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ABSTRACT 

For growth of a vicinal face at constant velocity, the eflect of anisotropic interface kinetics on mor- 
phological stability is calculated for a binary alloy. The dependence of the interface kinetic coefficient on 
crystallographic orientation is based on the motion and density of steps. Anisotropic kinetics give rise to 
traveling waves along the crystal-melt interface, and can lead to a significant enhancement of morphological 
stability. The stability enhancement increases as the orientation approaches a singular orientation and as 
the solidification velocity increases. Shear flows interact with the traveling waves and, depending on the 
direction of the flow, may either stabilize or destabilize the interface. Specific calculations are carried out 
for germanium-silicon alloys. 

INTRODUCTION 

During the directional solidification of a binary alloy solute inhomogeneities can arise from both fluid flow 
and morphological instability. In microgravity buoyancy-driven fluid flow is reduced, and experiments to 
study the evolution of morphological patterns without the interference of fluid flow may be possible. We are 
carrying out theoretical studies of the interaction of fluid flow with the crystal-melt interface [l-31. Included 
in this research are: (1) calculations of cellular morphologies in the absence of fluid flow; (2) evaluation of the 
Seebeck voltage for cellular interfaces as a method for monitoring interface morphology in metallic alloys; 
(3) linear stability analyses of coupled interfacial and convective instabilities; (4) calculations of the effects 
of time-dependent gravitational accelerations (g-jitter) on fluid flow during directional solidification. This 
ground based research will focus on providing theoretical interpretation and guidance for a series of space 
experiments to be carried out by J. J. Favier, R Abbaschian, and colleagues on tin-bmmuth alloys using 
the MEPHISTO apparatus and by K. Leonartz and colleagues on succinonitrile-acetone alloys. Biemuth 
typically grows from the melt with facets, and in this paper we will describe recent studies of morphological 
stability when the interface attachment kinetics is highly anisotropic. 

During solidfication of a binary alloy, the crystal-melt interface m y  become morphologically unstable 
[4, 51 leadiing to cellular or dendritic growth. Here, we consider the effect of anisotropy of interface kinetics 
on morphological instability during growth of a binary alloy at constant velocity. We treat growth in a 
direction near a singular orientation, and use a model of kinetic anisotropy based on step motion. The 
effect of anisotropy of surface tension and interface kinetics has previously been treated [S] in a quasi-static 
approximation to the diffusion field; kinetic anisotropy gave rise to traveling waves along the crystal-melt 
interface. In this article, we keep the full time-dependence of the diffusion field and show that the traveling 
waves resulting from kinetic anisotropy can provide a significant enhancement of morphological stability, 
especially for orientations near the singular orientation and for large growth velocities. We have recently 
obtained similar results for constant velocity growth from a supersaturated solution [I.  

In solution growth, it is well known that a solution flowing above a vicinal face of a crystal has a strong 
influence on morphological stability [&lo]. If the flow is opposite to the direction of the step motion, there 
is a stabilisation of the interface with respect to step bunching. In the absence of a shear flow, there is an 
apparent flow of liquid opposite to the step motion (in a reference frame attached to the moving steps) and 
this stabilizes the interface, preventing step bunching and the formation of macrosteps [7]. 

For melt growth, interface stability near a vicinal face was the subject of an earlier treatment by Yuferev 
[ll] in which he concluded that interface stabbity is enhanced for very small deviations from the singular 
orientation. Also, Kolesnikova and Yuferev [12] have carried out weakly nonlinear calculations in the frozen 
temperature approximation, i.e., equal thermal properties and vanishing latent heat. A strong interaction 
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between a shear flow parallel to the crystal-melt interface and anisotropy of kinetics has recently been found 

In this article, we carry out a linear treatment of interface stability during constant velocity solidifica- 
tion of a binary alloy. We allow for an interface kinetic coefficient that depends on the crystallographic 
orientation of the crystal-melt interface. We carry out specific calculations for germanium-silicon alloys for 
orientations in the vicinity of a singular orientation, which occur in this alloy [13]. 

[lo]. 

THEORY 

We consider directional solidification of a binary alloy at constant velocity P in the z-direction and treat 
the morphological stability of an initially planar crystal-melt interface. We choose an (2, y, z )  coordinate 
system (moving with the macroscopically planar interface) such that the crystal-melt interface is described 
by z = h(z,t), where t is the time. Further, we consider a twedimensional problem and assume that all 
quantities are independent of the y-coordinate. 

The temperature fields, T ~ ( z , z , t )  and Ts(z ,z , t ) ,  in the melt and crystal and the solute field in the 
melt, CL(Z, z, t), satisfy the partial differential equations 

aTs - ails - = nsV2Ts + V - ,  at 82 
4 

- acL 
at at 
- aCL = DV%L + v-, 

(3) 

where IGL and KS are the thermal diffusivities in the melt and crystal, respectively, and D is the solute 
diffusivity; we neglect diffusion in the solid. We also assume that there is no fluid flow in the melt and that 
the thermophysical properties are independent of temperature and solute concentration. These transport 
equations and assumptions are most appropriate for dilute alloys. 

The boundary conditions at the crystal-melt interface are 

(V - n)( 1 - ~ ) C L  = -L)VCL n, (4) 

V is the solidification velocity vector, n is the unit normal to the interface, k is the segregation coefficient, L, 
is the latent heat per unit volume, ks and K L  are the thermal conductivities of crystal and melt, respectively, 
@(p) is the kinetic coefficient, TM is the melting point, m is the liquidus slope, I' = y /L, ,  y is the surface 
tension, and X: is the mean curvature of the crystal-melt interface. We will assume that @(p) = &lpl, with 
p G tan@, where 8 measures the deviation of the interface from a singular orientation. We will denote the 
orientation of the planar interface relative to the singular orientation by p ,  and consider that p > 0.We fix the 
far-field boundary conditions by specifying the bulk alloy concentration C, and the temperature gradient 
in the melt at the crystal-melt interface. We will perform stability calculations for germanium-silicon alloys; 
the required properties are given in reference [14]. 

In [7,10,14] the morphologicalstability of a solid-liquid vicinal interface is treated using linearized theory 
in two dimensions. The perturbation to the planar interface (z  = 0) with crystallographic orientation p has 
the form 

z o( exp(0t + &z). (9) 
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Here & is the wavenumber and u is the complex temporal factor, 

u = Up + i ~ i .  (10) 

The interface is unstable if 
analytically. In the thermal steady-state approximation, i.e., IEL + 00 and nS 3 00, it reduces to 

> 0. The dispersion relation for u as a function of k ,  can be obtained 

u / 8  = (-0 - TMI'k: + ik8/CB,tf?) + mG,[a - 8 / D ] / [ a  - ( 1  - k ) 8 / D ] )  

( L v 8 / ( 2 k )  + (v/@,tp) + mG,/[a - ( 1  - k)V/D] ) - ' ,  (11) 

(12)  
where 

a = ( v / ~ D )  + 4 ( 8 / 2 ~ ) 2  + ki + ( u / ~ ) ,  

d = (ksGs + k ~ G ~ , ) / ( 2 6 ) ,  and k = (ks + kl;) /2 .  In a previous treatment [SI of the effect of anisotropic 
kinetics on morphological stability, a quasi-static approximation was made for the diffusion field which is 
equivalent to setting cr = 0 in the definition of a. In this limit, the above expression agrees with eq. (13) of 
reference [6]. The dispersion relation can be written as a cubic~polynomial with complex coefficients in the 
variable a - (8/2D); this has the advantage that all roots of the nonlinear equation can be determined. In 
the thermal steady-state approximation, we have numerically solved the cubi  polynomial to determine the 
stability conditions. We have also numerically solved the ordinary differential equations as a boundary value 
problem to determine the stabsty conditions; this does not require the thermal steady-state approximation. 

RESULTS 

The dispersion relationship U, = P y ( 8 ,  d, coot$, k,) includes, as independent pkameters, the normal 
growth rate 8, the temperature gradient d, the impurity concentration c, and the slope p; stability requires 
that uF < 0 for all values of k,. In principle, the slope, p9 may be fixed independently of the other processing 
variables by cutting the crystal to prepare an initial interface; however, only very small deviations (less than 
a tenth of a degree) from a singular interface make sense because large deviations are indistinguishable from 
a rough interface. Even such a prepared interface may be replaced (wedged out) by the nearest singular hce 
in the course of sufficiently long growth. Under the typical conditions of faceted growth, the vicinal slope 
p on a facet is, like 8, dependent on supercooling and is determined either by a dislocation step source or 
by two-dimensional nucleation on the most supercooled region of the facet. In these cases, the slope p is 
a function of the growth rate 8 which is determined by the conditions of crystal pulling (Czochralaki) or 
crucible movement through a temperature gradient (Bridgman and related techniques). In the following, 
we consider stability conditions for both an independently given slope and for a slope determined by P, i.e., 
p = p((P), for dislocation assisted growth and for growth by two-dimensional nucleation. 

Figure 1 presents the real part of the temporal factor u, i.e., u,, as a'function of the wavenumber k, in 
dimensionless form for the processing conditions V = 10 pm/s, GJ, = 50 K/cm, and C, = 5 at%. The 
upper plot with p = 0.002 is for isotropic kinetics. The lower two plots are for anisotropic kinetics with p' 
= 0.002 and 0.0015. Stabniiation due to tatisotropy is evident. Also, for p < 0.0015 the interface becomes 
absolutely stable, Le., stable against perturbations for BU k,. Stability at D k , / 8  < 5 is common to all the 
curves; in this region of k,  the perturbation wavelength 25r/k= > D/8, i.e., the diffusion boundary layer 
follows the perturbed interface and thus there is less driving force for instability. The steep drop in 9 at 
high wavenumben is associated with capillary stabhation, while the kinetic stabhation determines the 
overall level of a, at lower k, and thus the height of the maximum. 

We suppose that the unperturbed slope p is determined by a screw dislocation with the elementary 
Burger's vector intersecting the face under consideration. We also assume that the supercooling, AT, and 
thus the value of p ,  along the face is constant with AT given by P/(&p). Letting be the b e a r  energy 
of a step, the growth rate of the face is given by [15] 

and the slope is 
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where h is the step height. It was shown by Voronkov [15] that the step fluctuations at the melting point 
decrease the step free energy for (111) Si and Ge by a factor of three or four; therefore, for the linear stabdity 
calculations for Ge, we assume that 78t = $44. 

If the crystal face is free of screw dislocations or the supercooling is so high that step generation by 
two-dimensional nucleation is more effective than by the dislocation mechanism, the growth rate is [16] 

1 
P = h(fi2J)Z (15) 

where the nucleation rate J (cm-l 8 )  is obtained from 

1 
J = [ ~ ~ ~ T ~ A T / ( W ' L , , ) ] ? Q ~ ~ ~  exp[-dvy2/(k~AT&,)]. (16) 

Here q is the density of surface sites on which nucleation is possible, w is the atomic volume, and kB is 
Boltsmann's constant. Thus, the growth rate is 

and the slope p is given by c 

Thus eq. (17) and eq, (18) give the dependence p(P) in parametric form with AT the parameter. In 
evaluating these expressions, we make the approximation that h7q2/w = 1. 

In Fig. 2, we present a stability diagram in terms of the critical solute concentration as a function of 
the ratio of the liquid temperature gradient and the growth velocity for GL = 50 K/cm. The interface is 
stable to smal l  perturbations for concentrations lying below the given curves. The calculations have been 
carried out by numerically solving the differential equations. The solid curve is the Mulliins and Sekerka 
[4] result which for isotropic kinetics does not depend on the kinetic coefficient [SI. The dashed and dotted 
curves are calculated from the present model of anisotropic kinetics with = 0.01 and 0.001, respectively. 
Anisotropic kinetics causes a substantial enhancement of the region of stability. 

The remaining two curves in Fig. 2 are for dislocation and two-dimensional nucleation controlled growth 
for which p is a function of velocity. For the dislocation controlled growth, P = 8.7 x lo4$ cm/s. In the 
caae of two-dimensional nucleation, eq. (17) and eq. (18) have been evaluated numerically to obtain P as a 
function of p .  

We note that as p becomes small, the concentration at the onset of instability becomes very large where 
other effects, which we have not taken into account, such as fluid flow and the concentration dependence of 
the distribution coefficient, liquidus slope, and diffusion coefficient, may be important. However, it is clear 
from the results that as a singular orientation is approached, anisotropic kinetics has a large stabiliaing 
effect. 

becomes very large, the thermal steady-state approximation is no longer 
valid. For example, in the thermal steady-state approximation, for p = 0.001 and B = 0.001 and 0.01 cm/s, 
the critical concentrations are 7.8847 and 5.4579 at%, respectively; whereas the numerical values are 7.8852 
and 7.6689 at%. Thus for p = 0.001, the thermal steady-state approximation underestimates the critical 
concentration. The thermal steady-state approximation fails because the wavespeed is sufficiently large that 
k: is no longer much greater than Q ~ / K S .  

Near a singular orientation, due to anisotropy the value of TMI' may be much less than the value 
used in our calculations [14]; therefore, we have also carried out a few calculations with TMI' reduced 
by a factor of 100. For p = 0.001 and B ranging from 0.001 to 0.1 cm/s, the critical concentrations are 
essentially unchanged. Similarly, for dislocation controlled growth, the results for the critical concentrations 
are again unchanged. Thus, in the strongly kinetically controlled regime the value of the capillary constant 
is unimportant. Capillarity is still important at large wavenumbers, but in the kinetically controlled regime 
the onset of instability occurs at relatively small wavenumbers. 

As p becomes very small or 

17 8 



CONCLUSIONS 

In the calculations described above, we have assumed that the melt is stagnant. It is well known that 
fluid flow can alter the conditions for stability [lo, 171. For an ideal flu d anisotropic kinetics, Chernov 
[lo] has shown that a flow parallel to the interface and opposite in direction to the step motion stabilizes 
the interface while a flow in the direction of the step-motion destabiiies the interface. We are carrying 
out numerical calculations of the h e a r  stability of a crystal-melt interface in the presence of a parallel 
shear flow. The method is similar to that previously used for isotropic kinetics [18]; in addition, we have 
developed a pseudospectral algorithm to treat the problem. Qualitatively, the results are in agreement with 
Chernov [lo] for an ideal fluid. 
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Figure 1: The real part of the temporal growth rate as a function of the spatial wavenumber for three values 
of the crystallographic orientation with respect to the growth direction for p = 0.002 and 0.0015. The upper 
plot is for isotropic kinetics, while the two lower plots are for anisotropic kinetics. 
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Gfl Ks/cm2 
Figure 2: The silicon concentration at the onset of instability during directional solidification of germanium- 
silicon alloys as a function of the liquid temperature gradient divided by the growth rate with GL = 50 
K/cm. The interface is morphologically stable for concentration values below the curves. The solid curve 
is based on the Mullins and Sekerka theory with isotropic kinetics; the remaining curves are for anisotropic 
kinetics. The dashed and dotted curves correspond to p = 0.01 and 0.001, respectively. The curves labeled 
%ucl" and udisl" correspond to nucleation and dialocation controlled growth for which p is a function of 8. 

18 0 


