

spacing

width (_zate)

spacing

to poly 2

size

spacing

overlap active/poly

width

spacing

overlap contact

size

spacing

overlap metal 1

8.5

3.0

2.5

6.5

0.0

2.0

2.5

3.0

3.0

2.5

3.0

2.5

2.0 x 2.0

2.0

1.5

2.5

2.5

1.0

2.0 x 2.0

2.5

1.5
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Metal 2 width 3.0

Pads

spacin_

overlap of via

size

spacing

100x 1O0

75

Address and phone number

Orbit Semiconductor, Inc.
1215 Bordeaux Drive

Sunnyvale, CA 94089
(408) 744-1800 phone
(408) 747-1263 fax

b. MOSIS process

Available processes and prices

MOSIS, which stands for MOS Implementation Service, was established in 1980 by

DARPA with the assistance of NSF to provide government contractors and agencies, as

well as university classes, access to state-of-the-art IC fabrication facilities at a low cost 7.

For several years, MOSIS services have also become available to commercial users at a

slightly higher cost. The MOSIS Service is sinailar to Orbit's Foresight program, a proto-

typing service that offers fast turn-around standard cell and full custom VLSI circuit devel-

opment at a very low cost. MOSIS has developed a methodology that allows the merging

of many different projects from various organizations onto a single wafer. There-fore, in-

stead of paying for the cost of mask making, fabrication and packaging for a complete run,

MOSlS users only pay for the fraction of the silicon that they use, which can cost as little

as $400. MOSIS has very easy access. All communication can be done over the internet.

MOSIS accepts designs submitted in CIF (Caltech Intermediate Format) format over the

internet. Packaged chips are mailed to the customers about 10 weeks later.

MOSIS does not have its own fabrication facilities but acts as a silicon broker. It has

agreements with several commercial manufacturers to fabricate their muhi-project wafers.

The turn-around time is somewhat longer than Orbit's, typically 8-10 weeks. As one is not

always sure which foundry will fabricate the wafers, it is harder to optimize the design.
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The MOSIS layout rules and device parameters are usually a superset that satisfies the rules

of the different foundries. As a result, one is not always making optimal use of a particular

manufacturer's process. However, MOSIS has recently provided an option for their cus-

tomers to specify which vendor their design should go. This can result in a considerably

longer turn-around time. Among the vendors MOSIS works with are Orbit, HP, and VTI.

The HP process is found to be in general a very good process with low defect density.

Wafer fabrication runs are scheduled on a regular basis for 2.0, 1.6, 1.2 and 0.8 micron

double metal CMOS/Bulk technologies. A CMOS/Bulk double poly capacitor option for

analog design is also available. MOSIS also provides the option to form buried n-channels

which allows one to make buried channel CCDs in the double poly 2 gm n-well CMOS

process (low noise analog). An overview of the available processes is given below.

TABLE II: Overview of Current MOSIS Processes

PROCESS NAME

2.0U VLSI

TECHNOLOGY

CMOS N-WELL

FABRICATOR

VLSITECHNOLOGY

(CMN20)

2.0U ORBIT CMOS P-WELL, 2 POLY ORBIT (CP2)

2.0U ORBIT ANALOG CMOS N-WELL, 2 POLY

(Low Noise Analog; alsoCCD)

CMOS N-WELL, 2 POLY

(Low Noise Analog)

CMOS N-WELL

(includes linear capacitor optior

CMOS N-WELL, 2 POLY

1.6 AMI

1.2U HP

ORBIT (CN2)

AMI (ABN)

HEWLETT-PACKARD

) (CMOS34)

1.2U ORBIT ORBIT (CN12)

0.8U IBM CMOS N-WELL IBM (CMSX 2185)

CMOS N-WELL0.8U HP

VITESSE HGaAs3 GALLIUM ARSENIDE

HEWLETI'-PACKARD

(CMOS26B)

VITESSE (HGaAs3)

The prices vary with technology and chip size. Discount prices :ire available to those uni-

versities, government agencies and organizations ordering work that will be charged to a
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government contract. The price for the 2 lain CMOS includes packaging. The price for the

1.2 _m CMOS process is calculated per square mm and is equal to $380 (discount price: 25

parts). The minimum area is 1.94 x 1.94 sq. ram. The cost of packaging is not included in

the 1.2 _m technology.

TABLE Ill: 2.0 MICRON CMOS TECHNOLOGY

(Priced per project, including packaging)

Maximum Project Size No.

Pa_s

_fandard Discount ARPA/NSF

Price Price Price

2.22 x 2.25 mm (Tiny Chip) 4 $520 $480 $440

4.6 x 6.8 mm 12 $2,600 $2,410 $2,210

6.9 x 6.8 mm 24 $6,150 $5.640 $5,120

7.9x9.2mm 32 $11,900 $10,860 $9,810

Geometrical Design Rules

The design rules are very similar to ORBIT's Foresight design rules.

Address and phone numbers

Contanct person: Sam Reynolds
MOSIS Service
USC Information Sciences Inst.

4676 Admiralty Way
Marina del Rey, CA 90292-6695
(310) 822-1511

c. IME(_'_ 1.25 Bm CMOS/CCD Process

IMEC (Interuniversity MicroElectronics Center) is a research center that was set up in

1984 to promote research in the area of microelectronics. It works under contract for pri-

vate or government agencies and makes their processes available for outside use.

Available processes and prices

IMEC and its predecessor, ESAT have been designing and fitbricating CCDs for over

15 years. IMEC has a 1.25 gm CMOS/CCD process on line that allows the fabrication of
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both CCD and CMOS circuits on the same chip. THe process uses two polysilicon layers.

The CCD structures use both poly layers and are realized in a 4 phase structure; the transfer

gate is realized by an extension of the poly layer. CMOS transistors are made only of the

first poly layer.

The prices vary with die size. The following table gives the prices for unpackaged

devices. The prices are in belgian franks. An approximate dollar value is given based on

BF35/$. The prices are for a full custom run, i.e. without sharing it with other customers.

If the chip size is smaller than the recticle of 9.6x9.6 mm 2 and one finds another customer,

the price will be reduced.

TABLE IV: Prices of the 1.25 Double poly CCD process of IMEC

(exclusive packaging)

DIE SIZE (rim12) # of CHIPS COST IN BF COST in US$

1.1 x 1.1 150 650,000 18,600

4.8 x 4.8 150 800,000 22,900

9.6 x 9.6 150 1430,000 40,000

Price for packaging in ceramic package: BF1500 ($43) per package

Geometrical Design Rules

This process has 17 layers. The key design rules are summarized in Table V below.

Similar as for the ORBIT's rule, the masks are written in a cartesian grid of 0.1 Bin. If one

intends to use angles different from 90 degree, the design rules have to be increased by 0.1

p.m. Real circular lines are not possible.

TABLE V: Key Design Rules of the 1.25 Bm IMEC CMOS/CCD Process

LAYER RULE MICRONS

N-well width 6.0

Active

spacin_

width as trans, width

spacin,_

to well

N-well overlap N+

6.0

1.2 or 1.5

2.4

3.6-6.0

1.0
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BCCD

TG

Poly 1

Poly 2

Contacts

Metal 1

Via

Metal 2

Pads

width 1.2

1.2spacing

overlap over active

width

spacing

overlap active

width

spacing

width (gate)

spacing

overlap with poly 1

size

spacing

overlap active/pol_,

width

spacing

overlap contact

size

0.9

1.2

1.2

1.8

1.3

2.0

0.6

1.5 x 1.5

1.5

1.0

1.8

1.8

1.0

1.8xl.8

spacing 1.8

overlap metal 1 1.0

width 2.0

spacing 2.0

overlap of via 1.0

size 100x 100

spacing 50

Address and phone number
Mr. Lou Hermans
IMEC vzw

Kapeldreef 75
3001 Leuven, Belgium
32-16-281211 phone
32-16-289400 fax

email: hemlans@imec.be
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5. Description of different unit cell structures and sizes.

The choice of a unit cell structure is important because it will detemfine the minimum

pixel size, the overall sensor size, the fill factor, flexibility to implement transformations,

and simplicity/complexity of driving and control electronics. A brief overview of possible

realizations of cells, including photodetector with shift register or addressing transistors,

will be given for a CCD and CMOS or combined CCD/CMOS process. Advantages and

disadvantages will be given where appropriate. The goal is to provide some guidance with

the future choice of a particular structure. The final choice will depend on several factors of

which some may not be known at this point. We will discuss three main classes of pixels:

CCD based pixels or charge domain pixels; CMOS pixels with a current output or with

voltage output. The CCD pixels are synchronous or clocked while the CMOS pixels can be

either asynchronous (continuous mode) or synchronous.

a. CCD based pixel (Charge domain)

CCD photo detectors are based on the integration of charge during a defined amount

of time (integration time). The higher the intensity of the incident light, the more charge will

be collected. Charges are stored in the potential well underneath the MOS gate or in a re-

verse biased diode. The charge collection and the transfer occurs all in the charge domain.

Read out is usually done in a parallel-serial fashion until the charges reach the output diode

where a charge to voltage conversion occurs as a result of the capacitance of the output

diode. Instead of measuring the output voltage, one can also measure the output current.

The latter method is not often used in practice. A schematic block diagram of a CCD imager

with interline transfer architecture is shown in Fig. 5. The photodetectors are represented

by diodes, but they can be photo gates as well, as will be discussed next. The vertical CCD

shift registers are shielded from incident light.

A first type of pixel consists of a polysilicon capacitor isolated from the neighboring

pixel by a stopper diffusion and from the shift register by a transfer gate. The transfer gate

does not necessarily have to be fabricated from a separate polysilicon layer if one uses

proper implantation profiles in the CCD channel. A diode has a better quantum efficiency

but suffors more from kTC noise. Fig. 6 shows a cross section and a top view of the cell.

A pixel is about 16.5 gm x 16.5 lain in size. These may have to be increased by about 20%

to accommodate interconnections, depending on the overall architecture used. Dimensions

are indicated for a 2 gm technology. In general, these can be scaled for other technologies,
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Fig. 5: Schematic architecture of a CCD imager with interline transfer architecture
and diodes as photodetectors
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Fig. 6:Schematic cross section and top view of a CCD pixel consisting of a MOS
photo gate and CCD shift register. Dimensions are in gm for a 2btm tech-
nology.

for example, the dimensions for a 1.5 Bm technology are obtained by multiplying the di-

mensions by 0.75. It should be emphasized that the sizes show'n here _,,ive only a rou_zh
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indication of cell size and that the exact size will be a function of the available technology,

the overall architecture and the clocking scheme adapted (3 or 4 phases). The CCD shift

register is used to read out the charges. It should be noted that the gates of the CCD shift

register are 5.5 lain wide in order to accommodate the MOSIS or ORBIT design rules that

require a minimum overlap of poly 2 over poly 1 of 1.5 _tm and a minimum spacing be-

tween poly 2 layers of 2.5 lam. This gives rise to a large CCD cell. This is an example of

how a non- optimized technology (such as ORBIT or MOSIS) increases the dimensions of

the structure. This structure has a relatively small area and allows an interline transfer archi-

tecture. Readout of a current frame is done during integration of the next frame. The disad-

vantage is the light absorption in the top polysilicon layer. This is particularly severe in the

blue part of the spectrum. This problem can be reduced by using very thin poly-silicon lay-

ers. However, this is not available in the standard processes to which we have access. This

problem can also be eliminated by using a photodiode as the sensitive element, as shown in

Fig. 7.

Fig. 7:Schematic cross section and top view of a CCD pixel consisting of a photo-
diode and CCD shift register. Dimensions are in #m for a 2gin technology.

During the integration cycle, the photo generated electron hole pairs discharge the reversed

biased diode. After the integration cycle, the charge is transferred into the shift register

T-2901T 22 J VdS/warping/Oct.94



through the transfer gate (TG). During this period the diode is emptied of its charges and

thus reversed biased. The potential disadvantage of the photodiode is that the diode will not

be completely emptied resulting in higher noise. This can be overcome by using tailored

doping profiles in order to fully depete the diode. The advantage of the diode is the better

sensitivity in the blue region. In addition, with the diode one can make an electronic shutter

by pulsing the diode and draining the charge towards the substrate where it will be collected

in overflow drains. If one uses a more sophisticated process that has tailored implantation

levels, one can implement the TG and the gates of the CCD shift register as one gate and

thus potentially reduce the dimensions. The dimensions are in general similar to the pixel

discussed above. The fill factor is in the range of 25-30%.

b. CMOS based pixels

We will first give pixels that are based on the integration of charges during a fixed

time, called the integration time. This requires clocked operation. Charges can be read out

as a voltage or as a current pulse. The overall organization of such a structure is given in

Fig. 8. Pixels are now addressed using a series of switches (MOS transistors) that are

driven by vertical and horizontal registers. In its simplest implementation, these are shift

registers which address each pixel serially. However, by using row and column decoders,

one can randomly address each pixel, in a similar fashion as is done in a RAM. This opens

interesting possibilities. One can envision putting a dummy pixel that can be addressed ev-

ery time one needs to rip a line in order to span an unseen part of the output video line that

represents the scotoma on the display. One could store the addresses in a neighboring RAM

or EPROM that could be customized for each patient. Of course, a similar approach could

be used for CCD where one would modify the clocking sequence in order to allow dummy

charge packets to be inserted at the place where one needs to rip a line.

Fig. 9 gives a schematic circuit diagram, a cross section and top view of a simple

diode pixel which is part of a scanned diode array as shown in the above figure. It consists

of a photodiode surrounded by stopper diffusion on three sides and a polysilicon layer on

the fourth side which acts as the gate of the pass transistor (row select switch - MRS). We

have implemented the photodiode as a n+ to substrate junction for simplicity. However, a

well-substrate diode would be better for sensitivity, at the cost of increased size. A mini-

mum well size is 3 gm with a minimum spacing between wells of 8.5 lain. Note that we

have not made the diode minimum size in order to increase the aperture ratio and the sensi-

tivity. The advantage is a simple and relatively small structure (18.5 _tm x 17 _tm). As
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Fig. 8: Schematic architecture of an X-Y addressed MOS imager with diodes as
photodetectors

mentioned before, it is compatible with random addressing of each pixels. The drawback of

this structure is that the capacitance on which the charge of the diode is dumped during

readout is the line capacitance of the column which can be large. This reduces the sensitiv-

ity and increases noise. Clock feed through from the addressing clocks can cause consider-

able fixed pattern noise on the output line. The readout process is destructive, as is the case

with CCD sensors. One can overcome some of these problems by buffering the pixels from

the column capacitance by inserting an amplifier. This can be a source follower as shown in

Fig. 10. The diode is reset with the reset transistor MR before the integration cycle starts.

The pixel contains a sample switch (MS) that opens just after the capacitor C has been reset

with transistor MCR and at the end of the integration time. This puts the information charge

on capacitor C (parasitic). After this is done, the photodiode is reset and a new frame can

start. In the mean time, addressing of the individual pixel commences by clocking the gate

of the row select transistor (MRS). The information charge on capacitor C remains during

readout due to the buffering action of the source follower transistor MF. As a result, charge

is not destroyed during reading and the pixel capacitance is much smaller than in the

previous case without the buffer. Note that the load of the source follower is not included

in the pixel as it can be common to all the pixels in a column. In addition, the presence of

the reset transistor can act as an effective overflow drain to prevent blooming when a high

intensity light beam falls on the sensor. Disadvantages are a l_rger pixel area and a smaller
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Fig. 9: Circuit schematic, cross section and simplified top view of a pixel in a MOS
scanned array. The dimensions are in _m for a 21am technology.
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Fig. 10: Schematic circuit diagram of a pixel cell with multiple read capability. The
structure contains a buffer (source follower MF) to isolate the information
charge from the large line capacitance; transistor MS samples the diode

charge onto C and MRS is the row select transistor. MR and MCR are reset
tran si stors.

T-2901T 25 JVdS/warping/Oct.94



fill factor due to the presence of 4 transistors. Also, the source follower gain may be

relatively small (-0.7) if one cannot short the bulk to the source (which requires that the

transistor MF sit in its own well, further increasing the size). This structure would occupy

about 50 x 50 sq. microns with a 6-10 % fill factor in a 2 lain CMOS technology.

A somewhat different structure is shown in Fig. 11. The pixel consists of a diode that

is now buffered with a MOS transistor MA that acts as an amplifier. The row select switch

is transistor MRS connecting the output current of the pixel amplifier to the column line

where it can be measured. Resetting is done by transistor MR. The advantage of this

structure is the smaller size, better fill factor and built-in amplification. The charge ampli-fi-

cation is equal to Av.Co/Cd, in which Av is the voltage gain of the amplifier MA, Co the line

capacitance, and Cd the diode capacitance. A charge amplification of 80-100 is achiev-able.

Potential problems are threshold variations among the transistor MA which can affect the

gain and thus the uniformity. Also, the voltage levels may be critical to ensure proper op-

eration of the amplifier. A similar structure had been used before with good performance 8.

The structure would occupy an area of about 23 lam x 23 Bm with an aperture ratio of 20%

in a 2 Mm CMOS technology.

Column

VDD line

MRS.

M_I_Z_v_

Fig. 11: Schematic circuit diagram of a CMOS pixel operating in the integration
mode consisting of a photodiode and amplifier MA. The transistor MRS is
the row select switch and MR the reset transistor.

The previous CMOS pixels integrated the photo generated charge onto a diode capaci-

tance for a certain time. After integration time, the pixel is clocked in order to isolate the

charge from the one generated during the next frame and to read the charge out. This

scheme requires a clock. The next couple of possible pixels are not clocked but operate in

the continuous mode by measuring the photo generated current in a reverse biased diode or

bipolar transistor. Fig. 12 shows such a scheme. It consists of a diode connected to a
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diode-connectedMOStransistorML actingastheloadtransistor.Thecurrentin thediode

is proportionalto theincidentlight andis convertedintoavoltageby theload.If thecurrent
is smallenough,the loadtransistorwill operatein thesub-thresholdregimewheretherela-

tionshipbetweencurrentandvoltageis exponential.Due to thelogarithmiccompression,
this schemecanbeusedunderabout5-6ordersof magnitudeof light intensity.Thevoltage

is bufferedusing a sourcefollower transistor(MF). Thepixel is addressedwith the row
selecttransistorMRSwhichputsthevoltageon thecommoncolumnoutputline. No reset

transistoror resetline is required.A pixel occupiesabout22 x 22 _m is a 2 _tmCMOS

process.This structurealso works with a bipolar transistorthat will give considerable

amplificationdue to thecurrentanaplificationin abipolar transistor.Thestructurewill be
slightly largerthantheonewithasimplediodeasphotodetector.

VDD IColumn
ItI_ML / Iline

VDD ML Ic°lumn

Fig. 12: Schematic circuit of a CMOS pixel with photo detector (diode or transistor)
operating in a continuous mode. The transistor ML is the load which con-
verts the photo current into a voltage. A source follower MF buffers the
output voltage and transistor MRS act as the row select switch.

A slightly modified structure is given in Fig. 13. It consists of a photo transistor (or

photo diode) with two load transistors and amplifier MA. The current source MCS can be

made common to all pixels in a column. The transistor MRS is the row select transistor.

The structure has logarithmic compression and is buffered by the amplifier from the column

line. Instead of using an amplifier (common source) MA, one can also use a source fol-

lower by replacing the PMOS (MA) with an NMOS transistor which is basically the struc-

ture in the previous figure.

Another structure makes use of feedback in order to increase the dynamic range. It

consists of a phototransistor and three MOS transistors, as shown in Fig. 14. The feedback

keeps the currents smaller and thus extends the range of the logarithmic compression.

However, it reduces the sensitivity at low light levels as the structure without feedback.
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Fig. 13: Pixel with logarithmic compression and amplification (MA). The row select
switch is implemented by transistor MRS.

VDD

>I :
Column
line

Fig. 14:CMOS pixel with feedback to obtain a large range of logarithmic compression.
Transistor MRS is the row select switch 9

There are several variations on the above scheme. One such scheme is given in Fig.

15. This structure consists of a load transistor ML and common source amplifier transistor

MS. The feedback keeps the voltage over the diode constant. The pixel is basically a loga-

rithmic trans-impedance amplifier except that the output is now a voltage. Also, this pixel

allows continuous operation but requires four transistors. As the output node is a high

impedance point, it may be more susceptible to noise pick up. As a result, the structure is

less suitable for X-Y addressing.

Choosing a pixel structure depends on a variety of factors such as size, sensitivity,

overall architecture. CMOS pixels provide the advantage of random addressing and ampli-

fication, if necessary, at the cost of increased pixel size. The choice among the above

structures should be made after carefully considering the layout of each pixel and the inter-
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connectionandclock linesaswell asdoingsomepreliminarysimulationonHSPICEto get

abetterideaabouttheperformance.

VDD

Column
line

Fig 15: CMOS pixel consisting of photodiode, amplifier MA and row select
transistor. The transistor ME acts as the load 1°

6. Examples of Stale-of-the-Art Image Sensors

The goal of this section is to give a couple examples of the most recent image sensor

developments. These sensors are not yet on the market. The purpose is not to give an ex-

haustive overview but some typical examples that will illustrate what will become possible

in the near future. Most of the sensors are aimed at realizing HDTV quality cameras. As a

result, they are making use of cartesian coordinates for the sensor geometry. It should be

mentioned that the companies who are fabricating these imagers are generally not making

their process available to outside customers. As a result, the dimensions of the cells and

overall sizes given in these examples are not available to us.

6.1 Imagers for commercial HDTV applications.

a. A 2/3" 2 Mega Pixel CCD for HDTV 11

This camera consists of 1920 horizontal and 1036 vertical pixels. Its a multiple frame-

interline-transfer structure. The multiple frame transfer that makes use of multiple transfer

of the diode charge using time sharing in the blanking interval. This scheme increases the

dynamic range by almost a factor of two because the vertical CCD area can be increased.

T-290 IT 29 JVdS/warping/Oct.94



Thepixel sizeis only 5.2 x 5.0sq.micronsincluding the photodiodes, channel stop and

vertical CCD cell for the data transfer. The width of the vertical CCD shift register is only 1

ll.m. These small dimensions usually degrade the performance (transfer efficiency).

However, special implants were made to ensure high performance. Also, an optimized

pixel was used which had a larger diode area and thus enhanced the sensitivity of the sen-

sor which was 44 nA/lx. A schematic diagram of the overall sensor and pixel is shown in

Fig. 16. A summary, of the imager characteristics and performance is given in Table VI.

,'CC C, A
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phoIo-diode$

Image area

¢ VB4

¢vcl

¢ vC3

I _ sl°rage area

._11 /oh,,_,g,,og/ HorizontalCCD<31 ! /
Storage tarea B Slora_e area C

VCCD Photo-diode VCCD Photo-diode

5"2im

,_ Channel Stop

5.0urn

(a) Optimized pixel
of M-FIT CCD

(b) Conventional pixeE

a. b.

Fig. 16: a: Schematic diagram of the CCD FIT imager and b: pixel schematic 11

b. A 2/3" 2 Mega Pixel CCD Image Sensor t2

This sensor has 1920 x 1080 pixels with each pixel occupying only 5.0 x 5.0 sq. mi-

crons. The overall architecture is an interline transfer scheme. Small dimensions com-bined

with good perfon-nance have been obtained by using multiple wells and optimized implan-

tation steps. This improves the charge handling capability and transfer efficiency in the ver-

tical CCD transfer registers. Fig. 17 shows the overall architecture as well as the cross sec-

tion of a unit pixel. The sensitivity is 27 nA/lx and dynamic range is 71 dB. The power

consumption is only 0.49 W.
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Fig. 17. a: CCD Image sensor diagram and b: cross section of a unit pixe112

c. A 2/3" 2 Megapixel STACK CCD Imager t3

This image sensor makes use of stacked CCD cells in order to further increase the

resolution without degrading the performance such as noise and smear level. The sensor

makes use of an amorphous silicon photo conversion overlayer on top of the CCD scan-

ning areas. This has the additional advantage of 100% aperture ratio regardless of the pixel

size. The sensor is a frame interline transfer type CCD which consists of 1920 x 1036 pix-

els with a unit cell area of 5.0 x 5.2 sq. microns. The overall architecture and a unit cell

cross section is shown in Fig. 18. The sensitivity of 100 nA/lx is quite high due to the large

aperture ratio and the smear level low (-140dB). The dynamic range is 90 dB. The small

cell size was realized by moving the charge injection diode (CID) and the resetting gate

(SRG) outside each unit cell and placing it at the edge of the vertical CCDs. Tungsten sili-

cide shunt wiring is used for high speed charge transt_r by reducing the resistance of the

vertical CCD polysilicon gates. It acts at the same time as a light shield. A summary of the

sensor is given in Table VI.
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Schematic block diagram of the STACK-CCD and b: pixel cross

section ]3

Poly-Si

d. A 1/4 "Format 250K pixel MOS Imager with amplified pixe114

This imager is fabricated in a 0. 8 I.tm double poly, double metal CMOS process. The

authors claim that in order to further shrink the chip area and to obtain better sensitivity,

CMOS technology would be preferred over CCD technology. The latter one requires com-

plicated impurity profiles which is not suitable for LSE processing required for doing smart

image processing on-chip. This sensor make use of an amplified pixel in order to obtain

high sensitivity, large dynamic range capability of rapid video readout and non-destructive

readout. This was obtained by making use of the amplification capability of MOS transis-

tors offered in a CMOS process. The pixel size is only 7.2 x 5.6 sq. micron, including the

photodiode and 2.5 MOSFETs (a unit consists of 2 photodiodes and 5 MOSFETs).

A schematic block diagram and a unit (containing 2 pixels) is shown in Fig. 19. High

sensitivity is also obtained by vertical two line mixing. This allows to keep the sense ca-

pacitance low and thus to increase the sensitivity. The sensitivity is very high, 1.6 tJA//x

without use ofa microlens. The image area is 3,67 x 2.76 sq. mrn for a total of 510 x 493
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pixels.Dataratesup to 74MHz havebeenobtained.A sunlmaryof the imageris givenin
TableVI.
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Fig. 19.

a. b.

a: Block diagram of CMOS image sensor and b: circuit configuration of

2 pixels 14

6.2 Imagers with built-in computations not intended for HDTV.

The following sensors are being developed in various research laboratories and often

incorporate computational elements to enhance the functionality of the imager. These sen-

sors have usually a lower resolution because the increased real estate to accomodate the

processing elements. The first example gives a CMOS sensor with active pixels which can
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be randomly addressed. The second imager is an example of using the geometry to obtain

functionality. It is a circular CCD that implements a logarithimc polar transformation. This

is an interesting example because it is the only sensor fabricated with a non cartesian ge-

ometry.

a. A 128 x 128 CMOS Active Pixel Image Sensor 15

Similar to the previous sensor, this one is also fabricated in a CMOS process. The

process used was MOSIS 2btm p-well with double polysilicon layer. The authors have

chosen CMOS technology over CCD for its capability to incorporate processing circuits at

the pixel level as well as to fabricate architecture with random access of the pixels.

Basically, each pixel consists of a small surface-channel CCD including photo gate, trans-

fer gate, floating output diode with reset transistor and X address transistor (see Fig. 20).

One pixel occupies 40 x 40 sq. t.tm. The fill factor is only 28%, illustrating the price one

must pay for incorporating processing circuitry at the pixel level. By making use of a more

advanced technology the pixel size will shrink considerably. The structure makes use of a

sample and hold circuitry that allows it to do correlated double sampling in order to reduce

the kTC noise at the pixel and the 1/f noise. The frame rate of the 128 x 128 pixel sensor

was 30 Hz. The sensor suffered from global fixed pattern noise (3.3% of the saturation

signal). A summary of the sensor characteristics is given in Table VI.

b. Foveated Retina-like CCD image sensor t6

A photosensor which models the sampling structure of the human retina has been

implemented in a CCD technology. It consists of a relatively high resulution central area

surrounded by a peripheral area whose resolution decreases with eccentricity. The photode-

tectors in the periphery are arranged in a log-polar grid. This is an example of an intelligent

sensor whose computing elements are built into the geometry of the sensors. The unique

organization of this sensors provide the following three advantagee over converntionalt im-

ageres fabricated on a carthesian grid: (1) rotation invariance around the origian; (2) scale

invariance; and (3) data reduction due to the exponential growth of the cell size along the

radial axis. Each of these properties reduces the computational complexity of image pro-

cessing. The sensor has applications for robotics, time-to-impact, and docking.
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Fig. 20: Schematic of an active pixel sensor unit cell in a CMOS technology 15.

The sensor consists of five functional pans: the fovea, the circular periphery, the se-

rial or radial CCD register, the coupler between the circular and radial CCD, and the output

structure. The periphery consists of 30 concentric cirlces which contains 64 cells each for a

total of 1920 pixels. Each cell consists of a photodiode, a transfer gate and a CCD three

phase shift register cell. The photosensitive area is defined by a light shiled. This structure

is similar to the one shown in Fig. 6. The CCD was fabricated in a very conservative 5 lam

3 phase polysilicon gate technology atIMEC. This resulted in a minimum cell size of

30gmx30gm. The cell size increases exponentially with eccentricity which gives a maxi-

mum cell size of 412 I.tm. In order to maintain a good transfer efficiency, the sensor is di-

vided into three radial parts. The middle part consists of 10 circles whose number of cells is

doubled in order to reduce the cell size. The cells in the ten outer circles are further divided

by two. This requires a clocking frequency which is twice and quadruple of the one of the

inner circles for the middle and outer parts, respectively.
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Fig. 21" Microphotograph of the Retina-like sensor: (a)overall sensor and (b) fovea
and first 10 inner circles 16.
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TABLE VI: Overview of state-of-the-art CCD and CMOS imagers

Technology

I

CCD

Pixel Dimen. (_m)

Image Area

Sensitivity (nA/lx)

l Dyn. Range (dB)

Saturation (hA)

Noise e-

CCD

III

CCD,

0.61am

2/3"

IV

5.2 x 5.0

CMOS,

0.8 _m

1/4"

V

CMOS,

2/am

Format 2/3" 2/3"

No. of Pixels 1920x 1036 1920x 1080 1920x1036 510x493 12gx 128

5.0 x 5.0 5.0 x 5.2 7.2 x 5.6 40 x 40

9.6 x 5.4

44

580

Smear (dB)

Aperture Ratio

9.6 x 5.4

27

71

400

11.3e-

- 8O

On-Chip

B lens, low pc

0.49 W

2

Remarks

Refcrcnces

9.6 x 5.4

100

9O

960

- 140

_,er

3

- 100

On-Chip

Ft lens

3.67 x 2.76

1800

75 71

7200

.55 dB

Stacked ph_

conversion lay

1 4 5

150 Ke

42e

26%

to-

:rs

7. Issues related to implementing a sensor for image warping

a. Minimum pixel sizes.

Details on the size and geometry of individual pixels are discussed in the section

above, dealing with design rules and pixel types. The purpose of this section is to draw

some general conclusions about possible sizes. The numbers are given for a 21am technol-

ogy. These can be scaled for processes with different feature sizes.

The smallest sizes are obtained for the simplest pixels, i.e. those pixels which con-

sists of the photodetecting element and addressing circuits (or shiftregister for read-out).

Sizes of 18 by 18 Bm 2 are feasible of which the photosensitive area may vary between 6x6

Bm 2 to 6x12 Bm 2 for a CMOS or CCD cell, respectively. This will give fill factors of 1 1%

and 22%. Figure 22 gives a schematic view of the pixels and photosensitive area. The
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numbers are based for pixels on a carthesian grid. One can draw non-manhattan geometris

(which will be required for realizing the warping), the sizes will increase slighty as im-

posed by the design rules. One can expect an increase of about 8-10%.

il

E

#

Ir

..., 18,urn

I I
1 2p,m

L
I I

I 1

.m

Figure 22: Schematic floorplan of pixels and photosensitive area.

If needed, one can make the photosensitive area smaller. As the rest of the circuit can not be

reduced much, this will restllt in a smaller fill factor and sensitivity. The smallest obtainable

geometry for the photodetectors is in principle the minumum feature size, i.e. 2x2 lain for a

photodiode. The effective area will be somewhat larger due to lateral diffusion of the

charges generated in the area surrounding the photodetectors. However, it is not recom-

mended to work with these small area because the low sensitivity (small fill factor), in-

creased aliasing and also the larger pixel to pixel variations. For all practical purposes, one

should not use sizes smaller than about 6x6 to 8x8 lam 2 for the photoelements itself.

One is not limited to the cartesian geometry for implementing the photosensitive ar-

eas. In principles one can make any shape, taking into account the effect of the finite grid

size with which the masks and thus the geometries are defined. The result is that any orien-

tation different from 0, 45 and 90 ° will be approximated with 0.1 gtm (not scalable with the

technology) line segments. To implement a sensor that does image warping, there are dif-

ferent options. One can use pixels fabricated on a carthesian grid but offset from each other

along the line of the transformation, as illustrated in Fig. 23 a. In addition to displace the

pixels one can also shape the pixels appropriately. The latter method may implement the

warping more accurate but will require a slighter larger area. In comparison to the floor
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plan of Fig. 22, the one of Fig. 23 will require a larger overall area to accomodate inter-

connection lines which will not run along straight channels. Also there will be more "dead"

area between elements to accomodate the layout rules resulting in a less effecient layout

structure (e.g. it will be more difficult to combine areas among pixels). The exact penalty

one has to pay can be determined only after making a detailed layout. However, to a first

approximation gives an increase of about 10-20 % over the manhattan geometry.

i I f ° s "

i- 1
Fig. 23: Floor plan of a warped image with pixels on a carthesian (a) or a non-

carthesian grid (b).

b. Maximum pixel size

Creating pixels with larger sizes is alway possible from a technology point of view.

Design rules usually specify only minimum dimensions and rarely maximum ones.

However, the limitation on the maximum size is usually imposed by the performance. In

case of a CCD cell for instance, making the cell size larger will reduce the transfer effi-

ciency considerably. For CMOS detectors larger area will give larger capacitances will

could slow down the read-out speed. In general one should limit the maximum cell size to

about 150xl50tam 2. If larger sizes are required one can split the cells into smaller ones and

combine their output later on.

c. Making curved lines and the effect of finite grid size

Realizing a warped sensor requires a non-Cartesian geometry. One of the first ques-

tions that comes to mind, is how accurate can one implement non-Cartesian structures.

T-2901T 39 J VdS/warping/Oct.94



According to the two manufactures who were contacted (Orbit and IMEC) the smallest grid

size for mask fabrication is 0.1 _tm; lines under a 45 o angle can be fabricated as well. This

implies that lines with any other orientation than 0 °, 45o and 90 ° will be approximated by

smaller line segments snapped to the closed grid point. Figure 24 shows this schemati-

cally in case that the line is approximated by a staircase or by line segments of 0, 45 and

90 o, respectively. The maximum distance, measured orthogonal, from a grid point to the

line is 0.07_m for a 0.1 Bm grid. However, the average error will be considerably smaller.

I_._ 2 _tm I
I

..L. ._1.
Object of minimum feature size

0 0 0 0 0 0----_. I _m

0 0 0 O_

0_,_0 0 0 0
0 0

0 0 0 0 0 O-----A_

0 O.

0 0 0 0 _ila61 _j_

1 tam

a, b.

Fig. 24: Illustration of how a non-carthesian geometry will be approximated in case

that (a) lines of 45 ° are possible or (b) only 0 and 90 ° lines are possible.

This approximation must be looked at in relation with the size of the geometrical fig-

ure one wants to fabricate. The design rules limit the minimum feature size. In case of a

2Bm technology this means that one cannot make anything that is smaller than 2 p.m

(similarly for a 1.25 J.tm technology). It is compared to this dimension that one needs to

look at the error introduced by the finite grid size. To get an idea of the relative scale, the

length of the rectangle in Fig. 24 corresponds to the minimum size that one is allowed to

draw in a 2 Bm technology. The maximum error that is introduced in relation to the mini-

mum feature size is around 3.5% (5.6% for a 1.25 _tm technology). From the discussion

of pixel sizes, we know that a typical pixel has a minimum size of about 16 I-tin (for a 2Bm

technology). Compared to these dimensions, the error is about 0.4%. In addition, one

should keep in mind that the image is already convoluted by the finite window size of each

pixel which have a size of about 6x6Bm 2 and pitch of 16 t.tm. Also one has to take into ac-

count the tolerance on the actual size of the geometry as a result of errors in the production

(lithography, etching and registration errors) which is typically several percent of the mini-
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mumfeaturesize.As aresult,wecanexpectthattheeffectof thefinite grid approximation

on theimagerperformancewill notbesignificantor worsethanotherfactors,suchasfab-

ricationtolerancesor thefinitepixelsize.

8. Summary and Recommendations

This report gives an overview of different imaging technologies and explains what is

feasible in temas of minimum pixel size, geometries and functions. CMOS is the recom-

mended technology over CCDs for its flexibility to implement function on the array ranging

from active pixels, random addressing, logarithmic compression, to adaptation. Also the

lower cost and wider availability is an advantage of CMOS sensors. This and the above

advantages result in a smaller and less expensive overall system.

The smallest pixel size in a 0.8 _m technology is about 9_mx9_m with a fill factor of

about 20-30%. The fabrication of a 1.2 gm CMOS prototype chip of 9.6mmx9.6mm is

about $20K or up for a limited number of samples (typically 36). The actual geometry will

be drawn on a grid of 0.1 gm which will introduce small deviations from the desired ge-

ometry, if the line orientation is different from 0, 90 or 45 °.
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9. Addresses

Orbit Semiconductor, Inc.
1215 Bordeaux Drive

Sunnyvale, CA 94089
(408) 744-1800 phone
(408) 747-1263 fax

Contanct person: Sam Reynolds
MOSIS Service
USC Information Sciences Inst.

4676 Admiralty Way
Marina del Rey, CA 90292-6695
(310) 822-1511

Mr. Lou Hermans
IMEC vzw

Kapeldreef 75
3001 Leuven, Belgium
32-16-281211 phone
32-16-289400 fax

email: hermans@imec.be

Jan Van der Spiegel
University of Pennsylvania
Dept. of Electrical Engineering
200 S. 33rd Street

Philadelphia, PA 19104-6390
215-898-7116
fax: 215-573-2068

jan@ee.upenn.edu
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