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Abstract

The enormous size of the data holdings and the complexity of the information

system resulting from the EOS system pose several challenges to computer scientists,

one of which is data archival and dissemination. More than ninety percent of the data

holdings of NASA is in the form of images which will be accessed by users across the

computer networks. Accessing the image data in its full resolution creates data traffic

problems. Image browsing using a lossy compression reduces this data traffic, as well

as storage by factor of 30-40. Of the several image compression techniques, VQ is

most appropriate for this application since the decompression of the VQ compressed

images is a table lookup process which makes minimal additional demands on the

user's computational resources. Lossy compression of image data needs expert level

knowledge in general and is not straightforward to use. This is especially true in the

case of VQ. It involves the selection of appropriate codebooks for a given data set and

vector dimensions for each compression ratio, etc. A planning and scheduling system

is described for using the VQ compression technique in the data access and ingest of
raw satellite data.

1 Introduction

Over the next decade, the rate at which data is generated by space-borne instruments will

increase dramatically over current levels. A major contributor to this increase is the Earth
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Observation System (EOS), planned for the end of this decade. The five proposed instru-

ments on the EOS AM-1 platform and the six proposed instruments on the EOS PM-1

platform will generate data at a combined rate of 281 Gigabytes per day.

This raw data generated by the EOS platforms will be in turn processed into data prod-

ucts, including radiometrically and geometrically corrected images and a large number of

science data products. This increases the data volume that must be handled and stored

from the EOS instruments by an order of magnitude. Thus, over one Terabyte of EOS data

products will be stored each day, along with other Earth science data, in distributed active

archive centers (DAACs) located throughout the United States. Over the 15-year life of

EOS, the archives will manage 11 petabytes of raw, processed, and analyzed data.

Success of future Earth science missions depends upon increasing the availability of data

to the scientific community who will be interpreting space-based observations for issues

such as ozone depletion and greenhouse effects, land vegetation and ocean productivity, and

desert/vegetation patterns to name a few. Part of NASA's role in the Mission to Planet

Earth (MTPE) initiative is to take a proactive leadership role in the management of space

and Earth science data and in making those data accessible to scientists worldwide in order

to foster the new field of Earth Systems Science.

Even at current data volumes, it is difficult to design and operate effective data archive

and distribution systems for NASA Earth science data archives. With the increasing volumes

of data that will be stored in these data archives, efficient browsing and distribution of data

from these archives becomes even more important. An effective data archive and distribution

system must give quick access to image browse and other data so users may quickly select the

data required for their application. The availability of image data at intermediate resolution

levels would also help users resolve ambiguities in the data selection process.

From our research in the Information Science and Technology Branch (ISTB), we present

here an image browsing scheme using VQ and progressive VQ compression algorithms that

we claim are excellent candidates for image data browsing and retrieval. A key feature

of VQ and progressive VQ is their asymmetry in encoding and decoding. The minimal

computational requirements of progressive VQ for decoding make possible very quick retrieval

on moderate computer systems. The more computationally intensive encoding process can

be accomplished, at a sufficient rate to keep up with the incoming data flow, in centralized

data processing centers using more powerful computers, such as the recent massively parallel
models.

To compress image data an expert level of knowledge is required. For example, a VQ or

progressive VQ based image compression needs information about the data and the instru-

ment the data belongs to, vector dimensions, etc. for selecting the codebook for compression.

Usually the user has no knowledge of this information. However, the user is primarily con-
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cernedabout the compressionratio and quality of the compressedimage. Therefore,a plan-
ning/schedulingsystemis requiredthat acceptsthe userspecifiedparametersand translates
them to VQ related parameters.Thus the Planner/Scheduleressentiallyhelpseliminate an
imagecompressionspecialistfrom data disseminationprocess.

2 Image Compression

Image compression is one of many tools that can be used to help address Mission to Planet

Earth's data handling challenges [23]. However, no single data compression approach is

likely to be appropriate for all aspects of the problem. Lossless compression is required

for data archiving, while some degree of information loss may be allowable for video image

transmission. For image browse applications, larger amounts of information loss may actually

be desirable. For browse, a general overall impression of the data quality and content may be

all that is necessary, and a large reduction of data volume may be required. The key task for

lossy data compression for browse applications is to preserve only the information required.

Data characteristics also must be considered in designing an appropriate data compression

approach, since data compression approaches often assume a particular data model.

Earth scientists often need to browse data to check the appropriateness and quality of

particular data sets for detailed analysis. Further, appropriately derived browse data can

facilitate interdisciplinary surveys which search for evidence of unusual events in several data

sets from one or more sensors. In addition, browse data can be used to validate the quality

of the data by facilitating quick checks for data anomalies. These different uses of browse

data put possibly conflicting requirements on the browse data, and may require that separate

browse data sets be produced for each major use category.

If a "progressive '_ data compression approach [23] is used, browse data can also facilitate

the distribution of the data from the archive. Here the image is compressed at various

levels called a compression hierarchy. The first level of the hierarchy provides an initial

rendition appropriate for browsing the data. The ensuing levels of the hierarchy contain

the details that are missing at earlier levels. Either a user or the planner/scheduler would

inspect the browse data, and decide at "anytime" whether or not to inspect the data more

closely. If a closer inspection is desired, additional levels of the compression hierarchies

would be requested, until the user decides that data is not appropriate for the application

and terminates accessing the data set, or until fully reconstructed data is obtained. Under

this scheme, the data distribution process is kept efficient since no redundant information is

ever sent or used,

Many image compression approaches show promise for the data archive and distribution

problem. These include the Joint Photographic Experts Group (JPEG) standard lossless
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and lossycompressionmethods [18],the Rice algorithm [19, 20], variationson Vector Quan-
tization [10, 1, 14]. In addition, combinationsof subband/waveletdecompositionand Vec-
tor Quantization [2, 3, 11], and combinationsof subband/waveletdecompositionwith the
Karhunen-Loevetransform [8, 15]alsoshowpromise.

Wehaveconcentratedour effortson investigating imagecompressionbasedVector Quan-
tization. Theseapproachesareparticularly suitable for data archivesand distribution across
computer network applicationsdue to asymmetrical codingand decodingefficiencies.The
coding is computationally expensive,but is a one time effort, and can be performed at

an archival center using a large capacity machine. The decoding part, however, is a com-

putationally inexpensive table lookup process which does not burden the end user with

computational difficulties.

2.1 VQ and Progressive VQ

VQ is the vector extension of scalar quantization which is found to be very useful for mul-

tispectral image compression ([13, 15]). The VQ vectors are obtained from image data by

systematically extracting nonoverlapping blocks (typically 4x4) and arranging the pixels in

each block in raster scan order. Such vectors allow VQ to exploit two dimensional corre-

lations in the image data. If the image is multispectral, nonoverlapping cubes (typically

4x2x3) may be used. VQ builds up a dictionary of a few representative vectors, called code-

vectors, and then codes the image with the index value of the closest codevector from the

dictionary, called codebook, in place of of each vector. Each codevector is represented by an

address containing log2M bits, where Mis number of codevectors in the codebook. Assume

vectors of size k are drawn from the input image and matched with those in the codebook.

[;sing the indices of the matched codevectors to represent the input image vectors results in

a decreased rate of (log2M)/k bits/pixel or a compression ration of (k • n)/log2M, where n

is the radiometric resolution of the image. In all practical situations the codebook size, M,

is much smaller than the number of vectors that make up the input image.

The most important phase of VQ is the training process in which an optimal codebook (by

some criterion such as least MSE) is learned from the input samples. The most widely used

algorithm is Linde-Buzo-Gray (LBG) algorithm ([10]). Both the training and coding phases

of VQ require finding the codevector which is closest match to a given vector. Computing this

closest match requires computations proportional to the size of the codebook. Computational

cost can be reduced by employing a suboptimal approaches such as Tree Search Vector

Quantization (TVSVQ) and Pruned Tree VQ (PTVQ) [10]. The computational problems

can also be solved by using a special architectures [13].
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Progressive VQ [14] is a progressive variant of VQ in which multiple compression levels

are provided. The first level is a VQ coding in which the codebook and codevector parameters

are adjusted to give a relatively high compression ratio (e. g., in the range of 30 to 50). The

image reconstructed from this first level coding can serve as browse data for a data archive

system. If n levels are used, the second through the n-1 levels are VQ coded residuals. The

nth level residual is not VQ coded, but instead is encoded with a lossless approach, such as

the Rice algorithm [20] or Ziv-Lempel algorithm [25].

3 Planning and Scheduling for Image Compression

Given that image compression, like many other image processing routines, has many possible

variants and uses, selection and coordination of the appropriate routines for particular users

needs requires the use of a supervisor function. Many researchers have suggested the appli-

cation of rule-based expert systems for capturing user requirements and knowledge for image

processing[16, 17, 6, 21]. However, none of these techniques explicitly takes into account the

computational complexity or the resource requirements for image processing tasks. In this

domain where computational resources are constrained and hard deadlines for data acquisi-

tion exist, a better model that combines knowledge representation with resource modeling

needs to be incorporated.

Recently, researchers have suggested the use of AI planning /scheduling techniques to

manage the coordination of image processing operators such as image compression[7, 22, 5,

12]. For this paper, we will illustrate a particular planning /scheduling approach, called

PlaSTiC, which is being used at the ISTB.

PlaSTiC was developed by the ISTB and Honeywell Technology Center as a planning

/scheduling tool for a distributed computing environment. PlaSTiC is a hierarchical planner

loosely based upon work by [24]. The core system is based upon the Honeywell's Time Map

Manager (TMM) that handles reasoning about temporal information[4]. PlaSTiC combines

the Nonlin planner[9], TMM, and extensions that allow for reasoning about the duration

and resource requirements of plans[5].

For the image processing, plans are handed to an execution monitor which interprets

plans according to the run-time environment, assigns uncommitted tasks to processes, and

collects statistics for the planner. These statistics provide best-case/worst-case estimate

intervals for primitive tasks and are propagated back up a task formalism [5] to provide

better constraints during task decomposition.

As with most planners, PlaSTiC maintains a knowledge-base of plan operators that
during planning, provides the necessary knowledge for plan construction. As an example,
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contrived plan operator for PVQ compression, consider the following:

(opschema pvq-compression :todo (file-format ?FilelD PVQ-COMPRESSED)

:expansion ((stepl :goal (file-format ?FileID BINARY))

(step2 :goal (file-format ?FileID BSQ))
(step3 :primitive (PVQ-COMPRESS ?name ?name ?cname

?c ?r ?x ?y ?n IDM))

(step4 :primitive (UNIX-COMPRESS ?name ?cname UNIX)))

:orderings ((before stepl step2) (before step2 step3) (before step3 step4))
:conditions ((:use-when (name ?FileID ?name))
(:use-when

(:use-when

(:use-when

(:use-when
(:use-when

(size?FileID (?r ?c)))

(codebook ?FileID ?codebook))

(codebook-name ?codebook ?cname))

(vectx ?codebook ?x))

(vecty ?codebook ?y))

(:use-when (codebook-band-number ?codebook ?n)))

:duration (range-addition (file-format-estimator 2)

(pvq-estimator ?n ?r ?c ?x ?y))
:variables (?x ?y ?n ?r ?c ?FileID ?name ?cname ?codebook))

Essentially, the above pvq-compression operator states that in order to put a file (represented

by the variable ?FileID) into PVQ compressed format (i.e., via the todo slot), two goals (i.e.,

step1 and step2) for putting the file in binary and binary sequential format must be done

before the pvq-compress command (step3) gets called. In this case, each of the steps are

totally orderedlaccording to the orderings slot. This operator is only applicable if there

exists the appropriate information specified by the conditions slot.

In PlaSTiC, information about the duration of these operators is specified either explicitly

through the duration slot above or through a statistical gathering mechanism that sets the

duration of primitive steps (e.g., steps 3 and 4 above). Durational information is specified

as a range of values from a lower bound to an upper bound. For operators with the duration

slot, a function can be specified that must return a range. This function's arguments are

derived through variables that are bound from the conditions slot 2.

Typically, the function in the duration slot is either a statistical estimator or a polynomial

(e.g., big oh notation). Examples of the former can be as simple as returning the min/max of

a working set or as complicated as output from an unsupervised clustering where attributes

can be any property from the execution environment such as CPU utilization, machine type,

input size, etc. For the primitive steps, durations are only min/max values from a working
set.

1(before stepl step2) means stepl occurs before step2

_Actually, unbound variables can exist as well, but that requires a more complicated mechanism
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Figure 1: Plastic Output of Image Compression Plan

3.1 Planning for Image Compression

The current implementation of the image compression knowledge in the planner involves se-

lection of the VQ or standard compression algorithms. If the compression technique selected

is VQ, knowledge includes codebook selection, vector dimensions and host machine where

the compression is executed. In particular, the compression knowledge is incorporated into

a general image processing knowledge base for remote sensing data.

Specifically, when the image compression goal is a subgoal of another plan for data archiv-

ing, the planner chooses VQ codebooks and vector dimensions based upon user constraints

on compression ratios and quality of Compressed data. Figure 1 shows an example output

from a very simple plan using the operators in the previous section. The interface shows

potential resource subscription problems in the bottom two windows, while task intervals for

the two steps and the orderings between them are shown in the top window.
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We are currently addressingthe problem of relaxing user constraints to fit the real-
time constraints of ingest. In this case,the planner will continue to relax the compression
parameters until both deadlinesand resourceconstraints can be satisfied. To do this, a
planning method of interleaving planning and executionwill have to be incorporated into
the ingest process. For example, progressiveVQ requires the application of a particular
quality level for the first levelof compressionto determinethe next level'scompressionratio.
Selectionof the codebookat eachlevelmust be initiated by the planner asa function of the
previousalgorithm application.

4 Conclusion

For a first pass, we have shown that Progressive VQ compression can be easily incorporated

into tl_e planning process. Because of the time and resource constrained environment of

satellite processing, the choice of not only Progressive VQ compression techniques, but also

other more traditional approaches, requires the use the coordination between a planner

and a scheduler such as PlaSTiC. However, future systems that incorporate an interleaved

planning/scheduling approach whereby results are checked during the planning processes are

required for the Progressive VQ techniques.
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