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ABSTRACT 
We present two new types of measurements that can be made with diffusing-wave s m y ,  a farrn of 

dynamic light scattering that applies in the limit of strong multiple scattering. The first application is to measure 
the tbquencydependent linear viscoelastic moduli of complex fluids using light scattering. This is BcCOPnpliShed by 
measuring the mean square displacement of probe particles using DWS. Their response to thermal fluctuations is 
determined by the fluctuation-dissipation relation, and is controlled by the response of the ~ n ~ g  complex fluid. 
This response can be described in terms of a memory function, which is directly related to the complex elastic 
modulus of the system. Thus by measuring the mean square displacement, we are able 
dependent modulus. The second application is the measurement of shape fluetaations of 
achieved by generalizing the theory for DWS to incorporate the effects of amplitude fl 
intensity of the particles. We apply this new method to study the thermally induced fluctuations in the shape of 
spherical emulsion droplets whose geometry is controlled by surface tension. 

A microgravity environment has significant potential benefits for a wide variety of scientific problems 
involving colloidal particles or other complex fluids, where sedimentation can play an important role. Several 
experiments are currently planned to exploit this environment. Laser light scattering is an important experimental 
technique for studying the physics of these complex fluids, as a result a laser light scattering apparatus is Wig 
constructed by NASA to allow measurements of different types to be made in This appariuus will allow the 
traditional light scattering techniques to be employed, including both static and ic light scattering. In addition, 

the most important is the 
this measurements will be 
fluid. This will p v i &  a 
e suspension, G*(@ = 

t of the modulus, 
while the imaginary part, G"(w), reflects the viscous dissipation of the modulus these mechanical 

arelirnitedm 
the frequency range that is accessible. Moreover, since the primary function of the NASA apparatus is light 
scattering, a preferable method for measuring the visco-elastic response would be to use light scattering techniques. 

In this paper, we discuss a new method for measuring the v ~ ~ l a s t i c  response of a complex fluid using 
solely light scattering methods. We discuss the use of diffusing-wave spectroscopy (DWS), which is fonn of 
dynamic light scattering applicable in the strongly multiple scamzing limit[l,2]. Two new applications of DWS are 
presented. We first discuss the use of DWS, or more traditional dynamic light scattering techniques, to measure the 
frequencydependent linear viscoelastic modulus of complex fluids. We also discuss the exmion of DWS 
amplitude fluctuation due to the fluctuating shape of the scattering particles, and use this to measure 
fluctuations of emulsion droplets, where surface tension controls the spherical shape of the particles. 

over an extended rang 
the average motion of 

measurements of the modulus provide a direct measure of the viscoelastic response of 

complex fluid. This time-dependent memory function is proportj 
relaxation modulus and contains the Same information as G*(o). 

ore commonly encountered stress 
* light scattering to measure 

a complex fluid by means of a 
generalized h g e v i n  equation, 
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where nt is the particle mass and v(t) is the particle velocity. This equation expresses the balance of forces on the 
particle, relating the stochastic Brownian forCeS,fE(t), to the mponse of the surrounding fluid, which is described by 
a generalized timedependent memory function, &), and reflects the dependence of the properties of the material at 
time t on the behavior at previous times. A simplified form of this equation is commonly used to describe the 
motion of a partick in a purely dissipative viscouS fluid; here we generalize it by using the memory function to 
describe the average, effectiwmedium response of a complex fluid that can also store energy. Allowing tbe medium 
to store energy profoundly changes the temporal correlation of stochastic forces acting on the particle at thermal 
equilibrium. Because energy h m  thermal fluctuations can be stored in the medium over time scales determined by 
the memory function, the dissipation required to maintain thermal equilibrium also occurs over these time scales. 
As a result, the stochastic forces acting on the particle are corzelated over finite rather than infinitesimal time scales 
to prevent an unphysical energy buildup. Thus, the fluctuation-dissipation theorem differs from the commonly 
encountered delta-function mlat ion  of a purely viscous fluid, and here takes the formP1: 

where the coefficient e n s m  the& equilibrium, with kg Boltzmann's constant and T the tempemture. 
By taking the Laplace transform of Eq. (l), and using Eq. (2), the viscoelastic memory function can be 

related to the velocity autocorrelation function, and, hence, the mean square displacement of the particle. We assume 
that the Laplace transform of the microscopic memory function is proportional to the bulk frequencydependent 
viscosity, 4(s) = ((s)/6m , where s represents the frequency in the Laplace domain. We choose the coefficient to 
ensure the correct Stokes drag on a particle of radius, a, in a purely viscous fluid, recognizing that thii coefficient 
may differ somewhat in describing the behavior of a particle in a viscoelastic fluid. The frequency-dependent shear 
modulus is directly related to the viscosity by as) = si)cs), and hence to the mean square displacement, (AF*(s)): 

( f B ( o ) f B ( t ) )  = kBTs(c) (2) 

r 1 

The terms within the brackets come ftom the solution of the Langevin equation for the memory function, &); the 
fvst captures the thermal fluctuation-dissipation in the medium surrounding the particle, while the second is due to 
the particle's inertia. In most complex fluids, the inertial term is negligible compared to the fluctuationdissipation 
term, except at very high frequencies. Fitting the optically measured &) with an appropriate functional form, the 
complex, frequencydependent shear modulus can be determined using analytic continuation by setting s = io, and 
identifying G(o) and G"(o) as the real and imaginary parts. Provided the functional form describes &) over all 
measured frequencies, the Kramers-Kronig relationship will be satisfied over the measured range of frequencies. The 
complete procedure establishes a very general relationship between the m w  square displacement of suspended 
particles and the bulls rheological properties of the complex fluid smounding them. 

To test the applicability of this scheme, we use diffusing-wave spectroscopy to determine the mean square 
displacement of the particles in a concentrated suspension of silica particles of relatively uniform radius, u = 021 
jfm, suspended in ethylene glycol. These particles behave essentially as hard spheres. Their volume fraction was 
increased by centrifugation to # .I 0.56, quenching in disorder, to fonn an isotropic hard sphere glass. Diffusing- 
wave spectroscopy was used in the transmission geometry to measure the correlation function for a 4mm thick 
sample, shown in Fig. 1; chamcms ' tic of a colloidal hard sphere glass, it exhibits an initial, rapid decay to a plateau 
value, followed by a final decay at longer times. The particles are relatively small, so that DWS is slightly sensitive 
to collective motion; nevertheless to a good approximation the correlation function can be inverted to obtain the 
mean square displaceanent of the particles. Tbi requires knowledge of the transport mean free path of the light, F, 
which was obtained h m  static transmission measurements. The mean square displacement obtained from the 
correlation function is shown in Fig. 2. The linear increase at the shortest times reflects the initial diffusive motion 
of the particles; at longex times their motion is constrained by the local cage structure of the colloidal glass. The 
decay in the correlation function at the longest times can not be simply interpreted as a mean square displacement of 
individual particles Setting the uppes bound on the data accessible. 

We numerically calculate the Laplace transform of the mean square displacement, and use Q. (3) to 
determine qs), which is shown by the open points in Fig. 3. The accuracy of the Laplace transform is limited at 
the shortest and the longest time scales because of the limits of the available data. Nevertheless, the data exhibit 
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several very genemi features that characterize &). The region having relatively low slope at lower frequencies 
indicates energy storage and hence a range where the real component of the complex modulus dominates. The region 
having nearly unity slope at higher frequencies indicates viscous dissipation, and hence a range where the imaginary 
component of the complex modulus dominates. This is very generally me of the data for e($); regions of small 
slope indicate that the elastic component of the modulus dominates, while regions of near-unity slope indicate that 
the viscous component dominates; the deviations from these slopes reflect contributions from both coxnponents. 

To obtain the real and imaginary parts of the complex modulus, the frequency-dependent magnitude given 
by &iw)&-icu) = lG*(cuf can be fit using a superposition of complex moduli which satisfy the Kramers-Kronig 
relationship and have a single Maxwellii relaxation time. Rather than follow thii more general procedure, we 
instead use our physical intuition about the behavior expected for a colloidal hard sphere glass to determine as). 
We include a constant to account for the elasticity at low frequencies; a term proportional to s0.3 to account for the 
behavior of the plateau, as predicted by mode coupling theories[4]; a term proportional to to account for the 
predicted asymptotic high frequency elastic modulus of hard spheres [5]; and a term proportional to s to account for 
the high frequency viscous component. A fit to a sum of these terms yields the solid line in Fig. 3. The real and 
imaginary components of C*(w) can then be calculated directly. Due to the form of &), these do not satisfy 
Kramers-Kronig at low frequencies, but they do properly predict the moduli within the limits of the measwed data 

To compare the elastic moduli calculated from the light scattering data with those determined directly by an 
oscillatory mechanical measurement, we use a controlled strain rheometer with a double-wall Couette sample cell 
geometry. A small, sinusoidal strain was applied and the in and out of phase components of the resultant stress were 
determined as the frequency was varied. The amplitude of the strain was maintained well below 1% to ensure that the 
data were obtained in the linear regime; this was verified by varying the strain amplitude. The upper frequency was 
l i i t ed  by the motor's ability to produce a reliable sinusoidal strain, while the lower frequency' was liited by the 
sensitivity of the torque transducer. The resultant real and imaginary components of the complex modulus are shown 
in Fig. 4. The dashed lines show the values of G'(w) and G"(w) obtained from the light scattering data. 
Remarkably good agreement is found, except for the loss modulus at the lowest frequencies. The light scattering 
data represent the overall trend of the rheological data quite well, particularly for the larger storage modulus. 

These results clearly illustrate the possibility of using light scattering methods to determine the visco- 
elastic response of a suspension of hard spheres. We have also successfully tested the technique on very different 
forms of complex fluids, including polymer solutions and concentrated emulsions; in all cases tried the results are in 
good agreement with the mechanical measurements. The essential physics of this technique relies on the equivalence 
of the frequency-dependence of the microscopic memory function which describes the response of a probe particle in 
the complex fluid and the macroscopic complex viscoelasticity of the complex fluid. Provided particle inertia can be 
ignored and the viscoelastic coupling between neighboring particles varies as 3, the complete equations of motion 
for a lattice of interacting particles can be reduced on average to a single particle equation of motion like the 
generalized Langevin equation having a memory function which describes the average bulk dynamics inherent in the 
microscopic coupling. This equivalence is perhaps somewhat surprising; the motion of a probe particle, as probed 
by light scattering normally reflects relatively large wavevector, 4, behavior. Moreover, light scattering typically 
probes the longitudinal response of a system. By contrast, the elastic modulus of a material reflects the transverse 
response of the material in the limit of 4 + 0. However, the mean square displacement does couple to shear modes, 
this is certainly true in the limit of a simple viscous fluid, where the shear viscosity determines the particle's 
motion. Thus, by analogy, we expect the shear elasticity of a complex fluid to determine the mean square 
displacement of a probe particle. However, the elasticity is typically measured by applying a uniform strain across 
the material; this is not the case for a small probe particle. As a result, the flow pattern of the viscoelastic fluid 
around the particle may diff& significantly from the case of a simple viscous fluid; this will modify the coefficient 
relating the viscosity to the memory function, and may even make it frequency dependent. Thus, this method may 
not provide quantitatively exact measures of the elastic moduli; nevertheless, the overall trends are captured, and, as 
shown by our results, the agreement is surprisingly good. 

Perhaps most importantly, this method provides a measure of the elastic moduli over a much broader range 
of frequencies than is obtained with mechanical measurements. Moreover, it provides a convenient method to relate 
the energy storage and loss due to strain to the microscopic mean square displacement of the particles in the 
suspension. These two advantages can provide considerable new insight into the underlying physics of the complex 
fluid. For example, for the hard sphere suspension, the plateau in (Ar*(t)) is known to reflect the quenched disofder 
of a colloidal glass: the particle can diffuse freely at very short length scales until it reaches the cage formed by the 
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neighboring particles. Then the particle motion is restricted until the cage decays at much longer time scales. lhis 
behavior is accounted for theoretically by mode coupling theory (MCT) [4,6]. Our results indicate that the cage 
effects also play an important role in the rheological behavior of a hard sphere suspension; the existence of the cage 
leads to an additional mechanism for energy storage; presumably the sttain distorts the shape of the cage, allowing 
energy to be stored, and causing the real part of the complex modulus to M i t e .  Mode mplin theory ztummts 

constant nonergodicity parameter which characterizes the low frequency plateau elasticity. This component 
improves our fit to the transformed light scattering data, and directly contributes to the frequency dependace of the 
stomge modulus. In fact, the tions of MCT can be used to better descaibe the behavior of the lags modulus at 
lower frequencies. The rise (a) measured mechanically suggests an additional decay process at lower 
frequencies; MCT predicts that this a-relaxation process, or von Schweidler decay, results from th 
breakup at long times, and provides a functional form to describe it, suggesting an additional tenn 
s-Q.55 in as). Subtracting this a-decay term leads to much better agreement at low frequencies between G"(@ 
obtained &om light scattering and that measured rheologically, as shown by the solid l i e  in Fig. 4. 

The second new application of DWS discussed here is the generalization of the thegr for the technique to 
include amplitude fluctuations of the scattering particles. We use this scattering method to study the thermaUy 
driven shape fluctuations of monodisperse emulsion droplets, and to determine the effects of increasing volume 
fraction on the fluctuations. The thermally induced increase in the surface area of a fluid droplet is All2 = kBTK, 
where r is the surface tension. For a typical surface tension of 10 dynedun, this amesponds to an haeased area of 
only about 30 A2; for a 1 p diameter droplet, this represents a change in the radius of less than 0.1%. The 
relaxation time, ?, of these fluctuation is also very rapid; it is detemined by the viscosity of the two fluids. If the 
viscosity of the droplet is much greater than that of the continuous phase, the relaxation time is ?= R q P ,  for 
?j = 0.1 P and R = 1 pm, 7 = sec. The combination of the very short time scale and the very small 
amplitude of the the- fluctuations of emulsion droplets have, to date, precluded their observation. 

Our samples are emulsions of silicone oil in water, stabilized with sodium dodecylsulphate, and purified 
using the technique of fractionated crystallization to yield highly monodisperse droplets with a radius of R = 1.4 
pn[7]. The surface tension of the interfaces is measured to be 9.8 dynedun. We perform our DWS measmeuts 
in the transmission geometry using an expanded beam from an Ar+ laser, which gives ko = 16.3 jun'l for the 
incident wavevector in water. The detected light is collected from a point on the exit side of the 5-mm-thick sample 
cell. The transport mean free path, I*, is determined independently by a static transmission measurement 121, 
allowing the correlation function to be inverted to determine the dynamics of the individual emulsion droplets [SI. 

We might expect the dynamics of emulsion droplets to be the same as those of hard spheres. This is indeed 
the case for an emulsion made of a high viscosity oil, q = loo0 cP. This is illustrated in Fig. 5, where the open 
circles represent (Ar2(t)), the mean square displacement of an individual droplet. The data follow the shape 
predicted for hard spheres, shown by the solid lie. By contrast, an emulsion made from a much lower vho&y oil, 
q = 12 cP, exhibits distinct additional dynamics, as shown for @ = 0.35 by the solid circles in Fig. 5. At early 
times, the data are significantly higher than those expected for solid spheres; at lam times the data merge. S i  
behavior is observed for all @. These additional dynamics result from the shape fluctuations; for the higher q, the 
relaxation time is so long that any shape fluctuations are masked by the large displacements that occur during r. 

To quantitatively describe these new dynamics, we must generalize the formalism for DWS to include 
fluctuations in the scattering u ~ Z i ~ ~ ,  in addition to the phase fluctuations which result from translational motion. 
The analysis of the correlation function measured by DWS entails the calculation of the contribution of diffusive 
light paths comprised of a large number of scattering events; these are all  fepxsented by an angle-averaged Scattering 
event [2]. Thus, to include plitude ~uc~at ions ,  we write the correlation function for thii q-averaged, 
scattering event as 

for this behavior at high frequencies and predicts a &relaxation contribution proportional to fl- f in addition to a 

= (exp{-iij G(t)})q . (4) 

Here, the time dependent scattering ~p l i tude  is b(q,f)i and the brackets with the subscript q denote an ensemble and 
q-average. We assume that the ~ p l ~ ~ d e  fluctuations are independent of the translational motion of the droplets, and 
we neglect the effects of correlations tween the particles [9]. The amplitude fluctuations contribute an additional 
correlation function which is assumed to consist of a sum of a constant portion and a much smaller fluctuating 
portion. Performing the q -av~ge ,  

356 



where ag is the total ctoss section and A&) is the correlation function of the fluctuating portion of b(q,f), ensemble 
and q-averaged. We have also used the relationship, (q2) = &/21*, where 1 is the scattering mean free path [lo]. 

4 
To calculate the correlation function for a diffusive path of length s, consisting of A = s/l scattering events, 

we take the product of Eq. (5) A times [2]. Since Aa(t)*q), the first term can be approximated as an exponential, 
exp{(Au(f)-Aa(O))/ag]; this ensures that the contribution of a single diffusive path' is still linear in s, and allows the 
standard DWS analysis to be retained. Thus, the total DWS correlation function is a sum over the contributions of 
all paths, weighted by the probability that a photon follows the path, P(s): 

Since P(s) is known [2], this equation can be solved in exactly the same manner as done for DWS from solid 
particles. The effects of the amplitude fluctuations are contained in the second term in the square brackets. It is clear 
from Eq. (6) that DWS probes the relative fluctuations of the cross section; liie (Ar2(f)) their contribution increases 
from zero at f=O but saturates at long times. It is also clear why very small fluctuations can be detected; the signal 
arises from the sum of n independent ampliiude fluctuations. These minute fluctuations would not be detectable 
without the advantage of the multiple scattering. 

We note that this derivation is independent of the nature of the amplitude fluctuations; not only shape 
fluctuations, but other phenomena, such as rotational motion of aspherical particles can also result in a similar 
contribution. Moreover, the DWS data can be inverted, and the translational and amplitude dontributions can be 
sepamted. We do this here by subtracting the translational motion; the full effects of the hydrodynamic intemctions 
are included by using the scaling form which describes the data for solid spheres [8]. We plot R2Adf)/ao for # = 
0.35 in Fig. 6; we multiply the normalized fluctuating cross section by R2 to give the correlation function of the 
fluctuations of the droplet radius. We note that the data exhibit a distinctly non-exponential decay. 

Similar behavior is found for all other droplet volume fractions. Surprisiigly, the shape of the correlation 
function is independent of cb; all the data can be scaled onto a single master curve. This enables us to deteimine the 

of the shape fluctuations. We find that the charactens * tic frequency of the decay decreases approximately 
linearly with increasing volume fraction, as shown by the open hiangles in Fig. 6. By contrast, we find that the 
amplitude of the shape fluctuations incxease dramatically with 

To quantitatively describe the correlation function of the fluctuating shape, we expand the instantaneous 
radius of the drop in spherical harmonics [ll]. Each independent deformation mode creates an excess area given by 
kgT/X. Together with the conservation of volume, this condition determines the amplitude of the expansion 
coefficients. Each mode relaxes independently with an exponential decay rate, wl, that must be calculated in the 
overdamped, or low Reynolds number, limit [12]. We obtain 

this is shown by the solid circles in Fig. 6. 

with 

In general, @l depends on the viscosities of both fluids [13]; here we have assumed that the Viscosity of the oil is 
much greater than that of the water. Note that asymptotically q-1, reflecting the fact that the dynamics are driven 
by surfke tension; by contrast, cup13 when the dynamics are driven by the interfacial rigidity [ll]. The cross 
section for each mode is calculated within the Rayleigh-Gans (RG) approximation [ 141, 

where x = 2kd(sin(B/2), and where we have omitted an optical constant which is canceled in the nonnalizaton by 
q-j. The coefficients, 81, depend only on koR, and become negligible when bkoR, since the length scale of the 
fatures described by such modes is much smaller than the wavelength of the radiation. This sets the upper bound to 
the expansion; we find that the series converges for 1 = 20. Because of their large mismatch in index of refraction, 
Mie theory, suitably generalized to treat non-spherical scatterers, should be used. However9 the average cross section 

gl = x@ns(l +cos2 0 ) 3 j ~ ( x ) ] ~ t ~ ,  (9) 
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calculated within the RG approximation differs by less than 0.5% from that calculated using Mie theory. Thus, we 
conclude that the RG approximation is sufficiently accurate. 

These expressions apply only to an isolated &oplet. However, since the functional form of our data is 
independent of Q, we can use them to describe all the data by allowing both the characteristic frequency and the 
amplitude to vary. The solid lime through the data in Fig. 6 illustrates the fit for 18 4.35.  Excellent agreement is 
obtained. The non-exponential decay clearly reflects the contribution of the ddferent modes. Quantitative ageanent 
between the theory and the experiment should be obtained when the +dependent characteristic frequency, a(#), and 
amplitude, Aa($), are extrapolated to zero volume fraction. Our extrapolated value of a(#) is identical to the 
predicted value of r/qR = 1.2 MHz. Similarly, the extrapolated value of the amplitude ratio R2A@O>/a0 is 65 A2, 
in good agreement with the predicted value of (k~~4Sff0))C(21+l)g~(l(l+1)-2) = 52 A*. The remaining discrepgncy 
may reflect the error introduced by the RG approximation. 

The +dependence of both the fresuency and the amplitude must reflect the consequences of the interactions 

is well represented by a liiear behavior, w(Q)/w(0)=1-0.78Q. The frequency depends only on the surface tension, R, 
and the viscosities of the two liquids; it is unlikely that r changes with Q, so that the most l i l y  origin of this 
behavior is the +dependence of the effective viscosity of the emulsion. A similar liiear form was recently predicted 
for the Z=2 modes, but the predicted coefficient is 1.4 [15]. However, this theory was restricted to the case of equal 
viscosities of the oil and water, which may account for the discrepancy. 

The pronounced &dependence of the amplitude of the shape fluctuations is more surprising. This may 
reflect the effects of collisions between the droplets, which become increasingly likely as Q incream; because the 
droplets are flexible, these collisions may result in additional deformations. We model the effects of collisions by 
introducing a contribution to the amplitude proportional to the fraction of the droplets that, at any instant, are 
colliding with a neighbor. This fraction we estimate as Qg(2,4), where g(2,Q) is the pair correlation function at 
contact. The dashed line through the data in Fig. 6 is a fit of Ao@)/Aa(O) to the functional form l+CQg(2,#) with 
g(2,4+(l-@2)/(l-Q)3 as holds for hard spheres 1161. Good agreement is found with C=1.7, suggesting that colliding 
droplets deform an extra mount that is about 1.7 times the deformation exhibited by an isolated droplet. More 
generally, it should be possible to regard these increased shape fluctuations as the consequence of the osmotic 
pressure of flexible spheres. The expression 1+C4g(2,@, with C=4 and g(24) as given above, is in fact the ratio of 
the full osmotic pressure of a hard-sphere suspension to the kinetic part -T, where n is the number density [16]. 
This observation suggests that Aa($)/Aa(O) may be related to the reduced osmotic pressure of the flexible droplets. 

The results presented here are two extensions of DWS. Amplitude fluctuations can arise from many 
phenomena in addition to the shape fluctuations presented here; for example, rotational diffusion of aspherical 
particles will also lead to similar effects, and the theory presented here should be applicable. The ability to measure 
the linear viscoelastic modulus optically enables its determination over a much broader frequency range, without 
mechanical motion. This could be particularly beneficial for experiments studying complex fluids in dmgravity. 

We gratefully acknowledge very useful discussions with T. Lubensky, R. Klein, W. Russel, W. Graessley, 
J. Bibette, S. Milner and W. Cai. 

between the droplets, and these are not, as yet, well understood theoretically. The nonnalized charactem - ticfresuency 
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Fig. 1 
Fig. 2 

DWS autocormlation function for a suspension of hard sphere oolloids at 4 = 0.56. 
(RIGHT) Mean square displacement of hard spheres determined from the data in Fig. 1. At early times 
the particles diffuse; at later times the particles are trapped in cages famed by tbe neighboring particles. 
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Fig. 3 

Fig. 4 

(LEFT) Laplace transform of the complex modulus, &(s), determined from the mean square 
displacement, shown in Fig. 2. for hard sphere colloids. 
(RIGHT) Comparison of the complex moduli for hard sphere colloids determined with light sca#ering 
(solid lines) and with a rheometer (points). The dashed line does not inch& a decay at longer titlK; the 
solid line does. "he light s c w g  data are determined &om the &) shown in Fig. 3. 
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Fig. 6. Inverted correlation functions of monodisperse emulsions. The data are the sum of the mem 
square displacement and a tern related to the correlation function of the fluctuahg Scattering amplitude. 
The solid points are for an emulsion with an oil viscosity of 12 cP, while the open points are for an 
emulsion with an oil viscosity of lo00 cP. The solid line is the themetical pdictiou for rigid sp-. 

Fig. 6. Correlation function of the radius fluctuations of an emulsion with $3035, compared witb theay. 
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is afit to a lineat decay, with amefficient of 0.78; the dashed line is afit to a simple model whi 
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