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ABSTRACT 

We study thermocapillary and buoyant thermocapillary convection in rectangular cavities with aspect 
ratio A = 4 and Pr = 0.015. Two separate problems are considered. The first is combined buoyant thermo- 
capillary convection with a nondeforming interface. We establish neutral curves for transition to oscillatory 
convection in the Re - Gr plane. It is shown that while pure buoyant convection exhibits oscillatory behav- 
ior for Gr > Gr,, (where Gr,, is defined for the pure buoyant problem), pure thermocapillary convection 
is steady within the range of parameters tested. In the second problem, we consider the influence of surface 
deformation on the pure thermocapillary problem. For the range of parameters considered, thermocapillary 
convection remained steady. 

INTRODUCTION 

Understanding and controlling oscillatory thermocapillary convection is very important to material 
processing in microgravity. Thermocapillary flows, driven by tangential shear associated with temperature 
induced surface tension gradients at a free surface, are a primary mechanism for convection under reduced 
gravity. While steady convection reduces the diffusional boundary layer a t  the solidification interface during 
crystal growth, and thus is generally beneficial, unsteady convection has it negative impact on crystal 
morphology, rendering the resulting product unusable. 

A number of recent numerical studies have predicted transitions in the pure thermocapillary problem 
for both small and large Pr [l, 2, 31 while others [4, 5, 6, 71 could only predict steady states. Calculations 
which included buoyant affects in addition to thermocapillary affects have also been performed and displayed 
both steady and unsteady behavior [8, 91. 

Because the buoyant problem is well understood, an indirect approach is utilized in the present work 
to shed light on the behavior of the thermocapillary problem. We specifically consider the behavior of the 
Hopf bifurcation, which clearly exists in the pure buoyant case (Re = 0) but subsequently disappears under 
pure thermocapillary conditions (Gr = 0). Numerically estimated neutral stability curves are presented in a 
Gr-Re parameter space and thereby the fate of the Hopf bifurcation under the influence of thermocapillary 
forces is displayed. We analize the transfer of energy between the steady and oscillatory components of the 
flow to identify the driving mechanism for time dependent flow. 

We also consider pure thermocapillary convection in a cavity and incorporate a deforming interface 
using two different approaches. The first approach is an asymptotic expansion with respect to the small 
parameter Ca. The 0(1) and O(Ca> solutions are obtained. The second approach employs a linearized 
free surface condition. 
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MATHEMATICAL MODEL 

The physical model consists of a rectangular calculation domain with aspect ratio A = width/height 
(see Figure 1). There is a free surface (y = E )  across which no mass transport takes place. A driving 
temperature difference (Th 1 T,) is imposed in the z direction by assuming differentially heated side walls 
and adiabatic conditions are assumed at  the two remaining boundaries. The fluid is Boussinesq and the 
surface tension is assumed to be a monotonic, weak function of temperature u = IJ, - y(T* - T,) where 
y = -du/dT*. The superscript on T indicates a dimensional quantity and T, is a reference temperature. 
Other nondimensional parameters are the Prandtl (Pr = v/a), Reynolds (Re = yT,L/pv), Grashof (Gr = 
gPTrL3/v2), Marangoni (Ma = RePr) numbers. The symbols v and p represent the kinematic and 
dynamic viscosities respectively. In addition, the Capillary number (Ca = ~T,/IJ,) provides some measure 
of the surface deflection in response to thermocapillary induced stresses. This parameter is small in value 
and in the limit Ca 4 0, the free surface is flat. 

For the combined problem, scales L = H ,  T, = (Th - T‘)/A, Gr v / L ,  L2/v, and Gr v p / L 2  are applied 
to length, temperature, velocity, time, and pressure respectively and permit the influence of both buoyant 
and thermocapillary effects [lo, 111. Scales L = H ,  T, = Th - T,, yT,/L, L 2 / v ,  and yT,/L are applied to 
length, temperature, velocity, time, and pressure respectively for the thermocapillary problem. 

Free surface deformation is incorporated by performing an asymptotic expansion with respect to the 
small parameter Ca. Grouping terms of O(1) and terms of O(Ca) yields a nonlinear and a linear system 
of equations and boundary conditions representing a leading order solution and a correction, respectively. 
A second approach is to linearize the free surface boundary conditions by performing an expansion with 
respect its equilibrium position [12]. 

RESULTS 

Based on numerous computations at carefully selected parameter values, neutral stability curves (see 
Figure 2) have been generated in the Re-Gr parameter space. The displayed curves represent both Pr and 
aspect ratio dependence for the Hopf bifurcation of the combined buoyant and thermocapillary problem. It 
can be seen that the generated curves do not intersect the Gr = 0 line at  any point. This has also been 
confirmed by calculations performed for Pr = 0. The results are consistent with both steady and unsteady 
calculations performed by Hadid and Roux [9]. The neutral curve is shifted upwards (a stabilized flow) if 
either the aspect ratio is decreased or if the Prandtl number is increased. 

Insight into the mechanism of instability can be obtained by computing the production and dissipation 
of energies for a given disturbance [13]. We assume that the flow field can be decoupled into a time 
averaged U calculated in a protracted fashion over many cycles and a perturbation ut extracted directly 
as the instantaneous difference between the actual and the “base” flow field given by U. The analyses are 
performed for the limiting case of Pr = 0 which prescribes a conduction profile and thereby eliminates the 
small contributions of the fluctuating temperature field present with small but nonzero Pr. The vector dot 
product of the perturbation velocity and the momentum equation is integr?ted over the calculation domain 
to define the energy and thus obtain the Reynolds-Orr energy equation K in terms of production P and 
dissipation D in the form 

Kdx= GrPdx- Ddx J’ I J 
This equation evaluates the net transfer of energy between the base flow and the perturbation. If the 
transfer is positive/negative, then the flow is unstable/stable to the perturbation. 

Stream function contours for the averaged flow field and local rate of change of kinetic energy for 
reinforcing and opposing thermocapillarity, are indicated in Figures 3 and 4 respectively. They correspond 
to the same Pr and Gr with selected Re such that they are near the respective sides of the the neutral curve. 
For the reinforcing case (Figure 3) the flow consists of the buoyancy dominated clockwise corotation. Net 
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production which is positive, and thus representative of a transfer of energy between the underlying base flow 
and the unsteady perturbation flow, is present in the shear region between the two corotating cells and in 
the region where the cold wall cell interacts with the lower adiabatic boundary. In the opposing case (Figure 
4) The base flow is seen to be separated into two distinct counter rotating cells. The lower one contains 
buoyancy driven clockwise corotating cells while the surface thermocapillary cells are counterclockwise and 
corotating. The regions of net energy transfer to the perturbation flow exist in the the shear region between 
the buoyancy driven corotating cells and also in the high shear region at  the free surface where the buoyant 
cell interacts with the opposing thermocapillary surface near the hot corner. As the neutral stability curve 
is approached, the buoyant cell is pushed downwards into the cavity and this reduces its interaction with 
the free surface. 

The indicated plots for energy production are not time invariant. The perturbation velocities u; and 
ub have the same period, but differ by some constant phase angle. However, the regions of intense shear 
for the opposing case remain the saddle point of the buoyant corotating cells and the interaction near the 
free surface between the thermocapillary and buoyant recirculations. For the reinforcing case, The relevant 
regions consist of the saddle point and the interaction between the buoyant recirculation and the lower 
surface. The contribution to the perturbation varies in importance through the limit cycle but remains 
associated with these respective regions. In both the opposing and the reinforcing case, energy transfer in 
the buoyant cells is reduced as the neutral stability curve is approached. Thus, the therrnocapillary driven 
surface flow acts to diffuse energy transfer and ultimately net production is suppressed due to elimination 
of internal shear layers. 

Thermocapillary convection with a deforming interface is shown in Figures 5 - 9, which corresponds 
to Re = 1000,5000. These figures display both the O(Ca) and combined flow fields. The combination is 
performed utilizing an assumed Ca = 0.01 which is consistent with the small parameter assumption in the 
original expansion 4 M 40 + 41Ca. The combined and the 0(1) flow fields are indistinguishable for these 
parameter values. The flow is seen to be unicellular and attracted to the cold corner. This is consistent 
with other work [4]. The temperature field does not deviate substantially from a conduction profile for this 
Pr and Re. The calculated results were steady for the parameter values selected and the flow fields for the 
O(1) and O(Ca) calculations were of comparable orders of magnitude. 

The surface deflection (see Figure 8) is nearly three times larger than that obtained for aspect ratio 
A = 2, Pr = 0.01 and Re = 1000 flows. However, this deflection is still M for the Ca utilized. 
Because h is very small, we also calculate the flow using linearized free surface boundary conditions. The 
results for the parameter values of Figure 5 are shown in Figure 6 where quantitative agreement of about 
0.05% is indicated. The free surface velocities (see Figure 9) are qualitatively similar to profiles obtained 
using different aspect ratios. The peak surface velocity is near the cold wall for these calculations. This is 
consistent with the flow field profiles which indicate that the dominant circulation is attracted to the cold 
isothermal boundary for increasing Re. 

CONCLUSIONS 

We have investigated the combined buoyant thermocapillary convection oscillatory states and attempted 
to understand the origin of these transitions. When Gr is sufficiently large to admit periodic solutions in 
the pure buoyant problem and when thermocapillarity acts in support of buoyancy, the effect is stabilizing 
as a larger Gr is needed for transition. When it acts in opposition it is destabilizing for small IReI due 
to additional energy transfer to the fluctuating component at the free surface, but for larger IRel the flow 
eventually separates into two distinct recirculations. One is buoyancy driven and the other is thermocapillary 
driven with opposing circulation. Thermocapillarity is ultimately stabilizing as it smooths out the internal 
buoyant shear layers. Furthermore, surface deflection which is small for small Ca is found to have no 
significant effect on the transition process, ie. the flow remained steady for all parameters utilized. 

Our computational techniques have been validated against numerous published works, however, our 
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results do not agree only with Chen and Hwu [2]. Further studies should be conducted to establish a 
complete picture of the technologically important case of low Pr, microgravity convection. In particular, 
there appears to be no experimental results in the literature for this case. 
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Figure 1: Physical diagram of calculation domain 
with solid walls as indicated. Hot and cold walls 
are located at x = 0 and x = X,,, respectively. 

Figure 3: Averaged flow field, local production 
P, and local rate of change of kinetic energy K 
corresponding to Pr = 0, G r  = 20000, and Re = 
333. I 
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Figure 2: Neutral stability curves showing asp-ect 
ratio and Pr dependence. In all cases the flow 
is steady for G r  and R e  combinations which are 
below the curve and unsteady for combinations 
which are above it. Points marked with an X (un- 
steady) or an 0 (steady) have been calculated by 
Hadid and Roux (1992) with aspect ratio A = 4 
and Pr = 0.015. 

Figure 4: Averaged flow field, local productio? 
P, and local rate of change of kinetic energy K 
corresponding to Pr = 0, G r  = 20000, and R e  = 
-1550. 
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Figure 5: The upper/lower plots correspond to 
the O(Ca) and combined flow fields respectively 
for parameter values A = 4, Pr = 0.015, Ca = 
0.01, and R e  = 1000. The cold/hot isothermal 
boundaries are located at 2 = O,A respectively. 
The leading order flow field (not shown) is indis- 
tinguishable from the combined flow field for these 
parameter values. 
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Figure 6: Complete flow field obtained utilizing 
the linearized approach with the same parameter 
values as in Figure 5. The flow fields calculated 
using the two different approaches differ by ap- 
proximately 0.05%. 

Figure 8: Free surface deflection for the same 
parameter values as in Figure 5 and R e  = 
1000,5000. 

Figure 9: Free surface velocities associated with 
the flows of Figure 8. 

Figure 7: Similar to Figure 5 ,  but with R e  = 
5000. 
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