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ABSTRACT 

It has been proposed to measure the extensional viscosity function of a non-Newtonian polymer solution in a 
reduced gravity environment as part of the Advanced Fluid Module. In ground-based extensional measurements, the 
no-slip boundary condition at solid-fluid interfaces always results in appreciable shear gradients in the test fluid; 
however the removal of gravitational body forces permits controlled extensional deformation of containerless test 
samples and the first unambiguous measurements of this kind. Imperative to successful implementation of this 
experiment is the generation and subsequent deformation of a stable cylindrical column of test fluid. A study of the 
generation and deformation of liquid bridges demonstrates that Newtonian liquid bridges undergo capillary bteakup 
as anticipated when stretched beyond a critical aspect ratio; non-Newtonian liquid bridges, however, are s t a b i l i  by 
the strain-hardening phenomenon exhibited by these materials. Numerical simulations of Newtonian breakup are 
compared with experimental results, and show that previous ground-based attempts at measuring the extensional 
viscosity of Newtonian fluids are of limited accuracy. 

INTRODUCTION ! 

The prevalence of extensional flows in common polymer-processing operations such as extrusion, blow-molding 
and fiber-spinning has motivated the investigation of the rheological properties of non-Newtonian fluids under 
idealized extensional flow conditions. Unlike Newtonian fluids, these materials cannot be characterized by a single 
material parameter such as the Newtonian viscosity p, and the non-linear response must be characterized over a wide 
range of carefully-controlled deformations. A rigorous continuum mechanical consideration of the displacement 
gradients in a viscoelastic material shows that all possible deformations can be represented in terms of the invariants 11 
and 12 of the finite finger strain tensor [l]. In this parameter space it is found that the strain invariants for 
homogeneous shear-free deformations do not intersect with those of simple-shear deformations for any non-zero 
deformation rates. The rheological functions that relate shear-free deformations to stresses in the fluid are therefore 
fundamental material oroDerties of a non-Newtonian fluid and need to be measured independently from the 
viscometric shear-flow functions q( j ) ,  Yl((j), and Y2(j),  which represent the shear viscosity, and the first and 
second normal stress components of the fluid. 

The uniaxial extensional stress growth material function ii+, or the transient ektensional viscosity, is defined as 

where rZZ(t)-r2,,(t) is the time-varying normal or tensile stress difference, and is the constant imposed 
extensional strain rate. In the limit t + QO, the transient extensional viscosity approaches the steady state value q(6).  
To achieve a homogeneous shear-free flow, all off-axis velocity gradient must be zero and the fluid elements must be 
elongated along the z-axis such that the rate of strain is independent of position. The velocity field for such a 
deformation may be represented in a general form as [I]; 

u, = -+ior v, = o  u, = Eo2 (2) 

and the Lagrangian separation L(t) of two neighboring fluid points initially separated by a distance Lo is given by 

L(t) = Loek0' (3) 

Numerous experimental configurations have been devised to realize such kinematics and measure the resulting 
dynamic properties that characterize the extensional material functions of complex fluids (see Gupta and Sridhar [2] 
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and Meissner [3] for details). All the configurations considered to date have a fundamental physical constraint - the 
need for a solid container that holds the test fluid in a given position or geometric shape under the action of an 
external gravitational body force. The frictional boundary conditions that applies along all contact points of a liquid- 
solid interface results in large shearing forces that mask any extensional response of the fluid. This constraint will be 
h o s t  entirely absent in a microgravity environment. 

Removal of gravitational body forces wili greatly simplify the measurement of the response of a complex fluid 
to a uniaxial extensional deformation. The experiment reduces to three fundamental steps: (i) generation of a column 
of test liquid; fii) imposition of the deformation kinematics specified in equation (2); and (iii) measurement of the 
tensile stress difference in the elongating fluid column. The transient extensional viscosity may then be computed 
from equation (1). 

In this paper we present results from the first phase of this project, namely the generation and controlled 
deformation of a fluid column in the absence of container boundaries. We present an experimental ground-based 
study of liquid bridge stability, and compare the results to numerical simulation. The results show that strain- 
hardening significantly stabilizes non-Newtonian liquid bridges against capillary breakup. 

EXPERIMENTAL 
Test fluid 

Two viscous test fluids have been examined in this study. The first is a non-Newtonian test fluid composed of 

Newtonian solvenr of hydrogenated polybutene. This semi-dilute polymer solution falls into a' class of fluids termed 
Bogerfluidr, which exhibit a nearly constant shear viscosity over several decades of shear rate, yet are highly elastic [4]. 
The second fluid used in the study consists simply of the Newtonian solvent (polybutene) as a reference standard. 
The density of both fluids is p = 0.894 g/ml as determined via hydrometry. The zero shear viscometric data for the 
two fluids, as determined from cone & plate rheometry with a Rheometrics Mechanical Spectrometer RMS-800 are 
shown in Table 1 at a reference temperature of 25'C. 

Apparatus 
Figure 1 shows a schematic diagram of the device used to generate the liquid bridges. .The test fluid is charged 

into the cavity (1) created when the acrylic sleeve is restored to the closed position (Le. slid to the right in Figure 1). 
The liquid bridge is formed via positive displacement as the sleeve is slowly withdrawn to the left. In the current 
configuration, liquid bridges with a diameter of Do = 2Ro = 3.80 cm may be generated. The moveable piston (2) 
allows the formation of bridges of varying length (corresponding to dimensionless aspect ratios from WD A = 0 to 
3.3), as well as the elongation of a previously-generated bridge. The piston drive shaft is connected to a DC 
servomotor driven by a computer controlled motion controller. Figures 2a and b show typical examples of a liquid 
bridge before and after an elongational deformation. 

All of the ground-based experiments have been carried out in a Plateau Tank [5] consisting of a constant 
temperature bath filled with an immiscible fluid that is caremy density-matched to the test fluid, in effect creating a 
microgravity environment. For this experiment, the neutral density fluid (NDF) was composed of approximately 
60% 1-propanol ( p  = 0.806 g/ml) and 40% water. The maximum Bond Number for this system, defined as the ratio 
of buoyancy bras to surface tension forces, was approximately Bo = ApgR;/O = 0.1- 

In addition to the Bond number, the dynamic properties governing the extensional deformation of the liquid 
bridge may be characterized by several dimensionless groups, namely the Capillary number (ratio of viscous 
stresesliterfacial stresses), the Reynolds Number (ratio of inertial stresseslviscous stresses), and the Deborah 
Number (time scale of fluidltime scale of deformation). These terms are defined as: 

0.31% polyisobutylene (Mw = 1.7 x10 G glmole, polydispersity index = 1.9) dissolved in low molecular weight 

. 

where & is the column radius, Up is the characteristic velocity imposed by the piston; p, 0 and 77 are the test fluid 
density, surface tension and viscosity respectively, A, is a characteristic relaxation time of the non-Newtonian fluid, 
and the characteristic stretch rate experienced by the fluid is io. 
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To date, only a linear stretch history has been imposed in the experimental section of this work; i.t. the sample 
length L(t) increases linearly with time; the characteristic stretch rate io - U,/L(t)  thus decreases during the 
deformation. In the numerical simulations, however, both a linear and an exponential stretch history have been 
examined. In the latter case, the piston velocity is ( U p  = io’ozp) and the length increases in time as L = exp(+d) 
This deformation history produces a constant extension rate everywhere in the sample, if the sample remains 
cylindrical. 

Calculations 
In a previous paper we have described the implementation of the boundary integral method to investigate the 

dynamic evolution of deforming liquid filaments and the breakup of viscous (low Reynolds number) Newtonian fluid 
columns stretched beyond a critical aspect ratio [6]. The fluid motion is characterized by the capillary number, the 
initial and final aspect ratios (4, A,) of the column, and the viscosity ratio of the fluid column (h) compared to the 
outer fluid bath 011). 

RESULTS AND DISCUSSION 

Newtonian and non-Newtonian liquid bridges have been subjected to identical deformation histories to assess 
the effects of extensional hardening on bridge stability. Liquid bridges with an initial aspect ratio of A0 = 0.87 and a 
dimensionless volume V VO/zRo2L = 1 were stretched to a final aspect ratio of 2.00 at a constant velocity of 
U p  = 0.13 mmis corresponding to a capillary number of Ca = 0.19. Since the deformation rate varies throughout the 
test, the Deborah number decreases from 0.01 1- 0.006. 

Figure 3 shows photographs of the evolution of the liquid bridge interfaces as of a hnction of time for the two 
test fluids. The photographs labeled as ‘0 minutes’ correspond to the bridge immediately after cessation of the steady 
stretch; during the ensuing pictures, the bridges experiences no additional stretching but continue to evolve towards 
their final static equilibrium configuration. During the initial deformation, the fluid column adopts a concave 
cylindrical configuration, due to the fured volume of fluid and the pinning condition experienced at the endplates. 
After 15 minutes, both bridges have relaxed to a surface energy-minimizing unduloid configuration. The non- 
Newtonian fluid retained this shape for the remainder of the experiment, up to times of 20 hours. Longer periods of 
pg are difficult to maintain due to evaporation and thermal gradients in the Plateau tank. The Newtonian fluid, 
however, experienced continual constriction in the center of the bridge; this constriction accelerates over the course of 
the experiment, and eventually results in bridge break-up after 173 minutes. 

This hydrodynamic instability was first discussed for inviscid fluids by Lord Rayieigh [A, who predicted using 
surface energy arguments that cylindrical fluid filaments with A > z were susceptible to random sinusoidal 
perturbations that acted to reduce the surface area of the cylinder; runaway capillary breakup ensued. Gillette and 
Dyson [8] extended this analysis to non-cylindrical bridges constrained between equal circular plates, and presented a 
stability envelope for constricted bridges, in terms of dimensionless sample volume V u .  aspect ratio A. The bridges 
shown in Figure 3 correspond to loci initially in the stable region of this stability diagram, which were subsequently 
stretched along a hyperbolic path VA = constant into the unstable region. 

In the constricted region of the bridge, capillary pressure increases as the radius of curvature decreases. This 
increased pressure drives fluid out of the neck region into the lower pressure areas near the endplates, and therefore 
reduces the radius in the constricted region even more. The process accelerates as the radius of curvature decreases, 
eventually resulting in sample failure. It is clear that the stability of the non-Newtonian fluid bridge i s  not governed by 
identical arguments, since the bridge remained intact despite the fact that purely from energetic considerations of 
fluid statics it was also deformed beyond the Gillette & Dyson stability locus. The non-Newtonian strain hardening 
nature of the Boger fluid leads to this restabilization of the liquid bridge; the transfer of fluid from the constricted 
region of high pressure to lower pressure regions results in a uniaxial extensional flow. Under such conditions a 
Newtonian fluid has a steady extensional viscosity of ?j = 3p [9]; however, measurements for non-Newtonian fluids 
indicate that the viscosity will rise by 3 or more orders of magnitude [lo]. This rise in viscosity effectively retards the 
flow of fluid, and thus stabilizes the liquid bridge from any further constriction. 

Numerical calculations described elsewhere [a were utilized to simulate the experimentally-observed breakup 
of the Newtonian liquid bridge following imposition of an identical deformation to that described above. The 
narrowest radius of the bridge in the middle of the constricted region (Rmid) is shown in Figure 4 as a function of 
dimensionless time. The initial rapid decrease in radius occurs during the imposed extensional deformation of the 
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bridge up to a dimensionless time given by a/& - 1. Capillary forces progressively reduce the radius in the 
remainder of the experiment. It can be seen that the results from the simulation correlate remarkably well with the 
experimental results; deviations are seen only at the end of the experiment when the length scale of the fdament 
becomes small. Under such conditions, the experimental error increases and the numerical method also becomes 
increasingly inaccurate. 

Having validated the accuracy of the boundary element method, additional numerical calculations have been 
performed to investigate the behavior of a Newtonian liquid bridge under an exponential imposed deformation. Such 
tests have been proposed as a method for measuring the extensional viscosity of viscous fluids [lo, 111. Measurement 
of the net traction force on the endplate (after a correction for the contribution of surface tension forces) yields an 
estimate of the extensional viscosity of the fluid. In Figure 5(a) we show the axial free-surfice profile R(') and 
axisymmetric velocity field in an elongating liquid bridge with initial aspect ratio A, = 0.G after a dimensionless strain 
of 2. It is clear from these calculations that the velocity field is not an homogeneoG uniaxial elongation because of the 
three-phase contact line that pins the fluid interface to the edge of the piston. At large strains this deformation 
becomes increasingly important and in Fig. 5(b) we show an expanded view of the weak flow near the stationary left- 
hand piston indicating that aflow reversal can develop. This recirculation reverses the sign of the viscous contribution 
to the traction force exerted on the end plate, and results in substantial deviation of the calculated transient Trouton 
ratio TR = ij+(&,,,t)/p from the predicted value of TR= 3 for a Newtonian fluid. Similar calculations for non- 
Newtonian liquid bridges are currently underway. 

CONCLUSIONS 

We have presented measurements and simulations of the stability of both Newtonian and non-Newtonian 
fluids in a reduced gravity environment. Newtonian bridges experience immediate breakup when stretched beyond a 
critical aspect ratio and undergo capillary breakup in good agreement with the predictions of classical energetic 
stability arguments and boundary element calculations. Non-Newtonian fluid bridges with similar shear viscosities 
exposed to identical stretching histories did not breakup, but rather were stabilized by the strain-hardening 
extensional viscosity exhibited by these materials. It is clear that selection of an initial aspect ratio will be critical when 
performing extensional flow measurements in the Newtonian case to ensure an initially stable column. This research 
represents a preliminary ground-based investigation forming part of the Science Requirement Document (SRD) 
submitted to NASA for a proposed microgravity flight experiment to measure the extensional viscosity of non- 
Newtonian polymer solutions. 
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Table 1: 

Viscometric Properties r10 IPa.sI 47.2 
43.2 
20.3 

Physical properties of 0.31 wt.% PIBIPB Boger fluid at To = 25°C. 

17s [Pa.sI 
~ 1 0  [pa.$] 

Oldroyd-B Model Parameters 2.54 

sleeve Crank Piston Crank a 
Fluid Column \ Acrylic Sleeve 

Piston Head 

I 
Moveable Piston 

Figure 1: Device for generation of liquid bridges. Fluid is charged into cavity created by acrylic sleeve, which is 
then withdrawn to expose sleeve to air or fluid interface. Bridge can be stretched with translating piston. 

Figure 2: Non-Newtonian liquid bridge from A0 = 0.46 to Af = 3.10 at a constant strain rate of 0.02 s-l 
corresponding to a De = 0.05, Cam, = 2.9, and Bo = 0.1. 
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Figure 3: Liquid bridge stability evolution for Newtonian and non-Newtonian fluids. A0 = 0.87, Af= 2.00, BO = 
0.1. 
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Figure 4: Neck radius of Newtonian liquid bridge as a function of dimensionless time. Rqdius decreases initially 
due to brid e stretch, then is further reduced by capillary forces. Bridge was stretched from an initial 
radius Ro o P 1.9 cm at a rate of 0.013 cm/s, corresponding to a Ca = 0.19. Bo = 0.1. 

1.01 .  . ' 1 

Figwe 5: Extensional deformation of a Newtonian liquid bridge; (a) Final aspect ratio after a strain of i0,t=2.0; 
(6) magnification of flow reversal near stationary end plate ; (c) calculated Trouton ratio 7j(io,t)/p. 
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