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HIGHER HARMONIC CONTROL ANALYSIS FOR VIBRATION

REDUCTION OF HELICOPTER ROTOR SYSTEMS

Khanh Q. Nguyen

Ames Research Center

SUMMARY

An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate

its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and

power requirements of servo-actuators. The analysis is based on a finite element method in space and

time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation,

is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The

vehicle trim controls and blade steady responses are solved as one coupled solution using a modified

Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics

of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the

minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted

vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses

completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator

amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied

HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions

where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such

cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC

may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such

flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless

rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a

stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane

hingeless rotor. Parametric studies for a hingeless rotor operating in a transition flight regime and for an

articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate

that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset

of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be

selected to minimize the actuator power requirements for HHC.



1 INTRODUCTION

Inherent in the aircraft's design, vibration has remained one of the major problems facing helicopter

development for years. With current passive vibration alleviation methodologies, vibration in helicopters

has been reduced to an acceptable level over most of the flight envelope at the price of a substantial

weight penalty. Currently, the maximum speed and maneuvering capabilities for most of the modern

helicopters are limited by excessive vibration. With growing demands to expand the helicopter flight

envelope and stringent requirements for lower vibration levels, effective and efficient vibration control

systems are required. In this regard, the higher harmonic control systems have the potential for giving
the helicopter a "jet-smooth" flight.

1.1 Helicopter Vibrations

Unlike fixed-wing aircraft, where vibrations primarily originate from the engines or are caused by

atmospheric turbulence, the major source of vibration in a helicopter is the rotor. In fact, helicopter

vibration is an aeroelastic problem which involves the complex interactions between the aerodynamic,

inertial, and structural loads. The helicopter rotor, designed primarily to hover, is also required to have

a forward flight capability and so must be able to move edgewise through the air. The primary source

of helicopter vibration is the aerodynamic environment on the rotor disk. In this environment, a rotor

blade section encounters a periodic variation in the free-stream velocity. At high forward speeds, the

blades experience substantial transonic effects at the advancing tips, dynamic stall and reverse flow on

the retreating side, and swept flow in the fore and aft regions of the rotor disk. Due to the aerodynamic

environment and the inherent blade flexibilities, the rotor blades undergo large periodic motions which,

in turn, are fed back as a source of input driving the aerodynamic loads. Therefore, rotor analysis must

be considered as an aeroelastic problem since the blade motions are coupled with the aerodynamic loads.

In addition, the temporal and spanwise variations in the blade airload forms in a system of shed and

trailed vorticities behind the rotor disk. This vortex system induces an unsteady rotor nonuniform inflow

which directly affects the blade angle of attack and, in turn, influences the blade airloads. For certain

flight conditions, close blade-vortex interaction is also a significant source of helicopter vibration. As in

the case of the blade motion-airload interaction, the induced inflow-airload interaction forms a second

closed-loop in the rotor aeroelastic problem.

The periodic variations in blade free-stream velocity and blade angle of attack produce blade

airloads at many harmonics of the rotor rotational speed. Combined with the higher harmonic inertial

loads, these result in multiharmonic blade loads transmitted through the rotor hub to the airframe and

hence as a source of helicopter vibration.

In general, not all harmonics of the blade loads are transmitted to the fuselage. This is certainly

true for a properly tracked rotor with equally spaced blades. For a tracked rotor, all blades have identical

aeroelastic behavior except for an equal phase difference around the rotor azimuth. The blade loads

consist of many harmonics of the rotor rotational speed which tend to lower magnitudes at the higher

frequencies. For the vertical hub force and the rotor torque, only the blade loads harmonics at pN b per

rev (where N b is the blade number, p is a nonnegative integer) are summed to yield the hub loads at



pN b per rev. For the inplane hub shears and moments, only the blade load harmonics at pN b - 1 and

pN b + 1 per rev contribute to the fuselage vibration at pN b per rev. The sum of all other harmonics
cancels out at the hub.

Regardless of which harmonics of the blade loads are transmitted through the hub, the resultant

hub loads in the nonrotating frame--or fixed frame--occur only at pN b per rev. For the case when

p is zero, the steady components of the hub loads act as a source of steady forces and moments on

the fuselage, while the hub loads harmonics at N b per rev generally contribute to airframe vibration.

The higher harmonics of hub load at 2Nb,3Nb,... per rev are typically much smaller than the N b

per rev components and thus can be neglected. Although these vibratory hub loads dominate the

vibration problem, they are not the only source of helicopter vibration. The vibration contributions from

the engine, wake induced loads acting on the fuselage and control surfaces, the tail rotor, and small

differences between blades are typically small.

Vibration has remained one of the major problem for helicopters. It affects the helicopter handling

qualities, contributes to the fatigue of structural components, reduces the reliability of on-board electronic

equipment, and influences weapon aiming precision in military aircraft. Vibration affects ride comfort,

adds to the fatigue of pilots, crew, and passengers and also increases maintenance time and cost. The

high vibration levels experienced by a helicopter could in many cases pose a limitation to the vehicle

forward speed and maneuvering capabilities.

Currently, there are several approaches to reduce helicopter vibration (refs. 1-3). A natural ap-

proach, usually performed at the vehicle design phase, involves the placements of blade and fuselage

natural vibration frequencies away from the rotor harmonic frequencies. These tuning effects help avoid

blade and fuselage resonances with the rotor harmonics. This method, however, requires extensive mod-

eling and testing of the blade and fuselage structural characteristics throughout the aircraft development

phase. Recently, structural optimization techniques are under consideration to design the rotor and the

fuselage in order to reduce the transmitted vibratory hub loads and the fuselage vibration.

In spite of careful rotor design, significant vibrations exist in flight, and this necessitates the addition

of further vibration control devices. The passive vibration control devices currently used in helicopters

can be classified according to whether the vibrations are reduced at the rotor, at the fuselage, or by

isolating the rotor from the fuselage. Dynamic absorbers are the vibration control devices mounted

on blades or rotor hub. These devices can be considered essentially as spring-mass systems and are

tuned to vibrate in such a way that the oscillatory blade loads are canceled before being transmitted to

the rotor hub. The problem of pendulum absorbers is that each mode of vibration requires a separate

absorber, and this makes the complete absorber system rather complicated. Also, due to the inability of

current rotor analysis to accurately predict the vibratory loads, pendulum absorbers can only be tuned

through repetitive flight tests.

Rotor isolation is another popular vibration reduction technique and has been applied in several

variations. Flexible mounting of the rotor structures to the fuselage can be designed in such a way as

to minimize the transmission of the vibratory hub loads. In another variation, the rotor and the engine

gearbox are mounted on a nodal-beam structure. The beam structure is configured such that the vehicle

airframe is connected to the beam nodal points; hence, under excitation, only small oscillatory forces

are transmitted to the fuselage. Another isolation device, typically known as the dynamic antiresonant



vibration isolator (DAVI), combinessomeof the best featuresof isolation and dynamic absorbers.
Basically,this deviceconsistsof springelementsto which pendulumsareattached.With propertuning,
the work done by the vibratory hub loadswill be absorbedby the spring mechanismstrainenergy
or consumedby the pendulumkinetic energy.In general,DAVI offers much betterperformancethan
simple isolationor absorberdevices.

The vibration reductionmethodsin the fuselageuseeither vibrationabsorberswhich aretunedto
the troublesomefrequenciesand placedat selectedlocationsin the fuselageor vibration isolators in
the form of soft mounting of the cabinfloor to the airframestructures.With properairframe design,
the critical locationscan be placedcloseto the nodesof the fuselageexcited modes. In general,the
methodsof reducingvibration in thefuselagecanonly achievelocal effects.

Together,thesefour techniquesrepresentthe vibrationcontrol technologycurrently usedon pro-
ductionhelicopters.With properdesign,tuning,andselection,theycanprovidea relativelycomfortable
ride overa largepartof the helicopterflight envelope.However,thesedevicescontributeto asignificant
weight penalty for the aircraft. Furthermore,their performanceis quite restrictiveand can deteriorate
at high speedsand during maneuvers.Also, they are typically tuned only to selectedlocations in the
airframeand work effectively for a certainrangeof theaircraft grossweight, payloaddistribution,and
fuel loading.

Up to now, the specificationsfor the desiredvibration levelshavegenerallybeenlower than the
levels that could be attainedwith productionhelicopters. In the past, such specificationshad to be
modifiedconsiderablyto a level realizablewith currenttechnology.In 1976,the NASA Researchand
TechnologyAdvisory Council SubpanelonHelicopterTechnologyrecommendeda cabinvibration level
of 0.02 g. This level could be achievedonly if therewere a major technologicalbreakthroughin
vibrationcontrol methods.

Recently,a major advancein vibrationcontrol technologyappearspossiblewith the development
of higherharmoniccontrol (HHC), alsoknown asmulticyclic control. In contrastto passivevibration
control systemswhich suppressthe vibratory loads after they have beengenerated,an HHC system
suppressesthe vibrationsat the source--thehigherharmonicbladeairloads. Higher harmoniccontrol
is an active vibration control systemwherein the vibratory airloads arecontrolled at the higher har-
monicsof rotor rotational speed. Operatedthroughan arrangementof sensorsand microprocessors,
higherharmonicinputs areappliedto the bladegeneratingnew unsteadyaerodynamicloadswhich, in
combinationwith the resultantinertial loads,cancelthe existing vibratory blade loadsthat causethe
airframevibration.

Therearemanyways to implementHHC on a rotor system.The most popularapproachis blade
root featheringusing swashplateoscillations. Using servo-actuators,the swashplateis excited in the
collective,longitudinalcyclic, andlateralcyclic modesat N b per rev, resulting in blade pitch oscillations

at three distinct frequencies of N b- 1, Nb, and N b + 1 per rev in the blade rotating frame. For other HHC

systems, the higher harmonic inputs are applied using jet flaps (refs. 4-7), partial-span flaps (refs. 8-11 ),

circulation control rotor (refs. 12 and 13), and individual blade control system (refs. 14 and 15).



1.2 Literature Survey on HHC

The concept of higher harmonic control was first proposed in the late forties, but it was not until

1961 when it was conceived as a potential vibration control method for helicopters. In 1948, Winson

(ref. 16) suggested that the higher harmonic blade pitch could be applied to rotors tested on whirl towers

to simulate the oscillatory blade stresses induced in forward flight. This idea was pursued by Jensen

(ref. 17) in 1951, who applied second harmonic control to the S-52 metal main rotor blades operated
on the Sikorsky rotor test stand.

In 1952, Stewart (ref. 18) suggested that the second harmonic control applied to rotors in forward

flight could be used to delay the onset of retreating blade stall. Based on his analysis, Stewart discovered

that the rotor disk loading could efficiently be redistributed using second harmonic control. For a

particular flight condition, such loading redistribution could be adjusted to avoid retreating blade stall.

The resulting effect would be to raise the speed limitation of helicopters. According to his analysis,

helicopter speed limit could be increased by the order of 0.1 in terms of advance ratio. His analysis

was, however, limited to a rigid flapping blade, and the airloads were calculated with quasi-steady

aerodynamics and a uniform inflow distribution. Therefore, the severe aerodynamic effects associated

with the transonic effects, separated flow conditions, and the participation of blade elastic modes in the

rotor aeroelastic responses were all neglected.

In 1961, Arcidiacono (ref. 19) extended Stewart's analysis by considering both second and higher
harmonic blade pitch control. In his report, Arcidiacono noted that a combination of second and third

harmonic blade feathering could be used to delay the onset of retreating blade stall to an even higher

advance ratio than that reported by Stewart. Like Stewart, Arcidiacono did not consider the effects of

higher harmonic inputs on the rotor vibratory hub loads.

In 1961, for the first time, a flight test program was carried out to investigate the feasibility of using

HHC for vibration reduction on an UH-1A two-bladed teetering rotor helicopter (ref. 20). Prompted by

some earlier unpublished analyses and a design of the simple rotor head mechanism to generate second

harmonic blade pitch, Bell Helicopter Company conducted a series of flight tests to determine the effects

of HHC on rotor performance, blade airloads, blade and control loads, hub loads, and airframe vibration.

Investigating HHC effects on rotor performance, these investigators noted that no reduction in

shaft torque was observed. Further investigation indicated that the drag reduction in the retreating side

was accompanied by an increase in profile drag in the fore and aft portions of the rotor disk. These

results confirmed Stewart's prediction that the second higher harmonic control could be used to alter

the rotor disk loading, although no reduction in power was observed at 100 knots. The reduction in the

stall-induced power was later found to be commensurate with an increase in the profile power due to

changes in the blade section angle of attack.

On vibration, these authors stated that none of the combinations of second harmonic control am-

plitude and phase could completely suppress the vibration at any one of three fuselage stations being

monitored. At best, the vibration measured at the station located right beneath the rotor hub was re-

duced by about 50 percent. These authors pointed out that the complex interactions between the various

components of the vibratory hub loads were the cause of incomplete vibration reduction and concluded
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that morecomprehensiveunderstandingof HHC effectswas requiredbeforethe systemcould become
fully effective.

Sincethen,severalinvestigatorshadconductedanalyticalsimulationof HHC for vibration reduc-
tion. Daughaday(ref. 21) presentedthe analysisusing a typeof higher harmonicbladepitch control
which required both temporal and spanwisevariations. These higher harmonic blade pitches were

necessary to reduce a set of even harmonic shaftwise hub forces for a two-bladed teetering rotor. In

particular, this type of control schedule is quite impractical because it requires the adjustability of the

blade pitch angle along the blade span. In this analysis, the rotor induced inflow is calculated using a

vortex wake analysis, and the effects of shed vorticity were also included. In an analysis similar to that

of Daughaday, Shaw (ref. 22) carried out an HHC investigation including the effects of third harmonic

(rigid) blade root feathering on the vibratory hub forces for a three-bladed rotor.

Both of these results indicated that the higher harmonic shaftwise root forces could be eliminated

using HHC and that the load suppressions were caused by the mutual cancellation of the higher har-

monic aerodynamic and inertial components. Furthermore, interharmonic couplings--the interaction

between the harmonics of inputs with another harmonics of outputs--were observed by both authors.

Interharmonic couplings are expected to exist for all rotor systems. For example, even with the simplest

mathematical model for a rigid flapping blade rotor in forward flight, the blade motion is described by a

linear ordinary differential equation with periodically time-varying coefficients. For such an equation, it

is well established that the input (or forcing) at one harmonic generates a multiharmonic output. Finally,

Daughaday noted in his report that the HHC inputs required for vibratory hub load suppression changed
significantly with forward speed.

Daughaday's analysis on the two-bladed teetering rotor was later extended by Balcerak and Erikson

(ref. 23). The modifications included the torsional degree of freedom, which had been previously

neglected by Daughaday, and the calculation of the blade inplane root shears. These authors calculated

the higher harmonic blade pitch required to eliminate a set of even harmonics of shaftwise hub force

together with a set of odd harmonics of inplane hub shear. Results from this study pointed out the

importance of including the torsional degree of freedom, especially when the blade fundamental torsion

frequency was close to the blade pitch harmonics. Also, the rotor aerodynamic performance was found

to be relatively unaffected by the HHC inputs.

In 1972, the first wind tunnel investigation of HHC was reported by McCloud (refs. 4 and 5).

The model rotor was a two-bladed teetering rotor with propulsiVe jet flaps. This rotor used a large jet

flow expelled from the blade trailing edge to propel the rotor and applied the HHC through the angular

deflection of the jet flow. In the model rotor, the jet flap was extended over the outer 30 percent of the

blade radius. In the experiment, individual higher harmonic input components were applied to determine

a set of influence coefficients relating the vibratory blade and hub load harmonics to the input harmonics.

This set of influence coefficients formed a transfer matrix, which was then used to determine the higher

harmonic input magnitudes and phases required to minimize the sum of the squares of the vibratory

loads. These results showed that, in general, the vibratory hub load reduction was accompanied by

an increase in the blade bending moments and vice versa. As noted by earlier investigators, the HHC

inputs required for the suppression of vibratory hub loads were found to vary appreciably with the rotor

forward speed. These experimental results were later supported by the analytical studies performed by

Piziali and Trenka (ref. 6) and Trenka (ref. 7).



SissinghandDonhamalsoperformedanHHC investigationin a wind tunnelusinga four-bladed
hingelessrotor (ref. 24). Due to the actuatorhardwareconstraints,the rotor tip speedwassignificantly
low comparedto a full-scale helicopter.The resultingbladevibration frequencieswerethereforevery
different from thoseof full-scalehingelessrotors. In the wind tunnelexperiment,the higherharmonic
bladeroot featheringwasappliedusingswashplateexcitations.The nonrotatingswashplatewasexcited
with servo-actuatorsoscillatedat the fourth harmonicof the rotor rotational speed. This results in
bladepitch harmonicsat 3, 4, and 5 per rev which were superimposedon the basic collective and
cyclic controls to suppressthe third and fifth harmonicsof the bladeflap bendingmomentsmeasured
nearthe blade root. In effect, this suppressionschemetried to null out the fourth harmonicsof the
hub pitching and rolling momentsin the fixed system. The vibratory hub loads,however,were not
measured.The HHC model usedfor vibratoryhub load suppressionwassimilar to the one usedby
McCloud (ref. 5). With the appliedHHC inputs,the resultsshowedthat thesevibratory flap bending
momentsweredrasticallyreducedandtheHHC magnitudesgenerallyincreasedwith increasingadvance
ratios.

Startingin 1975,a seriesof wind tunnel investigationsof HHC wasconductedby McHugh and
Shaw(refs.25 and26). Thefour-bladedsoft-inplanehingelessrotormodelbeingtestedwasfully instru-
mentedsothat secondaryeffectsof HHC couldbe investigated.HHC inputswereappliedby swashplate
oscillationswith servo-actuators.The vibratory hub loadsweremeasuredusing a strain-gaugebalance
locatedbeneaththeactuators,in the fixed frame. Unlike Sissinghand Donham'sexperiment,the later
experimentsof McHugh and Shawwere conductedat close to the full-scale tip speed.Resultsfrom
theexperimentshowedthatthe vibratoryhub momentscouldbesuppressedeffectivelywith no signifi-
cant increasein bladestresses.Also, all five componentsof thefourth harmonicshub loads vertical,
lateral, and longitudinal forces and pitching and rolling moments---couldbe reducedsimultaneously
with thethreeHHC inputs. However,the vibratoryhub shearscould not becompletelysuppressedfor
certainflight conditions,andthis wasattributedto theamplitudelimitationsof the servo-actuators.No
significantpenaltiesin rotor performancewereobservedin theHHC experiment.Noting that the HHC
amplitudesand phasesvariedappreciablywith forward speed,the authorssuggestedthat an adaptive
mechanismwould benecessaryto adjusttheHHC inputsasrequiredfor varying flight conditions.

In 1975, McCloud presentedan analytical investigationof HHC on a four-bladedarticulated
controllable-twistrotor (ref. 8). The analysisusedan aeroelasticprogramdevelopedfor controllable-
twist rotors by Kaman Aerospace. McCloud used the analysisto obtain the influence coefficients,
relatingthevibratory bladeandhub loadharmonicsto the higherharmonicinputs,for theHHC model.
In the study,McCIoud confirmedthe validity of the linearassumptionmadeon the HHC input-output
model. Using a weightingapproach,he furthershowedthat the suppressionof the vibratory hub load
could be accompaniedby a 50 percentreductionin thebladebendingstressesusingthe first four har-
monicsof the servo-flapinputs.Anotheranalyticalinvestigationof HHC on the controllable-twistrotor
waspresentedby LemniosandDunn (ref. 9).

McCloud's HHC investigationon the four-bladedarticulatedcontrollable-twistrotor wascarried
out with a full-scale test in the Ames40- by 80-FootWind Tunnel (ref. 10). In this experiment,the
rotor bladeswere fully instrumented,andthe rotor tip speedwasaboutone-fourththat of production
helicopters.The vibratorybladeloadswereobtainedfor differenthigherharmonicservo-flapdeflections
andat varying flight conditions,andthe datawerestoredfor a post-testanalysis.In the dataanalysis,
model reductionswereperformedusinga regressionanalysis.The HHC model wasthen implemented
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in a simulation program to compute the vibratory blade load reductions. The HHC mathematical model

and controllers used in the simulation were identical to those of McCloud's analytical study presented

in reference 8. Based on the simulated results, the authors reported that significant reductions occurred

in both the blade flapwise bending moment and the control system loads using HHC. In addition, the

data analysis also indicated that rotor performance could be improved using HHC.

In another HHC investigation of the same rotor, reported by McCIoud and Brown in 1980 (ref. 11),

the simulation included fuselage vibration measurements. In the earlier test, vibrations were measured

using accelerators mounted on the rotor test apparatus (RTA). While varying the weighting options, they

discovered that significant vibration reduction could be achieved with HHC at selected locations on the:

RTA. These authors also noted that components of the transfer matrix varied appreciably with forward

speed and, like Shaw, suggested that a real-time parameter identification scheme would be required for
practical HHC application.

In a paper reported by Hammond (ref. 27) and another one presented by Wood, Powers; and

Hammond (ref. 28), results from the wind tunnel investigation of HHC on a four-bladed articulated

model rotor were described. Like previous wind tunnel investigations, the HHC inputs were applied

using swashplate oscillations. The vibratory hub loads were measured by a six-component balance

mounted below the rotor hub. Using several trial inputs, these investigators were able to compute the

fourth harmonic blade pitch required to suppress •completely the 4 per rev vertical hub force. Then the

authors outlined a general algorithm to acquire and control the multi-input multi-output HHC model

and discussed the practical implementation of HHC in flight tests. In fact, the practical design issues

concerned with the application of HHC to a production helicopter were later investigated by Powers
(ref. 29).

The potential of HHC for future helicopter developments was reviewed by McCloud in 1980

(ref. 30). The potential benefits of HHC as an active control system for helicopter vibration suppres-

sion, blade stress reduction, and rotor performance improvement were outlined. Several types of rotors

were reviewed as potential candidates for HHC applications including conventional, controllable-twist,

propulsive and nonpropulsive jet flaps, circulation control, and advanced-controllable-twist rotors. Fur-

thermore, practical implementations of HHC in flight test were also discussed.

In 1980, Shaw presented the results of a comprehensive analytical investigation of HHC comparing

the potential benefits of servo-flap versus conventional blade root feathering, and studied the development

of an automatic in-flight adaptive algorithm (ref. 31). The investigation was based on a coupled modal

analysis and included a vortex wake induced inflow calculation. The shed wake effects were included

using an approximation to the Theodorsen lift deficiency function. In the modal analysis, the inplane

degree of freedom was uncoupled from the out-of-plane and the torsional degrees of freedom. The

transfer matrix approach was adopted to relate the higher harmonic hub loads to the HHC inputs.

The analytical results indicated that nonlinearities in the HHC input-output model were small, on

the order of 10 percent. Also, Shaw showed that significant reduction in vibration could be achieved

with small to moderate increases in blade stresses. Investigating the distributions of the baseline and

the incremental vibratory blade loads induced by HHC, Shaw pointed out that the vibration suppression

was caused by the mutual cancellation between the aerodynamic and the inertial components of the

transmitted vibratory loads at the blade roots. Cancellation of the blade root loads by using blade root
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feathering generally caused an increase in both the aerodynamic and inertial loading distribution from

the baseline values, thus resulting in an increase in blade stresses. Further investigation indicated that

the increases in blade stress could be avoided if partial span flap, as opposed to blade root feathering,
was used for vibration suppression.

Due to the HHC inputs, it was also found by Shaw that the control loads were increased by roughly

30 percent, and the change in rotor performance was negligible. For changing flight conditions, the

closed-loop controllers with fixed gain performed satisfactorily over an advance ratio range as wide as

0.2. For the cases when this controller performed poorly, an adaptive gain controller was used. For the

adaptive controller, the model parameters were estimated using the Kalman filter. Simulation results

showed that the adaptive controller performed very well for varying flight conditions. Furthermore, the

predicted actuator power requirement for HHC was less than 1 percent of the rotor induced power.

Starting in 1979, Shaw and Albion conducted wind tunnel investigation of HHC on a four-bladed

hingeless rotor model in the Boeing V/STOL Wind Tunnel (refs. 32 and 33). The 10 foot diameter rotor

was Mach scaled and operated at the full-scale tip speed. The HHC inputs were applied through the

fixed-system swashplate excitation using four equally spaced hydraulic servo-actuators. The closed-loop

controller suppressed simultaneously up to 90 percent the 4 per rev vertical hub shear, hub pitching,

and rolling moments. The effectiveness of HHC was demonstrated for the advance ratios ranging from

0.1 to 0.3. The closed-loop system transient behaviors were investigated by applying a step disturbance

through a swashplate command. Results indicated that the disturbance was suppressed within two rotor

revolutions, or approximately 0.1 second. These results confirmed the quasi-static assumption made on

the HHC model. Also, it was noted that the rotor trim states were not affected by the HHC inputs.

However, the maximum penalty in rotor performance was large, on the order of 4 percent.

In 1980, Yen presented an analytical investigation of HHC on a two-bladed teetering and a four-

bladed hingeless rotor (ref. 34). The analysis was based on C81, the Global Flight Simulation Program.

For the two-bladed teetering rotor, trial amplitudes and phases of the second harmonic inputs were

applied to suppress the second harmonics vertical hub shear. At the advance ratio of 0.3, the main rotor

shaft torque was increased due to the applied HHC by 11 percent. The increase in shaft torque was

attributed to blade stall which occurred in the fourth quadrant of the rotor disk.

iii:_

For the four-bladed hingeless rotor, third, fourth, and fifth harmonics of blade pitch were simulta-

neously applied to suppress the vibratory hub loads. This resulted in reduction of more than 90 percent

in the 4 per rev vertical hub shear, hub pitching, and hub rolling moments. For this hingeless rotor,

the combined HHC inputs required were about 2.5 degrees, and the HHC penalty in rotor performance

was found to be small. These results indicated that the second harmonic blade pitch, implemented on

a two-bladed rotor, changed the rotor loading distribution and resulted in blade stall. Such effects had

previously been suggested by Stewart (ref. 18). Furthermore, these results also implied that the blade

pitch harmonics above the second, used for the vibratory hub load suppression, had a small or negligible

effect on rotor performance.

i_i:!

In 1980, Hammond (ref. 35) reported a wind tunnel investigation of HHC on a dynamically Mach-

scaled four-bladed articulated model rotor. The model rotor tip Mach number matched that of a full-scale

value. As in Hammond's previous wind tunnel experiments, the HHC inputs were applied using swash-

plate oscillations. The transfer matrix approach was used for HHC modeling. Self-tuning regulators
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were usedfor vibration suppression,and the modelparameterswere estimatedusing the Kalmanfil-
tering techniques.For a rangeof advanceratiosbetween0.2 to 0.4, the 4 per rev vertical hub shear
andhub pitching momentwere suppressedup to 70 percentfrom the baselinevalues. In general,the
4 per rev hub rolling momentcould not be suppressed,however. Like other investigators,Hammond
also reporteda moderateincreasein bladeloadsdueto HHC.

HammondandHollenbaugh(ref. 36) investigatedtheapplicationof differentHHC control schemes
to the vibrationsuppressionproblem. The HHC control schemes included the application of a single-

input, multi-input, and multi-input with on-line adjustable blade twist. The last control scheme was quite

similar to the one proposed by Daughaday (ref. 21) in which the added blade pitch required both spatial

and temporal variations. The vibration suppression problem was solved using a nonlinear programming

algorithm in which the quality criteria to be minimized included the sum of the peak-to-peak values of

hub loads. The mathematical model used for the vibration problem was quite simple. It used either

a rigid flapping or a coupled elastic flap-lag blade model, quasi-steady aerodynamics, and a linear

inflow model. The results showed that for suppression of the oscillatory hub forces and moments on

a four-bladed hingeless rotor, simultaneous application of the third, fourth, and fifth harmonics of the

rigid blade pitch yielded good results. Better results were obtained with the addition of the variable

time-dependent blade twist. However, a complete suppression of the oscillatory hub loads could not be
achieved.

In 1981, Molusis, Hammond, and Cline (ref. 37) examined several HHC algorithms for vibration

suppression. The performance of these algorithms was evaluated through wind tunnel testing. The

model rotor and experimental setup were identical to that of Hammond's previous wind tunnel test

(ref. 35). The HHC controllers were configured to suppress the fourth harmonic vertical, longitudinal,

and lateral signals from a triaxial accelerator mounted beneath the rotor in the fixed frame. The rotor

advance ratio was varied between 0.2 to 0.4, and the HHC system was modeled using the transfer matrix
approach.

The HHC controllers tested could be separated into two types: the adaptive controllers and the gain
schedule controllers. For the adaptive controllers, both the baseline vibration and the transfer matrix

were estimated using Kalman filtering techniques. These adaptive controllers could be classified further

depending on how the model parameters were updated. The adaptive controllers being evaluated were

the deterministic and the cautious controllers. In particular, the deterministic (adaptive) controller used

the estimated model parameters directly. For the cautious controller, the model parameters were also

estimated using the Kalman filter. However, the cautious terms, which were calculated based on the

covariances of the estimated parameters, were included in the control algorithm. If the parameter estima-

tion was uncertain, then the controller decreased the gain in the control function. For the scheduled-gain

controller, the transfer matrices were assumed to be known and were calculated off line. The two types

of gain-scheduled controller being tested for different flight conditions in the wind tunnel included the

perturbation and the proportional controllers. For the perturbation controller, the HHC model was linear

about a nominal control value, whereas, for the proportional controller, the transfer matrix was fixed for

the complete range of control values.

Wind tunnel results indicated that both gain-scheduled controllers performed poorly, and there was

no definite reduction in the vibration level. It was suggested that a nonlinear behavior might be the

cause for such poor performance. For the deterministic (adaptive) controller, the steady state vibration
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ii:_ i level was reduced significantly. However, large response overshoots occurred before the vibration

converged to the steady state value. The cautious controller offered the best performance among the

four controllers. After initialization, the vibration converged smoothly to a minimum value. Over the

range of forward speed tested, the cautious controller was able to suppress up to 90 percent of the fourth

harmonic vertical and longitudinal accelerations. However, the 4 per rev lateral vibratory component
could not be suppressed, in general.

In an analytical study, Molusis (refs. 38 and 39) investigated the inability of the HHC controllers to

suppress the 4 per rev hub rolling moment as reported in reference 35 and the 4 per rev lateral acceleration

as discussed in reference 37. Using the G400 simulation program for aeroelastic analysis (ref. 40),

Molusis claimed that nonlinearity in the HHC modeling was a major factor for the incomplete vibration

suppression. The nonlinearity was found to be more severe at the high forward speed. In fact, the

incomplete vibration suppression was attributed to two factors: (1) the convergences of HHC algorithms

to local minima, and (2) the constraints on the HHC amplitudes (the combined HHC amplitudes in

Hammond's experiment were limited to 1.5 degrees). Furthermore, Molusis also noted that the parameter

identification scheme using Kalman filtering technique could, in certain cases, lead to divergent HHC
transient responses.

!i_ i#i

In 1982, Wood et al. (refs. 41--43) conducted an HHC flight test program on a modified OH-6A

helicopter. The OH-6A is a light helicopter with a gross weight of about 3,000 lb. The flight test

program was supported by the earlier wind tunnel results performed by Hammond. The HHC inputs
were implemented by blade root feathering using swashplate oscillations, and a triaxial accelerator

was mounted beneath the pilot seat to sense and feed back the fourth harmonic vertical, longitudinal,

and lateral vibrations to the controller. The flight speed was varied between zero to 100 knots, while

HHC was applied using both open-loop (manual) and closed-loop controllers. For the closed-loop

operation, the cautious controller presented in reference 37 was employed. Flight test results confirmed

the effectiveness of HHC, as had been observed in wind tunnels. Up to a 90 percent reduction in

vibration was obtained with combined HHC amplitudes less than 1 degree. The blade and control

system fatigue loads were increased due to HHC; however, the load penalties were within the design

limits. Shaft torque measurement showed no adverse effects of HHC on the aircraft performance.

Johnson (ref. 44) reviewed the class of HHC algorithms for vibration and blade load reduction

proposed to date. As in previous investigations, a linear, quasi-static, frequency domain transfer matrix

was adopted for the HHC modeling. Furthermore, the HHC models were classified into global (linear)

and local (piecewise linear) models. Both open-loop and closed-loop controllers were considered.

The criteria for vibration suppression or blade load reduction were expressed as a minimum variance

or a quadratic performance index. The controllers were further classified according to the parameter

identification scheme being used. As in previous reports, these included the deterministic, gain-updated,
cautious, and dual controllers.

The performance of the controllers presented by Johnson was evaluated analytically by Chopra
and McCloud (ref. 45). The performance evaluation was based on a numerical simulation which used

the data obtained from McCloud's earlier wind tunnel results (ref. 11). They studied the effects of

measurement noise, initial estimated error in the model parameters, control rate constraint, and variation

in flight speed on the performance of four different controllers. In particular, these controllers were

open loop and closed loop with off-line and on-line identification. The on-line identification scheme
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wasperformedusingthe Kalmanfilter. Both global and localmodelswere simulated.The closed-loop
controllerwith a local modelusingon-line identificationtechniquehadthe bestperformance.However,
for thecaseswith largeinitial errorsin thetransfermatrix, largeovershootswerefound in the transient
responsesusingthis controller.For suchcases,theseauthorsproposedtwo different startupprocedures
to improve the transientresponses:(1) trial HHC input sequenceswould be injected into the system
to computea betterestimateof the transfermatrix usingeither the finite-differenceor the least-square
methods,and(2) thecontrol rateconstraintvaluewouldbemadeinitially largeto avoidtheundesirable
control excursionandeventuallyreducedfor improvedconvergencecharacteristics.

In 1985,a successfulwind tunneldemonstrationof HHC wasperformedby Shawet al. (ref. 46).
The experimentalinvestigationwasconductedusinga three-bladeddynamicallyscaledmodel rotor of
the CH-47D helicopter testedin the Boeing HelicoptersWind Tunnel. The model rotor operatedat
full-scale tip speed,and the vibratory hub loadswere measuredusinga strain-gaugebalancemounted
in the rotatingframe. The higherharmonicbladefeatheringat thesecond,third, andfourth harmonics
wasappliedto suppressthe 3 per rev vertical hub force andthe 2 and4 per rev rotating inplanehub
shears.Open-looptestswereconductedto obtainthe transfermatrix valuesat severalflight conditions.
Thesetransfermatriceswerestoredandlaterusedwith the fixed- or scheduled-gaincontrollers.

Wind tunnelresultsshowedthatHHC producedmorethan90percentreductionof all threevibratory
hubshearcomponents.Suchreductionswereobtainedusingthefixed-gaincontrollerwith a localmodel,
in which thetransfermatriceswerecalculatedoff line. Vibration reductionwasshownfor the complete
rangeof flight conditionsbeing tested,up to a forward speedof 188 knots. The suppressionof the
vibratory hub loadswas accompaniedby small to moderatechangesin the bladeand control system
fatigue loads as well as a negligible change in rotor performance. However, the combined HHC
amplitudesrequiredfor vibratory loadreductionwererelatively large----ontheorderof 2 and3 degrees,
respectively,at the forward speedsof 135 and 188knots. TheseHHC amplitudeswere significantly
largerthan thosereportedin reference41. Thereason,assuggestedby Shaw,wasdueto thedifferences
in bladedynamicsbetweenthe two rotors.

TestingdifferentHHC algorithms,theseauthorsfoundthat thescheduled-gaincontrollerperformed
aswell asthe fixed-gaincontrollerat varying flight conditions. It was interestingsincethe scheduled-
gaincontroller selectedthe transfermatricesautomaticallyfrom a database,while the transfermatrices
wereselectedmanuallyfor the fixed-gaincontroller. Also, bothcontrollersusedthe local model. The
adaptivecontrollers, similar to those reportedin reference37, were also tested; nevertheless,they
generallyexhibited poor performance.For certainfixed flight conditions,the adaptivecontroller was
successfulin suppressingthe vibratory hub loads.For changingflight conditions,however,the transfer
matricesidentified by this controllerdivergedfor certainvaluesof thecovariancesof themeasurement
andprocessnoises.Furthermore,someinitial testingof the global adaptivecontroller indicatedthat it
waseither unstableor ineffective in suppressingthe vibratory loads.

The HHC effectivenessshownin this wind tunnel experimenthad other implications. First, it
demonstratedthat thevibratoryhubloadscouldbesuppressedwith arelativelysimpleHHC controller--
the fixed-gaincontroller. Second,the nonlinearitiesin the HHC model,if theseexisted,did not prevent
the nearcompletesuppressionof the vibratory hub loads. In fact, open-loopresultsindicatedthat the
vibratory responseswere linearwith HHC amplitudes,up to 3 degrees.Theseresultswere at variance

12
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with those reported in references 37 and 38, and the differences may be attributed to the actual hardware

implementation, the servo-actuator accuracy, and the data processing techniques.

In 1985, Lehmann reported an HHC investigation conducted in the the Deutsch-Niederlandischer

Windkanal (DNW) (ref. 47). This wind tunnel investigation was supported by an earlier analytical study

performed by Jacob and Lehmann (ref. 48). The higher harmonic blade pitch was applied to suppress

the vibratory hub loads on a four-bladed hingeless model rotor of the BO-105 helicopter. The load

balance was mounted in the fixed frame, beneath the rotor. The airspeed was varied between 10 and

50 meters per second which corresponded to advance ratios of 0.04 to 0.22. The HHC results indicated

that all five vibratory hub load components4 per rev vertical, longitudinal, and lateral hub forces and

4 per rev pitching and rolling moments--could be reduced simultaneously but could not be completely

suppressed. Furthermore, Lehmann found that the rotor trim states were affected by the applied HHC
inputs.

Analytical investigation of HHC for suppression of fuselage vibration was also carried out by Taylor,

Farrar, and Miao (ref. 49). The HHC system being considered also employed swashplate oscillations.

A four-bladed single rotor helicopter was simulated using the G400 rotor aeroelastic analysis. The

controllers used were similar to those described in reference 35. Simulated results indicated that HHC

produced up to 80 to 90 percent reduction in fuselage vibration. Secondary effects of HHC included a

small reduction in rotor performance---on the order of 1 to 3 percent increase in rotor shaft torque--and
small to moderate increase in blade stresses. The influences of measurement noise included in the

simulation indicated that a 15 percent noise-to-signal ratio was acceptable for the HHC design. With

the rotor system considered, the predicted HHC inputs required were on the order of 3 degrees.

Another comprehensive HHC simulation, also using the G400 program, was carried out by Davis

(ref. 50). This study aimed at comparing the performance of three different controllers: deterministic,

cautious, and dual. Both local and global models were used. For steady flight conditions, Davis noted

that, with proper tuning, there was no distinguishable difference between the performance of these three

controllers. The vibration reductions were 75 to 95 percent from the baseline values, and these were

achieved with less than 1 degree of the combined HHC inputs. For transient maneuvers, it was found

that the global controllers generally performed better than the controllers using the local model.

The effects of nonlinearity and interharmonic coupling of the HHC system were also investigated

in reference 50. The major source of nonlinearity in the HHC model came from the blade bending

mode responses, while the interharmonic coupling arose from both the blade responses and the higher

harmonic airloads. Both of these effects might degrade the controllers' performance in terms of the

HHC amplitude required and the vibration convergent rate. By selecting proper weighting factors on the

HHC inputs at different flight conditions, the author noted that such degrading effects might be reduced.

The above simulation led to a study for implementing HHC on the Sikorsky S-76 helicopter

(ref. 51). Analytical studies, design analysis, and risk reduction tests were all performed prior to the

full-scale flight demonstration. The flight test program was designed to demonstrate HHC effectiveness

on a modern medium-weight helicopter.
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In 1986, flight demonstrationof HHC on the S-76 helicopter was conductedand describedin
references52 and53. For flight tests,passivevibrationcontroldeviceswereeitherremovedor switched
off. Swashplateexcitationwasusedto activatethe higherharmonicbladepitch, andthe cabinvibration
level was monitoredusing acceleratorsmountedat severallocationsin the aircraft. Using open-loop
testing,this was the first flight test to demonstratethe potentialof HHC on a 10,000lb helicopterfor
a rangeof forward speedup to 150knots. With HHC, significantreductionsin the fuselagevibration
were attained. The effects on aircraft performancewere found to be negligible, while the penalties
in bladeand control systemfatigue loadsweremoderateand remainedwell within the designlimits.
Due to actuatorpower limitations, however,only a small percentagein cabin vibration reductionwas
achievedat forward speedsabove100knots.

Also in 1986,Polychroniadisand Achache(refs. 54 and 55) presentedanHHC flight teston an
SA 349 Gazelleexperimentalresearchaircraft, a lightweight (4,500 Ib) helicopter. The HHC inputs
wereimplementedusingswashplateexcitation. Self-adaptivecontrollersusedfeedbacksignalsfrom the
vibrationsensorsplacedat selectedlocationsin the aircraft cabin. The controllersusedin theseflight
testswere similar to the adaptivecontrollerspresentedin reference37. For the flight tests,passive
vibrationcontrol deviceswere removedfrom the aircraft. With HHC, a 70 to 90 percentreductionin
vibrationwasachievedat forward speedsup to 250 km perhour(or 135knots). Theseresultsindicated
a superiorperformancein termsof vibrationsuppressionusing HHC over the previouslyusedpassive
vibrationcontrol devices.The interactionsbetweenthe vibratoryhub loadsandthe airframe vibration
werealso investigated.Theseauthorsfoundthat thevibrationsuppressionusingHHC wasachievedby
significantreductionsin the secondharmonicrotating inplanehub forcesand moments. At the same
time, thefourth harmoniccomponentsof the inplanehub loadswereincreasedslightly.

In 1988,Jacklin (ref. 56) presenteda numericalsimulation evaluatingthe performanceof five
systemidentificationtechniquesfor HHC.Theseincludedtheweightedleastsquaremethod,theclassical
Kalmanfilter, a generalizedKalmanfilter, theclassicalleastmeansquarefilter, andthegeneralizedleast
meansquarefilter. Both global and local modelswere considered.Resultsfrom both open-loopand
closed-loopsimulationswere shown. The algorithmswere evaluatedin termsof accuracy,stability,
convergenceproperties,computationalspeed,relativedifficulties for practical implementation,andthe
levelof vibration reduction. Noisesandmodelingerrorswereincludedin the simulationstudy. Based
on the results,Jacklinconcludedthat the generalizedleastmeansquaremethodusing the local model
in the closed-loopoperationwasthe mostpromisingidentificationmethodfor HHC.

In 1988,Sangha(ref. 57) presentedan analyticalinvestigationof HHC usingthe Rotor/Airframe
ComprehensiveAeroelasticProgram(RACAP). This studyconcentratedon the influencesof the open-
loopHHC on thefuselagevibration. Basedonacorrelationstudy,Sanghapointedout the importanceof
includinghubmotionsfor thepredictionof fuselagevibration. In thedesignof anHHC system,henoted
that it was the modal propertiesof thefuselagethat were important,not thoseof the blade. However,
suchconclusionwas madebasedonly on the parametricstudy of the control systemstiffnesson the
4 per rev vibration at thepilot seatusingthe open-loopcontroller.However,otherbladecharacteristics
suchasdistributionsof bladeinertiaandstiffness,which havestronginfluenceson theHHC responses,
were not addressed.Also, Sangha showed that the vibration reduction was caused primarily by the

phase variations rather than the magnitude variations of the vibratory hub loads.

14
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In 1989, Robinson and Friedmann (ref. 58) conducted an analytical investigation of HHC on

a generic four-bladed hingeless rotor. The results were calculated using the coupled flap-lag-torsion

aeroelastic analysis developed at the University of California, Los Angeles. Both quasi-steady and

unsteady aerodynamic results were presented (ref. 59). The unsteady aerodynamic model employed was

a finite-state time-domain version of the approximated Wagner or Theodorsen lift deficiency functions

(refs. 60 and 61). These authors showed significant differences between the quasi-steady aerodynamic

and the unsteady aerodynamic results for the computed 4 per rev vertical hub shear, and the differences

were more pronounced at the high advance ratios. The results for the inplane hub shears were essentially
identical between these two aerodynamic models.

Deterministic and cautious controllers were used to suppress the predicted vibratory hub loads

using both the global and the local models. From the simulated results, no significant differences were

found among the performance of the controllers being tested. The computed HHC inputs for vibration

suppression were found to be noticeably different depending on which aerodynamic model was being
used.

Also in 1989, Welsh and Blackwell presented an HHC study on the X-Wing (four-bladed) model

rotor conducted in the Large Subsonic Wind Tunnel at the United Technology Research Center (ref. 12).

For the X-Wing rotor, both trim controls and higher harmonic inputs were applied using the circulation

control concept. In a circulation control airfoil, the combination of trailing edge blowing and Coanda

effect can create more lift than conventional airfoils. In the model rotor, compressed air was supplied

to a stationary annular plenum and passed through a series of stationary valves to receivers feeding

the leading edge and trailing edge ducts mounted on the blade. The ducts in the blade carried the

compressed air down the span and vented the air through slots to the Coanda surface of the airfoil.

Unlike the standard swashplate excitation with mechanical linkages and actuators, the higher harmonic

inputs could be applied without any moving part and at any harmonic of the rotor rotational speed. For

this investigation, HHC was applied using trailing edge blowing at 2, 3, 4, and 5 per rev. The vibration

was measured using a three-axis accelerometer mounted on the stand. Also, a balance was used to

measure the vibratory hub loads, and the blade were fully instrumented with strain gauges so that the

blade stress could be monitored. Reductions in both the vibration and the blade stresses were achieved

using a fixed-gain controller in which the transfer matrix was calculated off line. The forward speed

was varied between 60 to 175 knots, and the rotor operated at 50 and 100 percent full-scale tip speed.

With the HHC, the vibration was suppressed between 70 and 95 percent from the baseline level, and

the blade loads were also reduced simultaneously. The blade load reduction was primarily caused by the

second harmonic control, typically not realizable on a four-bladed rotor using conventional swashplate

oscillation. Also, it was found that the coupling between the trim control and the HHC was so severe

that such effects had to be included into the control algorithm to maintain the rotor in trim. Analytical

investigation of HHC on the X-Wing circulation control rotor was also performed by Abramson (ref. 13).

Up to this point, all the active vibration control algorithms discussed are in the frequency domain.

In 1981, Du Val, Gregory, and Gupta (ref. 62) advocated a time domain approach for the active control

of helicopter vibration. In fact, this method was an extension of the linear quadratic Gaussian (LQG)

regulator with a frequency shaped cost function. In essence, the proposed approach used a constant

regulator with a filter in the feedback loop. The feedback variables, such as the fuselage accelerations,

were passed through an undamped second-order oscillator, tuned to the frequency of N b per rev. At
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the filter resonantfrequency,the regulatorlockedonto thephaseand magnitudeof the feedbacksignal
without the needfor harmonicanalysis. The proposedtechniquealso offered other advantagesover
the frequencydomain approach. Since statefeedbackwas used,on-line identification of the model
parameterswould not be necessary.Furthermore,linear systemtheory techniquescould be employed
for thedesignof a stablesystem.

Usinga simplesimulationprogramfor thevibrationcontrolmodel,theseinvestigatorswereableto
show that this control schemeperformedextremelywell. With the feedbackcontrollersgeneratingthe
collective, longitudinal, and lateralcyclics andtail rotor controls,the reductionin vibration levelswas
more than90 percent.However,thecontrollerusedfor vibrationsuppressionwasinitially designedfor
the hoveringcondition, and,as such,the effectsof the periodic-time-varyingcoefficientsin the plant
modelhadbeenneglected.This control schemewasalsousedto suppressthe vibrationon anX-Wing
modelrotor (ref. 63).

In 1989,Wereley and Hall (ref. 64) presentedan interestingand alternativeview of the active
vibrationcontrol algorithmscurrentlybeingproposed.This studyfocusedonevaluatingtheperformance
of thesecontrol algorithmswithin thecontextof classicalcontroltheory. Theseauthorspointedout that
all theseactivevibrationalgorithms,eitherin thetimeor thefrequencydomain,werein factquite similar
and could be considered,in thecontextof linear control theory,as the classicaldisturbancerejection
problems. Furthermore,they claimedthat the effectivenessof the HHC algorithmswas rather limited
by the quasi-staticand the time-invariantassumptionsimposedon the plant model. They also noted
that all the HHC algorithmswerefairly robust.And finally, theyproposedtwo possibleapproachesfor
improving HHC performance.First, theperiodicbehaviorof therotor systemshouldbe includedin the
plant model. The secondapproachinvolved the developmentof a control algorithm for the particular
periodic-time-varyingplant model. However,thesetwo approacheswere still under investigation,and
thereforeno resultwasshown.

Besidesthe worksdiscussedabove,significantcontributionsto HHC hadbeenperformedby Kretz
(refs. 65-67). Application of a nonlinearprogrammingmethodto HHC algorithm was discussedby
Perleyet al. (ref. 68). A feasibility studyfor the applicationof HHC to the advancedbladeconcept
rotor wasreportedin referencereference69. Predictionof HHC responseswith acoupledrotor-airframe
vibrationcontrol modelwaspresentedin reference70. And finally, generaldiscussionsaboutHHC also
appearedin references1, 2, and 71-74.

BesidestheHHC usingswashplateoscillation,severalothervibrationcontrol methodsusingactive
controltechniqueswerealsoinvestigated.Theseincludeindividualbladecontrol (IBC) (refs. 14and 15)
andactive isolation(refs. 75 and76) systems.In an IBC system,eachindividual bladeis controlledby
a separateservo-actuator,and,in fact, theseservo-actuatorsaremountedon the rotatingswashplateand
thus rotatewith the blades.The bladeexcitationcanbe achievedfor any frequency.In reference15,
the IBC algorithms were formulated in the time domainusing an extensionof the standardlinear
quadraticregulatorapproachwith the model-followingsystems.Without the restriction on the blade
input frequency,the IBC systemcould beusedto alleviategust responseandretreatingbladestall, as
well asto stabilizethe rotor system.

Active isolation is anotherattractiveconceptfor suppressinghelicoptervibration. In this system,
servo-actuatorsare mountedin the airframe structuresand configuredto oscillate in sucha way as
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to cancel out the vibration. Either time or frequency domain control algorithms can be used for this

system. If the frequency domain technique is used, then the control algorithm for this system is similar

to that of the HHC. However, determination of the optimal locations and the number of servo-actuators

required for actual implementation of active isolation is a central issue with this technique. Preliminary

investigation using an analytical method has indicated that this vibration control system can perform

virtually as well as the HHC system (ref. 71).

1.3 Current Investigation

Based on the discussion presented above, HHC can be considered to be one of the most effective

vibration control techniques currently available for helicopters. Virtually all the investigations carried

out to date on a number of different rotor systems have shown that HHC produced substantial reduction

in either the vibratory hub loads or the fuselage vibration. Even though some of the HHC algorithms

have been shown to perform better than others, each appears feasible for practical implementation.

One problem which remains to be solved is the HHC amplitudes required for vibration suppression.

While the results in reference 41 indicated that less than 1 degree in the combined HHC amplitudes was

required, others--in particular, references 46 and 49--have shown that approximately 3 degrees was

needed to control the vibration on their rotors. This difference might be attributed to the differences in

blade dynamics of these rotors. This problem has a practical significance since the HHC amplitudes are

directly related to the power requirement of hydraulic servo-actuators. Indeed, for certain rotor designs,

the weight penalty imposed by the actuation system can prevent the practical implementation of HHC

on such rotors. On the other hand, an HHC system with a low amplitude requirement needs actuators

of smaller weight and thus has a low weight penalty. Also, the maintenance cost is low since a small

oscillation amplitude translates to a longer actuator seal life. Furthermore, it is desirable to minimize the

secondary effects of the HHC. A large higher harmonic blade pitch may alter the helicopter trim state

and thus affects the aircraft performance and handling qualities. Also, for aircraft operating near the

flight boundary, HHC inputs with sufficiently large magnitude may induce a premature onset of blade

stall. Since a successful HHC system must operate efficiently in a severe aerodynamic environment, its

performance should be investigated over the whole flight envelope.

The objectives of this study are to:

1. Develop a comprehensive aeroelastic analysis to calculate the rotor responses in forward flight

including consistent and complete unsteady aerodynamic and wake effects.

2. Validate the rotor response calculation with measured data obtained from a model rotor tested
in a wind tunnel.

3. Formulate the higher harmonic control analysis for open-loop and closed-loop controllers. De-

termine the power requirement for hydraulic servo-actuators.

4. Perform systematic parametric studies to investigate the effects of blade design parameters on

the vibratory hub loads, HHC inputs, and power requirements. Results from these studies might be

used to assess the role of blade dynamics on the efficiency of HHC systems and explain the differences

in HHC amplitude requirement between different rotors. The design parameters include blade stiffness

17
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distributions in the flap, lead-lag, and torsion directions, chordwise offset of the blade center of mass

from the elastic axis, chordwise offset of the elastic axis from the blade quarter chord, and blade linear

pretwist.

5. Examine application of HHC for articulated and hingeless rotors, in particular the HHC ampli-
tude and actuator power requirements.

6. Investigate effects of HHC on blade bending stresses, control loads, and rotor performances

under different flight conditions.

7. Investigate the application of HHC at severe flight conditions including high speeds and high

thrust flight conditions, in particular the influence of higher harmonic blade pitches on blade stall.

The analytical study is conducted using a comprehensive coupled aeroelastic analysis developed

at the Rotorcraft Center, University of Maryland (refs. 77-80). The formulation is based on the finite

element method in both space and time. In this formulation, the rotor blade is modeled as an elastic

beam undergoing flap bending, lead-lag bending, torsion, and axial deflections. The spatial finite element

method based on the Hamilton principle is used to discretize the blade into a number of beam elements,

each having 15 degrees of freedom.

Since accurate prediction of the blade airloads is crucial in the determination of the aeroelastic

responses and the higher harmonic responses, a time domain nonlinear unsteady aerodynamic model

developed by Leishman and Beddoes (refs. 81 and 82) has been used. This model consists of an

attached compressible flow formulation (linear model) along with a representation of the nonlinear

effects due to flow separation and dynamic stall. The impulsive---or noncirculatory--loads and reverse

flow corrections are also included. Calculation of the rotor nonuniform induced inflow is performed

using a free wake analysis adapted from a Comprehensive Analytical Model of Rotor Aerodynamics

and Dynamics (CAMRAD) (ref. 83). The blade nonlinear periodic responses are solved from the

normal mode equations using a temporal finite element technique. The vehicle trim controls and the

blade responses are calculated iteratively as one coupled solution using a modified Newton method.

Calculation of the HHC responses forms an integral part of the steady response solution in which the

basic trim controls are superimposed with the higher harmonic components.

The HHC algorithms are formulated in the frequency domain. A linear quasi-static transfer matrix

is adopted to relate the harmonics of HHC inputs to the harmonics of vibratory hub loads, and both

local and global models are considered. The optimal HHCs are calculated based on the minimization

of the vibratory hub loads expressed in term of a quadratic performance index. The transfer matrix

is computed off line, and, for the local model, it is updated based on the secant method. Using the

multiblade coordinate transformation, the HHC inputs in the rotating frame are transformed to the fixed

frame, in terms of the swashplate higher harmonic motions. The higher harmonics swashplate motions

are generated using a number of servo-actuators, and the hydraulic power required by these actuators

is then calculated for a specified HHC input.
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2 FORMULATION

This section is divided into two parts: the first part describes the baseline analysis with no HHC

effects, and the second part describes the formulation of the HHC analysis.

In the first part, the coordinate systems and the Hamiltonian formulation of the blade governing
equations are introduced. Then the blade aerodynamic and the rotor induced inflow models used in

the analysis are described. The next section shows the calculations of the blade and rotor hub loads,

and this is followed by the description of the coupled trim analysis. The subsequent section presents

the spatial finite element method used in the formulation of the blade governing equations. Then, the

solution technique for the blade responses as coupled with the vehicle trim analysis is shown.

The second part, starting with section 2.9, describes the higher harmonic control analysis. First,

the HHC model and the control algorithms used to suppress the rotor vibratory hub loads are presented.

These are followed by the formulation of the actuator power requirement for the HHC system. Then,

the implementation of HHC into the overall analysis is discussed.

2.1 Coordinate Systems

41

The helicopter model consists of a rigid fuselage and a main rotor having N b blades. The Cartesian

coordinate system (X, Y, Z) is attached to the rotor hub which remains fixed to the fuselage, as shown

in figure 2.1. This coordinate system, with the origin at the rotor hub center, represents the fixed or

nonrotating frame. The Z axis is along the shaft axis, and the X and Y axes are in the hub plane,
perpendicular to the shaft axis.

The rotor blade is modeled as an elastic beam rotating at a constant angular velocity fL Figure 2.2

shows the blade coordinate system. A Cartesian coordinate system (x, y, z) is attached to the undeformed

rotating blade, which is at a precone angle/3p with respect to the hub plane. This coordinate system,

with the origin coinciding with that for the fixed frame, represents the rotating frame. The x axis

coincides with the blade elastic axis and points outboard; the y axis is in the plane of rotation and points

toward the blade leading edge; the z axis is tilted at an angle/3p relative to the shaft axis.

For elastic deformation, a point P on the blade elastic axis undergoes displacements u, v, w in

the x, y, z directions, respectively, and occupies a position pt on the deformed elastic axis. As shown

in figure 2.2, the cross section containing pt undergoes a rotation 01 about the deformed elastic axis,

where 01 can be expressed as (ref. 84)

01 : 0 -I- @ (2.1)

and the twist q5 is given by

T
= ¢ - w'v" dx (2.2)

where ¢ is the elastic twist of the blade cross section about the deformed elastic axis, q_ is the geometric

twist, 0 is the control pitch angle, v t = dv/dx is the lag slope, and wtt = d2w/dx 2 is the flap curvature.
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An orthogonalcoordinatesystem(_,r/, () is introduced at the deformed position p/ such that the

axis is tangential to the deflected elastic axis. The r/and ( axes are the principal axes of the deformed

cross section and remain normal to the deformed elastic axis. This deformed blade coordinate system

is also shown in figure 2.2. The assumption, which is based on the fact that the blade cross section

remains normal to the elastic axis after deformation, is in accordance with the Bernoulli-Euler beam

theory. In general, the plane containing (r/,() and that containing (y,z) are not parallel.

2.2 Hamiltonian Formulation

The variational method of the Hamilton principle provides a way for finding the equations of

motion of a dynamical system, and such approach has been adopted in the analysis. For a conservative

system between prescribed initial and final conditions at time tl and t2, the Hamilton principle states

that the actual motion of a dynamical system is that particular motion for which the time integral of the

difference between the potential and kinetic energies is minimum (ref. 85). Since aeroelastic systems

are nonconservative, the Hamilton principle is generalized to include forces which are not derivable

from a potential function. The resulting generalized Hamilton principle, applicable to nonconservative

systems, can be expressed in variational form as

ft t2 (6Lt - 6T - 6W) dt = 0 (2.3)
1

where 57- and 6H are, respectively, the variations of kinetic and strain energies, and 6W is the virtual

work done by external forces.

From reference 84, the variation in strain energy for a Bernoulli-Euler beam undergoing moderate

deflections in the axial, lead-lag, flap, and torsion directions is

f0 R5bt = (F(Su I + vlSv I + wlSw I)

1 1 /2,
(CZ¢' + EAk2A(O + ¢)'(u' + _v 12 + _w )

+

q- EBIOI2¢ '- EB20_(v" cos01 + w" sin 01))5q_ /

+ (EC1¢" + EC2(w'cos01 - v" sin 01)Sq_"

1 12,
+ ((-Mz - EAea(u'+ lv'2 + -_w ) - EB201¢ I) cosO 1

+ (--My - ECl¢")sinO1)(6v" + w'6¢)

1 12_ EB2Ot¢ I) sin O1+ ((Mz - EAea(U' + _v '2 + -_'w )-

-- (My- EClfb')cosO1)(_w'- v'tS¢)) dx (2.4)

where the axial force F is defined by

= EA(u' + lv'2 + lw'2 + k2AO'd/,I- ea(V I' COS01 nt- W It sin 01))F (2.5)
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and

and the sectional constants are

-My = EIy (v u sin O1 - w" cos 01)

Mz = EIz (v t' cos/71 + w tt sin 01)

(2.6)

(2.7)

A=ff A

Aea = f fA

' :ffA

,z=SSA
--Si.

J=iiA

171 =iiA

B2 = iiA

C1 =iiA

d_l d_

77drl d_

_ d_7d_

_72 d_l d_

(?72 q_ _2) dr/d_"

((_- _--_) +(¢+_--_))d_ldC

(r/2 + _2)2 dTId_

77(772+ _2) dr/d_

A2 dr/d_

C2 = ffA _)_ d_l d_

where A is the blade cross-sectional area effective in carrying tension; ea is the offset of the tensile

axis from the elastic axis, positive forward; Iy and Iz are the flapwise and chordwise area moments of

inertia of the cross section; Ak2A is the cross-sectional polar moment of inertia; J is the torsional constant

including cross-sectional warping; )_ is the warping function which is assumed to be antisymmetric about

the chord line; C1 is the warping rigidity; and B1, B2, and (72 are other sectional constants. Furthermore,

it is assumed in the analysis that the structural properties of the cross section are symmetric about the
chord line.
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The variation in kinetic energy for a rotating elastic beam is

67- = m((f_2x + 2f_i_- _z)6u

+ (a2(_,+ egcos01)+ 2a(gp_,-/,)

+ 2egf_(v' cos O1 + w'sin 01) -/3 + eg_sin 01)5v

-- (/_p(_2x q- 2aQ) q- Zb Jr- eg;cosO1)Sw

+ a2(k  - kL )cosO sin
+ egf_2x(wtcos 01 - vtsin 01) + egf_2vsin 01

+ egft2/3pX cos 01 - eg(/)sin 01 - _ cos 01))5¢

- eg(f't2x cos 01 + 2f_?) cos O15v t

- eg(f22xsin 01 + 2f2x/_sin 01)5w t) dx

where the sectional integrals are defined by

ffA

meg = f fA

Ps d_ d_

Ps rl drl d_

mk2ml -_ //A p8_2 dT] d_

mk2m2 =//A psrl2 drl d_

(2.8)

In the above expressions, m is the blade mass per unit length; Ps is the blade structural density; e9 is

the center-of-mass offset from the elastic axis, positive forward; mk_l and mk2mz are the flapwise and

chordwise mass moments of inertia per unit length; and km is the cross-section radius of gyration per
unit length.

An ordering scheme has been used in the derivation of the variations in potential and kinetic

energies. Basically, the ordering scheme provides a set of guidelines to neglect the higher order terms

which appear in the nonlinear equations. These guidelines are employed to simplify the equations of

motion. By introducing e, with e << 1, a parameter of order v/R or w/R, the assumed orders of

magnitude for the nondimensional quantities are

EA/mof_2R 2 O(e -2)

x, m/mo, 0.75, Olc , 01s 0(1)

EIy /mo f22 R4 , E Iz /mo f_2 R4, G J/mof_2 R 4 0(1)

v/R,w/R,¢,l_p, kA/R, kml/R, km2/R, ES2/mo_2R 5 0(6)

eg / R, ea/ R, ed/ R 0(_3/2)

u/R, EB1/mof_2R 6 0(62)
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In general, terms with the highest order for a particular equation are considered first order terms.

First order terms are retained in the u equation. For instance, if the highest order terms in the u

equation have an order of e2, then all terms with order e2 are retained, while higher order terms such

as ¢3, ¢4,... are neglected. Similarly, second order terms are retained in the v and the w equations,

while some third order terms are retained in the q_ equation. Furthermore, these guidelines should

be applied within the total energy expression, and the terms retained should constitute the self-adjoint
characteristic of the structural matrices. That is, the resultant blade structural mass and stiffness matrices

should be symmetric, while the antisymmetric structures of the damping matrix should reflect gyroscopic
couplings.

The expression for 6W is

R A
5W = L (Lu6u + LASv + LA6w + M46¢)dx (2.9)

where L A L A, and A M#u, L w are the distributed airloads in the x, y, z directions, respectively, and is
the sectional aerodynamic pitching moment about the deformed elastic axis. Based on the Hamilton

formulation, a finite element analysis is formulated in section 2.7.

2.3 Aerodynamic Loads

This section describes the calculation of the blade section airloads. The external loads L A, L A, L A
and M A in equation 2 9 are the distributed airloads acting on a rotor blade. Calculation of the blade¢
airloads requires information about the relative flow velocity and the Mach number as seen near a blade

section. Therefore, the derivation of the relative flow velocity is presented first, and this is followed by

the presentation of the aerodynamic model.

2.3.1 Derivation of Blade Velocity

In particular, the resultant velocity seen at a blade section consists of the incoming flow velocity,

the instantaneous blade motions, and the induced inflow due to the trailed and shed vorticities. The

general expression for the resultant blade velocity at a radial station x is given by

V = -Vw + Vb (2.10)

where Vw is the wind velocity with contributions from the vehicle forward speed and the rotor inflow,

and V b is the blade velocity relative to the hub fixed frame resulting from blade rotation and blade

motions. The expression for the wind velocity is

Vw = (_R)I - (:_R)k (2.11)

where # = V cOSas/_R is the rotor advance ratio; V is the vehicle forward speed; as is the rotor

shaft tilt, positive forward; A is the rotor nondimensional inflow; and f_R is the rotor tip speed. The

unit vectors (], o_,/() are the basis vectors for the nonrotating coordinate system. The rotor inflow A

consists of two components and is expressed as

A = p tan as + Ai (2.12)
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where # tan as (fig. 2.3) is the component of the forward flight velocity perpendicular to the hub plane,

and Ai is the nondimensional rotor induced inflow associated with the lift on the rotor. Calculation of the

induced inflow Ai involves extensive formulation, and the details are deferred to the next section. Since

the velocity components in equation 2.11 are expressed in the nonrotating system, two transformations

are required to change these to the rotating undeformed frame. The first transformation, which converts

the coordinates in the hub fixed frame to the rotating frame with no precone, is given by

T 1 =

cos _ sin _I' 0

-sin_ cos_ 0

0 0 1
(2.13)

The second transformation relates the rotating coordinate system with no precone to that at a precone
angle/3p and is expressed as

cos/3p 0 sin/3p

T 2 = 0 1 0 (2.14)

- sin/3p 0 cos/3p

Therefore, subsequent substitution of T 1 and T 2 in equation 2.11 results in the wind velocity expression

V w = Veil+ Vy ] + Vz k (2.15)

where Vx, Vy, and Vz are the components of the wind velocity, and

Vz = p_R cos • cos/3p - )_[2R sin/3p

Vy = -#f'tR sin

Vz = -#f_R cos • - )_[2R cos/3p

(2.16)

(2.17)

(2.18)

The general expression for the blade velocity is

V b = f + 1"_x r (2.19)

where r = (Xl, Yl, Zl), i" _--- (:c, I), z,), and 1"_= ([2 sin tip, O, Utcos tip). In particular, the expressions for

r and /" consist of the blade motion terms, and, being calculated at an arbitrary position (r/, if) of the
blade cross section, V b takes the form

where Vbx , Vbv , and Vbz

Vb = Vbx_ + Vb_j + Vbzk

are the components of the blade velocity, and

(2.20)

24

Vbx

Vby

;.!

= iz -- A¢ -- (_)t 4_ wtO1)(r/cosO1 _ (sin01)

- (w'- V'dl)(r/sin01 + _cos 01) - [2@ + r/cos 01 -- ffsin 01) cos/3p

= + - 0"1 (r/sin 01 + _ cos 01 )

+ [2(@ + u - A¢' - v'(r/cos01 - (sin 01)

- wt(r/sin 01 + ffcos01))cos/_ p -(w 4- r/sin 01 + r/cos01) sin tip )

(2.21)

(2.22)



Vbz -- w + 0"1(r/cos 01 - Csin 01) + f't(v + r/cos 01 Csin 01) sin/3p (2.23)

The resultant velocity at the blade cross section, expressed in the rotating undeformed coordinate
system, is

V = + Uyj + uzk

= (Vbz - Voc)_ + (Vbu - Vy),_ + (Vbz - Vz)k (2.24)

Since a strip analysis is used, airloads (the aerodynamic loads) are computed based on the angle of

attack at the three-quarter chord location. With respect to the blade coordinate system, this requires the

velocity components to be calculated at (0, r/r). As such, the resultant velocity expressions simplify to

Ux - iz - (v' 4- wtO1)r/rCOS01 - (wt_ vtO1)r/rsinO1

_(v + r/r cos 01) - pf_Rcos • + A_R/3p

Uy - ia - 0"lr/rsin 01 + pmR sin _I,

+ f_(x + u - vtr/r cos 01 - wtrlrsin O1 - (w + r/rsin 01)/3p)

Uz = zb + 0"lr/r cos 01 + f_/3p(V + r/r cos 01) + IZf_R/3p cos • + Afar

(2.25)

(2.26)

(2.27)

In deriving the above expressions, small angle assumptions were made on the precone angle/3p;

that is, sin/3p ,_/3p, and cos/3p _ 1.

Finally, the blade velocity components are transformed into the blade deformed frame. Such

information is required to calculate for the blade section airloads in the deformed frame. In particular,

the transformation relating the coordinate system from the undeformed to the deformed frame is given

by (ref. 84)

T 3 =

vt2 wt2 v t w t1 - -2- - -2-

_)t2 lt/2
-(vtcosO1 + w'sin 01) (1 - -2-) cos 01 -vlw'sinO1 sin01(1 - --2-7_)

v t2 ,q 213/2
vtsinO1 - w'cos01 -(1 - -2-)sin Vl - v'wtcosO1 cos01(1 - --2-)

Thus, the resultant blade velocity expressed in the rotating deformed frame is

v = + + Up ¢ (2.28)
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where

UR
-- gz v :"r-v'(x + psin*)- #cos_(1 - 13pW') + k(/3p +w')f_R

- r/rcosO(1 + v' _)w') + rlrsinO($- w' Or')

1 (vt2 wi2)+ v_i; + wtgv + -_# cos 9 +

UT
- cos0((++ u) - w_p+ _(_ + w) + v'(v - _)

fiR

vt2

+ (x + #sin 9)(1 - --_-) + #cos 9(v' + ¢(/3p + w')))

+ sin 0((zb + A) + v(/3p + w') - q_(+ + u) -/tw'

- (x + #sing)(v'wt +q_+ #cosg(w' + C_p Cv'))

Up _ cos0((_ + _) + _pv+ (v - _)_' + _cos _(gp + w' - _')

(x + #sin 9)(v'w' + ¢)) + sin0( (i; + u) + (iz v)v' + w/3p

vt2

- ¢(zb + A) - pcos 9(v' + ¢(flp + w)) - (x + psin 9)(1 --_--))

+ _r(b + ¢ + w' +/_p + _cos 9otw)

(2.29)

(2.30)

(2.31)

In the above expressions, only the second order terms are retained, while the higher order terms

are neglected. This assumption is consistent with the fact that the blade deflections and velocities are

small compared to other terms. Furthermore, small angle assumptions were made on q5 such that

sin(0 + q_) _ sin0 + ¢cos0 (2.32)

cos(0 + ¢) _ cos0 - q_sin 0 (2.33)

2.3.2 Aerodynamic Modeling

Calculation of the blade section airloads is performed in the time domain using a nonlinear unsteady

aerodynamic model developed by Leishman and Beddoes (refs. 81 and 82). Elements of the model and

its application to the aeroelastic analysis are described in this section. Basically, this model consists of

an attached flow formulation along with a representation of nonlinear effects due to flow separation and
dynamic stall.

The basic approach adopted in formulating the unsteady aerodynamic model is to identify the

physical phenomena associated with each process and to model the whole process by using a combination

of linear dynamical systems. Basic elements of the model, representing each process, are described in

terms of the indicial response functions. For a linear system, the indicial response is the system
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response to a unit step input, with zero initial conditions. If the indicial response is known, then the

system steady response can be computed using the Duhamel integral. In particular, if ¢(s) is an indicial

response function characterized in terms of the time variable s, then the system response y(s) to an
arbitrary forcing function u(s) is

¢(s)u(0) + rLS¢(s _ o.)du(o.)y(s)
do-JU

(2.34)

where o. is the dummy time variable of integration. Since the rotor aeroelastic analysis is primarily

concerned with the periodic force response, the transient response associated with the initial condition
is neglected.

Attached flow formulation- The attached flow formulation is applicable to flow regime where the

airfoil lift and pitching moment vary linearly with the angle of attack. Even though nonlinear effects

associated with the stall behavior have not yet been included, this formulation is a prerequisite to the

complete model including flow separation and dynamic stall. The attached flow formulation has been

generalized for the compressible flow, and, furthermore, it has been validated for airfoils that undergo

arbitrary motions up to the transonic flow regime (ref. 86).

For the range of angle of attack typically encountered in rotor analysis, the following assumptions
are made (fig. 2.4)

Lw ,-_ L (2.35)

with

CL : CO q'- Clct (2.36)

where C1 is the compressible lift curve slope, with value taken from the static airfoil data at M = 0.3,

and scaled by the Prandtl-Glauert correction factor giving

C1 = (CLa) M=0.3
/3 (2.37)

where/3 -- _/1 M 2. Furthermore, since the angle of attack o_ is small

o:ta.
(2.38)

where Up is the downwash at the three-quarter chord location, and U T is the incoming velocity com-
ponent, parallel to the chord line.

With these assumptions, Lw can be expressed as

-- 1 2
Lw(s) = -_pcU_Co + LCw(S) + Li(s) (2.39)

where L c is the circulatory lift, and L / is the noncirculatory lift. In particular, Lw is the component

of the airloads acting perpendicular to the chord line and is usually referred to as the normal force,
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also denoted by N. Using the indicial function formulation, the component of circulatory lift can be
expressed as

I /: 1LC(s) = --_pcClU T ¢c(s)Up(O) -+- dPc(S - a) dUp(o.) do. (2.40)
do.

The circulatory indicial response ¢c(s) is given by (ref. 81)

¢c(s) = ! - [A1 exp(-bl/32s) + A2exp(-b2132s)] (2.41)

where the terms in bracket represent the lift deficiency due to vortices shed downstream into the

airfoil wake. Without the Mach scaling parameter/32, this indicial function is similar to the classical

Kussner function and differs only through the values of the coefficient. For this indiciat function,

A1 = 0.3; A2 = 0.7; bI = 0.14; b2 = 0.53, while the coefficients for the Kussner function are (refs. 60

and 61): A1 = A2 --- 0.5; bl = 0.13; b2 = 1.0. The variable s represents the distance an airfoil travels

in terms of semi-chord, and it can be expressed in terms of rotor coordinate as

2/0 s = _cc UT(_) d_ (2.42)

Similar to the circulatory lift, the impulsive lift component is given by

--- pcUT ¢i(s)gp(0) + ¢i(s - o.)dVp(o.)do" do. (2.43)

where ¢i (s) is the impulsive indicial response function. This function is derived based on the dynamics

of the noncirculatory loading due to pressure wave propagation, and the initial value is computed using

piston theory (ref. 61); that is

el(S) = _exp 2M---K_ (2.44)

where Kc_ is a time constant dependent on the Mach number (ref. 82), and

1,5 •

(2.45)
2(1 - M) + 27rt3M2(Alb1 + A2b2)

This impulsive loading can be considered as the compressible analog of the apparent mass terms used

in many incompressible analyses.

Following the formulation of reference (ref. 87), the chord force Lv, also denoted by C, can be
expressed as

-- 1 2
Lv = rlaL sin ct -_pU_cdo cos a (2.46)

where r/a is the leading suction recovery factor which accounts for the inability of the airfoil to realize

100 percent suction in a real flow, and do is the viscous drag or skin friction drag component.

With regard to the more familiar drag coefficient expression, which is often presented in terms of

a quadratic polynomial in a as

Cd = do + dl_ + d2ct 2 (2.47)
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it is worth noting that the drag coefficient can also be expressed in terms of the lift and chord forces;
that is

Cd = do + CL sin a - Cc cos a (2.48)

with Cc being the chord force coefficient. It can be shown that these two descriptions are equivalent,

with the latter being more suitable for unsteady calculations. Assuming that the c_ is small, then

equation 2.48 can be approximated as

Cd _ do + (1 - _Ta)CLo_ (2.49)

where the second term in the above expression is actually the pressure drag component. Together with
equations 2.36 and 2.47, it can be shown that

dl = (1 - r/)C0

d2 = (1 - r/)C1

These results imply that the pressure drag can be expressed solely in terms of the normal force.

such, the unsteady pressure drag can be computed from the time-dependent lift and chord forces.

As

The radial drag Lu is computed based on the fact that only the viscous drag is affected by the

velocity component in the radial direction (ref. 88). Hence, the pressure drag does not contribute to the

radial drag component. In the radial direction of the rotor blade

--£u = DR = lp(U_ + U2) cdo sinA

where A is the blade yaw angle, and

With the above expression, Lu simplifies to

-- 1 2
Zu=  pcd0v/uh+ uR (2.50)

As in the case of lift, the unsteady aerodynamic pitching moment also consists of circulatory and

impulsive components. However, the pitching moment is dependent on the modes of forcing, or the

types of airfoil motion. These modes of forcing basically govern the types of pressure distribution on

the airfoil, which, in turn, have a direct effect on the pitching moment. In the analysis, the airfoil angle

of incidence is assumed to consist of two types of airfoil motions: a pure heaving or vertical motion

along the _ axis, denoted by ]z, and a pure pitch rate or the airfoil pitching motion about the elastic

axis, denoted by q. Together these modes of airfoil motion contribute to o_ as

where
--2_]r&

q-
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and r/r is the offset of the airfoil pitch axis from the three-quarter chord location.

With these modes of forcing, the unsteady pitching moment about the airfoil elastic axis is given
by

1 2 2 " c
Me = -_pU¢c fo-edcL c + M_ + M_ + Miq (2.51)

where f0 is the pitching moment coefficient at zero lift about the aerodynamic center, and ed is the

chordwise offset of the aerodynamic center behind the elastic axis, expressed in terms of chord. The sec-

ond term in the above equation represents the component of the circulatory lift acting at the aerodynamic

center. The third term represents the contribution of the airfoil heaving motion to the noncirculatory
pitching moment and is expressed as

• 1 2 [iM_ = ---_pc UT CM h (s)h(O)
k

with the corresponding indicial response function given by

+ A4
¢_h(s) = Aaexp 2M_3KM h

where A3 = 1.5, A4 = -0.5, bl = 0.25, b2 = 0.1, and

A3b4 + A4b3

---_)_3u4t, l

(2.52)

Physically, this indicial function represents the decay of the impulsive loading along with the forward

movement of the center of pressure. Due to a unit step input in h, the pressure loading is initially

uniform across the chord length, and the center of pressure is at midchord. As the loading decays

exponentially, the pressure distribution becomes asymmetric, and the center of pressure tends toward
the airfoil quarter chord.

The fourth term in equation 2.51 is the circulatory pitching moment due to the airfoil pitch rate q
about the elastic axis and is given as

[c sc 11-_/_P c UT CMq (s)q(O) + fo CMq (s - _r) dq(o.)do do" (2.54)

This is usually referred to as the pitch rate induced camber term, and its quasi-steady value is taken

from the classical thin airfoil results. The associated indicial response is

¢CMq(S ) = 1 -- exp (-b5/_ 2s) (2.55)

where b5 =0.5.

The noncirculatory pitching moment, the last term in equation 2.51, has contribution from the

airfoil pitch rate q and is expressed as

]A/I_(s) = -- pc2UT CMq(S)q(O) + Jfo CMq(S-a)dq(¢r) do" (2.56)
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12-M exp 2 (2.57)

where

l( Mq =

5.6

15(1 - M) + 37r/3M2b5

Separated flow formulation- Extension of the aerodynamic formulation to the nonlinear regime

requires the modeling of two distinct phenomena associated with the airfoil stall behavior, namely

trailing edge and leading edge separations. The phenomenon of progressive trailing edge flow separation

is associated with most types of airfoil stall under both static and dynamic conditions. Trailing edge

separation starts from the airfoil trailing edge, and with increasing angle of attack, the separation point

progresses toward the leading edge region. Such effects contribute to the nonlinear behavior in lift,

drag, and pitching moment due to the loss in circulation. If supercritical flow develops under dynamic

conditions, then the stall process is initiated by the leading edge or shock-induced separation. This

phenomenon is characterized by the shedding of a strong vortex from the leading edge region. The

leading edge vortex induces a large pressure disturbance wave, moving aft on the airfoil upper surface;

produces abrupt changes in the flow field; and contributes to the large transient lift, drag, and pitching

moment. This is a catastrophic process known as dynamic stall.

To simulate the nonlinear effects associated with trailing edge separation, Kirchhoff's flow model

is used (ref. 89). This model relates the airfoil static normal force (or lift) and chord force behavior to

the trailing edge separation location, a location at which the flow starts to detach from the airfoil upper

surface. In this model, the expressions for the normal and chord forces are
<

(2.58)

CC = z]aC1 vf-fce 2 (2.59)

where f is defined as the chordwise distance between the flow separation point and the airfoil leading

edge, expressed in terms of chord and shown in figure 2.4. In particular, the value of f varies between

zero and one and dictates whether the flow is fully attached (f = 1) or completely separated (f = 0).

A general expression for the pitching moment was not provided by the Kirchhoff model, and,

therefore, the following empirical relation is used (ref. 81)

CM = fo + [ko + kl(1 - f) + k2sinzrf 2] C N (2.60)

where k0 = :_ - Xac is the aerodynamic center offset from the airfoil quarter chord, and k 1 and k 2 are

empirical constants obtained from a curve fit to the static pitching moment coefficient for a particular
airfoil.
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Implementation of the above relations (eqs. 2.58 and 2.59) requires the explicit representation of

the airfoil separation point f in terms of the angle of attack. In particular, using equation 2.58, an

effective separation point can be inferred from the static lift coefficient for a given airfoil at a given
Mach number. Specifically, if the static lift coefficient is known, then

-2

f= [[2'/ CNvclol 11 (2.61)

where C 1 is the lift curve slope at zero lift value. Curve-fitting relations are then used to describe the
variation of f with o_, and as such

foro olf___

0.04 + 0.66 exp (_-_2 _ ) for c_ > c_1
(2.62)

where c_1 is the angle of attack at which f = 0.7, a breakpoint dividing flow behavior into partially

attached (f _> 0.7) and fully separated (f < 0.7) conditions. For a pair (c_, f) and oq, the empirical
constants 5"1 and 5'2 can be calculated by inverting equation 2.62 as

(2.63)
S 1 ce -- c_1

1 1 ln(f-O.04 _5'2 -- oq -- ce 0.66 J (2.64)

For a given Mach number, the variation of f with ce is characterized in terms of only three empirical

parameters: eel, 5"1, and 5"2. Thus, this model provides a compact structure for the reconstruction of

the airfoil static nonlinear behavior. If the effects of the airfoil unsteady pressure distribution and the

onset of separation can be evaluated, then this model can also be extended to the dynamic regime.

To model the onset of separation, it has been established by Beddoes (ref. 81) that only the peak

pressure at the leading edge or ahead of the shock wave is important. Therefore, generalization of

the dynamic effects based on the critical aspect of pressure distribution provides a useful means of

implementing the criteria for leading edge or shock-induced separation. This generalized criterion

also provides a way for finding the unsteady trailing edge separation based on the assumption that the

boundary layer and separation development are also dictated by the behavior of the leading edge pressure.

Hence, implementation of the criterion would modify the trailing edge calculation and simultaneously
initiate the leading edge vortex shedding.

Under unsteady conditions, position of the separation point is governed by the dynamics of both

the airfoil pressure distribution and the boundary layer responses. First, it is required to relate the airfoil

unsteady leading edge pressure response to the forcing. Based on unsteady airfoil data, the dynamics

of the airfoil pressure distribution with respect to the lift forcing can be represented by a first order

linear dynamical system with a time constant Tp. In particular, the system input is CNL, the airfoil

attached flow normal force coefficient, and the system output is C_v, the substitute normal force value.
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The indicial response of C'_v is given by

where

1
Lw

CNL - ½PU2 e (2.66)

and Lw is given by equation 2.39. The time constant Tp depends on the Mach number and can be
determined from unsteady airfoil data.

For the unsteady case, the response of the boundary layer is also subjected to dynamic behavior.

Again, modeling of this process is accomplished by representing the boundary layer response by an-

other first order linear dynamical system with a Mach dependent time constant Tf. In the model, the

quasi-steady separation point, denoted by ft, is computed using the substitute normal value. This is

accomplished through an effective angle of incidence O_f given by

c_f = C1

The resulting value of ft is evaluated by substituting the value of af into equation 2.62. Then the

indicial response of fit, the effective trailing edge separation point, to changes in the airfoil pressure
distribution takes the form

1exp
In particular, ft represents the pressure distribution response, while fH includes additional effects of the

boundary layer response. Both values of C_ and f" can be computed using the superposition integral

in the form of the Duhamel integral, and the effective separation point is then used to calculate the

airfoil nonlinear lift, drag, and pitching moment. The value of the time constant Tf can be obtained
from unsteady boundary layer calculations.

Physically, dynamic stall is characterized by the leading edge separation and the shedding of

concentrated vorticity from the leading edge region. This vorticity is swept downstream over the chord

and produces a significant increment in the airfoil lift, drag, and pitching moment. Since dynamic stall

is a catastrophic process, the stall onset is modeled using a criterion such that the separation is initiated

when the substitute normal force G'_¢ attains a critical value, CN1. Based on the calculation of C_v

proposed earlier, this criterion implies that, under dynamic condition, the critical lift condition may be

reached at a higher angle of attack than the static condition. Typically known as dynamic stall delay,

this effect contributes to the delay in the occurrence of stall under dynamic conditions. With regard

to the angle of attack forcing, the dynamic stall delay is represented by the unsteady effects associated

with the attached flow normal force and the time constant Tp. Also, it is worth pointing out that the

value of Tp depends on the Mach number. The value of CNa corresponds to a critical leading edge
pressure and is closely related to the airfoil maximum static lift coefficient. Furthermore, the value of

CN1 depends on both the airfoil geometry and Mach number.
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Onceleadingedgeseparationhasbeeninitiated,the vortex lift CNV, being the excess lift induced

by the dynamic stall process, is governed by the incremental lift quantity CV. The value of C V is

related to the difference in lift between the attached and the separated flow regimes. In particular, this

process is governed by the rate of change of C V. In the limit as the rate of change tends to zero, the

value of CNV decays exponentially to zero. Modeling of this process is realized by yet another linear

dynamical system of the first order with a time constant T V. Employing this model, the response of

CNV to the time rate of change of Cv can be expressed using the convolution integral as

s dCv (o-)CNV(S) = ¢,,(s)Cv(O) + Cv(s- o-) do- d°-

where the indicial response function Cv(S) has the form

(2.68)

and

exp(#) (2.69)

] ,2 o,
As the leading edge vortex is swept downstream, the airfoil center of pressure varies significantly

with the chordwise location of the vortex. The vortex convection rate is monitored using a nondimen-

sional time based on the distance traveled by the airfoil in semi-chords. This rate has been determined

from experimental data to be roughly less than half the free-stream velocity, while the actual rate is

dependent on the Mach number. Based on physical considerations, a suitable representation of the airfoil

center of pressure behavior takes the form

CPv= _ 1-coS\TvL]
(2.71)

where rv is the vortex time, and TVL represents the vortex convection rate. At the onset of separation,

the vortex is at the leading edge, and rv is equal to zero. When the vortex reaches the airfoil trailing

edge, % is equal to TVL. Therefore, by monitoring the excess lift and the center of pressure location,

the vortex induced pitching moment can be calculated by

CMV = -Cp V CN v (2.72)

The values of T V and TVL are determined from the airfoil unsteady data. After the vortex passes

over the trailing edge, the effects of the vortex lift on the airfoil decay rapidly, and this phenomenon is

accomplished by halving the time constant T V for the period TVL < Tv < 2 TVL.

Further modifications to the basic separated flow formulation have been made to better capture the

interactions between the dynamic stall process, the trailing edge separation behaviors, and the airfoil

kinematics. In most cases, these interactional effects are represented by modifying the appropriate time

constants associated with each process. Specifically, increasing a time constant has the effect of slowing

down the process, whereas reducing the time constant produces the opposite effect. Further details on
these modifications can be found in reference 81.
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A final modification made to the basic model concerns the remodeling of the Kirchhoff chord force

expression (i.e., eq. 2.59). Such modification is necessary to model the drag divergence induced by the

flow behavior after the onset of gross separation. For this, an additional parameter has been introduced
to the chord force expression, which becomes

where

CC = _laCl _/f c_2d_

-._ (fI')O'5Kf(C#N - CN1)

for CtN > CN1. The actual value of Kf can be determined from the airfoil static drag data.

(2.73)

(2.74)

In forward flight, the rotor is also subjected to a reverse flow region that increases with increasing

forward speed. The reverse flow region is characterized by a complete reversal of the inplane velocity

vector as shown in figure 2.5. This effect contributes to the reversal of the chord force and the pitching

moment, and causes the shifting of the aerodynamic center from the region near quarter chord to

approximately the three-quarter chord location. The lift and radial drag components are independent of
the direction of the inplane velocity vector.

In the analysis, the computation of the blade airloads is performed using a finite-difference ap-

proximation to the Duhamel integrals. And with the inclusion of reverse flow correction, the unsteady

aerodynamic loads, at the rotor time sample _n, are expressed in a discrete-time form as

-Lv(ff2n) = ---_-sign(UT) --

--Lw(_n) = -_PC[(Co + CNV) U2 - (C1/C + do)IUTIUp_

_-_(bu _ ]
+ _l_Czv _ P_J

+Qla - 1)CoU2e + 4cKa(Up -- Dn)]

pc 2

= _ [sign(UT) ((fo + _Co + CMv)U 2 - _/CCI IUTIUPe

)8/31gTl(qn - Vn) - -_cgqM(q -Vn)

-AabacKMh(Up - Zan) - A4b4cKMh (Up - Zbn)

(2.75)

(2.76)

(2.77)

(2.78)

where

Up =Uen--Xn--Yn

Xn = Zn_ 1 e-0"14fl2As -- 0.3AUp n e-O'O7_32 As

Yn = Yn-1 e-O'5332 As - 0.7AUPn e-'265132 As

(2.79)

(2.80)

(2.81)

35



with

2R
A S _ n [ACz -- # (cos _n -- cos _n-1)] (2.82)

C

A¢ = q2n -- _n-1 (2.83)

AUPn = UPn - UPn-1 (2.84)

Up = (2.85)
n

Dn -- Dn_l e-A¢/cMHKa + AUpne-A¢/2cMHKa (2.86)

AUPn = UPn - UPn-1 (2.87)

Vn = Vn-1 e-O'5_2 As + Aqne -0"25132As (2.88)

Aqn = qn - qn-1 (2.89)

qn = 2r/r(0 + q_+ w t + tip -4-#cos q_nOtw) (2.90)

= f -(e d+c/2) ifUT>O
7/r / --ed otherwise (2.91)

Df n

Yqn = Yq n_le-A¢/cMHKq M nt- Aqne--A_b/2cMHKqM

q=

n

Aqn = q --qn-1

Zan --- Zan-1 e-A_/cMHKMhb3 + A_f pne-A¢/2cMHKMhb3

Zb n = Zbn-1 eA¢/cMHKMhb4 "k- /k_f pne-A_l'/2cMHKMhb4

2

= fn' -Dfn

G = k0 -k- kl(1 - f_t) + sin _rftnt2

CtN = CNLn -- DPn

DPn = DPn-1 e-As/Tp + (CNLn -- CNLn_I) e-As/2Tp

= I ! f")O'5Kf(CIN --CN1) if GIN > CN1

[ 1 otherwise

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)

(2.103)
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and for C_ > CN1

CNV n = CNVn_le-As/Tv -1- (Cvn -

[ (1+ t_nt) 2 ]
CV n = CNL n 1 -

CV n- 1) e-As/2Tv (2.104)

(2.105)

with Cpv and CMV given by equations 2.71 and 2.72. The parameters /C,G, and ff dictate the

nonlinear aerodynamic behavior, while the dynamic stall process is governed by CNV. For quasi-

steady aerodynamics, the recursive parameters Xn, Yn, fff P - Dn, Vn, Vqn, Zan, and Zbn are set to
zero.

Since the blade section airloads are calculated in the blade undeformed coordinate system, a trans-

formation is required to convert these to the undeformed frame to be consistent with the virtual work

expression, equation 2.9. For this, the aerodynamic forces in the undeformed frame are obtained from

LA =(T3) T Lv

the coordinate transformation

(2.106)

These force components, together with M_ 4, are the motion-dependent airloads acting on a blade section

and contribute to the virtual work expression in equation 2.9.

2.4 Rotor Wake Modeling

Calculation of the rotor nonuniform induced inflow is one of the most crucial steps in the prediction

of blade aeroelastic response, blade loads, vibration, noise, and rotor performance. Currently, there are

many inflow models available. These models try to capture, each with a different level of approximation,

the complex structure of the vortex wake which is the most dominant feature of the inflow calculation.

Complex models can yield accurate inflow prediction but require extensive computation. Simple models

provide quick estimate, but somewhat less accurate results. In general, the balance between accuracy

and computation efficiency dictates the selection of the wake model. This section describes the inflow

models used in the present analysis.

As a consequence of the bound circulation variation associated with the lift on each blade, vortex

elements leave the blade trailing edge and spiral downward below the rotor disk plane. This is in

accordance with the law of conservation of vorticity, which requires the formation of vorticity associated

with the spanwise as well as timewise variation in the bound circulation. The spanwise variation of

circulation produces the trailed vorticity, and the timewise variation results in the shed vorticity oriented

radially in the wake. Such effects have been depicted schematically, as shown in figure 2.6 (adapted

from ref. 90). The effects of shed vorticity have already been included in the unsteady aerodynamic

model (sec. 2.3), and, therefore, this section presents methods for computing the rotor induced inflow

associated with the trailed vortex system.
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In the analysis, different inflow models with varying levels of complexity were included. The

simplest model assumes a uniform inflow distribution over the rotor disk and was first proposed by

Glauert (ref. 9i). This is an extension of the classical momentum theory to forward flight. In this

model, the total rotor inflow is expressed in terms of the rotor thrust coefficient, advance ratio, and rotor
shaft tilt as

A = # tan C_s + Ai

c /2
= # tan O_s +

V/_+ #2
(2.107)

In another model, the rotor induced inflow is assumed to vary linearly across the rotor disk and is
expressed as

Ai_ CT/2
(1 + nxX cos q2 + nyX sin _I') (2.108)

V/A2 + #2

where

t%=_ (1-1.8# 2 ) 1+ (2.109)

_Y =-2# (2.110)

This is known as the Drees inflow model (ref. 91).

Since the induced inflow is, in fact, highly nonuniform across the rotor disk, the following model

uses a vortex ring representation. In this model, the helical path of the concentrated tip vortex for one

complete rotor revolution is idealized as a vortex ring. Since the velocity flow field induced by a vortex

ring can be computed analytically (ref. 92), the rotor trailed wake structures can be represented by a

system of vortex rings cascaded below the rotor disk, as shown in figure 2.7 (adapted from refs. 90

and 93). The resulting induced velocity at any point in the flow field is the net sum of the contribution

from the individual vortex rings. The relative location between two rings can be determined by the

advance ratio and the mean rotor inflow. While this model can be classified as a rigid wake model, the

near singularities in inflow which are contributed by the tip vortices are well represented. The trailed

vortex strength is assumed to be concentrated near the blade tip, and the strength of the vortex ring F0
can be expressed in terms of the rotor thrust coefficient as

ro = 2_Rc CT (2.111)
(3"

To cover the singularity condition at the vortex core, F 0 is further modified as (ref. 91)

(p2)F(p)=r o 1+p2 (2.112)
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where p is the ratio of the radial distance from the core center to the core radius. Typically, core

radius of 5 to 7 percent of chord length is employed. This inflow model, however, fails to capture the

nonsymmetric characteristic of the induced inflow across the rotor longitudinal axis.

To have a more realistic representation of the wake structures and to improve the accuracy of the

inflow prediction, the wake analysis of CAMRAD has been incorporated into the aeroelastic analysis.

These models capture, to various levels of approximation, the effects of the interlocking helical vortices

of the wake and include prescribed or free wake models. The wake models consist of a set of discrete

vortex elements representing the wake structure. The velocity induced by a vortex element is calculated

by performing integrations over that element in the wake using the Biot-Savart law, and the resultant

induced velocity is the sum of the contributions from all these vortex elements. The basic vortex

elements employed by these models are the vortex line with constant or linear circulation distribution

and the vortex sheet with uniform density or linear circulation variation. The strength of the vortex

elements is determined by the radial and azimuthal variation of the bound circulation.

Basically, the wake geometry consists of discrete and skewed spiral wake, one behind each blade,

and is determined by the locations of the wake element. These wake element locations are computed
based on the blade motions, the free-stream convection velocity, and the convection and distortion due

to the wake self-induced velocity. In essence, classification of the wake models depends largely on the

method used in computing the wake distortion. For the rigid wake geometry, the wake elements are

convected downward by the mean induced inflow, and the self-distorted wake geometry is neglected.

To include the effects of wake distortion, the prescribed wake models include wake contraction using

assumed model or empirical data. For the free wake models, the wake induced velocity is included in

the computation of the wake self-distorted geometry.

Concentration of lift and circulation near the blade tip region results in the formation of the

concentrated tip vortex which is the flow structure dominating the wake calculation. The concentrated

tip vortex is trailed as a helix and forms behind each blade. In the wake analysis, this is modeled by

a series of straight connecting finite-length vortices with a small core radius extended over the whole

wake. There is also an inboard vortex sheet trailed from each blade which has a combined strength equal

and opposite to that of the tip vortex. The inboard trailed vorticity is modeled by either a rectangular

vortex sheet or a lattice of discrete straight-line vortex segments.

These wake models are composed of three parts: the near wake, the rolling-up wake, and the far

wake. The near wake is part of the wake region just behind each reference blade where the induced

velocity is calculated. Since both the radial and azimuthal variations of the wake vorticity are important

in the calculation of the induced inflow, a full vortex panel representation is used for the near wake. In

the near wake region, the tip vortex is partially rolled up, and hence a line vortex with strength equal to

a fraction of the bound circulation near the blade tip is used. The wake region just downstream of the

near wake is the rolling-up wake. The roll-up process may not be complete as the tip vortex encounters

the following blade. Thus, modeling of the roll-up process is required to yield the proper magnitude

of the induced velocity, due to such an interaction. For the rolling-up wake, two wake panels with

linear circulation variation are used. In the far wake, the roll-up process is complete, and the tip vortex

strength is assumed to be equal to the maximum bound circulation. This wake region extends from

the roll-up wake boundary to the far wake. For the far wake, a single vortex sheet panel with linear

circulation variation is employed. Typically, the near wake extends from 15 to 30 degrees azimuth
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behind a reference blade, while the rolling-up wake extends to about 30 degrees azimuth behind the

near wake boundary.

For a close blade vortex interaction, the induced velocity calculated using a lifting line model is

not accurate since the induced loading would vary rapidly along the blade chord. Efficient modeling of

this behavior is made using a correction factor based on the lifting surface solution in conjunction with

the lifting line model. Furthermore, it has been established through experiments that the vortex core

bursts and increases in size after such interaction. Even though the exact cause of such a phenomenon

is still speculative, these wake models allow a vortex core to increase in size to roughly 10 percent of
chord length after a blade-vortex interaction.

For the free wake model, the tip vortex is modeled using straight line segments, while rectangular

sheets or line segments are used for the inboard wake. The rigid or prescribed wake geometry is used

for the inboard vorticity, and only the distorted geometry of the tip vortex is computed. Basically, the

distorted wake geometry is calculated by integrating the induced velocity at each wake element. For

a given blade azimuth angle _, the tip vortex geometry is given in terms of the displacement and the

induced velocity of each wake element at the corresponding age. As the wake age is increased by AffJ,
the wake distortion is updated based on the induced velocities calculated at these wake elements.

Coupling of the wake models obtained from CAMRAD and the rotor aeroelastic analysis is made

by transferring the blade bound circulation, the blade motions, and the induced inflow between these

two analyses. The process of finding consistent solutions for the blade unsteady airloads and the rotor

induced inflow is solved iteratively. To start the iteration process, the blade airloads, bound circulation,

and blade responses are computed using a uniform or linear inflow model. With the bound circulation

and blade motions given, the wake vorticities and geometry are calculated. These are then used to

recompute the nonuniform inflow, and the entire process is repeated until convergence is obtained.

2.5 Blade and Rotor Hub Loads

The resulting blade loads are computed using the force summation method. In addition to the

distributed airloads, this method also requires information about the blade inertial loads, which can be

determined from the blade motions. From Newton's Second Law, the sectional inertial forces acting at
a blade section are

F I
jJpsa dr/d((2.113)

with F 1 -- [LI, LI,LIjT; L I, LIv, and L/w are, respectively, the distributed inertial forces acting in

the x, y, and z directions in the blade undeformed frame; Ps is the blade structural density; a is the

blade acceleration relative to an inertial frame. In the blade undeformed frame, the blade acceleration
has the form

a -- ax_ + ayj + az]_

= e+ _ × (f_ x r) +2(f_ × _) (2.114)

where i:, f, and r are, respectively, the blade acceleration, velocity, and displacement vectors in the

rotating blade frame, and [2 is the rotor rotational speed.

4O



_ii!_

?!

The inertial component for the blade pitching moment about the deformed elastic axis is

(2.115)

Using the sectional constants defined in section 2.2, the inertial load components can be expressed
as (ref. 94)

L I = -m [_2- x - u - 2i) +/3pW + e9 cosel (vt- #)

+eg sin01 (w' + tip - wt + 2_)1) ]

_' ---_ [+-v+_- _w __ cos01(,+_v,)
--egsinOx @Jl + 2w/)]

L I : -m [_f) q- _p (x q- u) -Jr- 2/_piJe 9 cos 01 (_Jl - l_pv')

-easin01/3 p (w' + 2_)1)]

M_ = -m [k201 -e9 sin O1 (7) - v)-Jr- e9cosO 1 ((D q- X_p)

+ (k2ml- k22)cosOl sinO1 (1 + 2vt)

-_- (k_ml sin 2 01 + k_2 cos 2 01) 2w']

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)

The resultant distributed loads consists of the aerodynamic and inertial components; that is

The resultant blade shears computed at a radial station ro are

=
Fz

and the resultant blade bending moments are

d? _

-Lv(w- Wo) + Lw(v- Vo) + AtllM¢ /

nu(w - Wo) - Lw(r - ro + u - Uo) + AvtM¢

-nu(v - Vo) + Lv(r- ro + u- Uo) + AwtM+

dT

(2.121)

(2.122)
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whereUo, Vo, Wo are, respectively, the blade axial, lead-lag, and flap displacements at the radial station
ro, and

A V 12 ___ A w t2

Atll = 1 --
2

with

Art2 vt2 t2
-- __ V 0

Aw t2 wt2 t 2
-- __ W 0

mv I v I I
-= _ v 0

A w t ---: w t _ Wto

/ and
Similarly, vo w o are, respectively, the blade slopes in the lead-lag and flap directions computed at
the radial station ro.

At the blade root, ro is zero, and so are the blade displacements. Therefore, the expressions for
the blade bending moment simplify to

M: +L+v+
, My = fo R Luw- Lw (r + u) + v'M¢ dr

Mz Luv + Lv (r + u) + wtM¢

(2.123)

Furthermore, these blade loads can be expanded using the Fourier series. For instance, the radial

shear expression for the ruth blade can be expressed as

(30

F_ ( LT_) -_ F'mxo -_- ___ \( F'TnXnc c°s A_m + Fmx_ sin AqJm)
n=l

The Fourier series expansion of the other blade load components have a similar form.

(2.124)

The rotor hub loads are obtained by summing contributions from the individual blades. In the

rotating frame, the hub loads are expressed as

42

¾

FxR(_) = Z (Fxmc°sA_m - F_nsinAkOm) (2.125)
m----1

Nb

FyR(kO) : E (Fm sinA_m + F_n cosACm) (2.126)
m----1

Nb

FzR(_) = _ (Fro) (2.127)
m=l

Nb

MR(_) = _ (MmcosA_m - M_nsin Atgm) (2.128)
m=l
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Mff(_) = _ (MmsinAffJm + Mff _cosA_m)
m=l

Nb

= (M?)
m=l

(2.129)

(2.130)

where the azimuth for blade m is

with

_m = _ + AkOm (2.131)

271-

A_m = m._ (2.132)
1%

Substituting the Fourier series expansions of the individual blade loads into the hub load expressions

and using the properties of the sum of harmonics (ref. 91) yield

FR(_) = --2-p=lNb _ {c°s(PNb-1)_ [FX(PNb_l) c q- FY(PNb_l)s ]

+-_ _ {COS(PNb+ 1)_ [FZ(PNb+I) c -- FY(PNb+l)s ]
p=0

+sin(PNb + l)_ [FX(PNb+l)s + Fy(PNb+l)c] } (2.133)

2 p=l

+ sin(PNb -- l)q2 [Fx(pNb__)c -- Fy(pNb_l)s] }

-V-_ _'_ {COs(PNb-v 1)_ [FX(PNb+l)s q-Fy(PNb_t_l)el

p=0

+ sin(pN b + 1)_ [--Fx(PNb+l) c -I- FY(PNb+l)s } (2.134)

i_!_ •

0_3

FR(_) = N b _ {Fz,pNb)_c°s(PNb) _ + FZ(pNb)sSin(PNb)_ )
p=O

(2.135)
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2 p=l

+ sin(PNb - l)qd [Mx(PNb_l)s -- ;_/fY(PNb_l)cl }

+-_p_=o(COs(PNb+I)_[MX(BNb+I)_--M'y(PNb+I)_]

(2.136)

MYR(I'_) = J'Vb2 _ { cOS(pyb-1)l'_' [--MX(PNb-1)s -}- My(PNb-1)c]

p=l

+sin(PNb-1)q2[Mx(pyb_l)_--My(pgb_l)_] }

+-_=o{COS(PNb+I)_[Mx(pNb+I)s+My(pNb+I)c]

p=O

(2.137)

(2.138)

and

For the rotating inplane hub shears, it is worth noting that

F R = F, R
X(PNb-1)c Y(PNb-1)s

F n = _F R
X(pN b- 1)s Y(pg b - 1 )c

F R = -F, R
X(PNb + l )c Y(PNb + l )s

F, R = F, R
X(PNb+l)s Y(PNb+l)c

Therefore, the rotating inplane hub shears are uniquely determined by either F R or FyR alone.

Similar properties exist for the rotating inplane hub moments Mz R and M R. Also, the rotating hub

loads occur only at certain frequencies. The frequency contents of the vertical hub shear FzR and those

of the torque Mz R are the harmonics at pN b per rev, where p is an integer, and p -- 0, 1, 2, 3,..., whereas

the rotating inplane components occur at (pN b - 1) and (pN b + 1) per rev, where p is a strictly positive

integer. Therefore, only certain harmonics of the blade loads are summed up while others cancel at the
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rotor hub. The filtering of the blade load harmonics at the hub is caused by the equal phasing differences

of A_ m between individual rotor blades. Furthermore, it has been assumed that the rotor is tracked.

For a tracked rotor, all the blades exhibit exactly similar behavior except for the phase differences
of A_ m.

Similarly, the expressions for the rotor hub loads in the fixed frame are

Nb

Fff(_) = Z (Fm cos _m - F_ sin tgm) (2.139)
m=l

Nb

FH(_) = _ (Fmsin_m + F_cos_m) (2.140)
m=l

Nb

Fff (ffz) = E (Fro) (2.141)
rn=l

Nb

MHx(_) = Y_ (M m cos _m - M_ n sin _m) (2.142)
m=l

gb

MyH(_) = E ( Mm sin k_m + M_ cos _m) (2.143)
m=l

Nb

m=l

(Mm) (2.144)

For a tracked rotor, the Fourier series expansions for these hub loads can be expressed as

F_(_) = Nb _-_ {cospNb_ [FX(pNb_l)c-_-Fy(pNb_l)s]
2 p=l

+sinpNbq2[FZ(pNb_l)s--Fy(pNb_l)cl }

q--_=o{COSpNblI_[FX(PNb+l)c--rY(pNb+l)s]

(2.145)
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2 p=l

+ sin pNb q2 [FX(pNb-1)c _- -PY(PNb_l)s] }

-F--_p_=o {COSpNbff2 [Fx(pNb+l)s -'_-Fy(pNb+l)c

+sinpNbq2 [--FX(pNb+l)c + Fy(PNb+l)s] } (2.146)

MH(_) -_- Nb _ {cospNb_ [Mx(PNb_l)c nt-My(PNb_l)s]
2 p=l

+ sin pNb ff2 [MX(pNb_l)s -- _/fY(pNb_l)c] }

"ql--_=o{COSpNbl'_[mx(PNb+l)c--my(PNb+l)s

(2.147)

MH(_) : Nb _ {cospNb_O [--Mx(PNb_l)s -_My(PNb_l)c]
2 p=l

+sinpNbff2[Mx(pNb-1)c +My(pNb-1)s]}

-_--_=o{COSpNbl_[mx(pNb+l)s-_-my(pNb+l)c]

(2.148)

whereas the expressions for the vertical shear F H and the rotor shaft torque Mz H in the fixed frame are

the same as those in the rotating frame.

As these hub loads are transmitted to the fuselage, the steady components are the rotor thrust,

longitudinal and side forces, rolling and pitching moments, and the rotor shaft torque. The higher

harmonics contribute to helicopter vibration. In particular, helicopter vibration occurs at pN b per rev,

where p is a positive integer. As in the case of the rotating hub loads, only certain harmonics of the

blade loads are transmitted to the hub fixed frame. Again, this happens because of the equal phasing

between individual rotor blades. Furthermore, since the load harmonics tend to lower magnitudes at

higher frequencies, helicopter vibration occurs primarily at N b per rev.
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2.6 Coupled Trim Analysis

Typically, the vehicle trim controls and the rotor steady responses are solved independently. The

solution method is usually performed in the following manner: (1) For a prescribed flight condition,

the trim controls are computed based on a rigid flapping blade assumption. For this, the rotor induced

velocity is calculated based on the momentum value, and the quasi-steady approximation is used to

calculate for the blade loads. This would lead to a crude approximation to the actual trim solutions.

(2) Based on these trim solutions, the blade steady responses are then calculated. For this step, the

elastic blade model together with more refined wake and aerodynamic analyses are employed. Then the

rotor hub loads and a new vehicle equilibrium condition are computed. The new equilibrium condition

is usually quite different from the one prescribed initially.

For a given flight condition, the trim controls and the blade steady responses must satisfy both the

blade and the vehicle equilibrium conditions. The method incorporating the process of simultaneously

solving for the blade responses and the trim controls is referred to as the coupled trim analysis. In this

analysis, the blade steady responses are solved iteratively. With each new blade response update, the

vehicle would attain a new equilibrium condition. Therefore, the trim controls are also updated so that

the overall solutions satisfy the prescribed vehicle equilibrium conditions.

In this analysis, an uncoupled trim solution based on the rigid flapping blade assumption (ref. 95)

is used as an initial guess for the coupled trim analysis. With these trim controls, the blade steady

responses are calculated. Using the blade responses, the rotor hub loads and a new vehicle equilibrium

condition are computed. The trim controls are then updated based on the new vehicle equilibrium

condition. The process is repeated until the overall solutions converge. For a given flight condition,

the converged trim control and blade response solution satisfy simultaneously the overall vehicle steady
force and moment equations.

In particular, the general expression for the vehicle equilibrium condition can be expressed as

F = 0 (2.149)

where the exact form of F T -- IF1, • • •, Fn] depends on the types of trim conditions considered. In the

analysis, two types of trim are considered: propulsive and wind tunnel. The propulsive trim simulates a

helicopter in a steady-level flight condition as shown in figure 2.3, and the vehicle equilibrium conditions

must satisfy the following force and moment equations

F1 = FH o + D F cos aHP -- T sin O_s

F2 = FyHo + YF cos Cs + T sin Cs

F3 : Fif o - T cos c_s cos Cs - DF cos (Ps sin aHp + YF sin Cs

F4 = MH o + MzF + T (hcos as sin Cs- ycc cos Cs)

+ YF (hcos c_s cos Cs + YCGsinCs)

(2.150)

(2.151)

(2.152)

(2.153)
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+ DF (-hc°s aHP + XCGsinc_Hp) (2.154)

where F1, F2, and F3 are, respectively, the vehicle force equilibrium equations in the X, Y, and Z

directions in the hub-fixed frame, and F4 and F5 are the vehicle rolling and pitching moment equilibrium

equations, respectively. The yawing moment equilibrium equation is not considered since the tail rotor

dynamics are neglected in this analysis. Also, D F is the fuselage drag; YF is the fuselage side force; T

is the rotor thrust; XCG , YCG, and h are, respectively, the relative location of the rotor hub center with

respect to the vehicle center of gravity in the X, Y, and Z directions; O_s and Cs are the longitudinal
and lateral shaft tilts, respectively. Furthermore

Ols = ctHp -- OFp

where o_Hp is the hub plane tilt relative to the flight direction, and OFp is the flightpath angle relative to

an axis perpendicular to the weight vector. For propulsive trim, the unknown quantities to be determined
from the vehicle equilibrium equations are

liT : Lets, Cs, 0.75, 01c, 01sJ

where the rotor trim parameters 0.75, Olc, and Ols govern the blade pitch schedule.

harmonic control, the blade pitch schedule can be expressed as

(2.155)

With no higher

O(x, ffJ) = 0.75 "k- Otw(X -- 0.75) Jr- 01cCOS _ -t- Ols sin k_ (2.156)

where x is the nondimensional radial length; Otw is the blade linear pretwist; 0.75 is the collective pitch

angle at 75 percent radius; Olc and 01s are, respectively, the lateral and longitudinal cyclic pitch angles.

Wind tunnel trim simulates the rotor testing conditions in a wind tunnel. For such conditions, the

longitudinal and lateral shaft tilt angles are typically prescribed. Therefore, the longitudinal and lateral

force equilibrium equations need not be satisfied. As such, the unknown vector to be determined from

the remaining equations F3, F4, and F 5 is

u T = [0.75,01c, 01sJ

For certain wind tunnel tests, the trim procedure sometimes requires the suppression of the cyclic

flapping angles measured at a reference blade station. For such cases, the expressions for F4 and F5
become

Re 1 fo 27r wR cosF4 =w = -- k_d_
71"

1 fO2_r wR sinF5 = W lRs= - ff_ d _
7r

(2.157)

(2.158)

Finally, the solution technique is based on a modified Newton method, and, as such, the trim
controls are updated at the ith iteration as

Ui+l = ui -k- An i (2.159)
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where

0F I F(ui) (2.160)

!

Aui
0U _U=U0

where u0 are the trim controls obtained initially using the rigid flapping blade solution, and the Jacobian

OF/Ou is calculated using the finite-difference approach. Due to computational requirement, the Jacobian

for trim is computed only once initially and is not updated for subsequent iterations.

To improve numerical convergence, a numerical damping factor R is introduced into equation 2.159
which can be expressed as

Ui+l -- ui + RAui (2.161)

Currently, there are two forms for R. In the first form, R is given by

R=l-r

where 0 < r < 1. Additionally, R can also take the form

Typical value of Cr is 1/V_.

R = 1 - exp(-¢ri)

2.7 Finite Element Discretization in Space

This section describes the finite element method used in the derivation of the blade governing

equations. In particular, the finite element analysis is used here to remove the spatial dependence from

the blade governing equations. For this, the rotor blade is discretized into a number of beam elements,

and shape functions are used to relate the elemental degrees of freedom.

From the Hamiltonian formulation, the integrand of equation 2.3 can be expressed as

and in discretized form

where

A = 5H - 5T - 5W (2.162)

n

A = _ Ai (2.163)
i=1

Ai = 6bti - 6Ti - 6)/Vi (2.164)

and 6Hi, 6Ti, and 6Wi are, respectively, the variations in strain and kinetic energies and virtual work

contribution of the ith element, and n is the number of beam elements. As shown in figure 2.8, each

beam element has 15 degrees of freedom and consists of two end nodes and three internal nodes. Each

end node has 6 degrees of freedom which are: u, v, v t, w, w t, and (_. There are two internal nodes for

the u degree of freedom and one internal node for the (_ degree of freedom. There are two main reasons

for choosing (_ over q5 as the torsional degree of freedom: (1) the choice of q_ preserves the banded

structure of the global finite element matrices since the integral term fox vttzo ! dx is implicitly included

in the formulation, and (2) the aerodynamic loads depend explicitly on the geometric twist _. At the
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elementboundary,there is a continuity of displacementfor the axial, lag, flap deflections,and twist,
anda continuityof slopefor the flapand lag bending.

In the formulation, thedeflectionsat anypoint within anelementcanbeexpressedin termsof the
shapefunctionsand the nodaldegreesof freedom.For the ith element

{u(s) }

v(s)

w(s) = H(s) qe (2.165)

where the nodal vector qe consists of the 15 degrees of freedom for the beam element, and

qe T = [Ul, u2, _z3, u4, Vl, v_, v2, v_, Wl, w_, w2, w_, ¢1, ¢2, ¢3] (2.166)

The shape function matrix It consists of the shape functions for the beam element degrees of
freedom and has the form

I o o o

o o o
H = 0 0 HTw(s) 0

o o o H (s)

where the shape function vectors are

(2.167)

-4.5s q- 9s 2 - 5.5s + 1 ]

13.5s s -- 22.5s 2 + 9s

Hu(s) = -13.5s 3 + 18s 2 - 4.5s

4.5s 3 - 4.5s 2 + s

(2.168)

2s 3 -- 3s 2 + 1 }

li(s 3 - 2s 2 + s)
Hv(s) = Hw(s)= _2s3 + 3s 2

1i (s 3 -- s 2)

{ 2s2- 3s+ 1 }H_(s) = -4s 2 + 4s
2s 2 - s

(2.169)

(2.170)

The local spatial coordinate s of the ith element is given by

xi
S -_- h

li

where li is the length of the ith beam element; xi is the local coordinate of the beam element, and

0 <_ x i < li. The shape functions for the lag and the flap bending deflections are the Hermitian
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polynomials which allow continuity of deflections and slopes across the beam element. For the axial

deflections and elastic twist, Lagrangian polynomials are used as shape functions which allow continuity
of displacements across the beam element.

Similarly, the virtual displacements 6u, 6v, 6w, and 6q_ over the ith element can be expressed in
terms of the same set of shape functions as

5u(s) }

6v(s)
6w(s) = H(s) tSqe (2.171)

where the virtual nodal vector tSqe is the variation of qe. Substitution of equations 2.165 and 2.171 into

equation 2.164 gives

Ai = Ai (qe, _le, i_e, 6qe) (2.172)

Following equation 2.163, the assembly of the beam elements yields a set of nonlinear ordinary

differential equations in terms of the nodal displacements. Let q denote the global displacements for

the rotor blade and 6q the associated global virtual displacement; the global equations can be expressed
implicitly as

A = A(q, q,i], 6q) (2.173)

Derivation of the blade governing equations is completed by applying the geometric boundary

conditions to equation 2.173. The rotor configuration, such as hingeless or articulated, dictates the

displacement boundary conditions near the blade root. In particular, u, v, v I, w, w t, and _ are zero at the

blade root for a hingeless rotor. For an articulated rotor with the flap and lag hinges coincident, u, v, w,

and q_ are zero at the hinge. In the analysis, further modifications have been made to include the pitch

link stiffness, different offsets for the flap and lag hinges, and the pitch link location.

After applying the boundary conditions, equation 2.173 takes the form

A : tSqT(MG/j + CG/I + KG q _ FG ) (2.174)

where MG, CG, KG are the global mass, damping, and stiffness matrices, respectively, and F G is the

global force vector. Substituting the above equation into equation 2.3 (note that the blade steady response

is periodic for a rotor operating in steady-level flights), these give

f027r 6q(MG/_ + CG_I + KGq -- FG) d_ = 0 (2.175)

Note that the above equation has been expressed in terms of the rotor temporal coordinate _.

2.8 Solution Procedure

This section describes the solution methods for the blade response and the vehicle trim controls. In

the analysis, the blade governing equation (eq. 2.164) is transformed to the normal mode space using a
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few coupled natural vibration modes. This is performed to reduce the computational time. The resulting

normal mode equations are then solved using a finite element in time method. With the temporal finite

element method, the blade normal mode equations are transformed into a set of nonlinear algebraic
equations which are solved using a Newton method.

Starting with the description of the nondimensional procedure, this section presents the normal

mode transformation and the temporal finite element method used in the determination of the blade

aeroelastic responses. Finally, implementation of the aerodynamic model into the aeroelastic analysis is
also discussed.

2.8.1 Nondimensional Procedure

The parameters used in the analysis are normalized according to the following procedure

Quantities Nondimensional parameters

Length R

Time 1/f_

Mass/length mo

Velocity f_R

Acceleration C/2R

Force mof_2R 2

Moment mof_2 R 3

Energy or work mof_2R 4

where mo is a reference blade mass per unit length.

2.8.2 Normal Mode Equations

To reduce computational time, the blade finite element equations are transformed into the normal

mode space using a few coupled natural vibration modes. The blade natural vibration modes are obtained

by solving an algebraic eigenvalue problem. By neglecting the external loads and the damping matrix,
the blade governing equation can be expressed as

S °° S

MGq + KGq = 0

Let

q ----Clei_

Then equation 2.176 can be arranged to yield the following algebraic eigenvalue problem

W2_l s -1 s-= (MG) KGq (2.177)

where the superscript s denotes structural quantities. These matrices are the structural inertial and

stiffness matrices for the rotor blade and are symmetric. This eigenvalue problem can be solved using

(2.176)
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the Jacobi method. The resulting eigenvalues, being _v9, are real, and the associated eigenvectors are

also real and orthogonal. Physically, the eigenvectors represent the blade natural modes, and the square

root of the associated eigenvalues represents the blade natural frequencies.

To apply the normal mode transformation, the blade global displacement vector q is related to the
modal displacement vector p by the normal mode transformation

q = ,:I)p (2.178)

where ff is an N G × m matrix formed with the m blade free vibration modes. Applying the normal
mode transformation to equation 2.175 results in

where

f02_r _p (M_i + CO + Kp - F) d_I, = 0 (2.179)

M = _TMG_

C : _TCG_

K = _TKG_

F = _TF G

are, respectively, the modal mass, damping, stiffness matrices, and load vector.

and K contain periodically time-varying coefficients; that is

= + 2:,r)

= + 27r)

K(,I,) = K('I' +

and F is nonlinear. For periodic solutions, F should also be periodic.

2.8.3 Finite Element Discretization in Time

(2.180)

In general, M, C,

The blade modal equation (eq. 2.179) can be integrated by parts to yield

( - Cli - Kp . 2_
(2.181)

For a periodic solution, the right hand side of the above equation is zero, and the above equation
can be expressed as

27r T
_y Qdk_=0 (2.182)
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where

and
{p)Y= li

Q={F-CIi-KP}MIi

Using the finite element method, the time interval for one rotor revolution of 27r is divided into a

number of time elements in a manner similar to the spatial finite element method described in section 2.7.

This is illustrated in figure 2.9. The blade governing equations can then be expressed as the sum of the

elemental expressions for all the time elements. In particular, equation 2.182 takes the form

N_

[[_i4-1 5Y T Qi d_ : 0 (2.183)
Z J_i
i=l

where _Pl -- 0, _'N_+I = 2_-, and Ne is the number of time elements being used. The first order Taylor

series expansion of equation 2.183 about a steady state value of Yo - [PoT I}oTJT is

Ne [_i+, @TQi(y ° + Ay)dk_ = 8y/T [Qi(yo) + Kti(Yo)Ay] d_ = 0 (2.184)
J _ i J luuuuwi

where

OF _ K OF - ] (2.185)

For the ith time element, the temporal variation of the modal displacement vector can be expressed

in terms of the shape functions and the temporal nodal displacement vector (i as

= n(s) i

where the local temporal coordinate s for the ith time element is

(2.186)

8--

_i+1 -- _i

and 0 < s < 1. Note that _i+l _i is the time span of the ith time element. In equation 2.186, H(s)
is the temporal shape function matrix which has the form

H -- _Hllm,...,Hnt+llm j

where Im is the m x m identity matrix, and m is the dimension of the modal displacement vector. In

the above expression, the subscript nt refers to the order of the polynomial used in approximating the

temporal variation of the modal displacement vector. In particular, if an nth order polynomial is used

in the approximation, then n + 1 nodes per degree of freedom are required to completely describe the

variation of pi(ff2) within the time element. Therefore, [] is an m x m(nt + 1) matrix, and _i is an
m(m + 1) vector.
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In this analysis,fifth-order polynomialsare used in the approximation,and this results in the
requirementof six nodesperdegreeof freedomfor eachtime element.Betweenelementsthereis con-
tinuity of displacements.With this typeof approximation,the shapefunctionsusedarethe Lagrangian
polynomialandareexpressedas

H:(s) =
H2(s) =
H3( ) =
H4( ) =
Hs( ) =
H6( ) =

'-625s5 + 1875s 4 - 2125s 3 + 1125s 2 - 274s + 24)/24
5

3125s - 8750s 4 + 8875s 3 - 3850s 2 + 600s)/24

'-3125s5 + 8125s 4 - 7375s 3 + 2675s 2 - 300s)/12

_3125s5 - 7500s 4 + 6125s 3 - 1950s 2 + 200s)/12

>-3125s5 + 6875s 4 - 5125s 3 + 1525s 2 - 150s)/24

>625s 5 - 1250s 4 + 875s a - 250s 2 + 24s)/24

With this description, the modal velocity vector can be expressed as

= (2.187)

In a similar fashion, the expressions for the virtual modal displacement and velocity vector are

5Pi = H(_)6_i (2.188)

5Pi = H( ffy)6_i (2.189)

where

Substituting equations 2.186-2.189 into equation 2.184 yields

Are f_+l
6_/T N T [Qi + Kti N] A_i d_ -- 0

i=1 J_i
(2.190)

{H(V) }N = I:l(kV) (2.191)

For periodic solution, the boundary condition for the temporal finite element equation is

p(0) = p(27r)

where

Finally, since the 6_i are arbitrary for i = 1,..., Ne, equation 2.190 takes the form

QG + KtG _G ___0

Are/_+1 NTQi d9
QG _ J_i

i=1

(2.192)
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and

KG = i_1": J%f*i+l NTKtiN

N,

zx G= zx i
i=1

d_P

Equation 2.192 is a set of nonlinear algebraic equations and can be solved using Newton's method.

In particular, A_ G are solved iteratively, and the overall responses are updated using

_Gi+ 1 = _G i + A_G i

During the iteration process, the vehicle trim controls are also updated according the procedure

outlined in section 2.6. The converged trim control and blade steady response solutions satisfy si-

multaneously the vehicle steady force and moment equations (i.e., eq. 2.6) and the blade equilibrium
conditions given by equation 2.182.

Implementation of the unsteady aerodynamic model described in section 2.3 required calculation

of the aerodynamic states. Since the constructions of QG and K G of equation 2.192 are essentially

a time-marching algorithm, the recursive formulas in the expressions for the unsteady airloads can be

adapted to the current analysis. Also, the unsteady aerodynamic states such as Xn, Yn, or Dn are

functions of the downwash velocity Up or the airfoil pitch rate q which, in turn, are dependent on the

blade motions and the trim controls. Therefore, as the blade responses and trim controls are updated,

these aerodynamic states are also updated. In the limit, as the solutions converge, these aerodynamic
states also converge to their corresponding values.

2.9 Higher Harmonic Control Model

In the HHC analysis, a linear frequency-domain quasi-steady model in terms of a transfer matrix

is adopted to relate harmonics of the HHC inputs to harmonics of the vibratory hub loads. The optimal

HHC inputs are calculated by minimizing the harmonics of the vibratory hub loads expressed in terms

of a quadratic performance index. Using the multiblade coordinate transformation, HHC inputs in the

rotating frame are transformed to the fixed frame in terms of swashplate motions. The higher harmonic

swashplate motions are generated using a number of auxiliary servo-actuators, as shown in figure 2.10.

The hydraulic power for the actuators is then calculated for the specified HHC inputs.

The higher harmonic blade controls are implemented by exciting the blade pitch at higher harmonics

of rotational speed. For vibration control, the blade pitch schedule, expressed in the rotating frame, is
given by

O(x, _) : 0.75 + Otw(X -- 0.75) +/91c COS _ + 01s sin

Nb+l

+ _ (Onccosn_ + Onssinn_P)

n=Nb-1

(2.193)
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where One and Ons are, respectively, the cosine and sine components of the HHC inputs. Note that

the summation of the higher harmonic control inputs covers three frequencies: N b - 1, N b, and
N b + 1 per rev.

For the HHC model, a transfer matrix T is used to relate the input pitch harmonics and the output
hub load harmonics; that is

z = Zo + T 0 (2.194)

where the response vector z has ten components and consists of sine and cosine components of the

vibratory hub loads--the vertical, longitudinal, and lateral hub shears and the pitching and rolling

moments, and Zo is the uncontrolled response vector. In particular, the components of z or Zo are the

higher harmonic components of the hub loads, as presented in section 2.5. The HHC input vector 0

has six components and consists of sine and cosine components of the higher harmonic blade pitch at

the three distinct frequencies of N b - 1, Nb, and N b + 1 per rev. In this analysis, the transfer matrix is

generated using a finite-difference approach.

Note that the HHC model as given by equation 2.194 is equivalent to the first order Taylor series

expansion of a more general static nonlinear description which is given by

z = Y(zo, O) (2.195)

From this, the transfer matrix T is simply the Jacobian of f, calculated about a referenced input

Of
I

I (2.196)
T = 0--0_I

2.10 Higher Harmonic Control Algorithms

For minimum vibration, the optimal control input 0 is determined from the minimization problem
of the quadratic performance index J

min J = min (lzTWzz q- I @TWo0 ) (2.197)

subject to equation 2.194.

In the above expression, Wz and W 0 are weighting matrices for z and 0, respectively. The optimal

control 0 depends on the type of controller used. Two types of controllers are used in this analysis:
open-loop and closed-loop deterministic controllers.

For the open-loop controller, only the global model is applicable, and the optimal control 0 depends

only on the uncontrolled response; that is
z¢

O= Czo (2.198)

where

C = -(TTWzT + WO)-ITTw z (2.199)
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and the transfer matrix is calculated about the uncontrolled response value. If the HHC system is linear,

then the optimal control 0 would suppress completely the vibratory response in one cycle.

For the closed-loop controller, the general relation as given by equation 2.194 is valid for each

HHC cycle and is expressed as

Zn = Zn- 1 + Yn(On - On_l) (2.200)

In this formulation, the dynamics of the HHC system have been neglected. This is justified by assuming

that the rotor system is stable and that the HHC inputs are updated only after all the transient responses

have died out. Furthermore, this assumption is justified based on the wind tunnel results of reference 33

which showed that the time constant for the HHC system is rather small, being less than two rotor

revolutions. With this scheme, the HHC inputs are computed based on the current response vector

On = On-1 + (1 -- r)Cnzn_ 1 (2.201)

where

= - (T n +WO) (2.202)
and r is the control rate limiting factor with values ranging from 0.0 to less than 1.0. The factor (1 - r)

constrains the HHC control rate and helps to reduce large control excursions. This is useful from the

actuator hardware point of view, and a suitable value of r can be used to stabilize the feedback system.

Two types of models are used to implement the closed-loop HHC system: local and global. In the

local model, the relation in equation 2.200 is applicable for a sufficiently small range of control values,

On - On-1. For the global model, the HHC model is assumed to be linear for the complete range of

control value, and thus the transfer matrix remains constant for all cycles. For both models, the transfer

matrix is calculated initially using the finite-difference approach. For subsequent HHC cycles, the global

model uses the same transfer matrix calculated initially, while the local model updates it using

where

and

Tn+l = Tn -1- (Yn - TnSn)sTn
sT8 n (2.203)

Yn = Zn+l -- Zn (2.204)

Sn =Cnzn (2.205)

This updating scheme, generally known as the secant method, was proposed by Broyden (ref. 96)

as a solution technique for systems of nonlinear equations. Even though the transfer matrix is computed

using the local control response, this updating method is quite different from the widely adopted Kalman

filter used in many HHC applications.
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2.11 Actuator Power Required for HHC Systems

To calculate the actuator power required for an HHC system, the optimal HHC inputs are trans-
formed in terms of swashplate motions (ref. 97)

I °nciIl°°l°l/° lc/
<on. 0 0 0 0 0 1
Ccol,c 0 0 1 0 0 0 ONbc

Ccol,s = 0 0 0 1 0 0 ONbs

Clat, c 0 1 0 0 1 0 O(Nb+l) c

Clat, s 1 0 0 0 0 1 O(Nb+l)s

(2.206)

where Ccol, Clon9 , and Cla t are the NbP swashplate angles in the collective, longitudinal, and lateral

modes, respectively, and the subscript c refers to cosine component and s refers to the sine component.

The actuator power PR generated by a hydraulic pump the is product of the pump pressure Pe and
the average pump flow rate Qav (ref. 98)

PR = Pe Qav (2.207)

For HHC applications, the pump flow rate must be sufficient to excite the NbP swashplate motions

given by the prescribed HHC inputs. For a particular actuator, the flow rate Q depends on the swashplate

oscillatory frequency and the actuator displacement; that is

Q = Nb_&A e (2.208)

where Ae is the effective piston area, and Sn is the actuator displacement. The average pump flow rate

Qav is calculated assuming that an accumulator is used to smooth out the flow; thus

2
Qav = - Nb f_ Sn Ae (2.209)

7r

Throughout the helicopter flight regime, the actuators must operate at a constant fluid pressure

selected to accommodate the maximum possible pitch-link load. Such loads occur at severe flight

conditions such as a high g maneuvers or a high speed condition where a major part of the rotor disc

is exposed to dynamic stall. For this analysis, it is assumed that the fluid pump pressure is a known

constant. Therefore, the actuator power required for an Nb-bladed rotor can be expressed as

PR = 2 N2f.tAePeCn S n (2.210)
7"f

where Cn is a constant dependent on the radial locations of the actuators and the pitch link, and Sn

is the accumulation index for the swashplate higher harmonic motion amplitudes. If the swashplate is

59



:SA

oscillated using four equally spaced hydraulic actuators, then Sn can be expressed as

!0i_!
L I_ I"

Sn = ¢(Ccol,c q-Clat,c)2q-(Ccol,s q-Clat,s)2

+¢(Ccol,c - Clat,c)2+ (Ccol,s- Clat,s)2

+V/(Cco_,_+ Qo_g,Q2 + (Ccot,=+ Qo_g,=)2

+ V/ (Ccot ,c - Clon9,c )2 + (Ccol,s _ Clon9, s ) 2 (2.211 )

The actuator power for an HHC system is therefore dependent on the number of blades, the rotor

rotational speed, the hydraulic pump pressure and diameter, the locations of the pitch links and actuators,

and the HHC inputs. Since most of these parameters are fixed for a given rotor design, the associated

actuator power is conveniently represented in term of a power index defined as

This gives

px = PR
(2/rr)N_ f2Ae PeCn (2.212)

PI = Sn (2.213)

Thus, for a given actuator design and pitch-link configuration, the actuator power depends only

on the swashplate motions which are related to the HHC inputs. Also, it should be noted that this

assumption is valid only when the maximum pitch-link loads are not significantly affected by the HHC
inputs.

]! ,
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3 RESULTS AND DISCUSSION

In section 3.1, the predicted vibratory hub loads are correlated with experimental data to validate the

analysis and to set general guidelines for further refinements to the analytical model. HHC effectiveness

in suppressing the vibratory hub loads are then evaluated. Secondary effects due to HHC are also

investigated including HHC penalties on blade stresses, control loads, rotor performance, and influences

of HHC on blade stall. For the cases where the simple fixed-gain controller is not effective in suppressing

the vibratory hub loads, results using an adaptive-gain controller is presented.

In section 3.2, a parametric study is carried out to investigate the influence of blade and rotor

characteristics on the vibratory hub loads and the HHC actuator power. Comparative study is made

for three different three-bladed rotor systems including an articulated rotor, a soft-inplane hingeless

rotor, and a stiff-inplane hingeless rotor. Then, detail parametric investigations are carried out for a

generic four-bladed soft-inplane hingeless rotor operated in a transition flight regime and a three-bladed

articulated rotor operated in a quasi-steady maneuvering flight condition. These studies are carried out

by varying the blade design parameters such as the blade flap, lead-lag, and torsion stiffness distributions,

the chordwise offset of the blade center of mass from the elastic axis, the chordwise offset of the elastic

axis from the quarter chord, and the blade linear pretwist.

3.1 Correlation Study and HHC Effectiveness

3.1.1 Correlation Study

To validate the analysis, a correlation study of predicted vibratory hub loads with experimental

data is carried out. The data were obtained from a one-sixth dynamically scaled three-bladed articulated

rotor model of the CH-47D helicopter which was tested by Boeing Helicopter Company in their wind

tunnel (ref. 46). In the experiment, the vibratory hub loads were measured in the rotating frame using

a strain-gauge balance located under the rotor hub. For this rotor, the dominant vibratory hub loads

causing airframe vibration are the 3P vertical and the 2P and 4P rotating inplane hub shears. The

vibratory hub moment components for this rotor are small, and these are not considered in the correlation

study.

In the validation study, six beam elements are used to model the blade, and the corresponding

blade parameters are presented in table 3. I. The calculated rotating blade natural frequencies for the

coupled modes used in the correlation study are presented in table 3.2. In order to apply the nonlinear

unsteady aerodynamic model (refs. 81 and 82), static characteristics for the VR-12 airfoil are used,

while the three time constants used to model the unsteady aerodynamic characteristics are taken from

reference 81. The basic trim controls are calculated corresponding to the wind tunnel conditions with

a specified advance ratio, rotor thrust, and shaft tilt angle. For wind tunnel trim calculations, the cyclic

flapping angles measured at the flapping hinges are suppressed to zero.
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Correlation results are presented in terms of the magnitudes of the vibratory hub loads at the

specified harmonics. For instance, the magnitude of the 3P vertical hub shear is given by

= F2 F2 (3.1)FZ3 _/ Z3,c + Z3,s

Figures 3.1-3.3 show the correlation of vibratory hub shears over the range of forward speeds

from hover to 188 knots. The thrust coefficient-solidity ratio (CT/O-) is held at 0.08. Calculated

results are shown for three aerodynamic models: (1) quasi-steady aerodynamics and linear inflow model

(Drees), (2) nonlinear unsteady aerodynamics (including dynamic stall) and Drees' inflow model, and

(3) nonlinear unsteady aerodynamics and free wake model.

Figure 3.1 shows the correlation of the 3P vertical hub shear. Predicted results obtained using

nonlinear aerodynamics and free wake modeling agree quite well with measured data at low speed as

well as high speed flight regimes. At forward speeds above 160 knots, the sharp rise in the 3P vertical

hub shear is attributed to dynamic stall, and this effect is reflected in the analytical results using nonlinear

aerodynamics and Drees' inflow model. The sharp peak in the 3P vertical hub shear in the transition

flight regime (around 40 knots) is satisfactorily predicted using the free wake analysis. It is interesting

to note that the simple model with quasi-steady aerodynamics with Drees' inflow correlates quite well

with experimental data at the forward speeds above 100 knots. However, the calculated results using

nonlinear aerodynamic and free wake models yield the best overall correlation with experimental data.

Figure 3.2 shows the correlation of the 2P rotating inplane hub shear. For the range of forward

speed below 100 knots, the calculated results using all three aerodynamic models are almost identical

except for the small peak in the 2P inplane hub shear in the transition flight regime, captured only with

the free wake analysis. At the forward speeds above 135 knots, the results using nonlinear aerodynamics

with both inflow models correlate better with the experimental data than the results with quasi-steady
aerodynamics and Drees' inflow.

Correlation of the 4P rotating inplane hub shear is shown in figure 3.3. This figure also shows that

the results obtained using the three aerodynamic models are almost identical for the forward speeds below

100 knots. At the forward speeds above 160 knots, the results obtained using nonlinear aerodynamics

and Drees' inflow overpredict the 2P rotating inplane hub shear, while the results with quasi-steady and

Drees' inflow underpredict the experimental values. At the high forward speed range, the calculated

results using nonlinear aerodynamics and the free wake analysis yield the best correlation of the 4P

rotating inplane hub shear with the experimental data. Based on the results of the validation study,

subsequent investigations were all carried out using nonlinear aerodynamics and the free wake model.

For the flight conditions considered above, optimal closed-loop HHC is introduced in the analysis

to suppress the vibratory hub loads. The fixed-gain closed-loop controller is used with no control rate

limiting factor set to zero. This controller suppresses completely and simultaneously all three vibratory

hub shear components over the forward speed range from hover to 160 knots. These results are shown

in figures 3.4-3.6 in which the predicted vibratory hub shears calculated using nonlinear aerodynamics

and the free wake model are compared with the experimental values. Also, the results are presented

for the cases with both HHC off and HHC on. In the experimental data, there are some residues in the

levels of the vibratory hub load being suppressed. These residues may be attributed to the measurement
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i , and process noise which are not included in the calculated results. In fact, if measurement noise is

included in the simulation, then the HHC controller suppresses the vibratory hub loads to the noise

level. For the case at 188 knots, the HHC amplitudes required to suppress completely the vibratory hub

shears were very large (on the order of 5 degrees), and a converged numerical solution could not be

achieved. It is suspected that such a large higher harmonic blade pitch might have induced a massive

blade stall which caused the numerical solution to diverge. Such effects will be investigated in more
detail in section 3.1.3.

The higher harmonic swashplate motions required to suppress the vibratory hub shears are shown

next. The HHC inputs are transformed in terms of the harmonics of the swashplate motions in the

collective, longitudinal cyclic, and lateral cyclic modes. The magnitudes of these swashplate motions

are then calculated, the results being presented in figure 3.7. These results indicate that, except in the

transition flight regime, the amplitudes required by both cyclic modes are generally higher than the

collective amplitudes. Above 100 knots, it is worth noting that both of the cyclic swashplate ampli-

tudes increase significantly with the forward speed, while the collective component remains essentially
constant.

The actuator power required by the HHC system, expressed in terms of the actuator power index,

is presented in figure 3.8. The actuator power index represents an accumulative index for the swashplate

motions. Also, it represents approximately the combined HHC amplitudes required by all the blades

of a rotor. The results show that the power index increases moderately from hover to a peak value in

the transition flight regime (at 30 knots), then decreases slightly up to the forward speed of 60 knots,

and increases again quite significantly for the high speed range (above 60 knots). The power index at

160 knots is about three and a half times that in the transition flight regime, at 30 knots.

Further investigations of HHC swashplate motions and actuator power required are performed

for the cases when only individual components of the vibratory hub shears are suppressed. For this

study, the fixed-gain controller is used to suppress the vibratory hub shears for the same three-bladed

articulated rotor considered previously. The flight speed is held at 135 knots at a thrust coefficient-

solidity ratio of 0.08. Figure 3.9 shows the comparison between the controlled vibratory hub shears,

when each component is suppressed individually. For comparison purposes, the uncontrolled values

are also presented. The comparisons of HHC swashplate amplitudes and actuator powers are shown in

figure 3.10. The inputs required to suppress all three vibratory hub shear components are also shown.

The suppression of the 3P vertical hub shear is achieved with only the collective input, corresponding

to the third harmonics of the blade pitch schedule. When this vibratory hub shear component is

completely suppressed, there are small increases in the 2P and the 4P rotating inplane hub shears from

the uncontrolled values. Although the collective swashplate amplitudes required for this case are nearly

equal to those required for the complete suppression of all three vibratory hub shears, the actuator power
required is much smaller.

For the case when the 2P rotating inplane hub shear is suppressed, only the cyclic swashplate

motion corresponding to the second harmonic blade pitch is employed. Figure 3.9 shows that there

is a small increase in the 3/9 vertical hub shear and a small decrease in the 4/9 rotating inplane hub

shear due to this HHC component. It is worth noting from figure 3.10 that suppression of the 2/9

rotating inplane hub shear requires approximately the same amount of cyclic actuator input, as well as

the actuator power, as that required for the suppression of all three vibratory hub shear components.
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Finally, suppressionof the 4P rotatinginplanehubshearusingonly thecyclic swashplatemotion,
correspondingto the fourth harmonicsof bladepitch, is accompaniedby about30 percentreductionin
the 3P vertical hub shearand a small decreasein the 2P rotating inplanecomponent(fig. 3.9). The
swashplateamplitudesandthe actuatorpowerrequiredto suppressthis vibratory hub shearcomponent
areslightly smallerthan thoserequiredto suppressonly the3P verticalhub shear.

Eventhoughthe baselinevaluefor the 3P verticalhub shearis much larger than the 2P rotating
inplanecomponent(fig. 3.9), the actuatorpower requiredto suppressthe former componentis about
one-quarterof that requiredfor the suppressionof the lattercomponent.This is understandablesince
HHC usesthehigherharmonicbladepitch to generatenewairloadsto suppressthevibratory hubloads.
Sincea rotor bladegeneratesmore lift (in the verticaldirection) thandrag (in the inplanedirection) for
a givenchangein bladeangleof attack,thevertical hub shearis moresensitiveto the higherharmonic
inputs than the inplane components.Therefore,larger HHC inputs are requiredto suppressthe 2P
rotating inplanehub shear.

The validationstudyfor the three-bladedarticulatedmodel rotor of theCH-47D is alsoperformed
for caseswhen the rotor thrust is varied. For this, the forward speedis held fixed at 60 knotscorre-
spondingto anadvanceratio of 0.138. Therotor thrust coefficient-solidityratio (CT/o-) is variedfrom
0.04 to 0.14. This flight condition generallyrepresentsthetransitionflight regime. Figure 3.11shows
thecorrelationof the3P vertical hub shearwith andwithout HHC effects.With no HHC andat a low
thrustlevel (CT/o- = 0.04), theanalyticalresultsagreequite well with experimentaldata.For valuesof
CT/o greater than 0.08, the calculated value of the 3P vertical hub shear overpredicts the experimental

data. This vibratory hub shear component increases with thrust level, and the trend is captured well

in the analytical results. The discrepancies at high thrust may be attributed to the differences between

the calculated trim controls and the experimental values. These differences are small for the collective

controls, whereas the differences in cyclic controls are as large as 3 degrees.

Figure 3.12 shows the correlation of the 2P rotating inplane hub shear for the same flight conditions.

For most of the range of thrust level shown, the analytical results underpredict the experimental data.

However, the increasing trend of the vibratory hub shear component with increasing rotor thrust is well

predicted with the analysis. Correlation of the 4P rotating inplane hub shear is shown in figure 3.13 and

indicates that the calculations underpredict the experimental data for the complete range of thrust. The

analytical results indicate that this vibratory hub shear component, being much smaller as compared to

other components, increases slightly with thrust level. It was also found that perturbations in the cyclic

trim values have a substantial influence on the predicted vibratory inplane hub shears. The discrepancies

between the predicted and the measured 4P rotating inplane hub shears may be attributed to the rotor

inflow behavior at this flight condition, especially for wind tunnel testing. For a rotor tested in a wind

tunnel at the transition flight regime, a significant source of unsteady airloads originates from the rotor

wake which remains close to the rotor disk. Furthermore, this problem is exacerbated because the

rotor wake geometry is also influenced by the presence of the wind tunnel walls and floor, and such

recirculation effects have not been considered in the simulation study. Another factor which might affect

the results of the correlation is the effect of the hub motion which was not included in the analysis.

Compared to the hub loads predicted by other authors, the present analytical results are in much better

agreement with the experimental values.
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For the same flight conditions, HHC was introduced into the analysis to suppress the predicted

vibratory hub shears. The fixed-gain HHC controller with no control rate limiting factor (r = 0) was

used. Again, both analytical and experimental results are presented in figures 3.11-3.13. These figures

show that the fixed-gain controller suppresses almost completely all three vibratory hub shear compo-

nents. This effectiveness is confirmed by both analytical and experimental results. Since measurement

and process noise were not considered in the analysis, the predicted vibratory hub shears are suppressed
to a lower level than those obtained experimentally.

The corresponding swashplate amplitude and phase variations with thrust level are shown in

figures 3.14 and 3.15, respectively. These results indicate that all components of the HHC swashplate

amplitudes increase with the thrust level. The variation is almost linear for the collective swashplate

amplitude. It is interesting to note that the phases of both cyclic actuators vary by about 60 degrees as

CT/cr is varied from 0.04 to 0.14 while the collective actuator phase remains relatively constant. The

actuator power required by the HHC system, expressed in terms of the actuator power index, is shown

in figure 3.16. Within the range of rotor thrust shown, the actuator power increases quite significantly

with the rotor thrust level. The actuator power required at the high thrust level (CT/cr = 0.14) is about

four times that for the low thrust level (CT/cr = 0.04).

3.1.2 Secondary Effects of HHC

Next, the effects of HHC on the alternating blade bending stresses, control system loads, and the

rotor shaft torque are examined (figs. 3.17-3.21). Alternating blade bending stresses are quite important

since these affect the structural life of rotor blades. In figures 3.17-3.19, the alternating blade bending

moments near the blade midspan for the flap, lag, and torsion modes are shown, respectively, with and

without HHC effects. Due to the applied HHC, there are reductions in both the flap and the lag bending

moments at 0.48 and 0.31 radius, respectively (figs. 3.17 and 3.18). Interestingly, the magnitudes

decrease with thrust level and can be as much as 30 percent less than the baseline values.

In contrast, the alternating blade torsional moment at the blade midspan increases during HHC

application over the range of thrust levels shown in figure 3.19. The increase in this blade stress

component can be as much as 50 percent of the baseline values. Figure 3.20 shows the alternating pitch-

link load as a function of thrust level. With HHC, it increases up to 48 percent from the uncontrolled

values. An increase in the alternating blade torsional moment at midspan and the control loads were

also observed in wind tunnel testing. These increases are expected since the HHC inputs are in fact
implemented by exciting the blade torsional modes.

The effects of HHC on rotor performance, presented in terms of the rotor torque in figure 3.21,

are negligible. Changes in the rotor shaft torque with HHC on range from a 0.35 percent increase at

the low thrust level (CT/cr = 0.04) to a 0.5 percent reduction at the high thrust level (CT/Cr = 0.14).

Negligible changes in the rotor shaft torque with HHC were also noted in the wind tunnel investigation
(ref. 46).
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3.1.3 HHC Induced Blade Stall and Controller Performance

In order to investigate the influence of HHC on blade stall, a flight condition at 135 knots (# = 0.3)

and CT/cr = 0.09 is used. For this, the global (fixed-gain) controller (r = 0) is used to suppress the

three vibratory hub shear components: 3P vertical and the 2P and the 4P rotating inplane hub shears.

The vibratory responses presented in figure 3.22 show that all three components of the vibratory hub

shear are completely suppressed within three HHC cycles. As an indicator of blade stall, the blade

section normal force coefficients computed at 93 percent blade radius for the cases with HHC off and

HHC on are shown in figure 3.23 and 3.24, respectively. In these figures, C_v is the stall monitor

value of the normal force coefficient, C N is the total normal force coefficient (including dynamic stall

effects), and the stall boundary is the critical normal force value, CNa. As discussed in the formulation,

dynamic stall is initiated when the value of C'_ exceeds the critical normal force value, CN_. A stall

margin is thus defined as the difference between the values of C'_ and CN1.

Figure 3.23 shows that, with no HHC, the stall margin value for this particular blade section near

the blade tip is roughly 0.4 to 0.5 for the complete range of the rotor azimuth. However, figure 3.24

shows that, with HHC on, the stall margin for this particular blade section is reduced, especially in

the retreating side of the disk in the fourth quadrant. This result, although limited to a particular blade

section, indicates that the HHC inputs used to alleviate helicopter vibration might promote blade stall.

Further investigation of the HHC effects on blade stall is made by raising the CT/cr to 0.135 for

the same forward speed. This hypothetical flight condition exceeds the level-flight structural envelope

and maneuver capability of the CH-47 helicopter (ref. 99). Again, the global controller (r = 0) is first

used to suppress the vibration, and the resulting vibratory hub shear responses are shown in figure 3.25.

Clearly, complete vibration suppression for this flight condition can not be achieved using the global

controller. Over the range of HHC cycles, the vibratory hub shears have essentially the same magnitudes
as the uncontrolled values.

In figures 3.26 and 3.27, the resulting section normal force coefficients near the blade tip (93 percent

radius) for the case discussed above are shown without and with HHC over one rotor revolution. The

results presented in figure 3.27 are obtained at the sixth HHC cycle. Without HHC, the blade section

is already stalled in the fourth quadrant, whereas, with HHC on, there are two large lift overshoots that

cross over the stall boundary in the retreating blade tip region (fig. 3.27). These results indicate that for

a rotor operating with considerable Stall on the rotor disk, the HHC inputs used to suppress the vibratory

hub loads escalate the stall phenomena and thus deteriorate the HHC performance.

For the same flight condition, the local model with a control rate limiting factor, r ----0.3, is then

used to suppress the vibration. Figure 3.28 shows the time history of the vibratory hub shear responses.

This figure shows that the local controller, although having a sluggish transient behavior (within the

first two cycles), is quite effective in suppressing all three vibratory hub shear components. At the

eighth HHC cycle, there is a reduction of more than 95 percent for all three hub shear components.

This controller effectiveness is attributed to two effects. First, the transfer matrix at this flight condition

is nonlinear, and the local model is more suitable for such conditions. Second, the control rates are

constrained to suppress large control excursions, and this is beneficial for avoiding excessive blade stall.

The resulting blade section normal force coefficients at 93 percent blade radius for the eighth HHC
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cycle are shown in figure 3.29. These results should be compared with those presented in figure 3.26.

Even though this controller promotes some blade stall on the retreating side of the disk, the resulting

lift variation appears much smoother than that obtained with the global controller.

For the same forward speed, the rotor thrust is now reduced to the CT/Cr = 0.12 level. This flight

condition represents the level-flight boundary condition of the CH-47 aircraft (ref. 99). For this flight

condition, the vibration is suppressed within four cycles using the local controller with a control rate

limiting factor of 0.3. The effects of HHC in promoting blade stall, viewed from above the rotor disk,

are shown in figures 3.30 and 3.31. In these figures, the stall area on the disk is hatched and corresponds

to the locations where the value of C'_v is greater than the CN1 value. Figure 3.30 shows that with no

HHC the rotor is already stalled in the third and fourth quadrants of the disk, as might be expected.

However, the retreating blade tip region is stall free. Figure 3.31 indicates that, with HHC on, the stall

area spreads up to the blade tip region in the fourth quadrant of the disk. Again, this result confirms

that HHC inputs used to suppress vibration can indeed promote blade stall.

As a final note in this investigation, the results presented are limited to the wind tunnel simulation

of the three-bladed articulated rotor model of the CH-47D helicopter. For other rotors with different

blade numbers or with a different hub design, such as hingeless or bearingless, the results may be

entirely different. The HHC inputs used to suppress the rotor vibratory hub loads might not induce

blade stall on the rotor disk. Furthermore, the trim conditions used in this study simulate the flight

conditions of the CH-47D which is a tandem helicopter. For a single main rotor helicopter, the trim

requirements are entirely different, and a different HHC-stall-induced behavior may be expected.

3.2.1

3.2 Sensitivity Analysis

Hingeless Versus Articulated Rotors

The above investigation was performed for a typical articulated rotor system. Next, the vibration

suppression characteristics of two hingeless rotor configurations are analyzed and compared with results

of the articulated rotor system. These three-bladed hingeless rotors represent, respectively, a soft-inplane

(lag frequency = 0.71P) and a stiff-inplane (lag frequency = 1.4P) configuration. Both rotors have a

fundamental flap frequency of I.IP. For these results, wind tunnel flight conditions are simulated with

the forward speed ranging from zero to 188 knots and at a thrust coefficient-solidity ratio of 0.08.

Figure 3.32 shows the variation of the 3/9 vertical hub shear with forward speed for three rotor

systems. Below 100 knots, the calculated 3/9 vertical hub shears for these rotors are quite comparable.

At the higher forward speeds, the 3/9 vertical hub shear for the stiff-inplane rotor increases rapidly with

speed, while this component remains the lowest for the articulated rotor system.

Variation of the 2/9 rotating inplane hub shear with forward speeds for these three rotors is shown in

figure 3.33. For forward speeds below 135 knots, the 2/9 rotating inplane hub shears for the articulated

and the soft-inplane hingeless rotors are quite similar, whereas at higher speeds, the vibratory hub shear

component for the soft-inplane hingeless rotor is about 30 percent lower than that for the articulated

rotor system. For the stiff-inplane rotor, the 2P vibratory hub shear increases considerably for forward
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speeds above 100 knots. This is understandable since the blade fundamental lag mode frequency for the

stiff-inplane rotor of 1.4P is closer to the resonant frequency of 2P than the other two rotor systems.

Figure 3.34 shows the 4P rotating inplane hub shears. The magnitudes of this high frequency hub shear

are much smaller than those of the low frequency 2P hub shear and are quite similar for all three rotor
systems.

Next, HHC inputs are applied to suppress the vibratory hub shear components for these three rotor

configurations. Because the HHC system is quite effective in suppressing completely the 3P vertical

and the 2P and 4P rotating inplane hub shears, the controlled vibratory hub shears are not shown. Even

though the vibratory hub moments for the hingeless rotor are hot small, especially at the high forward

speeds, these are not suppressed in this study, so subsequent HHC results can be compared directly with
those obtained earlier for the articulated rotor.

Figure 3.35 shows the actuator power index required by the HHC system at different forward

speeds. For the stiff-inplane hingeless rotor above 100 knots, the HHC inputs required to suppress

the vibratory hub shears become very large, and the problem associated with the convergence of the

numerical solution hinders any more results. For moderate to high forward speeds, the power index for

the soft-inplane hingeless rotor is larger than that required for the articulated rotor. It is interesting to

note that in the transition flight regime, the actuator power index is the largest for the soft-inplane rotor

even though the vibratory hub loads are the largest for the stiff-inplane configuration. However, for

forward speeds above 140 knots, the power index for the soft-inplane hingeless rotor becomes lower

than that for the articulated rotor system. In fact, at 160 knots, the power index for the soft-inplane

hingeless rotor is less than half that of the articulated rotor. For forward speeds above 50 knots, the

actuator power index required by the stiff-inplane hingeless rotor is the largest among the three rotor
systems considered.

3.2.2 Parametric StudymFour-Bladed Hingeless Rotor

Next, the sensitivity of the uncontrolled vibratory hub loads and the actuator power for a hingeless

rotor with respect to various blade design parameters is examined. For this simulation, a four-bladed

soft-inplane hingeless rotor is chosen as a baseline configuration. The structural characteristics of this

rotor blade are similar to those of the three-bladed soft-inplane hingeless rotor considered earlier, i.e.,

the blade fundamental flap and lag mode frequencies are 1.1P and 0.7P, respectively. Propulsive trim

with steady level flight is simulated for forward speed of 40 knots corresponding to a rotor advance

ratio of 0.09. This airspeed corresponds to the transition flight regime where the rotor would experience

a high level of vibration. The rotor thrust coefficient-solidity ratio is held at 0.08. The fixed-gain HHC

controller is now configured to suppress the 4P vertical, the 3/9 and 5/9 rotating inplane hub shears,
and the 3/9 and 5t 9 rotating hub moments.

Blade torsion stiffness- The blade torsion frequency is varied by adjusting the blade torsion

stiffness of the inboard section. In this simulation, blade rotating fundamental torsion frequency is

varied from 3/9 to 7P, and the baseline value is 4.5/9. Figure 3.36 shows the uncontrolled vibratory

hub shears with blade torsion frequency. For most of the range of frequencies shown, the rotor vibratory

hub shear components are quite insensitive to the blade torsion stiffness. An exception is for frequencies

close to 3/9 where there is a considerable reduction in the 4P vertical hub shear and a moderate increase
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in the 3P inplane hub shear. This is attributed to the resonance of blade torsional response with the

forcing at 3P. The vibratory hub moments are presented in figure 3.37, which shows that the 3P hub

moment increases moderately with blade torsion stiffness. The 5P hub moment is small compared to

the 3P component and is quite insensitive to blade torsion stiffness. The variation of the actuator power

index with blade torsion frequency is shown in figure 3.38. It is interesting to note that the power index

is lowest at the blade torsion frequency of about 3.85P, for which the actuator power index is less than

half that at the torsion frequency of 7P.

Blade bending stiffness- Blade bending stiffnesses in the flapwise and chordwise directions are

varied to study their effects on the vibratory hub loads and the actuator power. Blade bending stiffness

in the flapwise direction affects the blade elastic flap modes, and its variation is presented in terms of

the blade second rotating flap mode frequency. Figure 3.39 shows the uncontrolled vibratory hub shear

variation with blade flap mode frequency; the baseline value is 2.85P. Variation of the flapwise stiffness

affects all three vibratory hub shear components. The 4P vertical hub shear is a minimum when the

blade frequency is about 3P, while the 3P inplane hub shear is a minimum when the blade frequency

is 2.65P. The 5P inplane hub shear component is small compared to the other two components, and

its magnitude decreases steadily with an increase in flap stiffness. Variations of the 3P and 5P hub

moment with blade flap bending stiffness are shown in figure 3.40. Within the range of flap frequencies

shown, it is interesting to note that the 5P hub moment increases sharply as the flap frequency is reduced

below 2.6P, while the 3P hub moment reaches a minimum at this frequency value. In figure 3.41, the

actuator power remains constant for the range of flap frequencies above 2.9P and increases sharply for
the range of flap frequencies below this value.

Variation of the blade chordwise stiffness is presented in terms of the blade second rotating lag

mode frequency; the baseline value is 5.8P. The uncontrolled vibratory hub shears are presented in

figure 3.42. For this rotor configuration, the vibratory hub shears are quite sensitive to the placement of

the blade second lag mode frequency. The magnitude amplification of hub shears is quite pronounced

as the blade chordwise frequency is placed at the corresponding harmonic. It is interesting to note that

the resonant conditions exist not only for the inplane shears but also for the vertical component. In fact,

at resonance, the 4P vertical hub shear increases by four and a half times the baseline value. Magnitude

amplification is also shown in figure 3.43 where the vibratory hub moments are presented. This figure

shows that the 5P hub moment increases noticeably as the lag frequency approaches 4P, while the

effect of lag stiffness on the 3P hub moment is small. The actuator power index variation shown in

figure 3.44 indicates that minimum power required is achieved by placing blade lag frequencies either

at 3.6P or at 6.2P away from the resonant frequencies at the rotor harmonics.

Blade linear pretwist- Blade pretwist redistributes blade steady airloads in the spanwise direction

and introduces elastic flap-lag coupling. In this study, blade linear pretwist is used with values ranging

from zero to -16 degrees. The baseline blade configuration has a pretwist of-8 degrees. Figures 3.45

and 3.46 show, respectively, the vibratory hub shears and moments with blade pretwist. These figures

show that the 4t 9 vertical and the 3/9 inplane hub shears and the two hub moment components all

decrease with increasing blade pretwist. The 5/9 inplane hub shear is small and increases slightly with

increasing blade pretwist. The actuator power is shown in figure 3.47, where a reduction of 20 percent

in the actuator power is achieved with a blade pretwist of-16 degrees as compared to an untwisted
blade.
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Blade chordwise center-of-gravity offset- Blade chordwise center-of-gravity (c.g.) offset from

the elastic axis introduces inertial coupling between the flap and torsion modes. For this study, the elastic

axis is assumed to be at the quarter chord, and a positive c.g. offset represents the blade center of mass

placed ahead of the quarter chord, toward the blade leading edge. The baseline rotor configuration has

no offset. Figures 3.48 and 3.49 show that the 4P vertical and the 3P inplane hub shears and the 3P

hub moment are all reduced as the blade c.g. is shifted forward of the elastic axis. The 5P inplane hub

shear and the 5P inplane hub moment are small compared to the other vibratory hub load components

and increase slightly as the blade chordwise c.g. is moved ahead of the elastic axis. From figure 3.50,

the actuator power increases sharply as the blade c.g. is placed more than 2 percent of chord ahead of

the elastic axis and increases slightly as the blade c.g. is placed behind the elastic axis. In fact, the

actuator power is lowest when the blade c.g. is placed at 2 percent of chord length, ahead of the elastic
axis.

Offset of elastic axis from quarter-chord axis- The offset of blade elastic axis from the blade

quarter chord introduces aerodynamic pitch-flap coupling, and its effects on the vibratory hub loads and

HHC system were examined. The offset is positive when the blade elastic axis is placed ahead of the

quarter chord, and, for the baseline rotor, the elastic axis is at quarter chord (zero offset). Figures 3.51

and 3.52 show the variations of the vibratory hub loads with the variation of this off.set value. Variations

of the vibratory hub loads are quite similar to those observed when the blade c.g. is varied with respect

to the elastic axis location. Figure 3.53 shows the actuator power variation with location of elastic axis,

and a similar behavior is observed to that shown in figure 3.50. Placing the elastic axis in front of the

quarter chord helps reduce the major vibratory hub load components. A minimum in actuator power

is achieved by placing the elastic axis 3 percent of chord length ahead of the quarter chord. At this

minimum value, a 17 percent reduction in actuator power is achieved from the baseline value.

Blade thrust- Rotor thrust, expressed in terms of CT/O-, is varied from 0.06 to 0.12, and the results

are shown in figures 3.54-3.56. Figures 3.54 and 3.55 show that all the vibratory hub load components

increase noticeably with an increase in rotor thrust. The actuator power variation is presented in

figure 3.56, which shows that, at high thrust (CT/a : 0.12), the power required is twice that for the

baseline case (CT/O- : 0.08). Within the range of rotor thrusts shown, the actuator power varies almost

linearly with the rotor thrust.

3.2.3 Parametric StudyRThree-Bladed Articulated Rotor

Next, the sensitivity of the uncontrolled vibratory hub loads and the actuator power for the baseline

three-bladed rotor with respect to various blade design parameters is examined. For this simulation, the

level-flight boundary condition of the aircraft is used, i.e., V = 135 knots (# -- 0.3), and CT/Cr = 0.12.

The closed-loop HHC controller with control rate limiting factor is used to suppress the 3/9 vertical and

the 2/9 and 4/9 rotating inplane hub shears. The blade and rotor properties considered previously in the

correlation study (table 3.1) are used as a baseline rotor configuration.

Blade torsion stiffness- In this simulation, the blade fundamental torsion frequency is varied from

3.8/9 to 6.8/9; the baseline value is 4.86/9. The uncontrolled vibratory hub shear variation with blade

torsion frequency is presented in figure 3.57. For most of the frequency range shown, the vibratory

inplane hub shears are quite insensitive to the blade torsion frequency. For the torsion frequencies below
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the baseline value, the 2P rotating inplane hub shear increases slightly, while the 4P inplane component

decreases slightly from the baseline values. The 3P vertical hub shear increases moderately with blade

torsion stiffness. In fact, there is a 35 percent reduction in the 3P vertical component as the blade

torsion frequency is reduced from 6.8P to 3.8P. The actuator power index variation with blade torsion

frequency is shown in figure 3.58. From an actuator design point of view, it is interesting to note that a

torsionally stiff blade requires less actuator power than a torsionally soft blade. A torsionally stiff blade

with frequency greater than 4.5P consumes roughly 40 percent less actuator power than a blade with

torsion frequency placed at 3.8P. For torsion frequencies greater than 4.5P, the actuator power index
is insensitive to the blade torsion vibration characteristics.

Blade bending stiffnesses- Blade bending stiffnesses in the flapwise and chordwise directions are

varied to study their effects on the vibratory hub loads and the actuator power. Figure 3.59 shows

the uncontrolled vibratory hub shear variation with the blade flap mode frequency, where the baseline

frequency value is 2.66P. Variation of flapwise stiffness significantly affects the 3P vertical hub shear,

while the inplane components are less sensitive to this parameter. The value of the 3P vertical hub shear

is highest for low flap stiffness. As the flap frequency is increased, this vibratory hub shear component

reaches a minimum at 2.78P, increases to a local maximum at 3P, and then decreases again for flap

frequencies greater than 3P. The peak value which occurs at 3P may be attributed to the resonant

condition. The 2P rotating inplane hub shear increases slightly with increasing flap stiffness, while the

4P component remains relatively unchanged. The actuator power index variation with flap frequency

is shown in figure 3.60. This figure indicates that minimum actuator power is achieved at the first flap

bending frequency of 2.65P. Reducing the flap stiffness from this optimum value does not significantly

change the actuator power required, whereas increasing it would increase the actuator power by a small
amount.

Variation of the blade chordwise stiffness is presented in terms of the blade first lag bending

frequency; the baseline frequency is 6.4P. The uncontrolled vibratory hub shears are presented in

figure 3.61. The sharp increase in the 4P rotating inplane hub shear as the blade lag bending frequency

approaches 4P is attributed to the resonant condition. At this frequency, the 4P inplane hub shear

increases by five times the baseline value. For the range of frequencies greater than 4.5P, this vibratory

hub shear component is quite insensitive to the blade lag stiffness. Within the range of blade lag

frequencies shown, the 2P rotating inplane hub shear is insensitive to blade lag stiffness, while the 3P

vertical component varies significantly. At the lag frequency of 4P, the 3P vertical hub shear is highest.

As the lag stiffness is increased, the 3P vertical hub shear component reaches a local minimum at 4.6P,

increases to a local maximum at 5.7P, decreases again to another local minimum at 6.4P, and again

increases at the higher frequency values. The actuator power index variation is shown in figure 3.62.

The HHC power required to suppress vibration is quite insensitive to the blade lag stiffness, except

when the lag frequency is placed at 4P, at which point the actuator power is increased by 30 percent
from the baseline value.

Blade chordwise c.g. offset- The baseline rotor configuration has a nonzero c.g. offset distribution

as shown in table 3.1. Figure 3.63 shows the uncontrolled vibratory hub shear as a function of blade

chordwise c.g. offset from the elastic axis, expressed in percentage of chord length. Except for the

baseline configuration, the chordwise c.g. offset considered in this parametric investigation is made by a

uniform variation across the blade span. Figure 3.64 shows that all three vibratory hub shear components

are reduced as the blade c.g. is moved ahead of the elastic axis. The most significant reduction is the
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2P rotating inplanehub shearwhich is reducedby morethanhalf asthe bladec.g. is shifteduniformly
by more than6 percentof chord lengthaheadof the elasticaxis. Figure 3.64showsthat the actuator
power is reducedasthebladechordwisec.g. is placedaheadof theelasticaxis. In fact, by movingthe
bladec.g. from theelasticaxis towardthebladeleadingedgeby 10percentof chordlengthreducesthe
actuatorpower index by 40 percent.

Offset of elastic axis from quarter chord- Figure 3.65 shows the uncontrolled vibratory hub

shear variation with the offset of elastic axis from quarter chord. The 3P vertical and the 4P inplane

hub shears are quite insensitive to this parameter, while the 2P inplane hub shear varies significantly

with the elastic axis location. As the elastic axis is shifted forward of the blade quarter chord, the 2P

inplane component reduces to a minimum at 5 percent of chord length offset and increases at higher
offset value. Figure 3.66 shows the actuator power index variation with the offset of the elastic axis

from quarter chord. From this figure, the actuator power is lowest when the elastic axis is placed at

5 percent of chord length ahead of the quarter chord, at which point the actuator power is reduced by
half from the baseline value.
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4 CONCLUSIONS

An analytical formulation has been developed to calculate the vibratory hub loads for helicopter

rotors in forward flight and the corresponding higher harmonic control inputs to suppress these loads.

The analysis was based on a finite element method in both space and time domains. A nonlinear time

domain unsteady aerodynamic model, based on the indicial response formulation, was used to calculate

the blade airloads. The rotor induced inflow was calculated using a free wake analysis. The vehicle

trim control settings and blade steady responses were solved as one coupled solution using a modified

Newton method. The HHC responses form a part of the steady response calculations where the basic

collective and cyclic trim inputs were superimposed with the higher harmonic components. A linear

frequency-domain quasi-steady model, in terms of a transfer function, was used to relate the harmonics

of the HHC inputs to the harmonics of the vibratory hub loads. Optimal HHC was calculated from the

minimization of the vibratory hub loads, expressed in terms of a quadratic performance index.

The calculated vibratory hub loads, with and without HHC effects, have been correlated with wind

tunnel data obtained from a three-bladed articulated scaled model rotor. The secondary effects of HHC

were also investigated including the influences of HHC on blade stall. Systematic parametric studies

have been performed on different rotor systems to investigate the effects of blade design variables on

the vibratory hub loads, HHC inputs, and actuator power requirements. The following conclusions were
drawn from this study:

1. Good correlation of predicted vibratory hub loads was obtained with experimental data at

different flight conditions. A refined aerodynamic model including compressibility effects and dynamic

stall helped improve the correlation at high forward speeds. The inclusion of the free wake analysis

improved the correlation in the transition flight regime. For the three-blade model rotor operated at low

speed, the correlation of the 3P vertical and the 2P rotating inplane hub shears was adequate, while

the calculated 4P rotating inplane hub shear was significantly lower than the experimental values.

2. The fixed-gain HHC controller was quite effective in suppressing the rotor vibratory hub shears

for most of the rotor operating conditions. The HHC actuator amplitudes and power requirements

increased substantially at high forward speed range (above 100 knots, or # = 0.2) and increased

moderately with the rotor thrust level. For complete vibratory hub shear suppression, a large percentage

of the actuator power is required to suppress the 2P rotating inplane hub shear component on a three-

bladed rotor. At high forward speeds, a soft-inplane hingeless rotor required less actuator power than an

articulated rotor, whereas the actuator power requirement for a stiff-inplane hingeless rotor was generally

higher than that for an articulated or a soft-inplane hingeless rotor.

3. For a rotor operating in the transition flight regime, HHC caused moderate reduction in the flap

and lag bending stresses near the blade midspan, whereas it increased the control system fatigue loads

and the blade torsional stresses significantly. HHC effects on overall rotor performance were found to

be negligible at the low speed regime.

4. For a rotor operated at or outside the flight boundary, the adaptive-gain controller suppressed

almost completely the rotor vibratory hub shears, even though HHC might actually increase the stalled

flow region on the rotor disk. For such flight conditions, the fixed-gain controller was ineffective in

suppressing the vibratory hub loads.
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5. For a four-blade soft-inplane hingeless rotor operated in the transition flight regime
(# = 0.09, CT/a = 0.08),

a. The actuator power was quite sensitive to the blade torsion stiffness, while the baseline

vibratory hub loads were less sensitive. Placing blade torsion frequency at 3.85P resulted
in a minimum actuator power.

b. Placing blade second elastic flap frequency above 2.9P helped reduce the actuator power.

c. The uncontrolled vibratory hub loads were sensitive to the placement of the blade second

elastic lag frequency. Placing blade second elastic lag frequency at 3.6P or at 6.2P helped
reduce the actuator power.

d. An increase in blade linear pretwist reduced the actuator power.

e. Placing blade center of mass 2 percent of chord length ahead of the elastic axis and placing

the elastic axis 3 percent of chord length forward of the quarter-chord axis helped reduce
the actuator power.

f. The uncontrolled vibratory hub loads and the actuator power increased with rotor thrust.

6. From a sensitivity study of blade design parameters for a three-bladed articulated rotor operating
at the level-flight boundary (# = 0.3, CT/a = 0.12),

a. The 3P vertical hub shear was sensitive to the blade torsion stiffness, while the inplane

components were less sensitive. The actuator power was quite insensitive to the blade

torsion frequency, except near the resonant frequency of 3P.

b. The 3P vertical hub shear was sensitive to the placement of the blade first flap bending

frequency, while the inplane vibratory hub shear components and the actuator power were

less sensitive. Both the 3P vertical and 4P rotating inplane hub shear were sensitive to

the blade lag stiffness. Placing the blade first elastic lag frequency at 4P increased the

4P rotating inplane hub shear by five times and the actuator power by one-third from the
baseline values.

c. Placing the blade center of mass ahead of the elastic axis helped reduce both the uncontrolled

vibratory hub shears and the actuator power. Placing the elastic axis at 5 percent of chord

length ahead of the quarter chord minimized the 2P rotating inplane hub shear as well as
the actuator power.

Items (5) and (6) above indicate that blade parameters had moderate to strong influence on the

amplitude and actuator power requirements for an HHC system. Therefore, the design of an optimum

blade which is best suited for HHC application (i.e., with minimum actuator power requirement) is, in
principle, feasible.

74
?



, !}}

i/i{i::]

REFERENCES

1. Reichert, G.: Helicopter Vibration Control--A Survey. Proceeding of the Sixth European Rotorcraft

and Powered-Lift Aircraft Forum, Sept. 1980.

2. Loewy, R. G.: Helicopter Vibrations: A Technological Perspective. J. American Helicopter Society,
vol. 29, no. 4, Oct. 1984, pp. 4-30.

3. Balmford, D. E. H.: The Control of Vibration in Helicopters. Aeronautical J., Feb. 1977, pp. 63-67.

4. McCloud, J. L. Ill: Studies of a Large Scale Jet-Flap Rotor in the 40- by 80-Foot Wind Tunnel.

Proceedings of the American Helicopter Society Mideast Regional Symposium on Status of
Testing and Modeling of V/STOL Aircraft, Oct. 1972.

5. McCloud, J. L. III; and Kretz, M.: Multicyclic Jet-Flap Control for Alleviation of Helicopter Blade

Stresses and Fuselage Vibration. Proceedings of the AHS/NASA Ames Specialists Meeting on
Rotorcraft Dynamics, NASA SP-352, Feb. 1974, pp. 233-238.

6. Piziali, R. A.; and Trenka, A. R.: A Theoretical Study of the Application of Jet-Flap Circulation

Control for Reduction of Rotor Vibratory Forces. NASA CR-137515, May 1974.

7. Trenka, A. R.: A Theoretical Study of the Application of Jet Flap Circulation Control For Reduction

of Rotor Vibratory Forces--Addendum. NASA CR-137729, Oct. 1975.

8. McCloud, J. L. III: An Analytical Study of a Multicyclic Controllable Twist Rotor. Proceedings of

the American Helicopter Society 31st Annual Forum, May 1975.

9. Lemnios, A. Z.; and Dunn, E K.: Theoretical Study of Multicyclic Control of a Controllable-Twist

Rotor. NASA CR-151959, Apr. 1976.

10. McCloud, J. L. III; and Weisbrich, A. L.: Wind Tunnel Test Results of a Full-Scale Multicyclic

Controllable-Twist Rotor. Proceedings of the American Helicopter Society 34th Annual Forum,
AHS Paper No. 78-60, May 1978.

11. Brown, T. J.; and McCloud, J. L. III: Multicyclic Control of a Helicopter Rotor Considering the

Influence of Vibration, Loads, and Control Motion. Proceedings of the AIAA/ASME/ASCE/AHS

21st Structures, Structural Dynamics, and Material Conference, May 1980, pp. 82-100.

12. Blackwell, R. H., Jr.; and Welsh, W. A.: Higher Harmonic and Trim Control of the X-Wing Circu-

lation Control Wind Tunnel Model Rotor. Proceedings of the American Helicopter Society 45th
Annual Forum, May 1989, pp. 65-79.

13. Abramson, J.; and Rogers, E. O.: Optimal Theory Applied to Higher Harmonic Control of Circulation

Control Rotors. Proceedings of the American Helicopter Society 37th Annual Forum, May 1981,
pp. 26-36.

14. Ham, N. D.: A Simple System for Helicopter Individual-Blade-Control Using Modal Decomposition.
Vertica, vol. 4, no. 1, 1980, pp. 23-28.

75



15. McKillip, R. M., Jr.: PeriodicControl of the Individual-Blade-ControlHelicopter Rotor. Vertica,
vol. 9, no. 2, 1985,pp. 199-225.

16. Winson,J.: Testingof Rotorsfor FatigueLife. J. AeronauticalScience,vol. 15,no. 7, July 1948,
pp. 392-402.

17. Jensen,H. T.: DesignandOperationalFeaturesof the SikorskyHelicopterRotor Stand.Instituteof
AeronauticalSciences,PreprintNo. 262,Feb. 1951.

18. Stewart,W.: SecondHarmonicControl on the Helicopter Rotor. AeronauticalResearchCouncil,
ReportsandMemorandaNo. 2997,Aug. 1952.

19. Arcidiacono, E J.: TheoreticalPerformanceof HelicoptersHaving Secondand Higher Harmonic
FeatheringControl. J.AmericanHelicopterSociety,vol. 6, no. 2, Apr. 1961,pp. 8-19.

20. Drees,J.M.; andWernicke,R. K.: An ExperimentalInvestigationof a SecondHarmonicFeathering
Device on the UH-IA Helicopter.U.S. Army TransportationResearchCommand,TR-62-109,
Fort Eustis,Va., June1963.

21. Daughaday,H.: Suppressionof TransmittedHarmonicRotor Hub Loads by Blade Pitch Control,
U.S.Army Aviation Materiel Laboratories, TR-67-14, Fort Eustis, Va., Nov. 1967.

22. Shaw, J.: Higher Harmonic Blade Pitch Control for Helicopter Vibrati6n Reduction: A Feasibility

Study. Aeroelastic and Structures Research Laboratory Report ASRL TR1501, Massachusetts

Institute of Technology, Dec. 1968.

23. Balcerak, J. C.; and Erickson, J. C." Suppression of Transmitted Harmonic Vertical and Inplane

Rotor Loads by Blade Pitch Control. U.S. Army Air Mobility and Development Laboratory,
TR-69-39, Fort Eustis, Va., July 1969.

24. Sissingh, G. J.; and Donham, R. E.: Hingeless Rotor Theory and Experiment on Vibration

Reduction by Periodic Variation of Conventional Controls. Proceedings of the AHS/NASA

Ames Specialists Meeting on Rotorcraft Dynamics, NASA SP-352, Feb. 1974, pp. 261-277.

25. McHugh, E J.; and Shaw, J.: Benefits of Higher Harmonic Blade Pitch: Vibration Reduction,

Blade Load Reduction, and Performance Improvement. Proceedings of the American Helicopter

Society Mideast Regional Symposium on Rotorcraft Technology, Aug. 1976.

26. McHugh, F. J.; and Shaw, J.: Helicopter Vibration Reduction with Higher Harmonic Blade Pitch.

J. American Helicopter Society, vol. 23, no. 4, Oct. 1978, pp. 26-35.

27. Hammond, C. E.: Helicopter Vibration Reduction via Higher Harmonic Control. Proceedings of the

Rotorcraft Vibration Workshop, NASA Ames Research Center, Feb. 1978.

28. Wood, E. R.; Powers, R. W.; and Hammond, C. E.: On Methods for Application of Higher Har-

monic Control. Proceedings of the Fourth European Rotorcraft and Powered-Lift Aircraft Forum,

Sept. 1978.

29. Powers, R. W.: Preliminary Design Study of a Higher Harmonic Blade Feathering Control System.
NASA CR-159327, June 1980.

76



ii i:ii!__

_i_

i!?i?

30. McCloud, J. L. III: The Promise of Multicyclic Control. Vertica, vol. 4, no. 1, 1980, pp. 29-42.

31. Shaw, J.: Higher Harmonic Blade Pitch Control: A System for Helicopter Vibration Reduction.

Ph.D. Thesis, Massachusetts Institute of Technology, May 1980.

32. Shaw, J.; and Albion, N.: Active Control of Rotor Blade Pitch for Vibration Reduction: A Wind

Tunnel Demonstration. Vertica, vol. 4, no. 1, 1980, pp. 3-11.

33. Shaw, J.; and Albion, N.: Active Control of the Helicopter Rotor for Vibration Reduction. J. Amer-

ican Helicopter Society, vol. 26, no. 3, July 1981, pp. 32-39.

34. Yen, J. G.: Vibration Reduction with Higher Harmonic Blade Feathering for Helicopters with Two-

Bladed Teetering and Four-Bladed Hingeless Rotors. Proceedings of the American Helicopter

Society 36th Annual Forum, AHS Paper No. 80-69, May 1980.

35. Hammond, C. E.: Wind Tunnel Results Showing Rotor Vibratory Loads Reduction Using Higher

Harmonic Blade Pitch. J. American Helicopter Society, vol. 28, no. 1, Jan. 1983, pp. 10-15.

• 36. Hammond, C. E.; and Hollenbaugh, D. D.: Quantification of Helicopter Vibration Ride Qualities.

Proceedings of the Seventh European Rotorcraft and Powered-Lift Aircraft Forum, Sept. 1981.

37. Molusis, J. A.; Hammond, C. E.; and Cline, J. H.: A Unified Approach to the Optimal Design

of Adaptive and Gain Scheduled Controllers to Achieve Minimum Helicopter Rotor Vibration.

Proceedings of the American Helicopter Society 37th Annual Forum, May 1981, pp. 188-203.

38. Molusis, J. A.: Investigation of Unexplained Behavior and Nonlinearity Observed in Wind Tun-

nel Tests of Higher Harmonic Control. U.S. Army Research and Technology Laboratories,

TR-83-D8, Fort Eustis, Va., Aug. 1983.

39. Molusis, J. A.: The Importance of Nonlinearity on the Higher Harmonic Control of Helicopter

Vibration. Proceedings of the American Helicopter Society 30th Annual Forum, May 1983,
pp. 624-647.

40. Beliewa, R. L.: Aeroelastic Analysis for Helicopter Rotor Blades with Time-Variable, Nonlinear

Structural Twist and Multiple Structural Redundancy--Mathematical Derivation and User's
Manual. NASA CR-2638, 1976.

41. Wood, E. R.; Powers, R. W.; Cline, J. H.; and Hammond, C. E.: On Developing and Flight Testing

a Higher Harmonic Control System. J. American Helicopter Society, vol. 30, no. 1, Jan. 1985,
pp. 3-20.

42. Gupta, B. P.; Logan, A. H.; and Wood, E. R.: Higher Harmonic Control for Rotary Wing Air-

craft. Proceedings of the AIAA/AHS/ASEE Aircraft Design Systems and Operations Meeting,
Oct. 1984.

43. Straub, E K.; and Byrns, E. V., Jr.: Application of Higher Harmonic Blade Feathering on the OH-6A

Helicopter for Vibration Reduction. NASA CR-4031, Dec. 1986.

44. Johnson, W.: Self-Tuning Regulators for Multicyclic Control of Helicopter Vibrations. NASA Tech-
nical Paper 1996, Mar. 1982.

77



45. Chopra, I.; and McCloud, J. L. III: A NumericalSimulation Study of Open-Loop,Closed-Loop
and Adaptive Multicyclic Control System.Proceedingsof the American Helicopter Society
NortheastRegionNational SpecialistsMeetingon HelicopterVibration,Technologyfor theJet
SmoothRide, Nov. 1981,pp.63-77.

46. Shaw,J.; Albion, N.; Hanker, E. J.; and Teal, R. S.: Higher Harmonic Control: Wind Tunnel

Demonstration of Fully Effective Vibratory Hub Force Suppression. J. American Helicopter
Society, vol. 34, no. 1, Jan. 1989, pp.14-29.

47. Lehmann, G.: The Effects of Higher Harmonic Control on a Four-Bladed Hingeless Model Rotor.

Vertica, vol. 9, no. 3, 1985, pp. 273-284.

48. Jacob, H. G.; and Lehmann, G.: Optimization of Blade Pitch Angle for Higher Harmonic Control.

Vertica, vol. 7, no. 3, 1983, pp. 271-286.

49. Taylor, R. B.; Farrar, E A.: and Miao, W.: An Active Control System for Helicopter Vibration

Reduction by Higher Harmonic Blade Pitch. Proceedings of the American Helicopter Society
36th Annual Forum, AHS Paper No. 80--71, May 1980.

50. Davis, M.: Refinement and Formulation of Helicopter Real-Time Self-Adaptive Active Vibration
Controller Algorithms. NASA CR-3821, 1983.

51. O'Leary, J. J.; Kottapalli, S. B. R.; and Davis, M.: Adaptation of a Modern Medium Helicopter

(Sikorsky S-76) to Higher Harmonic Control. Proceedings of the AHS/NASA Ames Research

Center Second Decennial Specialists Meeting on Rotorcraft Dynamics, Nov. 1984.

52. Miao, W.; Kottapalli, S. B. R.; and Frye, H. M.: Flight Demonstration of Higher Harmonic Control

(HHC) on the S-76. Proceedings of the American Helicopter Society 42nd Annual Forum, June
1986, pp. 777-791.

53. Walsh, D.: Flight Test of an Open-Loop Higher Harmonic Control System on an S-76A Helicopter.

Proceedings of the American Helicopter Society 42nd Annual Forum, June 1986, pp. 831-843.

54. Polychroniadis, M.; and Achache, M.: Higher Harmonic Control: Flight Test on an SA 349 Research

Gazelle. Proceedings of the American Helicopter Society 42nd Annual Forum, June 1986,
pp. 811-820.

55. Achache, M.; and Polychroniadis, M.: Development of an Experimental System for Active Con-

trol of Vibration on Helicopters--Development Methodology for an Airborne System. Vertica,
vol. 11, nos. 1 and 2, 1987, pp. 123-138.

56. Jacklin, S. A.: Performance Comparison of Five Frequency Domain System Identification Techniques

for Helicopter Higher Harmonic Control. Presented at the Second International Conference on

Rotorcraft Basic Research, University of Maryland, College Park, Md., Feb. 1988.

57. Sangha, K. R.: Bearingless Rotors and Higher Harmonic Control Modeling Using RACAP. Pro-

ceedings of the American Helicopter Society 44th Annual Forum, June 1988, pp. 293-304.

78



-_ : H: : :H • _ . • ::_/_ : ,• •H• :: •_•_ •::H:. : :• + • _ •_ _• _ : _/ :: " •,_• : :_ _ •_ •• : :7::_: _•/2•k _¸ / +•:_::• _::.:::::::::::::::::::::::::::::::T_•::_:_;:_:-••: _:: : :: : :: ::: :_:: :• ::::•_:_:;::•:::::::::::::::::::::::::::::::_::::::::::::::::::::::::::::::::::::::::::::::::::::::::

• ............. _ : _ • • .•• • .:• • • . :_ •,••:•: _ :•_•, _:_ _• :: •::_::•::::::::_i:_i:i::i_:/:L:i_..::_i:i:i::•:::::::::_:::::::i:i:i•i: _:_:!:!:i:i:_:i:i:_:_:i•:i•i:i:i•i:_:_:_:_:_:i:i:_•i:_:_:_:i:i:_:_:_:i:_:i:_:_:_:_i_i_{_i{_i_{_{_{{iii_iii_i_i_ii

58. Robinson, L. H.; and Friedmann, E E: Analytical Simulation of Higher Harmonic Control Us-

ing a New Aeroelastic Model. Proceedings of the AIAA/ASME/ASCE/AHS 30th Structures,

Structural Dynamics and Material Conference, Paper No. 89-1321, Apr. 1989.

59. Dinyavari, M. A. H.: Application of the Finite-State Arbitrary Motion Aerodynamic to Rotor

Blade Aeroelastic Response and Stability in Hover and Forward Flight. Proceedings of the

AIAA/ASME/ASCE/AHS 26th Structures, Structural Dynamics and Material Conference,

Paper No. 85-0763, Apr. 1985.

60. Fung, Y. C.: An Introduction to the Theory of Aeroelasticity. John Wiley and Sons, N.Y., 1955.

61. Blisplinghoff, R. L.; Ashley, H.; and Halfman, R. L.: Aeroelasticity. Addison-Wesley Publishing
Company, Cambridge, Mass., 1955.

62. Du

63. Du

Val, R. W.; Gregory, C. Z.; and Gupta, N. K.: Design and Evaluation of a State-Feedback

Vibration Controller. J. American Helicopter Society, vol. 29, no. 3, July 1984, pp. 30-37.

Val, R. W.; and Saberi, H.: Active Control of the RSRA/X-Wing Vehicle Using a Time-Domain

Approach. Proceedings of the American Helicopter Society 44th Annual Forum, May 1988,
pp. 221-230.

64. Wereley, N. M.; and Hall, S. R.: Linear Control Issues in the Higher Harmonic Control for Helicopter

Vibrations. Proceedings of the American Helicopter Society 45th Annual Forum, May 1989,
pp. 955-971.

65. Kretz, M.: Research in Multicyclic and Active Control of Rotary Wing. Proceedings of the First

European Rotorcraft and Power-Lift Aircraft Forum, Sept. 1975.

66. Kretz, M.: Research on Multicyclic and Active Control of Rotor Wing. Vertica, vol. 1, 1976,
pp. 95-105.

67. Kretz, M.; and Larch6, M.: Future of Helicopter Rotor Control. Vertica, vol. 4, no. 1, 1980,
pp. 13-22.

68. Weisbrich, A.L.; Perley, R.; and Howles, H.: Design Study of Feedback Control System for the

Multicyclic Flap System Rotor. NASA CR-151960, Jan. 1977.

69. O'Leary, J.; and Miao, W.: Design of Higher Harmonic Control for the ABC. J. American Helicopter

Society, vol. 27, no. 1, Jan. 1982, pp. 52-57.

70. Hanagud, S.; Meyyappa, S. S.; and Craig, J. I.: A Couple Rotor/Airframe Vibration Model with

Higher Harmonic Control Effects. Proceedings of the American Helicopter Society 42nd Annual

Forum, June 1986, pp. 821-829.

71. King, S. P.: The Minimisation of Helicopter Vibration through Blade Design and Active Control.

Aeronautical J., Aug. 1988, pp. 247-263.

72. Johnson, W.: Recent Development in the Dynamics of Advanced Rotor Systems. NASA TM-86669,
Mar. 1985.

79



73. Friedmann,E E: RecentTrendsin Rotary-WingAeroelasticity.Vertica,vol. 11,nos. 1and2, 1987,
pp. 139-170.

74. Langrebe,A. J.; and Davis, M.: Analysis of PotentialHelicopter Vibration ReductionConcept.
Proceedingsof the AHS/NASA AmesResearchCenterSecondDecennialSpecialistsMeeting
on RotorcraftDynamics,Nov. 1984.

75. Strehlow,H.; Mehlhose,R.; andObermayer,M.: Active HelicopterRotor-Isolationwith Application
of Multi-VariableFeedbackControl.Proceedingsof theThirdEuropeanRotorcraftandPowered-
Lift Aircraft Forum, 1977.

76. Kuezynski,W. A.; andMadden,J.: TheRSRAActive Isolation/RotorBalanceSystem.J.American
HelicopterSociety,vol. 25, no.2, Apr. 1980,pp. 17-25.

77. Nguyen,K. Q.; andChopra,I.: ActuationPowerRequirementfor HigherHarmonicControl (HHC)
Systems.Presentedat the SecondInternationalConferenceon RotorcraftBasicResearch,Uni-
versity of Maryland,CollegePark,Md., Feb. 1988.

78. Nguyen,K. Q.; andChopra,I.: Applicationof HigherHarmonicControl (HHC) to HingelessRotor
Systems.Proceedingsof the AIAA/ASME/ASCE/AHS 30th Structures,StructuralDynamics
andMaterial Conference,PaperNo. 89-1215,Apr. 1989.

79. Nguyen, K.; and Chopra,I.: Application of HigherHarmonicControl (HHC) to RotorsOperating
at High Speedand ManeuveringFlight. Proceedingsof theAmerican HelicopterSociety45th
Annual Forum,May 1989,pp. 81-96.

80. Panda,B.; and Chopra, I.: Dynamicsof CompositesRotor Blades in Forward Flight. Vertica,
vol. 11,nos. 1 and 2, Jan. 1987,pp. 187-211.

81. Leishman,J. G.; and Beddoes,T. S.: A GeneralizedModel for UnsteadyAerodynamicBehavior
and DynamicStall Usingthe IndicialMethod.Proceedingsof the AmericanHelicopterSociety
42ndAnnual Forum,June 1986,pp. 243-265.

82. Leishman,J. G.: Validationof ApproximateIndicial AerodynamicFunctionsfor Two-Dimensional
SubsonicFlow. J. Aircraft, vol. 25, no. 19,Oct. 1988,pp. 914-922.

83. Johnson,W.: A ComprehensiveAnalytical Model of Rotor Aerodynamicsand Dynamics,Part I:
Analysis andDevelopment.NASA TM-81182,June 1980.

84. Hodges,D. H.; and Dowell, E. H.: NonlinearEquationsof Motion for the Elastic Bending and
Torsionof TwistedNonuniformRotorBlades.NASA TN D-7818,Dec. 1984.

85. Lanczos,C.: The VariationalPrinciplesof Mechanics.Dover Publications,Inc., N.Y., 1970.

86. Leishman,J. G.; and Crouse,G. L.: A State-SpaceModel of UnsteadyAerodynamicsfor Flutter
Analysis in a CompressibleFlow.Proceedingsof the27th AerospaceSciencesMeeting, Paper
No. 89-0022,Jan. 1989.

87. Leishman,J. G.: An Analytical Model for UnsteadyDrag. AIAA J. Aircraft, vol. 25, no. 7, July
1988,pp. 665-666.

80



_::i_i_ _,

88. Gormont, R.: A Mathematical Model of Unsteady Aerodynamics and Radial Flow for Application of

Helicopter Rotors. U.S. Army Air Mobility Research and Development Laboratory, TR-72-67,
May 1973.

89. Incompressible Aerodynamics. Thwaites, B., ed., Dover Publications, Inc., New York, 1987.

90. Bramwell, A. R. S.: Helicopter Dynamics. Edward Arnold Ltd., London, 1976.

91. Johnson, W.: Helicopter Theory. Princeton University Press, Princeton, N.J., 1980.

92. Castles, W.; and De Leeuw, J. H.: The Normal Component of the Induced Velocity in the Vicinity

of a Lifting Rotor and Some Examples of Its Application. NACA Report 1184, 1954.

93. Egolf, T. A.; and Massar, J. L.: Helicopter Free Wake Implementation on Advanced Computer

Architecture. presented at the Second International Conference on Rotorcraft Basic Research,
University of Maryland, College Park, Md., Feb. 1987.

94. Bir, G. S.; and Chopra, I.: Gust Response of Hingeless Rotors. J. American Helicopter Society,
vol. 31, no. 2, Apr. 1986, pp. 33-46.

95. Panda, B.; and Chopra, I.: Flap-Lag-Torsion Stability in Forward Flight. J. American Helicopter

Society, vol. 30, no. 4, Oct. 1985, pp. 30--39.

96. Dennis, J. E.; and Schnabel, R. B.: Numerical Methods for Unconstrained Optimization and Non-

linear Equations. Prentice Hall, Englewood Cliffs, N.J., 1983.

97. Biggers, J. C.; and McCloud, J. L. III: A Notes on Multicyclic Control by Swashplate Oscillation.
NASA TM-78475, June 1980.

98. Warring, R. H.: Hydraulic Handbook. Gulf Publishing Company, Houston, Tex., 1983.

99. Stepniewski, W. Z.; and Keys, C. N.: Rotary-Wing Aerodynamics. Dover Publications Inc., N.Y.,
1984.

81



¢

Table 3.1. Rotor and blade properties

Element
E E I z GJ m .10 ±

m0 _2R4 m0 _2R4 m0 _2R4 m0 R 2 c R

1 0.002596 0.07536 0.001331 1.0000 0.3312 0.03226 0.1500

2 0.003326 0.07782 0.002538 0.8199 0.2779 0.02268 0.1500

3 0.003744 0.08020 0.002546 0.8807 0.2728 0.03194 0.2000

4 0.003966 0.08020 0.002578 1.2065 0.2528 0.04616 0.2200

5 0.006306 0.05961 0.003470 0.9938 0.1269 0.01694 0.1352

6 0.016667 0.01785 0.014480 4.5808 0.2433 0.00385 0.1162

Blade number, N

Blade radius, R

Rotor rotational speed, f_

Reference blade mass per unit length, m0

Chord length/radius, c/R

Solidity ratio, _r

Pitch-link stiffness, Kp/mof_2 R 3

Flap hinge offset

Lag hinge offset

Root cut-out

Blade linear pretwist, Otw

Lock number, "7 -_ 3pcRcl,Jmo

Lift curve slope, Cl_ at M = 0.3, per radian

Viscous drag coefficient, Cdo

Leading edge suction recovery factor, r/

Pitching moment coefficient at zero angle of attack, Cmo
Hover tip Mach number

3

5.23 fl

22.226 Hz

0.0322 lb/in.

0.07446

0.0711

0.015165

0.0286R

0.1448R

0.21R

-14 deg

6.8468

6.1306

0.0085

0.97

-0.005

0.6415

Table 3.2. Blade natural frequencies

Mode Blade natural

frequency, per rev

Rigid lag 0.504

Rigid flap 1.023

First elastic flap 2.660

Rigid torsion 4.865

Second elastic flap 5.210

First elastic lag 6.391

Third elastic flap 8.918
First elastic torsion 11.439
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Figure 2.1. Rotor coordinate system--hub-fixed frame.
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Figure 2.2. Blade coordinate system and deformations.
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Nomal now

Reverse flow

Figure 2.5. Blade section aerodynamic environment.
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7

Figure 2.7. Rotor wake in forward flight (top, adapted from ref. 93) and vortex ring representation
(bottom, adapted from ref. 90).
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Figure 2.9. Temporal finite element discretization of the rotor revolution.
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Figure 2.10. HHC actuator system on a three-bladed rotor system.
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Figure 3.1. Correlation of 3P vertical hub shear--variation with forward speed (CT/_ = 0.08).
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Figure 3.62. Effects of blade lag stiffness on the HHC actuator power (V = 135 knots, CT/cr = 0.12).
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Figure 3.63. Effects of blade center-of-mass offset from elastic axis on the uncontrolled vibratory hub
shears (V = 135 knots, CT/O- = 0.12).
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Figure 3.64. Effects of blade center-of-mass offset from elastic axis on the HHC actuator power
(V -=- 135 knots, CT/_7 = 0.12).
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Figure 3.65. Effects of blade elastic axis offset from quarter chord on the uncontrolled vibratory hub
shears (1/- = 135 knots, CT/O- = 0.12).
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Figure 3.66. Effects of blade elastic axis offset from quarter chord on the HHC actuator power
(V = 1:35 knots, CT/cr = 0.12).
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