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ABSTRACT 
We describe a theoretical investigation of the effects that stochastic residual accelerations (g-jitter) on- 

board spacecraft can have on experiments conducted in a microgravity environment. We first introduce a 
stochastic model of the residual acceleration field, and develop a numerical algorithm to solve the equa- 
tions governing fluid flow that allow for a stochastic body force. We next summarize our studies of two 
generic situations: stochastic parametric resonance and the onset of convective flow induced by a fluctuating 
acceleration field. 

STOCHASTIC MODEL OF G-JITTER 
We have introduced a stochastic model to describe in quantitative detail the effect of the high frequency 

components of the residual accelerations onboard spacecraft (often called g-jitter) on fluid motion. Each 
Cartesian component of the residual acceleration field i ( t )  is modeled as a Gaussian narrow band noise 
characterized by three independent parameters: its intensity < g2 >, a dominant frequency 52, and a 
characteristic spectral width r-'. The autocorrelation function of g-jitter is defined by 

< g ( t ) g ( t ' )  >=< g2 > e--lt--t'1/7 cos 52(t - t'). (1) 

The power spectrum for this autocorrelation function is, 

>- 1 1 
(l+ +w)2 + i + r2(R - w)2 

P(w) = - < g2 > r 
27r 

For very small T ,  g ( t )  tends to white noise. For very large values of 7, each realization of g ( t )  is a periodic 
function of angular frequency $2. Up to statistical moments of second order, each realization of narrow band 
noise can be viewed as a temporal sequence of periodic functions of angular frequency 52 with amplitude and 
phase that remain constant only for a finite amount of time ( r  on average). At random intervals new values 
of the amplitude and phase are drawn from prescribed distributions. This model is based on the following 
mechanism underlying the residual acceleration field: one particular natural frequency of vibration of the 
spacecraft structure (52 )  is excited by some mechanical disturbance inside the spacecraft, the excitation being 
of random amplitude and taking place at a sequence of unknown (and essentially random) instants of time. 
The power spectrum of such a process is the Lorentzian function given by Eq. (2), centered at w = 52, 
and of width l/r. This power spectrum has been shown to provide a reasonable fit to actual power spectra 
measured during the various microgravity missions, as illustrated in Fig. 1. 

The values of the three parameters that define narrow band noise can be estimated from acceleration data 
measured onboard spacecraft. For example, from acceleration data from Spacelab 3 [l], we find 4- N 

6 x 10-4g~, where QE is the intensity of the Earth's gravitational field, R/2?r N l l H z ,  and r 21 0.16s. 
Therefore 52r 2 11, which is an intermediate value between the white noise and deterministic limits. Of 
course, different values will be obtained when data from different missions are analyzed, but the values given 
seem to be fairly typical [2]. 

Finally, and from a theoretical standpoint, narrow band noise provides a convenient way of interpolating 
between monochromatic noise (akin to the traditional studies involving a deterministic and periodic gravi- 
tational field), and white noise (in which no frequency component is preferred). In the limit 5227 --+ 0 with 
D =< g2 > r finite, narrow band noise reduces to white noise of intensity D; whereas, for 52r -+ 00 with 
< g2 > finite, monochromatic noise is recovered. 
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Figure 1: Power spectral density of a representative time window aboard Spacelab 3, [l]. The thick solid 
curve is the power spectrum given in Eq. (2) with the values of the parameters given in the text. 

Numerical algorithm to generate narrow band noise 

A realistic analysis of the effect of g-jitter on fluid flow will ultimately involve complex systems and 
geometries. It has therefore been necessary to develop a numerical algorithm that is able to simulate narrow 
band noise, and a method to integrate stochastic differential equations which contain this type of noise. We 
have first developed such a scheme to integrate the ordinary differential equation describing the motion of 
the parametric oscillator driven by narrow band noise [3]. The method’developed is explicit and second 
order in time, and treats the stochastic contribution exactly. 

Briefly, the equation to be solved is first expanded in powers of At, with At being the time step used in 
the numerical calculation. There appear terms of the form, 

The number of multiple integrals of g ( t )  equals the highest order in Ai retained in the discretization of the 
differential equation. The key point of the algorithm is that the integrals need not be done for each particular 
realization of the noise and iteration of the time stepping procedure. Instead, the variables I’l(t,At) and 
r2(t, At) are themselves random variables with correlations that can be calculated exactly as a function of 
the parameters of the original noise and the time step At. Thus, during the numerical integration of the 
equation, a standard random number generator is used to sample directly the random variables rl and I‘2 
without ever explicitly specifying g ( t ) .  

Finally, and in contrast with the case of a deterministic g ( t ) ,  the integration of the fluid equations 
has to be performed for an ensemble of realizations of g( t ) ,  and the results averaged over the ensemble. 
Unfortunately, this adds considerably to the computational effort required. 
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STOCHASTIC PARAMETRIC RESONANCE 
The response of an entire class of systems to a time dependent gravitational field can be described as 

parametric resonance. In simple cases, parametric resonance is modeled by the Mathieu equation for the most 
unstable mode of the system. The particular case that we have focussed on concerns the linear response of the 
free surface of an incompressible fluid subjected to a random effective gravity (parametric surface waves). In 
this case, each spatial Fourier component of the surface displacement satisfies the damped Mathieu equation 
[4]. Other examples of parametric resonance include Rayleigh-Bbnard [5] and thermosolutal convection [6], 
both in an oscillatory gravitational field. 

We have studied by analytical and numerical means the stability of the solutions of the parametric 
oscillator (Mathieu equation) when the driving force is a narrow band noise. Stability has been defined 
with respect to the second order statistical moments of the oscillator coordinate because of their relation 
to the energy of the oscillations. The neutral stability curve (Fig. 2) has been obtained analytically in the 
limit of low frequencies, and close to subharmonic resonance. An interpolation formula with no adjustable 
parameters has been derived that reduces to the two asymptotic forms in the two limits discussed. The main 
assumption underlying the interpolation formula is that, even in the stochastic case, the dominant response 
of a surface mode of natural frequency w is subharmonic resonance, and its stability is determined by the 
intensity of the driving noise at 2w. The approximation is seen to break down in the limit Rr >> 1, but 
is found to be in agreement with the results of numerical computations up to 527 - 30. The values of R r  
estimated for g-jitter lie well within this range of validity. 

The effects of varying the width of the noise spectrum on the stability of the parametric oscillator can 
be summarized as follows: In the region close to white noise ( r  21 0), the noise intensity is determined by 
the parameter D = (g2) r. The effect of increasing the correlation time r while keeping 0 constant is in 
the direction of increasing stability. The same general conclusion is found to apply for R # 0. We interpret 
this result to be a consequence of decreasing the intensity of the power spectrum at the corresponding 
subharmonic resonant frequency. In the opposite limit, Qr >> 1, the strength of the external driving force is 
given by (g2), which is proportional to the area beneath the power spectrum. In this case, the broadening 
of the spectrum (decreasing T )  at constant (g2) has a stabilizing effect on the frequency at subharmonic 
resonance. This is interpreted as a lack of efficiency in exciting the resonance when the noise effectively 
spans a larger range of frequencies and cannot persist at resonance for very long times. The same trends 
would apply to a system which only has a discrete set of natural frequencies. 

CONVECTION DRIVEN BY A FLUCTUATING GRAVITATIONAL FIELD 
This research addresses the mechanical response of a fluid in’which a smooth density gradient exists 

due, perhaps, to an imposed temperature of composition gradient. In this case, a fluctuating effective 
gravitational field may induce a number of convective instabilities due to its ‘random value and orientation. 
The configuration studied is that of cavity flow in a “laterally” heated container [7]. The base state is a 
quiescent state in a two dimensional square geometry of side L,  with an initial uniform temperature gradient 
along the t direction. We assume that the equation of state of the fluid is given by p = po [1+ Q(T - TO)], 
where p is the mass density of the fluid at temperature T ,  po is a reference density at some temperature 
TO, and Q is the thermal expansion coefficient. At t = 0, a time dependent gravitational field is turned on. 
The component of the gravitational field which is parallel to the initial density gradient is rnuch too weak 
to trigger any fluid motion, although it will contribute to the flow once the fluid is set in motion. We have 
chosen to neglect this component in our initial study. On the other hand, components of the gravitational 
field perpendicular to the initial density gradient do not have to exceed a finite threshold in order to induce 
convection. In this case the quiescent state is not stationary. However, the facts that the actual values taken 
by the effective gravity are relatively small, and average to zero, raise the question of whether a significant 
convective flow can be generated, and how it may depend on the parameters of g-jitter. 

Approximate analytic solutions to the flow field have been found in the limit in which the temperature 
field in the cavity is not appreciably distorted by the flow. In this limit of negligible heat transport, one 
focuses on the mechanical response of the fluid to the fluctuating acceleration field. We have been able 
to isolate a few important characteristics of cavity flow that result entirely from the stochastic nature of 
the acceleration field, and that would not have been obtained under a strictly periodic gravity modulation. 
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Figure 2: (Left) Stability boundaries for the second moments of a free fluid surface. The figure shows the 
dimensionless mean squared fluctuations in gravitational acceleration versus the dimensionless frequency of 
the surface modes. The intensity of the fluctuations in the gravitational field is given by G2 = ( g ( t ) 2 ) .  
Different curves show the stability boundaries for various values of the dimensionless correlation time Or.  
(Right) Estimate of tolerable levels of g-jitter for instability of a planar water-air surface at room temperature. 
We show the normalized root mean squared g-jitter for instability as a function of the characteristic frequency 
of the driving noise (gE is the intensity of the gravitational field on the Earth's surface). Three different 
correlation times are shown, as indicated in the figure. The dashed line is the stability curve for the Mathieu 
equation for the same driving frequency (deterministic case). 

Although the imposed acceleration field, and hence the vorticity, average to zero, the vorticity itself can 
be described by a random walk in time. Specifically, at short times t < '7, the mean square vorticity at 
the center of the cavity (t2) oscillates with angular frequency O, the characteristic frequency of the noise. 
The amplitude of the oscillatory component decays exponentially with a decay rate 1 / ~ .  For t >> T, ( t2)  
increases linearly in time according to, 

where AT is the imposed temperature difference across the cavity. This growth will not continue indefinitely, 
and (t2) is expected to saturate at a finite value due to viscous dissipation at the walls. The time required 
to reach saturation, and the maximum value of (t2) attained, are currently under investigation. 

Another important consequence of our result is that there is fluid motion regardless of the value of the 
characteristic frequency O. It is often stated in the literature that the main effects of g-jitter on fluid motion 
are caused by those frequency components of the jitter that are close to inverse characteristic times of the 
process under study. The case of cavity flow provides a clear counterexample to that rule. 

Numerical study of cavity flow 

In order to study more realistic situations, a numerical algorithm to study cavity flow in two dimensions 
under the action of a fluctuating gravitational field has been developed [SI. We have solved the Navier-Stokes 
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Figure 3: Second moment of the vorticity as a function of time for Q2/27r = 1Hz and (from top to bottom) 
7- = O.ls, 1s and 10s. The curves shown are the results of both analytic and numerical calculations. The 
numerical results are averages over 300 independent realizations of the random noise. 

equation in the Boussinesq approximation by using a stream function-vorticity formulation. A Forward Time- 
Centered Space method is used which is first order accurate in time, and second order in space. The small 
Rayleigh numbers (appropriate for typical microgravity conditions) and the relatively large Prandtl numbers 
used in our calculations place us well within the range of stability of the technique when purely deterministic 
functions are involved. The Poisson equation that relates the stream function and the vorticity has been 
solved by a Successive Over Relaxation technique. 

We have thus far explored values of the parameters within the range of validity of the analytic predictions 
described above. ,Due to the gentleness of the flow, our calculations are performed on a small, evenly spaced 
grid. The results for the mean square vorticity at the center of the cavity are shown in Fig. 3 (the numerical 
results are averages over three hundred independent realizations of the random function). The mean squared 
vorticity obtained numerically is in excellent agreement with the analytic calculations. 

. 

CONCLUSIONS 
A stochastic model of the residual acceleration environment onboard spacecraft has been introduced. Not 

only does it provide a realistic description of the acceleration environment, but it also allows to smoothly 
interpolate between two well known limits: the white noise limit and the deterministic limit (a periodically 
modulated gravitational field). Two generic situations have been studied by both analytic and numerical 
means: a fluid system with a sharp density discontinuity (e.g., an interface separating two immiscible fluids 
or two coexisting phases of different density), and a system with a smooth density gradient due, perhaps, to 
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an imposed temperature or composition gradient. 
We have first concentrated on the response of an interface separating two regions of different density to a 

fluctuating acceleration field. Two main conclusions have emerged from our study. First, an external driving 
force with a broad frequency spectrum leads to parametric resonance in a wide frequency range. The resonant 
behavior is not given by the superposition of the resonances produced by each of the frequency components 
because of the nonlinear coupling between the external force and the oscillator coordinate. Second, the 
resonant behavior of the second moments (or the energy) is in general weaker than the resonance that would 
result from any of the frequency components alone. 

In the case of a smooth density gradient, the component of the gravitational field which is parallel to 
the initial density gradient is much too weak to trigger any fliid motion in typical microgravity conditions 
(although it will contribute to the flow once the fluid is set in motion). The perpendicular component, 
however, does induce fluid flow with an amplitude that grows sublinearly in time: the flow field itself averages 
to zero but its mean squared value grows linearly with time (until viscous effects lead to saturation). 
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