N95-14582

THE PATH TO AN EXPERIMENT IN SPACE ' (From Concept to Flight)

350310

1995138168

Jack A. Salzman Space Experiments Division Lewis Research Center Cleveland, Ohio 44135

NASA Microgravity	LIFT OFF!	
Science and		
	Pre-ship Review	
Applications	COR (Critical Design Project)	P P
Program	CON (Chalcar Design Nevraw)	8
그 그 것 같은 것 같아요. 성격 귀 가지?	PDR (Preliminary Design Review)	
성금 것 없는 것 같이 많은 것 같아.		
그는 안 가고 있는데 것이 않는 🎆	Authorization to Proceed to Flight	
	Science Panel reviews compatibility of hardware design and scientific requirements	(Requin
	Engineering Panel reviews hardware design	ement
	Mission Management proposes a flight assignment for the mission	Definition
	Project Manager presents full schedule and budget through the final flight data report	Review)
	Principal Investigator answers questions raised in the Conceptual Design Review	
	Complete Scientific Design of Experiments May take one to two years to complete	
	Science Heview Panel reviews science requirements experiment justification and need for microgravity	50
	Engineering Téam reviews conceptual design. maker recommendations to solve problems	COEFFICE CO
	Project Manager presents initial design of hardware, including unsolved pioblems	ancept Re
	Principal Investigator presents scientific aims, justification, and requirements	iview)
	Development of Research Idea May require one to four years of development before	presentat
- 先二米 <i>相</i> / 雪小		a, iaiana
	hunded. Cognizant NASA center named.	
	Respond to Announcement of Opportunity of NASA Research Announcement	
	BRIGHT IDEA	and the second

PROGRAMWE PAGE BLANK NOT FILMED

409

TIME FROM FLIGHT PI SELECTION TO LAUNCH

NEW HARDWARE

- GLOVEBOX 3 YEARS OR LESS
- SOUNDING ROCKETS 3 TO 4 YEARS
- GET-AWAY SPECIAL 3 TO 4 YEARS
- MIDDECKS 5 TO 6 YEARS
- USMP 6 TO 8 YEARS
- USML 6 TO 8 YEARS

REFLIGHTS (MINOR OR NO MODS)

- SOUNDING ROCKETS 6 MONTHS
- GET-AWAY SPECIAL < 1 YEAR
- MIDDECKS 1 YEAR
- USMP 2 YEARS
- USML 2 YEARS

Key Flight Experiment Phases and Schedule Drivers

Experiment Definition (PI & PS)

- Focus science objectives into experiment concept
- Conduct ground-based program (analysis, 1-g and µ-g tests)
- Determine flight experiment science requirements
- Demonstrate basic experiment feasibility

Flight Experiment Concept Definition (PI, PS, and PM)

- Define engineering requirements and hardware concepts, (size, weight, power, etc.)
- Determine appropriate carrier choice(s)
- Demonstrate technology readiness
- Prepare project plan (schedule, cost, etc.)

Flight Experiment Development (PI, PS & PM)

- Generate final hardware design
- Complete hardware development, assembly, test (performance and qualification)
- Prepare documentation

Key Flight Experiment Phases and Schedule Drivers

Mission Integration and Operations (PI, PS, PM, & MM)

- Conduct mission planning
- Complete mission, integration and safety reviews
- Complete physical integration
- Complete documentation
- Conduct mission operations

PI (Principal Investigator), PS (Project Scientist), PM (Project Manager), MM (Mission Manager)

DEFINITION AND ENGINEERING DEVELOPMENT PHASE

V HQ CONTROLLED; REQUIRES APPROVAL BEFORE PROCEEDING

GROUND-BASED REDUCED GRAVITY RESEARCH FACILITIES

PRINICIPAL INVESTIGATOR / CO-INVESTIGATORS

RESPONSIBILITIES

- **ENSURE A HIGH SCIENTIFIC RETURN FROM THE FLIGHT PROJECT**
- PROVIDE ANALYSIS AND REPORTING OF THE FLIGHT EXPERIMENT RESULTS IN A TIMELY MANNER

SOME SPECIFIC DUTIES

- PREPARE AND MAINTAIN THE SCIENCE REQUIREMENTS DOCUMENT
- RECOMMEND AND PROVIDE EXPERIMENT HARDWARE AND TECHNOLOGIES WHEN APPROPRIATE
- CONDUCT ANALYSES AND GROUND-BASED EXPERIMENTS TO REFINE EXPERIMENT TEST PARAMETERS, DATA REQUIREMENS, AND OPERATING PROCEDURES
- CONDUCT ANALYSES TO SUPPORT EXPERIMENT DESIGN
- **REVIEW AND APPROVE EXPERIMENT DESIGNS AND TECHNOLOGIES**
- **REVIEW AND APPROVE HARDWARE PERFORMANCE TESTS** SUPPORT CREW AND GROUND OPERATIONS TRAINING
- **PARTICIPATE IN EXPERIMENT OPERATIONS** PARTICIPATE IN FORMAL EXPERIMENT REVIEWS
- ANALYZE THE FLIGHT DATA AND REPORT THE RESULTS IN THE SCIENTIFIC LITERATURE

PROJECT SCIENTIST

RESPONSIBILITIES

- ENSURE THE SCIENTIFIC INTEGRITY OF THE EXPERIMENT
- REPRESENT THE PI IN HIS INTERACTIONS WITH THE PM AND OTHER NASA PERSONNEL
- FACILITATE THE TIMELY ANALYSIS AND DISSEMINATION OF SCIENTIFIC RESULTS

SOME SPECIFIC DUTIES

- ASSIST THE PI IN PREPARING AND MAINTAINING A SCIENCE REQUIREMENTS DOCUMENT
- COLLABORATE WITH THE PM IN GENERATING FUNCTIONAL/SYSTEM/TECHNOLOGY REQUIREMENTS FROM SCIENCE REQUIREMENTS
- ASSIST THE PM IN DEFINING AND SELECTING CONCEPTS AND LEVELS OF TECHNOLOGY
- SUPPORT THE PI IN EVALUATING CONCETPS, DESIGNS, AND OPERATING PROCEDURES
- PARTICIPATE IN ALL PROJECT REVIEWS AND ASSIST THE PI AT ALL FORMAL REVIEWS
- MONITOR AND ASSIST IN ASSESSMENT OF ALL HARDWARE PERFORMANCE TESTS
- MONITOR PLACTIVITY TO ENSURE FULFILLMENT OF REPORTING REQUIREMENTS
- ASSIST THE PI IN RESEARCH TESTS CONDUCTED IN NASA FACILITIES
- RESOLVE DISPUTES BETWEEN PI AND PM OR REFER DISPUTES TO PROGRAM SCIENTIST

PROJECT MANAGER

RESPONSIBILITIES

- ADMINISTER ALL PROJECT MANAGEMENT FUNCTIONS NECESARY FOR THE SUCCESSFUL
 PERFORMANCE OF THE EXPERIMENT
- ENSURE THE DELIVERY OF HARDWARE CAPABILITIES AND OPERATIONS TO SATISFY THE
 EXPERIMENT SCIENCE REQUIREMENTS

SOME SPECIFIC DUTIES

- PREPARE AND MAINTAIN THE PROJECT PLAN
- MONITOR AND REPORT PROJECT COST AND SCHEDULE STATUS
- DIRECT THE DEVELOPMENT OF EXPERIMENT FUNCTIONAL REQUIREMENTS AND CONCEPTS
- MANAGE THE DESIGN, DEVELOPMENT, PRODUCTION, AND TESTING OF THE EXPERIMENT HARDWARE (ALL PHASES)
- PREPARE ALL NECESSARY DOCUMENTATION REGARDING SAFETY, INTEGRATION, AND
 OPERATIONS
- PROVIDE CREW AND GROUND OPERATIONS TRAINING
- SUPPORT THE PI DURING EXPERIMENT OPERATIONS
- PARTICIPATE IN ALL PROJECT REVIEWS

SCIENCE REQUIREMENTS DOCUMENT

- 1. INTRODUCTION: SUMMARY DESCRIPTION OF EXPERIMENT; THE KNOWLEDGE SOUGHT AND ITS VALUE; AND THE JUSTIFICATION OF THE NEED FOR THE SPACE EXPERIMENT
- II. BACKGROUND: SUMMARY OF RELATED RESEARCH, PAST AND CURRENT; RELATIONSHIP OF PROPOSED EXPERIMENT TO THE SCIENTIFIC FIELD, APPLICATIONS OF RESEARCH RESULTS
- III. JUSTIFICATION FOR CONDUCTION THE EXPERIMENT IN SPACE: LIMITATIONS OF GROUND-BASED TESTING (NORMAL GRAVITY, DROP TOWERS, AIRCRAFT); LIMITATIONS OF MODELING; SUMMARY OF SPACE-BASED EXPERIMENTS
- IV. EXPERIMENT DETAILS: EXPERIMENT PROCEDURES; REQUIRED MEASUREMENTS; GROUND-BASED TEST PLAN, INCLUDING FUNCTIONAL TESTING OF FLIGHT APPARATUS; POST-FLIGHT DATA HANDLING AND ANALYSIS
- V. EXPERIMENT REQUIREMENTS: EXPERIMENT SAMPLE (FUEL, MATERIAL, FLUID); ATMOSPHERE; TEMPERATURE CONTROL; ACCELERATION LEVEL CONTROLS; TEST MATRIX; IMAGING; MEASUREMENTS; ASTRONAUT INVOLVEMENT; DATA

THROUGHOUT III, IV, AND V EACH REQUIREMENT SHOULD BE JUSTIFIED OR SUBSTANTIATED WITH RESPECT TO THE EXPERIMENT OBJECTIVES.

A TABULAR SUMMARY OF QUANTITATIVE REQUIREMENTS IS A USEFUL FEATURE OF THE SRD.

THE FINAL SCIENCE REQUIREMENTS DOCUMENT

NASA COMMITS RESOURCES TO FULLY SATISFY REQUIREMENTS (IRONCLAD CONTRACT)

PI FREEZES SCIENCE UNTIL LAUNCH (3 TO 6 YEARS)

A DOUBLE-EDGED SWORD

THE IDEAL SCR

- WELL DEFINED AND DEFENDABLE SET OF SCIENCE REQUIREMENTS
 - DEFINITIVE TEST MATRIX AMENDABLE TO FLIGHT CONSTRAINTS
 - DEFINITIVE LIST OF EXPERIMENT CONTROL PARAMETERS
 - DEFINITIVE LIST OF MEASUREMENT REQUIREMENTS (TYPES, ACCURACY, RESOLUTION)
- IDENTIFIED TECHNIQUES AND TECHNOLOGIES TO SATISFY REQUIREMENT
 - DEMONSTRATED CAPABILITY (ACCURACY, RESOLUTION)
 - HARDWARE ACCEPTABLE TO FLIGHT CONSTRAINTS
- WELL DESIGNED FLIGHT EXPERIMENT CONCEPT
 - PREDICTED PERFORMANCE WHICH MEETS REQUIREMENTS
 - MANIFEST OPTION WITH REASONABLE RESOURCE MARGINS
- SOUND PROJECT PLAN
 - CLEAR ORGANIZATION RESPONSIBILITIES
 - DETAILED AND REALISTIC PLAN TO RDR

COMMUNICATIONS (PI <--> PS <--> PM) GROUND-BASED TESTS

FLIGHT DEVELOPMENT PHASE

The Spacelab Mission

Integration and Operations Schedule Template

EXPERIMENT COST AND SCHEDULE

COST AND SCHEDULE ARE HEAVILY DRIVEN BY MANPOWER REQUIREMENTS FOR
 DOCUMENTATION

- DESIGN AND DRAWINGS
- ANALYSIS
- REVIEWS
- CHANGING REQUIREMENTS ARE A PM's NIGHTMARE
- COST AND SCHEDULE ESTIMATES ONLY BECOME REALISTIC AFTER RDR
- CARRIER CHOICE HAS LARGE IMPACT ON COST AND SCHEDULE
 - DIFFERENT GAS CAN, MIDDECK, USML, USMP REQUIREMENTS
 - DIFFERENT REFLIGHT OPPORTUNITIES
 - UNCLEAR MANIFEST OPPORTUNITIES EARLY IN PROCESS
- COST AND SCHEDULE CAN BE TRIMMED BY DEVELOPING HARDWARE BEFORE PI'S ARE AVAILABLE
 - CHOOSE PI's (I.E., SCIENCE) TO MATCH HARDWARE CAPABILITIES
 - UNPROVEN APPROACH (POTENTIAL PROBLEMS WITH PROGRAM GOALS)
- PROCESS FOR SPACE STATION FREEDOM EXPERIMENTS IS STILL EVOLVING (CAN IT BE SIMPLER OR FASTER?)

KEYS TO EXPERIMENT SUCCESS

- EFFECTIVE BALANCE BETWEEN EXPERIMENT COMPLEXITY AND MATURITY OF THE SCIENCE
 - EVOLUTIONARY APPROACH TO RESEARCH
 - WELL POSED HYPOTHESIS
 - REQUIREMENTS CLEARLY NEED DRIVEN

EXTENSIVE PI INVOLVEMENT

- CLEAR REQUIREMENTS AND DIRECTION EARLY IN PROCESS
- REGULAR INTERACTIONS WITH PS AND PROJECT TEAM
- PARTICIPATION IN MISSION PLANNING AND TRAINING
- EFFECTIVE PROJECT TEAM
 - SOLID PI-PS RELATIONSHIP
 - SKILLED PM
 - DEDICATED, CAPABLE PROJECT MEMBERS
- ADEQUATE PRE-PROJECT EFFORTS
 - GROUND-BASED TESTING
 - EXPERIMENT DEFINITION
- EARLY IDENTIFICATION AND RESOLUTION OF TECHNOLOGY TALL POLES
- EARLY ATTENTION TO MISSION PLANNING

COMMUNICATIONS PI <--> PS <--> PM <--> MISSION