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ABSTRACT 
A linear-stability analysis is performed on the interface formed during the directional solidification 
of a dilute binary alloy in the presence of a time-periodic flow. In general, the flow is generated 
by the elliptical motion of the crystal parallel to the interface. The presence of the flow can either 
stabilize or destabilize the system relative to the case without flow with the result depending on the 
frequency and amplitude of the oscillations as well as the properties of the material. In particular, 
we find that the morphological instability present in the absence of flow can be entirely suppressed 
with respect to disturbances of the same frequency as the oscillation. 

INTRODUCTION 
The manufacturing of crystals with uniform material properties is frequently hampered by the pres- 
ence of morphological instabilities during the solidification of multi-component materials. These 
nonuniformities result from an interaction between surface morphology and the concentration gra- 
dients created by solute rejection. In order to eliminate these nonuniformities, it is necessary to 
suppress the instability. In the context of directional solidification, this can be dqne by producing 
materials with sufficiently low solute concentration, or by controlling the speed of the solidification 
front'. 

When it is undesirable to operate within these restricted ranges of parameters, some other 
method of stabilization is necessary. In the 1960's, Hurle suggested that flow in the melt, either 
forced or resulting from natural convection, might be used to stabilize the interface. Since then, a 
number of studies have investigated the effect of various flows on morphological stability. 

Delves2 studied solidification into a Blasius boundary layer, using a parallel-flow approximation. 
Coriell, McFadden, Boisvert and Sekerka3 investigated solidification into a plane Couette flow. 
Forth and Wheeler4 and Hobbs and Metzener5 investigated solidification into a parallel flow with 
the asymptotic suction profile. McFadden, Coreill, and Alexander' and Brattkus and Davis7 looked 
at solidification into a stagnation point flow. Brattkus and Davis' also looked at solidification over 
a rotating disc. Merchant and Davisg studied solidification into a temporally modulated stagnation 
point flow, and Schulze and Davis1' considered solidification into a compressed Stokes boundary 
layer (CSL). For a more extensive review of the role of convection in splidification see Davis ll. 

Here, we follow up on the work studying solidification into a CSL. This flow can be generated 
by oscillating the crystal parallel to the interface. 

GOVERNING EQUATIONS 
We consider the directional solidification of a dilute binary mixture at constant speed V. We choose 
a coordinate system with x-axis located at the mean position of the crystal interface, moving with 
the front, and a z-axis that is fixed in the laboratory frame of reference. The equations governing 
the system in the fluid region are the Navier-Stokes, continuity, and solute diffusion equations: 

Rut + EU vu - uz = -vp + s v 2 u  

~C,+EU.VC--CZ = v2c 
v * u  = 0 

T = Z. 

To simplify the analysis, we neglect latent heat and density changes, and we assume equal densities 
and thermal properties between the two phases. We also assume that heat diffuses much faster 
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than solute, and, in this limit, the temperature field is fixed and depends linearly on the vertical 
coordinate-the frozen temperature approximation 12. We begin by considering the problem in two 
dimensions. 

We have nondimensionalized the equations by scaling the fluid velocity with the amplitude of 
the crystal oscillations U ;  the spatial coordinates with the diffusion boundary layer thickness D/V, 
where D is the solute diffusivity; time with the frequency of the crystal oscillations w ;  and the 
temperature and solute concentrations using the product of the diffusion boundary layer thickness 
and their respective gradients at the interface. 

The nondimensional parameters that appear in the equations and boundary conditions are the 
morphological number M ,  the surface energy parameter I?, the Schmidt number S, the nondimen- 
sional frequency a, the segregation coefficient I C ,  and a parameter measuring the amplitude of the 
lateral oscillations E .  

M =  

r =  

s =  

R =  

E =  

Here m is the liquidus slope in the phase diagram of the binary mixture, C, is the far-field solute 
concentration, G is the thermal gradient, T, is the melting temperature of the solvent, y is the 
surface free energy, Lv is the latent heat per unit volume, and u is the kinematic viscosity. 

The interfacial conditions, evaluated at z = h(x, y, t) are as follows: 

u = cost 
w = O  
C = M-lh-2I'H 

[ l + R h t + ~ c o ~ t h X ] [ l + ( b -  1)C] = Cz-Cxhx, 

(2.10) 
(2.11) 
(2.12) 
(2.13) 

where H is the mean curvature of the interface. 
The basic state for this system takes the form 

.ii = e-Bzcos(t - Az)  (2.14) 
w = o  (2.15) 
C = 1 -ee-' (2.16) 
h = 0, (2.17) 

where A and B are known real constants that depend on the Schmidt number and forcing frequency. 
To analyse the response of this state to infinitesimal perturbations, we disturb each of these 

quantities, and separate the disturbances into normal modes of the form 

4 = 6 + &z, t)eimxeat + C.C. (2.18) 

Here we are seeking time-periodic eigenfunctions with the same period as the basic state, and LT is 
the Floquet exponent. If the real part of LT is not zero, then the disturbances will experience a net 
growth or decay over one period. 

Routine algebraic manipulations result in two linearized disturbance equations for the solute 
concentration and vertical component of the velocity. 

- 

- 
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SMALL AMPLITUDE OSCILLATIONS 
In this section we find conditions on the morphological number M such that the system is neutrally 
stable in the limit of small forcing, E + 0. In this limit, we find that u = 0 on the neutral curve, 
and we expand the inverse morphological number as 

M-l = MO+E2M2+ ..., (3.19) 

where MO corresponds to the no-flow, or Mullins and Sekerka, result. 
In Figure 1 we plot the correction to the no-flow result for the CSL as a function of the 

disturbance wavenumber for various forcing frequencies. If M2 < 0 for a given wavenumber, a 
disturbance with that wavenumber will be stabilized relative to the case with no flow. Notice that 
for 52 = 1 all finite wavelengths are stabilized. The Schmidt number and segregation coefficient 
have been chosen to represent a lead-tin alloy for all of the figures in this paper. 

In Figure 2 we map out the regions of the a-0 plane where the flow has a stabilizing influence on 
the interface (M2 < 0 . Notice that there is a range of frequencies for which all finite wavenumbers 
are stabilized. We re 2 er to this as a window of stabilization. 

It turns out that the CSL is only able to stabilize in two dimensions. In three dimensions, only 
disturbances with wavevectors aligned with the parallel flow will be stabilized while those with 
wavevectors perpendicular to the flow are unaffected-thus the flow acts as a pattern selection 
mechanism only. 

SMALL AMPLITUDE NONPLANAR OSCILLATIONS 
Motivated by the work of Kelly and Hu13 on Benard convection, we attempt to extend the stabilizing 
influence of the CSL to three dimensions by considering the influence of nonplanar oscillations. 
Specifically, we consider the effect of adding a second oscillation perpendicular to the first which 
has the same frequency, but may differ in amplitude and phase. This corresponds to translating 
the crystal in elliptical orbits parallel to the interface. 

For the correction due to a weak flow, we get 

~2 = [(cos O + Xcos ysin + X2sin20sin 2 71 &p) , (4.20) 

where is the result for oscillations in one direction only (CSL), 0 is the angle that the 
disturbance wave vector makes with the x-axis, X is the amplitude ratio of the oscillations, and 7 
is the phase difference between the oscillations. 

If the two oscillations are either perfectly in or out of phase (corresponding to a phase angle 
that is an integral multiple of T I ,  there will be some 0, for which the correction to the no-flow 
result, M2, is zero. This means that the flow will be able to destabilize the interface if M p D )  > 0, 
but acts only as a pattern selection mechanism if < 0, with disturbances oriented at the 
angle 6, being the least stable. This is a degenerate case corresponding to a single oscillation along 
an axis lying in the x-y plane. The result is therefore equivalent to that for the CSL. 

When the phase between the oscillations, y, is not a multiple of T, the factor appearing in 
front of M p D )  is positive, and it is possible to stabilize an arbitrary three-dimensional disturbance 
provided M,(2O) < 0. Thus the ability of the nonplanar oscillations to stabilize the interface is 
predicted by the results for the CSL, and the window of stabilization is the same for both cases. 

The maximum stabilization occurs when the phase angle is n/2, with the stabilization being 
greater along whichever axis has the largest amplitude oscillations. If the amplitude ratio, A, is 
one, there will be no preferred direction for cell orientation. 

FINITE AMPLITUDE OSCILLATIONS 
In the previous section we showed that some degree of stabilization can be achieved by using small- 
amplitude nonplanar oscillations with a frequency lying within a given range. In this section we 
show that the Mullins and Sekerka interfacial mode can be entirely suppressed if these oscillations 
have sufficiently large amplitude. 
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Following the method used by Hall14 for the Stokes layer, we find an exact solution for our 
system in the form of a Fourier series in time. We then truncate this series to*produce numerical 
results. 

In Figure 3 we plot M-l versus Q for a forcing frequency Q = 10, which lies within the window 
of stabilization, and we see that by taking epsilon sufficiently large we can force the neutral curve 
below the x-axis. In Figure 4 we plot M-l versus E for the same frequency and with the wavenumber 
fixed at the critical value for the instability in the absence of flow. Notice that when E exceeds 
about 60, the instability is completely supressed. 

CONCLUSION 
We have found that nonplanar oscillations of the crystal during directional solidification can be used 
to entirely suppress the Mullins and Sekerka instability provided the frequency of these oscillations 
is within a given range and that their amplitude is sufficiently large. We have found that this 
window of stabilization persists for a+wide range of material parameters and operating conditions. 

We have searched for other modes of instability, especially subharmonics, but have not located 
any. If there are no other modes of instability, the modulation proposed here may provide a practical 
means for stabilizing the interface during directional solidification. 
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Figure 1: M2 vs. a for S = 81.0, b = 0.3 and various 52. M2 is independent ofiI'. When M2 is 
above the x-axis, the influence of the flow is destabilizing, and when M2 is below the x-axis, the 
influence of the flow is stabilizing. As St --f 00, M2 + 0, and as St --f 0, Mz approaches a steady 
state. Note that for St = 1 the flow is stabilizing for dl wavenumbers. 

R 
S 

Figure 2: Directional solidification into Stokes layer: Regions of the a-St plane where the 
flow stabilizes (S) or destabilizes (D) the interface relative to  the case without flow. S = 81.0 and 
IC = 0.3; result is independent of I'. 
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Figure 3: M-' vs. Q for k = 0.3, S = 81.0, R = 10.0, and E = {0,20,40,60}, As E is increased the 
flow stabilizes the interface, and for E x 60 the Mullins and Sekerka interfacial instability is entirely 
suppressed. 
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Figure 4: M-' vs. E for k = 0.3, S = 81.0, R = 10.0, and a fixed at the critical value for the no-flow 
system. Notice that the stabilizing trend begins to reverse if the amplitude of the flow oscillations 
is too great. 
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