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Project summary and objectives 
This program of theoretical and experimental ground-based research focuses on the 

understanding of the dynamics and stability limits of nonaxisymmetric and symmetric liquid bridges. 
There are three basic objectives: First, to determine the stability limits of nonaxisymmetric liquid 
bridges held between non-coaxial parallel disks, Second, to examine the dynamics of 
nonaxisymmetric bridges and nonaxisymmetric oscillations of initially axisymmetric bridges. The 
third objective is to experimentally investigate the vibration sensitivity of liquid bridges under 
terrestrial and low gravity conditions. Some of these experiments will require a low gravity 
environment and the ground-based research will culminate in a definitive flight experiment. 

Motivation 
The motivation for this work arises from several areas: 
-Axisymmetric liquid bridge stability and dynamics have been the subject of numerous 

theoretical and experimental investigations, while nonaxisymmetric bridges have received less 
attention. 

- The dynamics of liquid bridges (both axisymmetric and nonaxisymmetric), particularly the 
breakage of bridges and the sensitivity of bridges to vibration, are of particular importance for 
practical aspects of fluids handling in microgravity . 

-Apart from purely fluid dynamic interests, liquid bridge stability is an important factor in 
determining the stability of molten liquid zones associated with floating zone crystal growth 
experiments, as well as model floating zone systems designed to study related thermocapillary flow 
phenomena. 

- Finally, space experiments involving the study of zone vibration and response of liquid 
bridges to uncontrolled g-jitter are a suitable test of the need for vibration isolation techniques for 
experiments which will operate using liquid bridge configurations. Whether the bridges are melts or 
lower temperature liquids, the problem of rupture or breakage in response to spacecraft vibration (or 
g-jitter) is an important consideration for experiment design (e.g., the type of isolation, allowable 
zone slenderness, etc.) 

Experimental Work 
Experiments are conducted in a neutral-buoyancy or Plateau tank. The bridges are held 

between rigid supports which allow for rotation and lateral and vertical translation. Each support can 
be independently vibrated at frequencies less than 10 Hz. Bridge injection is automated with 
simultaneous recording of precise volume data. We use two imaging methods. Video images are 
obtained from two orthogonal cameras. In addition, a high quality Fourier transform imaging system 
for edge detection is being developed and the basic system assembled is now ready. 

The important physical parameters are the aspect ratio of the bridge, the liquid volume and 
the static and dynamic Bond numbers. The liquid volume and the slenderness (aspect ratio) of the 
bridge depend on the precision with which lengths can be determined. The disk widths are known to 
within 10 pm. The length of the bridge is set by the positioning device and can be determined with a 
precision of 1-2 pm. Thus, for bridges of 2.5 cm length the slenderness, A = L/2R0, can be 
determined to within & 0.04%. Volume can be measured with a precision of 0.1 mm3 and an 
accuracy of 0.1%. For the Bond number, the main error sources arise in the density and surface 
tension. The surface tension causes the largest error and density limits the magnitude of the smallest 
obtainable Bond number. The liquid bath is a methanol-water solution. Variation of the methanol 
concentration changes the density difference between the Dow Corning 200@ silicone oil bridge and 
the bath. At 83% water concentration a condition of neutral buoyancy is obtained. The accuracy of 
our density measurements is currently 5 parts in lo4. 

Interfacial tension measurements were made using the drop weight technique [ 1,2]. The 
results are shown in Fig. 1. The interfacial tension of the silicone oil-solution interface ranges from a 
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low of 2.645 dyne cm-l (100% methanol) to a high of 60.48 dyne cm-l (100% water). We note that 
care must be taken in the vicinity of the neutral buoyancy point where the data diverge. This occurs 
because as neutral buoyancy is approached, the drop size increases exponentially, with a 
corresponding increase in drop-time. We extrapolated through the neutral buoyancy point using a 
cubic polynomial cubic fit to the data that yielded an interfacial tension at neutral buoyancy of 
48.7 dyn cm-l. 

Experiments have been carried out in three areas. 
a) Stability limits, symmetric and nonsymmetric breaking behavior of initially axisymmetric bridges. 
b) Lateral shearing, squeezing and force measurements. 
c) Vibration dynamics and breaking behavior. 

Experimental Results 
Figures 2-6 show examples of selected results for static and dynamic conditions. In all cases 

the images have been grabbed from video. In Figs. 2, 5 and 6, the half-illumination shows a dark 
background to the left of the bridge. The left side of the bridge is bright and shows a distorted view 
of the square background grid. The right' side of the bridge is dark and its boundary contrasts with 
the bright background. In order to test our experimental set-up we repeated the work of Slobozhanin 
(see ref. [3]). In particular, we concentrated on the nonaxisymmetric loss of stability of initially 
axisymmetric bridges. The breaking of a static bridge is shown in Fig.2. (Note the long drawn-out 
neck prior to breaking and the satellite bubble that remains following the breakup). In some cases 
(see also Russo and Steen [4]) stability was lost to stable nonaxisymmetric rotund bridges. In other 
cases the bridge lost stability and broke nonaxisymmetrically (see Fig. 3.). This occurs near the 
transition point separating axisymmetric from nonaxisymmetric instability. The distance between the 
1 cm diameter disks is 2.525 cm. Figure 4 shows shearing and squeezed-shearing configurations. 
Such experiments were also carried out for bridge configurations where the lower'support disk was 
replaced by a disk attached to a cantilever arm. This allowed us to measure the interplay between the 
various forces applied to the lower disk. 

The effects of vibration and oscillation are also being studied. Figure 5 shows laterally 
oscillating bridges. In Fig. Sa), the distance between the lcm diameter disks is 2.525 cm. The upper 
disk moves at 1 Hz with a 0.25 cm amplitude. Figure 5b) shows a sequence with lateral motion of the 
upper disk with a frequency of 1 Hz and an amplitude of 0.1 cm. Note the difference in the 
deformation modes. Figure 6 shows a bridge oscillated laterally at 1 Hz and vertically (both disks) at 
1.2 Hz. The bottom disk is rotating at lrps. A "c-mode" is excited and interferes with an 
axisymmetric mode caused by the vertical oscillation. 

Theory and numerical simulation 
Dynamic stability of long axisymmetric bridges 
A review of the literature related to liquid bridges can be found 'in [5]. Over the last twenty 

years many different studies have been carried out. Most of these papers are only concerned with 
static stability limits. Only a few attempts have been made to analyze the influence of the dynamics of 
the liquid bridge [5-121. These efforts have been centered more in the dynamics itself than in its 
influence on the stability limits. 

The theoretical work described is this section is part of a joint study carried out at the CMMR 
and at LAMF in Madrid. The study focuses on the effect of vibration on the stability limits of bridges 
and how vibration modifies the static stability boundaries [l]. It has been demonstrated in [7] that 
near the static stability limit of cylindrical liquid bridges there is a self-similar solution for the 
dynamics of the liquid bridge. Their analysis is based on a one-dimensional model in which the axial 
velocity is assumed to be dependent on the axial coordinate z and the time t ,  but not on the radial 
coordinate r . (This hypothesis is valid provided the slenderness is large enough [6]). Within the 
validity range of this analysis the variation with time of the interface deformation is given by 
Duffing's equation [14]. In addition to the Duffing equation model, we have been using the 1D- 
model of Zhang and Alexander [9]. Both models are in good qualitative agreement for the parameter 
range investigated so far. The results of the study indicate that depending on the nature of the axial 
vibration the bridge may be stabilized or destabilized relative ,to the static stability margin. 

At the static stability margin the effective dimensionless potential energy 5 of the liquid 
bridge, which accounts for both gravity field and surface energies, in self-similar variables is 
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2 4  E,=-l-ma -k -pa, 
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where a is the amplitude of the periodic forcing, p is the effective Bond number and m is f l  
(depending on whether the volume is greater or less than the volume of an equivalent right circular 
cylinder). Equilibrium shapes are given by 

Eq. (2) has one real root if m = +1, which is unstable (d2Vda2 < 0), and three real roots, a 1  > a2 > 
a3, in the case m = -1. The two extreme roots, a 1  and a3, correspond to unstable equilibrium shapes. 
The middle one is stable. Thus, the stability margin will be the difference between the energy of the 
unstable equilibrium shapes and of the stable one, A t  = cunstable - estable. This behavior is 
summarized in Fig. 7, The stability margin is defined by the smallest value, Ac=Ac1  and is 
proportional to the square of the distance to the stability limit. The stability margin represents a limit 
to the minimum energy needed to break the liquid bridge. This means that the response of the liquid 
bridge will depend on the energy of the perturbation. The liquid bridge will remain stable if the 
energy is smaller than the corresponding stability margin and could be unstable if the energy 
increases. In this last case, the evolution of the liquid bridge depends on how the perturbation is 
imposed and on how the energy is dissipated by viscosity. Now consider the forced oscillation of the 
liquid bridge in gravitationless conditions (p = 0, b f 0). In that case a2 = 0 and a1 = -a3 = 1, so that 
AC = 1/4. The time variation of the interface is 

j + ym + a - a3 = b C~~(Q€I  + ~p),  (3) 

which, assuming steady oscillations are reached, can be integrated in a first approximation [ l l ]  
obtaining a = acosL20, where the amplitude a is related to viscosity, y, and the amplitude of the 
perturbation, b, and to the frequency of the perturbation, a, through the equation 

u2( 1-Q2 - 3 u 2 r  + Q2 u2 = b2. 
4 (4) 

Within this approximation the oscillation of the liquid bridge is easily visualized by plotting 
the liquid bridge evolution in the phase space (deformation-velocity-energy diagram), as shown in 
Fig. 8. Note that, since we are considering an evolution, kinetic energy must be also taken into 
account, so that at every point of the phase space the energy will be the sum of the potential energy 
plus the kinetic energy: 

Two different oscillations of the liquid bridge, with amplitude a < 1, are shown in Fig. 3. One 
corresponds to > 1 case, the static stability margin is exceeded 
(A6 = 1/4) but the configuration remains stable. The liquid bridge will be unstable when a = 1, This 
yields 

< 1,  the other to $2 > 1. For the 

(6)  

Once b and are fixed, the liquid bridge evolution will be stable if the viscosity of the liquid is 
greater than the value resulting from (10). Otherwise it will be unstable. Results obtained by 
numerical integration of (3) are shown in Fig. 9. Each one of the curves b = constant represents the 
corresponding dynamic stability limit. Points on the right of a given curve are stable (high viscosity, 
y) whereas those of the left side (low y) are unstable. Note that, once y and b are fixed there can be 
multiple values of that lead to instability. 
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Numerical modelling of nonaxisymmetric bridges 
We have developed a numerical code to deal with the vibration dynamics of axisymmetric and 

nonaxisymmetric bridges. For the nonaxisymmetric cases the code is currently limited because our 
mapping technique does not allow a full range of contact angles. The code can still be used for 
slender nonaxisymmetric bridges, however. The code has been checked against a previously 
developed axisymmetric code developed by us and against the work of Chen [ 151 who examined the 
effects of an inclined gravity vector on liquid bridge shapes. Our results for the effect of inclination 
angle on the minimum stable volume for fixed Bond number and aspect ratio are shown in Figs. 10- 
12. The results show that, for a fixed Bond number, inclining the gravity vector to the bridge axis 
results in a decrease in the miminum stable volume. 

Summary 
We have presented selected examples of our ongoing work, We have made progress in several 

areas especially in the area of bridge vibration dynamics and nonaxisymmetric behavior. Particularly 
interesting is a novel technique for measuring the changing force on one of the discs as the bridge 
characteristics are varied. This gives additional insight into the behavior of deforming and breaking 
bridges. During the next eighteen months we plan to complete a study of nonaxisymmetric breaking 
of axisymmetric bridges under static and dynamic conditions, a study of the static stability of bridges 
held between noncoaxial parallel. disks and to have made significant progress into the study of 
vibrating bridges and the question of dynamic stability of bridges. 
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Fig. 1. Interfacial tension of Dow Corning 200 fluid-methanoywater interface as a function of methanol concentration. 

Fig. 2. Axisymmetric breaking of liquid bridge. 

Fig. 3. Nonaxisymmetric loss of stability of an initially axisymmetric bridge. The aspect ratio and relative 
volume at breaking are 3.25 and 4.23, respectively. The Bond number, Bo, is 0.1. 
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Fig. 4. Shearing and squeezing of liquid bridges. 

Fig Sa. Lateral oscillation at 1 Hz, 0.25 cm amplitude. Fig. 5b. Lateral oscillation at 1 Hz, 0.1 cm amplitude. 

Fig. 6. Rotation (lower disk) at 1 rps, lateral oscillation (upper disk) at 1 Hz, amplitude 
0.4 cm, vertical oscillation (both disks) at 1.2 Hz. 
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Fig. 8. Phase space of the forced oscillations of a Fig.9. Stability diagram in self-similar variables as 
liquid bridge according to eq. (5). Two given by eq. (6). Points on the left of each curve 
evolutions are represented, Q > 1 and < 1, b=constant are unstable for this value of b, 
where Q is the frequency of the forcing. whereas those lying on the right are stable. 
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Fig. 10. Bridge profiles prior to breaking for a non-axial gravity vector. U2r = 3, Bo = 0.05, for inclinations of 
a) 0, b) 30, c) 60 and d) 90 degrees, resectively. 
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Fig. 11. Bridge profiles prior to breaking for a non-axial gavity vector. U2r = 1.5, Bo = 0.5, for inclinations of 
a) 0, b) 30, c) 60 and d) 90 degrees, resectively. 
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Fig. 12. Effect of inclination angle on the minimum stable volume at fixed Bo and aspect ratio. 
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