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ABSTRACT 

High resolution laboratory experiments with large aspect ratio are being conducted for thin 
fluid layers heated from below and bounded from above by a free surface. The fluid depths are 
chosen sufficiently small (e 0.06 cm) so that surface tension is the dominant driving mechanism; 
the Rayleigh number is less than 5 for the results reported here. Shadowgraph visualization 
reveals that the primary instability leading to hexagons is slightly hysteretic (-1%). Preliminary 
measurements of the convection amplitude using infrared imaging are also presented. 

INTRQDUCT'IQN 

BCnard's landmark experiment [ 13, which revealed striking hexagonal patterns that arise 
spontaneously in fluid heated from below, inspired the scientific study of convection and 
stimulated theoretical ideas ranging from classical hydrodynamic stability to modern notions of 
pattern formation and complexity in nature. More pertinently, surface-tension-driven BCnard 
convection (also referred to as BCnard-Marangoni convection) has been recognized as an important 
paradigm in low-gravity fluid dynamics since it represents a simple, clean example of capillarity- 
driven flows, which are dominant in the microgravity environment. 

Despite its long-standing significance and current relevance, many fundamental questions 
about BCnard-Marangoni convection remain unanswered. Discrepancies between theory and 
experiment exist for the primary instability [2]. Secondary instabilities and the transition to 
turbulence have never been explored. The surface-tension-driven BCnard problem is poorly 
understood because in terrestrial experiments the effect of buoyancy is often comparable to that of 
surface tension. Only in space can instabilities and the transition to turbulence in BCnard- 
Marangoni convection be studied without influence from buoyancy effects. However, in terrestrial 
experiments on sufficiently thin layers, the effect of buoyancy is negligible at the onset of the 
primary instability. Such experiments can characterize the primary instability and serve as a basis 
for studies in space of higher instabilities. Finally, many of the experimental techniques developed 
and refined for B6nard-Marangoni convection will be directly applicable to other capillarity-driven 
flows. 

In the following, we present results for the onset of convective motion in the BCnard- 
Marangoni problem. We compare our experimental observations qualitatively to a variational 
model. In addition, we present preliminary measurements of the temperature field at the fluid-air 
interface to illustrate the promise of infrared (IR) imaging as a means of obtaining quantitative flow 
amplitudes. 

EXPERIMENTAL 

Convection Cell, - The simplest geometry for BCnard-Marangoni convection is the system 
with a single liquid layer of thickness df and horizontal extent 2rdf bounded at z = 0 by a solid 
surface of high thermal conductivity (1 cm thick aluminum mirror) and at z = df by a gas layer of 
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negligible viscosity and density (Fig. 1). The thickness of the gas layer da in the experiments is 
fixed (=df ) by bounding above with a solid surface of high thermal conductivity (1 mm thick 
sapphire window). A temperature gradient is imposed by heating the mirror to a temperature Tb 
and by cooling the sapphire window at a temperature Tt. Initially, the surface tension o(T) is 
uniform at the liquid-gas interface; however, if .Tb - Tt is sufficiently large, instability causes 
surface tension gradients that drive flow along the interface and in the bulk. The dimensio less 
number that characterizes the surface tension driving is the Marangoni number M = otdfAT s PVK, 
with the liquid density p, the liquid kinematic viscosity v, the liquid thennal diffusivity K, ot = 
Ido/dl, and ATf = (Tb - Td( 1+ kf ddka df)-' in terms of the thermal conductivities kf and ka For 
any terrestrial experiment, the onset of convectio will also depend on buoyancy, which is 
characterized by the Rayleigh number R = go!ATfdf3)!v~ with the acceleration of gravity g and the 
temperature coefficient of volumetric expansion a. The importance of surface tension relative to 
buoyancy in BCnard-Marangoni convection is given by Y = M/R; buoyancy effects are negligible 
when Y >> 1. 

The experiment is performed in a cylindrical cell of diameter 2rdf = 3.81 ern with df = 
0.045 i: 0.0006 ern and da = 0.050 k 0.001 cm. The thickness of both the fluid and the air layers 
varies by approximately k 1 pm, as measured inteferometrically. Purified dimethylsiloxane 
silicone oil (96.7 % -- tetracosamethyldodecasiloxane) is used in the experiment to reduce the 
potential for subtle thermal cross-diffusive effects that can occur with polymer mixtures such as 
commercial silicone oils 131. The heater power to the mirror is computer controlled; with constant 
heater power, the temperature of the bottom plate fluctuates by less than S.0005 "C, The mean 
temperature of the sapphire window is held constant at 13.32 "C and regulated to k 0.005 "C. The 
fundamental time scale in the experiment is set by the vertical diffusion time, tv =d&K = 2.2 s. 
For the present choice of geometry and working fluid, we have Y = 33; thus surface-tension 
effects clearly dominate buoyancy. 

- The behavior of patterns in BCnard-Marangoni convection is investigated by 
noninvasive optical methods. The shadowgraph technique is used to detect the onset of convection 
and to visualize pattern morphology. The shadowgraph images are digitized and enhanced to 
improve the signal-to-noise using standard image processing techniques. Additionally, infrared 
(IR) imaging techniques yield the temperature field at the fluid-air interface. The IR imager used in 
this study is the Amber Engineering Series 5256 ProView system, an LN2 cooled, indium 
antimonide staring array of size 256 x 256 pixels that operates in the MWIR band from 1.0 to 5.0 
pm. To obtain maximum temperature sensitivity and accuracy, multiple data images (typically - 
64) are acquired at 20 Hz and averaged; an equal number of images of a temperature controlled 
reference are subsequently averaged and subtracted. To insure that temperature measurements are 
not averaged over the bulk, a working fluid is used that is composed of methylhydropolysiloxane 
(30 CS viscosity) mixed with 10 CS Dow Corning 200 silicone oil in a 1: 1 ratio by volume. As a 
result the extinction length for the detected infrared radiation (4.61 micron center wavelength with a 
bandpass width of 80 nm) is approximately 10 pm. 

RESULTS 

nset-The conduction state under oes an abrupt transition to hexagons as Hvsteresis at 0 
ATfis increased slowly (average rate tvdM ldt = 10- ). Just prior to onset, a weak circular 
conduction roll of diameter = df arises near the boundary; this roll is believed to be driven by static 
forcing due to the slight mismatch of thermal conductivity between the sidewall and the fluid. 
Hexagons first appear in a localized section of this conduction roll (Fig. 2(a)). For a given 
experimental setup, this arc of cells always appears in the same section of the convection 
apparatus. With a single step increase of 0.15 in M, additional hexagons nucleate from the 
sidewall and propagate as a traveling front, invading the apparatus until the entire flow domain is 
filled with hexagons (Fig. 2(b)). The resulting hexagonal planform is free from defects since the 
lattice is grown from a single ':seed crystal" of cells at the boundary. The front of hexagons 
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propagates across the apparatus in approximately 600 tv, a time short compared to the horizontal 
diffusion time 4 fit, = 7000 tv. The critical Marangoni number is M c  = 78 k 4 with the 
uncertainty in the accuracy due to the uncertainty in df, da, and fluid properties. This compares 
well with Mc = 80 determined from liiear stability calculations [4]. . 

On decreasing ATf quasistatically, hexagons continue to persist even as M is reduced to 
values below that for the first appearance of cells (Fig. 3 (a)-(d)). The hexagons begin to 
disappear first in regions of the apparatus where they appeared last at onset; thus, the front between 
convection and conduction propagates in a time-reversed way as compared to onset. However, 
several steps of size 0.15 in M are required before convection ceases. Moreover, if ATf is held 
constant before the hexagons completely disappear from the apparatus, the remaining patch of cells 
persist; in Fig. 3 (c), for example, the patch of hexagons was observed to persist for more than 
7000 tv whereupon continued decrements in temperature caused a return to conduction (Fig. 3 (d)). 

Theoretical Model-New ogsej, the hexagonal planform arises from the interaction of three 
roll (plane wave) solutions, ki,kj,kk, each of which has a magnitude equal to the critical 
wavenumber and makes an angle of 2n/3 with the other roll solutions [SI. Under these conditions, 
the evolution of the planform is described the set of (real) amplitude equations of the form: 

where the indices are cyclically permuted. Under certain assumptions, the qoefficients can be 
computed from the full fluid equations [6,7]. The existence of hexagons requires a z 0; as a 
result, the bifurcation from the conduction state is subcritical, i.e., it occurs discontinuously like a 
fiist order phase trtinsition. With E= (M/Mc -l), the solutions for hexagons and for conduction are 
linearly stable over a range of parameter: Ea< E c 0 with E a  = -&/(2+49 (the conduction state is 
linearly unstable for M > Mc). 

The amplitude equations form a variational model; such a system is expected to exhibit 
relaxational time dependence governed by a potential function V [SI. Over the range of parameter 
where both conduction and hexagons exist, each solution corresponds to a minimum of V,  where 
one solution represents the global minimum of V while the other solution, the metastable phase, 
represents a local minimum. However, there exists a parameter value Em (often called the 
Maxwell point) where both solutions have equal values of the potential; as the parameter value 
passes through Em, the solutions exchange the roles of global stability/metastability. For Eqs. (l), 
the conduction state is globally stable for E < Em = 4 9  E a  and metastable for Em c E < 0. 

The experimental observations are consistent with this variational model. The conduction 
state enters a metastable regime E >Em as ATf increases. The hexagons that first appear at the 
boundary provide a sufficient perturbation to push the system over the potential barrier and the 
front between the two states propagates in a way such that the globally stable state (hexagons) 
spreads. When ATf is decreased, hexagons become metastable for E < Em. Since the range of 
parameter values where hexagons are metastable is nearly an order of magnitude smaller than the 
region of metastability for Conduction, the transition back to conduction will be more sensitive to 
small spatial variations in E due to nonuniformities in the depths of both the fluid and air layers. As 
a result, the transition back to conduction occurs in stages, with the front halting as soon as the 
local value of E is equal to Em. 

Surface Temperature Measurements-Local amplitude measurements are necessary to 
provide direct, quantitative comparison to theoretical models (such as Eqs. (1)) and to numerical 
simulations. Toward this end, high-resolution infrared imaging is being investigated, Figure 4 
illustrates a preliminary measurement of surface temperature near onset. A spatially varying E is 
intentionally imposed by increasing the surface temperature (hence, decreasing ATf ) from left to 
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right in Fig. 4; the interface between conduction and convection is quite sharp, in qualitative 
agreement with the shadowgraph images in Fig. 3. This measurement demonstrates that the 
temperature resolution, which is better than 0.1 "C, is sufficient to examine quantitatively the 
behavior of Bdnard-Marangoni convection near onset. 

CONCLUSIONS 

The experimental observations of an abrupt onset of convection and hysteretic return to the 
conduction state support the idea that the primary instability in Benard-Marangoni convection is 
subcritical; further quantitative investigation is being conducted to characterize the degree of 
subcriticality. One outstanding question is the determination of the range in E over which 
hysteresis occurs. Our initial measurements indicate that this range may depend on the size and 
rate at which the temperature (and, hence, E) is stepped. Such behavior is not surprising since 
subcritical transitions may be triggered by finite amplitude perturbations (temperature fluctuations, 
nonuniformity at the boundary); it remains to be seen to what extent such perturbations may be 
reduced in our experiments. Additionally, we are developing more quantitative measures of 
experimental geometry and fluid properties to determine more accurately the critical Marangoni 
number Mc and are conducting extensive measurements of surface temperature near onset using 
infrared imaging. 
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Figure 1: Geometry of B6nard-Marangoni convection 

INCREASING M 

(a) A4 =%.lo (b) A4 = 78.25 
Figure 2: Shadowgraph images depict a 
sharp onset in surface-tension-driven Benard 
convection. 
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DECREAS M 

(a) M = 78.25 (b) M = 77.75 

(c) M = 77.50 (d) M = 77.30 

Figure 3: Hexagonal convection persists 
values of M below onset, indicating 
hysteretic transition (compare to Figure 2). 
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Figure 4: Fluid surface temperature 
measured near onset by infrared imaging. 
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