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1. SCIENTIFIC OBJECTIVES: 
Broadly speaking, our efforts have been concentrated in two aspects of directional solidification: 

A. A more complete theoretical understanding of convection effects in a Bridgman apparatus. 
B. A clear understanding of scalings of various features of dendritic crystal growth in the sensitive limit 
of small capillary effects. 

For studies that fall within class A, the principal objectives are as follows: 
(Al.)  Derive analytical formulas for segregation, interfacial shape and fluid velocities in mathematically 
amenable asymptotic limits. 

(A2.) Numerically verify and extend asymptotic results to other ranges of parameter space with a view 
to a broader physical understanding of the general trends. 

With respect to studies that fall within class B, the principal objectives include answering the following 
questions about dendritic crystal growth: 
(Bl.)  Are there unsteady dendrite solutions in 2-D to the completely nonlinear time evolving equations 
in the small surface tension limit with only a locally steady tip region with well defined tip radius and 
velocity? Is anistropy in surface tension necessary for the existence of such solutions as it is for a true 
steady state needle crystal? How does the size of such a local region depend on capillary effects, anisotropy 
and undercooling? 

(B2.) How do the different control parameters affect the nonlinear amplification of tip noise and dendritic 
side branch coarsening? 

2. SCIENTIFIC AND TECHNOLOGICAL RELEVANCE 

The vertical Bridgman apparatus (Fig. 1) is used in the directional solidification of a molten binary 
alloy. The desired crystal for technological applicationp (as in semi-conductors) is the one with minimal 
compositional variations (Le. minimal segregation) and crystalline defects. However, due to significant 
heat flux through the sides of Bridgman device that is necessary to avoid constitutional supercooling, 
differences in fluid densities occur that results in convection at any Rayleigh number. Convection without 
sufficiently vigorous and uniform mixing leads to a significant radial segregation. A clear understanding of 
the dependence of segregation and interface deformation on the numerous non-dimensional parameters is 
likely to lead to improved design and control of this industrially relevant process. 

Prior theoretical work [see Brown' for a review], mostly numerical, has significantly furthered our 
understanding of the Bridgman problem; nonetheless, without explicit analytical formulas, it is difficult 
to get a general idea of the trends in various regions of the parameter space. We overcome this problem 
by deriving explicit formulas in some asymptotic ranges. This is complimented by numerical calculations 
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to determine the practical range of validity of the asymptotic results as well as to extend the suggested 
scaling dependences to other ranges of parameter space. 

Dendritic crystal growth is an important problem in pattern formation [see References [2-41 for reviews]. 
In the simplest case, one is interested in the growth of a pure needle crystal in an undercooled melt. It is also 
arises in the context of directional solidification when the drawing speed exceeds some critical value that 
determines a “cell to dendrite transition”. In this case, the growth is controlled by solutal diffusion rather 
than thermal. Nonetheless, the equations are similar to that in a pure needle crystal growth. Appearance 
of dendritic structures in directional solification leads to undesirable striations of solute rich material in the 
crystal. Further understanding of the basic process of dendritic crystal growth can be both scientifically 
and technologically rewarding. 

By answering question (Bl) without the limitations of an assumed steady state, linear stability or a 
linear WKB wave packet analysis, we address directly the controversy between the premises of “microscopic 
~o lvab i l i t y”~*~  and other theories5s6 that rely on the equivalent of a “marginal stability” hypothesis made 
originally by Langer & Muller-Krumbaar. It is to be noted that inclusion of surface tension anisotropy is 
crucial in the first case but not so for the other. Further, our analytical approach provides us with important 
scale. information in the small capillary limit, where increasingly small scales need to be resolved in any 
traditional method of numerical computation. An analytical understanding of the parameter dependence 
of noise amplification and side branch coarsoning is also important since it is likely, to influence ways of 
controlling this process. 

3. RESEARCH APPROACH 

*\ 

3a. Bridgman Problem 

Using a standard quasi-steady assumption, analytical calculations have so far been carried out in the 
limit when fluid velocities and interfacial deformation are small enough to permit linearization of the Navier- 
Stokes equation and the interfacial matching condition (about a planar interface). This assumption can 
formally be justified in the limit of small horizontal heat transfer; nonetheless, our analysis of the equations 
suggests that the actual expressions for radial segregation at the interface and interface deformation may 
actually transcend this limitation. Further, with a no-stress boundary condition on the side walls, a 
convenient radial expansion in terms of a Bessel function representation reduces the problem to an eighth 
order ordinary differential equation in the melt that is coupled with two second order equations in the crystal 
through the interfacial conditions. The resulting equations are further analyzed using standard WKB 
techniques in the two cases of (i) large thermal Rayleigh number RT in a thermally stable configuration 
and (ii) large solutal Rayleigh number R, in a solutally stable configuration. 

Further, a numerical code based on a finite difference scheme has been developed to solve the coupled 
heat-mass transfer and fluid equations with a no-slip as well as no-stress sidewall boundary conditions in 
order to compare and contrast the two cases and determine the range of validity of the large RT or lRcl 
asymptotics. We also wish to explore the possibility that the complicated dependence of segregation and 
interfacial deformation on the seventeen nondimensional parameters can be largely understood in terms 
of only a few lumped parameters that are in turn functions of other parameters, as suggested by the 
asymptotic results. A systematic bifurcation study of the possible steady states is also planned. 

With a one sided diffusion model of the growth of a pure dendrite, but with no assumption about a 
quasi-stationary field, we have so far looked at two opposite limits: (i) small undercooling when the Peclet 
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number based on tip radius and velocity of a dendrite is small and (ii) large undercooling when Peclet 
number based on tip radius and velocity tends to infinity. 
i. Small Peclet number limit 

In the small Peclet number limit, various regions of an initially near parabolic dendrite are identified 
where different equations have to be solved to follow the dynamics of disturbances initiated near the tip. 
Not unexpectedly, there is an O(1) region near the tip where the diffusion problem reduces to a Laplacian. 

In this order O( 1) region near the tip, the dynamics for O( 1) times is studied by using a conformal 
mapping function z(C,t)  that maps the upper half C plane to the physical ( z ) domain. The complex 
dynamics of the analytically continued z(<,t) is studied in Im C < 0 with a view to understanding 
the asymptotic behavior of the dynamics for sufficiently small but nonzero capillary effects. This unusual 
procedure of extending the domain to the complex unphysical C plane is a mathematical convenience and 
allows for a perturbative investigation of small capillary effects on the otherwise ill-posed zero surface 
tension dynamics. Further, in this formulation, one can mimic small noise by introducing a statistical 
ensemble of complex singularities that correspond to the same initial interface within some presribed error. 
By studying the dynamics of singularities as they come close to the real 6 axis and cause large interfacial 
distortions, one can understand and identify robust features of this highly sensitive dynamics and determine 
the dependence on capillary effects, anisotropy and Peclet number. 

The analysis of disturbance in the 0(1) tip region of the dendrite is complimented by analysis of the 
solutions in other regions of the semi-infinite dendrite, where a Laplacian approximation for the field is 
invalid. Study of such solutions is relevant to side branch coarsening when tip noise advects and amplifies 
along the sides of a dendrite to a sufficiently large distance from the tip. 
ii. Large Peclet number limit 

In this case, a boundary layer analysis is possible for disturbances of some distinguished length scale 
and size superposed on a near parabolic initial dendrite. The resulting pair of nonlinear partial differential 
equations involving one space and time variable is studied. 
4. DISCUSSION OF RESULTS 

4a. Bridgman Problem 

For the Bridgman problem, we have derived explicit analytical formula for for radial segregation and 
interfacial slope in the (i) asymptotic limit of large thermal Rayleigh number7 RT and (ii) large solutal 
Rayleigh numbers I&l. 

Here, we will only present results for case (i). Rather than give the more general formulas, that is a little 
too complicated to describe in this few pages, we describe the the special case obtained under additional 
assumptions that the vertical height is much larger thkn the cylinder radius and that the diffusion in the 
solid is negligible. The expression for radial segregation is of the form 

In the above formula, c3(r, z )  is the solute concentration in the solid at a point withsylindrical coordinates 
(r, 2). Further, A, is the n-th zero of the Bessel function Jl(z) not including z = 0, An and 62 are functions - 
of other nondimensional parameters. In deriving formulae (l), it was implicitly assumed that the solutal 
Peclet number << %I6 and that the 211 - zo and zo - zz are of the same order. Also, in (l), gravity 
enters into the formula through an scaling of An. The interfacial slope is also given by an expression 
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similar to (1). We also have scaling information on the size of fluid velocities in different regions of the 
Bridgman apparatus. 

While Brattkus & Davisg have analyzed a two dimensional version of this problem in the past, their 
results have been derived in the absence of a thermally insulated so called adiabatic zone, i.e. 211 = zo = 21 

in the notation of Fig. 1. Indeed, the effect of this insulation zone leads us to both important quantiative 
as well as qualitative differences with their results. In (l), the m a l l  scale components radial segregation 
and interfacial deformation, i.e. coefficients of J1(XRr) for large n, is exponentially quenched by factors of 
e-Xn(za-Z1). This quenching is absent without an insulatidn zone. Also, if the insulation zone thickness is 
comparable or much larger than the cylinder radius then an overwhelming part of the contribution in the 
summation in (1) and similar summation for the slope comes from the first term, implying that each of 
these quantities will have a Jl(X1r) radial dependence. In that case, the Coriell-Sererka hypothesis1° on 
the proportionality of radial segregation and interfacial slope is approximately true, though the constant 
of proportionality is different from what they derived with no fluid motion: Further, in this case, a most 
interesting aspect of this result is the result that radial segregation and interfacial deformation can each be 
reduced very significantly by choosing 62 = A1 = 3.83. Physically, the nondimensional parameter 6 2  is the 
logarithmic derivative of the horizontal heat loss with respect to z,  evaluated in the limit of approaching 
z = ZI from below. Recall that z is the vertical distance from the base of the cylinder scaled by the cylinder 
radius, while z = z~ is the location of the lower edge of the insulation zone. Thus, to the extent these 
asymptotic results hold, we have a prediction on optimal growth condition. 

We have also carried out some independent numerical verification of our analytic results. There was 
one point of concern to us - use of an unphysical no-stress boundary conditions at  the cylinder side 
walls, rather than a no slip condition. Fortunately, numerical resultsll with no-stress and no-slip side wall 
conditions, so far obtained for the linearized 2-D problem, show that in the large thermal Rayleigh number 
regime, there is very little difference between the two with regards to our central results. 

Further, the numerical results are found to be consistent with the asymptotic scaling relations, though 
precise quantitative comparison was not possible due to resolution difficulties at  very large Rayleigh number. 
However, the optimal analytically predicted condition adapted to the 2-D geometry, 62 = ?r, appears to hold 
quite well for moderately large thermal Rayleigh number, well within the limits of accurate computation. 
As 62 increases past this value, the interface shape changes from being concave to convex towards the melt. 

b. Dendrite problem 

. 

In the large Peclet number limit, a system of nonlinear hyperbolic equations is found to describe12 the 
temporal development of disturbances of some distinguished spatial scales and sizes; this develop "shock" 
in finite time when the lateral diffusion becomes important. 

In the small Peclet number limit13, the equations in the O(1) region around the tip has been analyzed. 
Exact solutions describing both tip splitting and side branching have been found when surface tension 
effects are completely ignored (Figs. 2 and 3). These correspond to moving pole singularities of zc(<,t) 

in the unphysical region Im < < 0. As these singularities move towards the real C axis without actually 
hitting it in finite time, we obtain the different stages of the evolution shown in the figures. Generally, it 
has been established that every initial singularity (not just poles) of zc in Im <- <-0 has a component of 
motion towards the real domain. This result is analogous to what was obtained for the Hele-Shaw case14. 
For a class of initial conditions containing singularities that do not impinge Im C = 0 in finite time, 
asymptotic analysis reveals that for a long time, the zero surface tension dynamics is the leading order 
behavior of the actual solution for small nonzero surface tension. However, these class of initial conditions 
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is a small subclass of the general class of initial conditioris that will generically contain singularities and 
zeros of zc that impinge the the real C axis in finite time, causing a cusp or a corner or some other 
singularity in the interfacial shape. Fig. 4 shows the effect of a zero impinging the real C axis at < = 0. At 
about the time when singularities would have otherwise appeared on interface, capillary effects have 
to be accounted for. The analytical and numerical evidence15 obtained by performing an inner equation 
analysis for the related Hele-Shaw problem suggests that singularity formation is impeded by the effect 
of surface tension; however for isotropic surface tension, narrow structures formed by the approach of 
a complex singularity cannot settle down to a steady state; instead it appears to fatten out before tip 
splitting. This process regenerates itself as other singularities, initially further out in the complex plane 
approach the real C axis. However, with a nonconstant surface tension parameter $0 modelling anisotropy 
with minimal surface tension axes aligned appropriately, a cusp or corner formation event for zero surface 
tension presages a rapid evolution over an inner scale for small but nonzero do. The inner solution settles 
to a local steady state with tip radius and velocity determined from a steady state dendrite theory2l3. The 
dendrite tip corresponds to only a small region on the real C axis which, unlike isotropic surface tension 
case, does not expand with time. Further approach of complex singularities towards the real C axis leads to 
side branching. Some features of our results have qualitative consistency with direct numerical simulation 
of anistropic HeleShaw dynamics” or that of a dendrite18. However, our perturbative approach gives 
essential scaling information that is difficult to establish otherwise. I 
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Fig. 2: Evolving tip splitting I do = 0 needle crystal 
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Fig. 1: Sketch of Bridgman device 
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Fig. 4: Cusp formation in do = 0 evolution 
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Fig. 3: Evolving side branching do = 0 needle crystal 
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