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An intuitive delineation along with dimensional 
considerations and experimental evidences are presented to 
show that in a general case, the evaporation of a liquid 
droplet undergoes three regimes through the process. 
Initially, the heat transfer inside the evaporating droplet 
is conduction controlled; then, in the second stage, 
convective heat transfer may take over; finally, the 
convections subside, and the process returns to conduction 
controlled mode. , 

Consider a simple sphere of liquid droplet undergoing the 
evaporation process. According to the well known Maxwell's 
theory, the rate of evaporation can be described by the linear D- 
square law of quasi-steady droplet evaporation [l]: 

or 

where m, r, D,, c, D, and p represent mass, radius, diffusion 
coefficient, concentration, droplet diameter, and liquid density, 
respectively. The subscript d refers to a location at the droplet 
surface, and subscript 00,  a distant point or simply the ambient. 

If one takes a closer look at the evaporation process, it is 
not difficult to realize that the classical D-square law of 
Maxwell does not really describe the whole process. Consider a 
free-floating liquid drop whose surface temperature decreases as 
the liquid evaporates. As the process continues, a radial 
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temperature gradient builds up at the free surface until the 
critical Marangoni number is exceeded. Then the onset of 
instability induces thermocapillary convective flows, which in 
turn speed up the evaporation. The convective flows will subside 
when the interior of the droplet reaches a certain equilibrium 
temperature, and the process will return to the conduction 
controlled mode. 

Based on the above reasoning, the entire evaporation process 
can be more realistically described as follows. In the initial 
stage, a droplet evaporates essentially according to the D-square 
law and is depicted as regime I in Fig. 1. As the evaporation 
continues, the faster heat loss through evaporation exceeds the 
heat supplied through conduction and a radial temperature 
gradient begins to develop at the surface. Meanwhile, the 
Marangoni number of the droplet near the surface increases with 
the temperature gradient build-up. When the Marangoni number 
reaches its critical value, the onset of (Marangoni instability 

. induced) convective flow commences,.and this is the beginning of 
regime 11. The convective flow effects faster heat transfer to 
the evaporating surface, which should result in a significant 
increase in the evaporation rate. Eventually, the interior 
temperature of the liquid drop reaches a lower (than the ambient) 
equilibrium value, which can not maintain the radial temperature 
gradient for sustaining the convective flows. At this point, the 
convective flow motion subsides and the process enters into the 
final stage of regime 111. In the final stage, the liquid drop 
continues its evaporation at the rate sustained by the heat input 
from its ambient environment (excluding radiative heating), which 
is conduction controlled as in regime I. The process continues 
until the droplet evaporates completely. 

While buoyancy-driven fluid problems related to spherical 
geometry instability have been treated to a considerable extent 
in the literature, the thermocapillary instability of spherical 
geometry has been almost completely overlooked except for the 
recent work of Cloot and Lebon (21 who deal with the mathematical 
aspects of thin spherical shell configuration, and Arpaci, 
Selamet, and Chai who take into consideration some physical 
aspects of the problem, paying special attention to realistic 
boundary conditions and surfactant effects [ 3 ] .  To help establish 
the validity of the intuitive reasoning to have thermocapillary 
instability involved in the droplet evaporation process, the 
following dimensional arguments are in order. 

Consider an interface momentum balance of a curved surface 
which is affected by the presence of surfactant 
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where F, and F, respectively denote surface tension and viscosity 
forces, and f l  and R the effect of surfactant and that of 
spherical curvature respectively on the Cartesian Laplacian, The 
inertial contribution is neglected for infinitesimal instability 
considerations, 

The thermal energy balance at the interface is 

where Qv and QK respectively denote heat from enthalpy flow and 
conduction, and B denotes the Biot number (heat loss from the 
interface) . Explicitly, 

and the equations of momentum and energy balance lead to 

In the above expressions, o, p ,  p ,  c,,, and k have their 
conventional meanings of surface tension, viscosity, density, 
specific heat, and conductivity, respectively. For surface 
tension-driven flow, the flow velocity V is a dependent variable. 
Consequently, the above two expressions cannot be used as 
ultimate dimensionless numbers characterizing these flows. 
However, the combination of them in a way which eliminates the 
velocity V yields 

where 

is the usual definition of Marangoni number, 1 a characteristic 
length(1iquid layer thickness), and a! = k/pc, is the thermal 
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diffusivity. 

Now consider the case for a simple, clean and flat liquid 
layer. Similar arguments lead to 

Consequently, the critical Marangoni number for a liquid droplet, 
relative to Ma, for a simple, clean and flat liquid layer, can be 
written as 

which suggests that the heat transfer and surfactant delay, and 
the curvature hastens the onset of instability. 

For evaporating droplets, latent heat enthalpy flow Qz needs 
to be taken into consideration in addition to the sensible heat 
of QH. Here 

is the Jacob number, with h,, the latent heat. Thus for 
evaporating droplets, the Marangoni number needs to be replaced 
by 

1 
Ja Ma(l+-) , 

The critical Marangoni number for the onset of surface 
tension-driven convection in a thin layer of fluid, according to 
Pearson's study [ 4 ] ,  is Ma, = 80. Experiments carried out by 
Apollo 17 crew, however, gave an order of magnitude higher Ma, in 
the range of 400 - 2,600 [ 5 , 6 ] .  Various reasons have been cited 
to account for the difference, but no conclusive argument has 
been made. 

To the best of our knowledge, similar studies for  the case 
of an evaporating liquid droplet do not exist. The curvature is 
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expected to decrease the critical Marangoni number. However, a 
preliminary calculation has shown that the Marangoni number could 
reach as high as up to lo4 for a water or methanol droplet with a 
radius of 1 mm, evaporating in a relatively mild (ambient 
temperature) environment. A Marangoni number of such a magnitude 
clearly indicates that the surface tension-driven convection can 
be expected in the evaporating droplets targeted for this study. 

Ideally, accurate measurements of droplet evaporation can be 
performed in space using the Drop Physics Module or the Fluids 
Module on board the USML (United States Microgravity Laboratory), 
which we have already proposed to do. However, before we get the 
opportunity to conduct the space experiments, we are able to 
report here the ground-based experimental evidences (some photos 
were presented as poster exhibits at the VIIIth European 
Symposium on Materials and Fluid Sciences in Microgravity, 
Bruxelles, Belgium, April 13-16, 1992[7]) that unequivocally 
demonstrate the feasibility of conducting the experiments in 
space and the validity of the new model for droplet evaporation. 

In order to minimize buoyancy effects and droplet 
deformation due to weight, we limited our sample size ?to 
approximately 1.5-1.75 mm in diameter. The sample droplet, 
prepared and injected at room temperature, is suspended with a 
wire loop inside an evaporation chamber. A sheet (approximately 
0.2 mm thick) of laser light is used to illuminate a cross 
section of the sample; two variable intensity spot lights are 
used for general illumination. Flow visualization is accomplished 
with an Olympus microscope equipped with zoom body mechanism 
(7.5-64x), video and still cameras. Aluminum powder of 1 micron 
size is used as tracing particles. The presence of the wire loop 
causes a slight rotation in the bulk fluid, and the uneven 
heating of the loop by the illuminating light could also disturb 
the flow patterns. However, these undesirable effects are not as 
detrimental so far as our qualitative data is concerned. The flow 
patterns induced by thermocapillary instability can be 
unequivocally identified. 

For evaporating liquids, we tested distilled water, 
methanol, acetone, and low viscosity silicon oil (Dow Corning 200 
fluid, 0.65 cs). Water has been notoriously known for its 
suppression of surface tension-driven flows because the large 
dipole moment of its molecules attracts contaminations on the 
free surface. We certainly experienced considerable difficulty 
with water to induce any appreciable flows driven by surface 
tension forces. The volatile acetone makes it hard to obtain flow 
patterns steady enough for one to take photo pictures. Methanol 
and the 0.65 silicon oil both behave consistently well. 

Figure 2(a) shows a water droplet evaporating in normal 
atmospheric pressure. There is no apparent internal flow of any 
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kind. Methanol droplets in a vapor saturated environment and a 
methanol droplet in the brief quasi-stationary evaporation mode 
(prior to the onset of instability induced convective flows) can 
also be represented by Fig. 2(a).  Figure 2 ( b )  shows a fairly 
symmetric convective flow pattern developed in an evaporating 
methanol (or 0 . 6 5  cs silicone oil) droplet seconds after the 
process gets started. However, after considerable evaporation, 
the temperature of the droplet decreases significantly and can no 
longer sustain the thermocapillary convection; the convective 
flows die down and the evaporation returns to conduction 
controlled mode. Figure 2(c) clearly shows that this is the case. 

For reference and comparison, we painted a wire loop black 
and used it to suspend a sample droplet. Upon illumination with 
the sheet of laser light, the point where light intersects the 
loop obviously absorbed enough light to create a local warm spot, 
hence a surface temperature gradient on the sample droplet. The 
vigorous bulk flow motion exhibited in Fig. 3 was generated 
precisely in this manner. 
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Figure 2. Laser sheet light illuminated cross section 

of an evaporating droplet (a) in regime 1 
(b) in regime 11, (c) in regime Ill. 
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