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SUMMARY i..j,j

This paper presents recent results from a program in the Boeing Commercial Airplane Group to study the

behavior of cracks in fuselage structures. The goal of this program is to improve methods for analyzing crack

growth and residual strength in pressurized fuselages, thus improving new airplane designs and optimizing

the required structural inspections for current models. The program consists of full-scale experimental testing

of pressurized fuselage panels in both wide-body and narrow-body fixtures and f-mite element analyses to

predict the results. The finite element analyses are geometrically nonlinear with material and fastener

nonlinearity included on a case-by-case basis. The analysis results are compared with the strain gage, crack

growth, and residual strength data from the experimental program. Most of the studies reported in this paper

concern the behavior of single or multiple cracks in the lap joints of narrow-body airplanes (such as 727 and

737 commercial jets). The phenomenon where the crack trajectory is curved creating a "flap" and resulting in

a controlled decompression is discussed.

INTRODUCTION

The Boeing Commercial Airplane Group has a continuing program to investigate the durability and

damage tolerance of airplane structures. In the mid- 1980s, the opportunity arose to build two test fixtures to

study the behavior of typical fuselage structure. To complement this test Wogram, a parallel activity to

conduct finite element analyses of typical fuselage configurations was initiated. The objective is to improve

our damage tolerance methods for the design and evaluation of fuselage pressure structure. This should result

in safer designs and a reduced inspection burden on the operators. In recent times, the scope of the research

has been extended to include assessments of the effects of multiple site damage on the residual strength of

fuselage lap joints.

PRESSURE TEST FACILITY

The test facility, illustrated in Figure 1, consists of two cylindrical fixtures.

The first fixture has a radius of 74 inches (1.88 m) to match Boeing's typical narrow-body airplanes, and

the second has a radius of 127 inches (3.23 m) to match the wide-body airplanes. Both fixtures are

20 feet (6.1 m) in length as shown in Figure 2. The overall geometry of the fixtures is consistent with typical

fuselage design: 7075-T6 frames at a 20 inch (508 mm) pitch and 2024-T3 clad stringers at a

9.25 inch (235 mm) pitch. The frames are attached to the stringers by means of stringer clips, but are

otherwise not connected directly to the skin. The skin, frame and stringer gages are thicker than typical

minimum gage fuselage structure but have been selected to maintain realistic fixture stiffness. All fastener

holes in the skin are cold-worked and protruding head fasteners are used to provide maximum fixture

longevity. External 2.8 inch (71 mm) wide circumferential tear straps of 2024-T3 clad sheet are riveted to the

skin at a 20 inch (508 mm) spacing. The end bulkheads are steel, one of which is fixed and the other on rollers

to permit axial expansion during pressurization.
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Figure 1. Pressure test site.
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Figure 2. Schematic of pressure test fixtures.

The narrow-body fixture has a single rectangular cutout 10 feet x 10 feet (3.05 m x 3.05 m), designed to

accept the test panels. Similarly, the wide-body fixture has two diametrically opposed cutouts also

10 feet x 10 feet (3.05 m x 3.05 m). The test panels are attached to the fixture at the skin, frames, and stringers

by a fusing arrangement that allows the panel to fail at loads below the elastic limit of the fixture components.

The stringer and frame splices are designed to allow attachment fasteners to shear during a dynamic panel

failure. The test panel skin is allowed to tear circumferentially along the perimeter fasteners with the help of a

sharp notch introduced into the panel prior to its installation in the fixture. With these features, it is possible to

conduct residual strength tests which result in test panel failure without extensive damage to the test fixture.

Compressed air is used as the pressurizing medium. Five electric compressors are capable of producing a

differential pressure of 90 psi (0.62 MPa) resulting in delivery of a nominal 1600 cubic feet (45.3 cubic

meters) of air per minute. The flow of air is regulated into the fixtures by means of a digitally controlled

valve. Cyclic rates are 1 minute per cycle in the narrow-body fixture and two minutes per cycle in the wide-

body fixture. Polystyrene blocks are placed within the fixtures to reduce the required air volume.

To reduce air leakage during testing, 0.1 inch (2.5 mm) thick rubber air bladders are placed against the

inner skin of the test panel in the vicinity of the crack. Some testing has been conducted with insulation

blankets used on a commercial airplane. These have inadequate strength and durability however for long-term

testing. Thin aluminum sheet, loosely attached to the interior of the skin panel, was found to affect crack

growth behavior and is no longer used.

The data acquisition system consists of up to 300 channels for recording test information, principally from

strain gages. Typically, rosettes are used on the skins and axial gages on the stringers, tear straps, and frame

chords. Most tests are remotely monitored using video cameras. The test differential pressures are

superimposed on the video image in real time. The resulting film is available for subsequent review and

analysis.
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TEST RESULTS

The discussion of test results is divided into two sections dealing with narrow-body and wide-body panels

respectively. Experience has indicated that the behavior of each can be significantly different; there is a

tendency toward controlled decompression in narrow-body panels. This results when alongitudinal crack in

the skin turns to grow in the circumferential direction. A segment of the skin peels back creating an opening

that prevents further pressurization. This phenomenon, often described as "flapping," is rarely encountered in

wide-body panels. It is believed to be primarily a function of skin gage, but is also influenced by initial crack

location, tear strap dimensions, the presence of shear-ties and other detail design features.

Narrow-Body Tests

Four tests were conducted on narrow-body panel 74-A shown in Figure 3. In general, the test procedure

consisted of inserting a 5 inch (127 mm) sawcut at the selected test location and pressure cycling until either

test termination or the crack reached a length at which a residual strength test was performed. Eachcrack was

repaired before inserting the next sawcut. The test panel is divided into two halves by a single longitudinal lap

joint. All frames are "floating," connected to the stringers only by means of stringer clips. In the upper half of

the panel the skin is 0.040 inch (1.02 mm) thick, and in the lower half of the panel the skin is 0.056 inch

(1.32 mm) thick. All longitudinal cracks are parallel to the longitudinal grain direction of the 2024-T3 clad

skin. Internal bonded tear straps are installed at each frame location. The tear strap dimensions are defined in

terms of a strap stiffening ratio:

R = Ast_ap/(B • t_)

where Astrap is the tear strap cross-sectional area, B is the frame spacing, and ts_ is the skin gage. The frame

cross-sectional area is not included in the evaluation of the strap stiffening ratio.

Test 1 on this panel consisted of a longitudinal 5 inch (127 mm) sawcut adjacent to stringer 4L in the 0.056

inch (1.32 mm) skin. The strap stiffness ratio R s was 0.14. The panel was subjected to a cyclic differential

pressure of 8.6 psi (.059 MPa) with a stress ratio of zero. As is typical with sawcuts at such a location, the

direction of fatigue crack growth gradually diverged from longitudinal. In this case, failure consisted of a

controlled decompression as shown in Figure 4. Figure 5 shows that 5400 pressure cycles were required to

grow the crack to its final length.

74-A S-7R I Test 1: Crack growth

.... S-6R [ Test 2: Crack growth and

tfram e = 0.051 in -- Test 2 S-SR residual strength

S-3R Test 3: Crack growth

tstra p = 0.063 in _ Test3__ S-4R Test 4: Crack growth and

R s = 0.19 critical crack size

Test 4 - R _)
Lapsp ..... • J_ _.? L

....S-3L

Test_l o 4L Floating Frame

tslrap = 0063 in _ S_L__C)_ _i__ +
_ 9.25-in L

R s = 0.14 --__ strin ers
20-in

5-7L Multiple-site damage

-Strap stiffening ratio:

R s = Astra p / (B • tskin )

(four central bays)

Figure 3. Initial damage locations on narrow-body
panel 74-A.

Figure 4. Final failure of Test 1 on panel 74-A.
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Test2 consistedof a longitudinalfive inch (127mm) sawcutmidway betweenstringers4Rand5R in the
0.04 inch (1.02mm) skin.ThestrapstiffnessratioRswas0.19.In thiscase,thecrackgrew straightuntil it
reachedthebondedtearstrapsat a lengthof 17.4inches(442 mm). A singlepressurecycle to 10.3psi (.071
MPa),representingtheregulatoryresidualstrengthloadrequirementwasappliedwithout inducingsignificant
crackextension.Thetestwasdiscontinuedat thattimeandthepanelrepaired.

Test3 consistedof a longitudinalfive inch (127mm) sawcutadjacentto stringer4R in the0.04 inch (1.02
mm) gageskin.The directionof crackgrowth wassimilar to test1andresultedin a controlleddecompression
after950cycles.Comparisonof thedatain Figure5 showsthatthemidbaycrackof test2 hasa shortercrack
growth life thanthecrack in test3. This is consistentwith datapresentedin Reference1.Thecrack lengthat
instability for Test3 of 14.8inches(380ram) canbecomparedwith acrack lengthat instabilityof 18inches
(460mm) in Test 1,attributablein partto thestressesassociatedwith thedifferent skingages.
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Figure 6. Multiple site damage test on panel 74-A
lap joint.

Test 4, the final test in panel 74-A, consisted of a five inch (127 mm) sawcut in the upper row of fasteners

in the lap joint of the 0.04 inch (1.02 mm) skin. Each fastener hole ahead of the initial sawcut had two small

diametrically opposed longitudinal sawcuts introduced during original panel assemblyas shown in Figure 6.

The dimensions of these sawcuts varied as a function of location along the lap joint and were smaller at the

tear strap locations as indicated by fleet experience. Although these small sawcuts had experienced

approximately 7000 prior pressure cycles, it is unlikely that there would have been any appreciable growth

prior to inserting the 5 inch sawcut in the lap joint. Initially the crack growth from the 5 inch sawcut remained

in the rivet line during pressure cycling, although reference to Figure 7 shows the tendency of the crack to

deviate from the longitudinal direction only to be pulled back to the rivet line at the next fastener hole. The

crack finally began to grow significantly away from the rivet line as it approached the adjacent tear straps.

Final failure was a controlled decompression as shown in Figure 8. Comparison of the crack growth rates in

Figure 5 shows that the crack in the lap joint grew more slowly than the midbay crack of Test 2 and the crack

adjacent to Stringer 4R in Test 3.

A single test was conducted on Panel 74-B. This panel differed from panel 74-A by the use of shear-ties to

attach the frame directly to the skin and bonded tear strap as shown in Figure 9. In this test, the tear strap

stiffening ratio R was 0.12. The initial condition consisted of a five inch (127 mm) sawcut along the upper

fastener row of the lap joint. Again, each fastener hole ahead of the initial sawcut had two small diametrically

opposed longitudinal sawcuts introduced during the original panel assembly. The secondary sawcut lengths

were varied in a manner similar to those in panel 74-A. However, the panel had not been subjected to prior

fatigue cycling before introduction of the 5 inch sawcut. Review of the lap joint following final failure
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Figure 7. Crack progression during multiple site

damage test on panel 74-A lap joint.

Figure 8. Final failure of multiple site damage test on

panel 74-A lap joint.

revealed that several sawcuts in the same frame bay as the lead crack had grown about 0.25 inch (6 mm)

during fatigue cycling. During this time, the crack showed little tendency to deviate far from the rivet line. It

did however deviate from the rivet line and head toward the middle of the stringer bay as it crossed the

adjacent tear straps. A fatigue crack of length 1 inch (25 mm) was detected in one of these tear straps when

the skin crack was around 20 inches (510 mm) in length. This tear strap failed in fatigue when the skin crack

was around 23 inches (580 mm) in length. The second tear strap failed when the skin crack was 24.5 inches

(620 mm) in length. A total of 85 pressure cycles were required to fail both tear straps following the initial

tear strap crack detection. The lead crack continued to grow until it reached a length of 40.2 inches (1.02 m)

as shown in Figure 10. At this time, unstable crack extension resulted [eadir_g m final panel _lure as shown

in Figure 11. Although review of a video tape taken during the final Wessure cyc!te _s inconclusive, it is

believed that final failure was precipitated by failure of one or both of the frames t_h_nd the growing crack.

The crack was observed to commence growth at a differential pressure of 0.2 psi (XXII MPa)below the

maximum pressure achieved during the test. Prior to final failure, the crack ex_ended aN'mr 3 inches (76 ram).

Dynamic Panel Failure at 8.6 psi, L = 40.2 In Shear Tied Frames 74-B

0o_',7 "1 0.0_ 00_ :1 0_ 0_ :1 0.0_

3_ ', [ _ Q021L I O03in O02m _1 ', O04m O06in OCAin ', I [_m

o-, ...........
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Figure 9. Multiple site damage test on panel 74-B

lap joint.

Figure 10. Crack progression immediately prior to

final failure of panel 74-B.

Review of Figure 11 shows the benefit of the fusing arrangement. The frames at the upper and lower ends

of the cutout broke cleanly away from the test fixture. Similarly, the stringers separated cleanly along the
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vertical edges of the cutout. It can also be observed that the frames in the central region of the test panel failed

at a location consistent with the last fastener in the shear-tie.

Note that in neither panel 74-A nor 74-B did the small sawcuts ahead of the main crack significantly

contribute to panel failure.

A number of additional tests of cracks in lap joints in narrow-body panels are summarized in the chart in

Figure 12. The data expand on results previously presented in Reference 2. All pressure cycling was at a

differential pressure of 7.8 psi (.054 MPa). The illustrations in the figure describe schematically the behavior

of the cracks. Some of the tests, as noted on the figure, contained multiple site damage (MSD) in the fastener

holes ahead of the lead crack. A controlled decompression occurred during the first test on panel 28A only.

This panel did not include any MSD. In all other cases, the lead crack continued to grow in an essentially

longitudinal direction throughout the test. However in several cases, similar to Test 74-B discussed above, the

crack-grew out of the lap joint into the basic skin before f'mal panel failure. No clear trends emerge from these

results. However, it does appear that MSD forces the lead crack to stay in the upper fastener row of the lap

joint for a longer period of time. Comparison of Test 2 on panel 28A and the test on panel 27A shows that

panel behavior is independent of the method of attaching the tear strap to the skin. However, it should be

noted that the tear strap is spliced using rivets at the lap joint location in such a way that both the riveted and

bonded designs are locally similar.
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Figure 11. Final failure of panel 74-B.
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Figure 12. Summary of miscellaneous narrow-body

lap joint crack growth tests.

Wide-Body Tests

A comparison of the effects of MSD on two wide-body panels is presented in Figure 13. The panels (127-B

and 127-D) are 127 inch (3.23 m) in radius with frames and tear straps at a 20 inch (508 ram) spacing. The

tear straps are bonded to the skin and have a stiffness ratio R s of 0.12. The skin is 0.063 inch (1.6 ram) 2024-

T3 clad sheet with the lap joint parallel to the longitudinal grain direction. The frames are shear-tied to the

skin as illustrated in the figure. In each test, an initial sawcut of 5 inches (127 ram) was introduced into the

upper row of fasteners in the lap joint and into the central tear strap. The central frame initially remained

intact. In one case, MSD of the lengths shown in the illustration was introduced ahead of the lead crack. Each

panel was subjected to fatigue cycling at a differential pressure of 8.6 psi (.059 MPa). When the cracks

reached a length of 37 inches (940 mm), a differential pressure of 9.5 psi (.066 MPa) was applied. In each
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case, this resulted in a small amount of crack extension. The central frame was cut and the pressure increased

until panel failure. The panel with the MSD ahead of the lead crack failed at a differential pressure of 9.4 psi

(.065 MPa), approximately 10% below the maximum differential pressure applied to the panel without MSD.
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Figure 13. Effect of multiple site damage in lap joint

on residual strength of wide-body panels.
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Figure 14. Effect of frame detail design on residual

strength of wide-body panels with multiple site

damage in lap joints.

The different capability of shear-tied against floating frame designs is illustrated in Figure 14. Test panel

127-B is as described in the previous paragraph. Test panel 127-A is similar with the exception that the

frames are not shear,tied to the skin. The tear straps are bonded to the skin and have a stiffness ratio R s equal

to 0.19. The test procedure for panel 127-A was similar to 127-B with MSD introduced into the panel ahead

of the lead crack as shown in the figure. Thispanel was subjected to fatigue cycles at a differential pressure of

8.6 psi (.059 MPa). When the crack reached a length of 37 inches (940 mm), a differential pressure of 9.5 psi

(.066 MPa) was applied. Following this, the central frame was cut and the panel pressurized to failure. The

condition of the panel prior to the final pressurization cycle and following the final cycle is illustrated in

Figures 15 and 16.

i

Figure 15. Crack progression during multiple site

damage test on wide-body panel 127-A lap joint.

Figure 16. Final failure of multiple site damage test

on panel 127-A lap joint.
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Thefloating framepanelfailed at9.0psi,approximately4% lessthantheshear-tiepanel.While this small
differencecouldbeattributedto testscatter,it is notablethatthis occurreddespitethehighertearstrap
stiffnessratio. It is believedthatthedifferenceis associatedwith theability of theshear-tieddesignto reduce
theeffectsof out-of-planedisplacements,or bulging,andto hold thecrackclosed.

Conceivably,MSD could occur in two or more adjacent bays. A single test on panel 16-2 was conducted to

investigate the interaction of two large cracks in adjacent bays as shown in Figure 17. This panel was 127

inch (3.23 m) in radius. The skin was 0.075 inch (1.9 mm) C188-T3 clad aluminum with the lap joint parallel

to the longitudinal grain direction. The panel was padded to a thickness of 0.1 inch (2.5 ram) at the lap joint.

The frames were shear-tied to the skin which is locally padded to 0.1 inch (2.5 mm). Two 10 inch (254 mm)

sawcuts were introduced into the upper row fasteners of the lap joint in the centers of two adjacent bays. The

panel was loaded to a differential pressure of 8.6 psi (.059 MPa). The cracks were extended by sawcut one

fastener at a time until each crack was about 15 inches (381 mm) in length and each crack tip was 1.25 inches

(31.8 mm) from the centerline of the central shear-tie frame. At this time, 100 fatigue cycles at a differential

pressure of 8.6 psi (.059 MPa) were applied to the panel. Subsequently, small sawcuts were introduced into

the fastener holes to encourage re-initiation. After a further 11 fatigue cycles at the same differential pressure,

the cracks linked up to form a single continuous crack of length 32.7 inches (830 mm). The test was

discontinued following further fatigue cycling when the crack reached a length of 47.9 inches (1.22 m). The

final condition of the crack is illustrated in Figure 18. While not conclusive, the test data indicate that cracks

in adjacent bays do not automatically create an MSD concern.

16-2

:o_ 10 in :o' 10 in :o:
Io: Initial sawcut _o_ Initial sawcut Io;
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• Sawcuts were extended one fastener at a time.

• 100 cycles applied once cracks were 1.25 in from the center shear tie rivets.

• A 0.006-in-wide blade was used to sharpen the tip approximately 0.05 in out of

fastener holes.

• Cracks joined 11 cycles later.

Figure 17. Test details for large interacting cracks

in lap joint of wide-body panel 16-2.

Figure 18. Final configuration of crack in lap joint

of panel 16-2•

ANALYSIS PROCEDURE

The primary purpose of the analysis program is to predict the behavior of the test panels. This includes the

test panel stresses (to be compared with strain gage data), the trajectory of crack growth from a sawcut, the

crack _growth life, and the residual strength. Residual strength can be the critical crack length under operating

differential pressure or the maximum possible differential pressure for a given crack length. Successful

comparisons will increase confidence in the analysis for predicting the behavior of typical fuselage structure

containing cracks and for design studies.
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Finite element models include the following test panel components: skin, tear straps, stringers and frames,

stringer clips that attach the frames to the stringers, and, if present, shear ties that attach the frames to the skin.

Eight-noded shell elements are used for the skin and tear straps, quadratic beam elements for the stringers and

frames, shell elements for the shear ties, and rigid connections for the stringer clips. Fasteners are modelled

with springs and rigid connections as discussed in Reference 1. Beam section coordinates are input into the

model so that the nodes along the stringers are at the fastener locations and not at the neutral axis. In some

cases, the tear straps are adhesively bonded to the skin. Early analysis attempts modeled the skin plus tear

straps as one layer of thick shell elements. The resulting bending stresses did not correlate well with the test

panels. Good results have been obtained by using two layers of shell elements. The adhesive layer is modeled

with springs and rigid connections at all nodes, similar to the technique used to model riveted fasteners.

In most models, linear elastic material properties are used. In the residual strength models, material

plasticity is introduced to selected elements. All analyses have been solved with ABAQUS using a geometric

nonlinear solution sequence. A global analysis approach has been used so that fasteners and multiple site

damage are not modelled explicitly.

• Finite element model of narrow-body

• Fastener elements: 840

fuselage panel with a lapjoint crack.

• Degrees of freedom: 32,000
• Nodes: 6,200
• Plate elements: 1,800
• Beam elements: 450

symmetry

Figure 19. Finite element model of narrow-body test panel with lap joint.

A typical mesh for a narrow-body test panel containing a lap joint is shown in Figure 19. Only haft of the

test panel is modelled; a plane of symmetry is assumed at the crack centerline. Cylindrical symmetry is

assumed at all boundaries. The circumferential boundary at the crack centerline is fixed in the longitudinal

direction while the circumferential boundary away from the crack is allowed to displace uniformly in the

longitudinal direction. The resultant of the pressure load in the longitudinal direction is applied at a node on

this boundary.

A square-root singularity is assumed at all crack tips. Material plasticity at the crack tips is not considered

since stress intensity factors are used as the basis for comparison with the experimental results. The square-

root singularity is introduced into the ABAQUS models by use of collapsed eight-noded shell elements with

quarter-point nodes surrounding the crack tips. Stress intensity factors are calculated using the displacements

at nodes on the crack near the crack tip.

ANALYSIS RESULTS

A comparison between measured and predicted membrane hoop stresses for a narrow-body panel with

floating frames is given in Figure 20. Bonded tear straps of stiffness ratio R s equal to 0.15 coincide with the
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flame locations. The data are for locations along an axial line midway between stringers and are presented in

terms of the nominal hoop stress in an unstiffened cylinder of the same radius and skin thickness. The peak

stress is observed to be about 85% of nominal and occurs midway between frames. The stress in the vicinity

of the bonded tear straps falls to 60% of nominal. A good comparison of stresses can be observed at all
locations.

A comparison between measured and predicted membrane hoop stresses in the vicinity of a lap joint in a

narrow-body panel is given in Figure 21. The structure consists of floating frames at a 20 inch (508 mm) pitch

and riveted tear straps at a 10 inch (254 mm) pitch. The tear strap stiffness ratio R s is equal to 0.15. The data

are for locations along an axial line adjacent to the lap joint. The data are presented in terms of the nominal

hoop stress in an equivalent unstiffened cylinder of the same radius and lap joint skin gage thickness. The

maximum stress of 80% of nominal occurs midway between the tear straps. A good comparison between test

and _malysis is obtained at this location. The stresses do not compare well at the tear straps. This may be

caused by local bending at the skin and tear strap interface, or the influence of local stress concentrations

around the fastener holes in the tear strap. The geometry of this panel model is similar to the test panels shown

in Figure 12. Analysis results for this panel containing a 21.4 inch (540 mm) longitudinal crack show that the

residual strength of the panel would be exceeded if the tear strap was broken.
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Figure 20. Test and analysis correlation for intact

narrow-body panel 45-2A.
Figure 21. Test and analysis correlation for intact

narrow-body panel 28-A adjacent to a lap joint.

A similar comparison of stresses is given in Figure 22 for the same panel containing a 20 inch (508 mm)

crack in the upper row of fasteners in the lap joint and a broken central tear strap. As expected both measured

and predicted hoop stresses behind the crack tips are close to zero. There are significant compressive

membrane hoop stresses in the skin at the location of the broken tear strap. This is caused by local bending at

the skin and tear strap interface. High tension stresses exist in the skin just ahead of the crack tip. Comparison

with the data in Figure 21 shows the stresses are close to typical for the uncracked structure by the adjacent

frame location (Frame 2 in the figure).

Panels 74-A and 74-B, discussed at length in the previous section, have also been the subjects of extensive

analysis. A comparison of membrane stresses in the vicinity of the lap joint is given in Figure 23 for panel

74-B. The lap joint contains a 20 inch (508 ram) crack centered on the adjacent frame bay. The data are again

presented in terms of the nominal hoop stress in an equivalent uncracked, unstiffened cylinder of the same

radius and lap joint skin gage. The stresses are observed to be close to those for uncracked structure at the
same locations.
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narrow-body panel 28-A containing a lap joint crack.
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Membrane stress intensity factors, non-dimensionalized with respect to the nominal membrane stress in an

equivalent unstiffened cylinder, are presented in Figure 24 for panels 74-A and 74-B. Although the crack is

along a lap joint, the fasteners and fastener holes are modeled only as point connections. Therefore, the stress

intensity factors must be considered an approximation for lap joint configurations. It should be noted that the

tear strap stiffening ratio R s for the floating-frame panel is 0.19 and for the shear-tied panel, 0.12. Opening and

sliding mode stress intensity factors are shown in the figure. In general, the opening mode stress intensity

factor for the floating-frame panel is higher than for the shear-tied panel, even with the higher strap stiffness

ratio. It is evident that the shear-tie helps to minimize the effect of out-of-plane displacements and to

redistribute the loads around the crack. The effect of the broken tear strap is significant, causing a factor of

three increase in opening mode stress intensity factor for cracks around 25 inches (635 ram) in length.
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for narrow-body panels containing lap joint cracks.
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Figure 25. Stress intensity factors for narrow-body
panel 74-B containing a lap joint crack.

The same data are presented as total opening and sliding mode stress intensity factors in Figure 25 for Panel

74-B. The opening mode stress intensity factor reaches a maximum of 78 ksi•in u_ (86 MPa.m _f_)when the skin

crack is around 15 inches (380 ram) in length, before dropping as the tear strap is approached. The plane-stress

fracture toughness for 0.04 inch (1.02 mm) clad 2024-T3 skin with cracks in the T-L orientation is in the range

120-130 ksioin _/_(130-140 MPa.mV_). As indicated in the discussion of the test results for this panel and as
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illustrated in Figure 9, the crack remained sub-critical throughout this phase of the test. The tear straps failed

in fatigue when the skin crack was 24.5 inches (620 mm) in length. At this point, the opening mode stress

intensity factor in the skin was calculated to be 82 ksioin 1/_(90 MPaomU2), again well below the material

toughness. The opening mode stress intensity factor is predicted to remain well below the material toughness

with an intact frame. Following frame failure at a crack length of 40.2 inches (1.02 m), the opening mode

stress intensity factor rises to 200 ksioin 1/2(220 MPa°ml/2), now well above the toughness of the material. The

sliding mode stress intensity factor is presented for an assumed straight crack. This can be seen to remain

fairly constant at around 25 ksi°in 1/2(28 MPaom 1/2)for cracks longer than 10 inches (250 mm) in length, but

rises significantly following frame failure.
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Figure 27. Stress concentration factors in frame for

panel 74-B containing a lap joint crack.

The predicted tear strap stresses as a function of crack length, non-dimensionalized with respect to the

stresses in the intact structure, are presented in Figure 26 for Panel 74-B. At short skin crack lengths, the

stresses are uniform across the tear strap. As the crack approaches, the tear strap is subject to considerable

bending in its plane. One side of the tear strap commences to yield when the skin crack is around 18 inches

(460 mm) in length. In the test, the first fatigue crack was found in one of the straps when the skin crack was

20 inches (508 mm) in length. Insufficient data are available to reliably predict the fatigue life under such

circumstances; however the tear straps failed in about 100 cycles during the test. Since the tear straps failed

when the skin crack was 24.5 inches (620 mm) in length, no attempt was made to evaluate the tear strap stress

concentration factors at longer skin crack lengths.

The predicted frame stresses as a function of crack length, non-dimensionalized with respect to the frame

stresses in the intact structure are presented in Figure 27 for Panel 74-B. The stresses are provided at two

locations. The first represents the average axial stress in the frame and the second represents the peak fiber

stress in. the outer chord of the frame just beyond the last shear-tie attachment fastener. At short skin crack

lengths, the increase in stress in the frame is small. As the crack length increases, the stresses in the frame at

both locations steadily increase but remain well below yield for the 7075-T6 frame material. Following tear
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strapfailure, theaxial stressin theframeincreasesby about50% but thepeak fiber stress increases by 100%,

indicating a significant increase in frame bending. The stresses remain below yield in the material (a yield

stress of 68 ksi (470 MPa) was assumed in the analysis) until the skin crack exceeds about 35 inches (890

mm) in length. When the skin crack length is 40 inches (1.02 m), close to final panel failure, the nominal peak

fiber stress in the frame exceeds 70 ksi (480 MPa). Final failure, illustrated in Figure 10, was through the last

shear-tie attachment fastener. The peak fiber stress coupled with the stress concentrating effect of the fastener

hole may have been sufficient to precipitate a static failure, or in a fashion similar to the tear strap, a very low-

cycle fatigue failure. No observations of any fatigue cracks in the frame were recorded during the test.

A comparison between predicted and measured frame stresses in Panel 74-B is given in Figure 28. Axial

stresses near the center of the frame channel, midway between two stringers are provided for two locations.

The first is in the bay containing the crack and the second is in the adjacent bay, as illustrated in the figure.

Stresses compare favorably while the tear strap is intact. Following tear strap failure, analysis stresses tend to

be high in the bay containing the crack and low in the adjacent bay. Review of the analysis suggests that since

the stringer clip attaching the stringer to the frame is modeled as a rigid connection, inaccurate predictions of
load transfer into the frame result.
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Figure 28. Comparison between test and predicted

axial stresses in frame for panel 74-B as a function

of skin crack length.

Figure 29. Comparison between test and predicted

crack growth for panel 74-B containing a lap joint
crack.

A comparison of skin fatigue crack growth lives for Panel 74-B is shown in Figure 29. In general, the

prediction follows the test but tends'to overestimate the life by about 50%. The analysis assumed fasteners

behaved elastically at all times. In view of the high stresses calculated for the tear straps and frames, it is

certain that several fasteners would have exceeded their yield strength. As a result, the stress intensity factor in

the skin is likely to be greater than shown in Figure 25, especially for cracks beyond 20 inches (508 mm) in

length. This may account for the observed differences between predicted and measured crack growth rates at

the longest crack lengths.

Fully automated remeshing schemes for curving cracks are not yet available within Boeing although such a

capability is under development such as the effort described in Reference 3. As a result, only a few attempts

to predict crack trajectories have been made. One such attempt was made on Panel 45-2A. This narrow-body

panel consisted of .036 inch (0.9 mm) 2024-T3 skin with 3 inch (76 mm) wide bonded tear straps, R equal to

0.15, at a 20 inch (508 mm) pitch. The panel had floating frames coincident with the tear straps. The initial

damage in the panel consisted of a 5 inch (127 mm) sawcut across and including a broken tear strap. Predicted
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crack trajectories are based on the maximum strain energy release rate. The predicted and measured crack

trajectories are shown in Figure 30 to be in good agreement at all crack lengths. Final failure in this panel was

by means of a controlled decompression. It can be observed that this failure mode can occur without the

beneficial influence of nearby tear straps.
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Figure 30. Comparison between test and predicted

crack trajectory for narrow-body panel 45-2A

containing a longitudinal crack.

Figure 31. Effect on stress intensity factors of large

interacting longitudinal cracks in a narrow-body

panel.

An analysis of the interaction of large cracks in adjacent bays is given in Figure 31. The narrow-body panel

consists of .036 inch (0.9 mm) thick 2024-T3 clad skin, tear straps with an R of 0.15 at 10 inch (254 mm)

pitch, and floating frames at 20 inch (508 mm) pitch. An axial crack of length 20 inches (508 mm) centered

on a broken tear strap is introduced into the structure adjacent to a stringer. An analysis is conducted for each

of the different length secondary cracks located as shown in the figure. Because of the symmetry of the

analysis model, each secondary crack occurs twice. Thus analysis R20S 10 describes a 10 inch (254 mm)

crack 5 inches (127 mm) ahead of each tip of the 20 inch (508 mm) crack. The opening and sliding mode

stress intensity factors for the lead crack are shown in bar chart form for each of the crack configurations. In

every case, the influence of the secondary cracks on the primary crack is negligibly small.

CONCLUSIONS AND RECOMMENDATIONS

Recent test and analysis results from an investigation into the behavior of cracks in typical fuselage

structure have been discussed. In general, this has led to an increased understanding of our current

capabilities. Some specific conclusions and recommendations follow.

Use of air as a pressurizing medium is necessary if the true dynamic conditions of a crack growing in

representative fuselage structure are to be adequately assessed. However the risks associated with this type of

testing need to be properly understood and adequate safeguards taken. Filling the cavity with polystyrene

blocks and other similar material helps reduce cycling time but does not significantly reduce the energy stored

in the test article. Greater air compressor capacity would help reduce cycling time. Air loss during fatigue

cycling with long cracks needs to be addressed but rubber bladders have proven to be effective without

significantly altering the progress of the crack through the structure. A fusing arrangement around the

periphery of the test panel allows residual strength testing to destruction while minimizing damage to the test
Ebxture.
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Video recordingof testshasprovento beextremelyvaluable,both in realtime to monitortheprogressof
thecrackallowing quick decisionsto bemadeastheloadis increasedduring residualstrengthtesting,andas
apermanentrecordfor laterevaluation.Strategicallylocatedstraingagesalsoallow real-timemonitoring of
critical structuralelementsduringresidualstrengthtesting.

Thetestingconductedto dateindicatesthatlongitudinalcracksin wide-bodyfuselagesectionstendto grow
in fatiguein agenerallylongitudinaldirection,anddo notresultin acontrolleddecompression.On theother
hand,similar cracksin narrow-bodystructurescurveto grow circumferentiallyin about50%of thecases.
Exceptionsarecracksmidway betweenstringers.For theMSD pattemexploredin wide-bodypanelswith
shear-tiedframes,theresidualstrengthwasreducedby 10%,a smallerreductionthanindicatedby flat,
unstiffenedpaneltesting(see,for example,Reference2). In narrow-bodypanels,thetendencyof the lead
crackto curveoftennegatestheeffectof MSD on final failure.Largeskincracksin adjacentframebaysneed
to bein closeproximity beforesignificantinteractionis evident.

Structuresin whichtheframesaretied to theskinby meansof shear-tiesappearto bemoredamage
tolerantthanstructureswith floating frames.However,additionalevaluationof therelativestructural
efficiency needsto beconducted.

Insufficientdatawereavailableto accuratelypredictthefatiguelife of tearstrapsandframesundervery-
low cyclefatigueconditions.Serviceexperienceshowsthat airlinemaintenancepracticesaremorethan
adequatefor finding long,externallyvisiblecracksshouldtheyoccur.Theadditionalopportunitiesafforded
by crackarrestfeatures,suchastearstrapsandshear-ties,havinggoodfatigueperformancewill increase
opportunitiesfor crackdetection.

Futuretestingwill includemorehead-to-headcomparisonsof crackedlapjoints with or without MSD to
fully characterizethelossof residualstrengththatmight beexpected.This will aid developmentof methods
for predictingthepoint atwhich theperformanceof thecrackedstructurefailsbelowacceptablelevels.
Developmentof amethodfor evaluatinglapjoints canthenbeappliedto otherstructuresusceptibleto MSD
for which suitabletestfacilities areunavailable.

Althoughnot aprimary focusof thetestingdiscussedin this paper,thebenefitsto residualstrengthof well-
bondedtearstrapsneedto be furtherexplored.As expected,bondedtearstrapsmoreeffectively transferload
aroundacrackthanrivetedtearstrapsin mostcomparativetests.In particular,theresistanceof theadhesive
interfaceto disbondingasthecrackin theskin tunnelsunderthetearstrapneedsto beunderstood.

A failurecriterionfor curving cracksin thin shellshasyet to beestablished.While it hasbeenshownthat
failureby controlleddecompressionis commonin sometypical fuselagestructure,nomethodfor sizingof
structuralelementssuchastearstrapsto guaranteethis typeof failure is available.

Designersoftenincreasetheskin thicknessof fuselagelapjoints to increasethefatiguelife. Theeffectof
this local designfeatureon thedamagetoleranceof lapjoints hasnot beenthesubjectof systematicstudy,
especiallyif thepotentialfor MSD exists.

While theanalysisapproachdescribedin this paperismore thanadequatefor typical structure,it is nota
practicaltool for thedetailexaminationof localeffects,suchasloadedfastenerholesandsecondarybending,
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that would occur in a lap joint. As a result, no attempt has been made to investigate analytically the interaction

of small cracks ahead of a large crack in a lap joint.

In general, good correlation has been demonstrated between test and analysis for both intact and cracked

structure. Trends observed in tests have also been confirmed by analysis. These include the observations that

longitudinal cracks midway between stringers grow faster than cracks near stringers; that large cracks in

adjacent frame bays do not interact significantly; and that panels with shear-tied frames tend to resist damage

growth better than panels with floating frames. Crack growth rate comparisons presented in this paper and in

Reference 1 are generally good at crack lengths less than 20 inches, but tend to become less satisfactory at

longer lengths. The causes have not been completely identified but may include inaccurate crack growth rate

data at very high stress intensity factors, or a need for additional elastic-plastic modeling of key structural

elements such as fasteners, tear straps, shear-ties and stringer clips. The effects of these elements on fatigue

crack growth and residual strength have been investigated for some test panels. In general, they can exceed

yield as any damage approaches critical dimensions. An improved fastener load transfer model would

increase confidence in the analysis of the behavior of very long cracks. The need to include skin plasticity has

yet to be examined.

Future analyses will continue to focus on available test panel configurations, but will be expanded to

include more parametric studies. Global-local modeling techniques will be employed to gain a better

understanding of the effects of multiple site damage. Modified energy equations that include bending stress

intensity factors will also be investigated to determine how they affect fatigue crack growth and residual

strength.

REFERENCES

1. Miller M., Kaelber K. N., Worden R. E., "Finite Element Analysis of Pressure Vessel Panels,"

International Workshop on Structural Integrity of Aging Airplanes, 31 March -2 April 1992, Atlanta, Ga.,
USA.

2. Maclin J. R., "Performance of Fuselage Pressure Structure," Third International Conference on Aging

Aircraft and Structural Airworthiness, November 19 - 21, 1991, Washington, D.C., USA.

3. Potyondy D., "A Software Framework for Simulating Curvilinear Crack Growth in Pressurized

Fuselages," Doctoral Dissertation, Cornell University, 1993.

ACKNOWLEDGMENTS

The authors would like to acknowledge the graphics and publications support from Mr. W. J. Brewer and

from Boeing Support Services.

496


