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The Long-Term Forecast of Station View Periods

M.W. Lo
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Using dynamical systems theory, a definite integral is obtained that gives the
average view period of a ground station for spacecraft in circular orbits. Minor

restrictions exist on the class of circular orbits to which this method can be applied.

This method avoids the propagation of the orbit, which requires a lot of resources,

and simplifies the algorithm used to compute the mean station view period. The

integral is used for long-term station load forecast studies. It also provides a quan-
titative measure of the effectiveness of a ground station as a function of its latitude.

I. Introduction

Planners for the Deep Space Network frequently need to perform long-term station loading studies to
determine resource allocations. Typical questions asked by the planners are as follows:

(1) Will the current 34-m subnet be adequate for the support of mission set A for the next 5 years?

The mission set represents a collection of current and planned missions that requires support
from the subnet.

(2) How will either adding or removing a station at location X affect the performance of the 26-m

subnet for the support of mission set B? Will the performance improve if location Y is selected
instead of X?

It is important to make the distinction between short-term planning and long-term planning, because

the problems encountered are very different. In this article, problems lasting less than a month are

defined as short-term planning problems, or scheduling problems; problems lasting more than a month

are defined as long-term planning problems, or forecasting problems. The period of 1 month, while
somewhat arbitrarily selected, is a convenient demarcation.

With scheduling problems, the interest is in the actual times of events, such as the start and stop
times of the view periods of a particular ground station for a set of spacecraft. Typically, the prediction
of orbital ephemeris for scheduling activities must be performed weekly or more often due to the various

perturbations that cause the actual orbits to quickly drift away from the predicted orbits. Many of the

perturbations have random components, and some of the perturbations are not well understood; these

factors make their prediction practically impossible. Thus, scheduling problems are concerned with very
short durations not far into the future.

With forecasting problems, the interest is not in the actual times of the events but in their long-
term trends and cycles. With such problems, the short-term variations are typically ignored due to



theirvariabilityandunpredictability.Thisisusuallyachievedbyaveragingtechniques;forexample, one

finds the mean of a parameter by integration over time. Thus, forecasting problems are concerned with

long-term trends and average behavior far into the future.

One way to obtain station loading trends is to compute the station view periods, assuming some

perturbation models, and then to compute statistics from this database. This has been the method of
choice since it is reasonably straightforward to implement. In order to obtain the station view periods,

the satellite ephemeris must be propagated. When the period of analysis is 5 to 10 years for a mission

set of dozens of spacecraft, this quickly becomes a data-intensive computational problem. For example,

using an analytical orbit generator, to compute the view periods of an Earth-orbiting spacecraft with an
altitude around 1000 kill for the DSN 26-m subnet for the duration of 1 year requires roughly 20 rain

on a high-speed workstation. For a more complicated orbit generator, with a larger mission set and a

longer duration, say 5 years, the time required to generate the view periods alone would be considerable.

Thereafter, the large view-period data set requires additional software for manipulation and computation

to produce the desired statistics.

Another way to obtain station loading trends is to consider dynamical systems methods. Dynamical

systems is the interdisciplinary field that evolved from the qualitative study of differential equations,

first begun by Henri Poincar_ at the turn of the century. When one sees the adjective "qualitative,"

one usually assumes no quantitative results can be obtained from such methods. Fortunately, this is not

always the case. But the quantities estimated by qualitative methods tend to be global in nature. This

article presents an integral that gives the average view period of a spacecraft to a ground station and is

derived using dynamical systems theory. 1

II. The Long-Term Station View Period Ratio, p

An integral was obtained that represents the long-term station view period ratio, p, for the class of

circular orbits with nonrepeating ground tracks. This ratio provides an estimate of the total time a
station is in view of a spacecraft divided by the total elapsed time. More precisely, let

T = total elapsed time

P(T) = total station view period during the elapsed time T

then the long-term station view period ratio is defined by

Lira P(T)
P : T--_¢ T (1)

Thus, given a time period, T, the total amount of time a station is in view of the satellite is given by the

following expression:

V(T) = pT (2)

As the ratio, p, is a limit, the larger the value of T, the closer P(T) is to V(T). For example, for a 200-km

circular orbit with an inclination of 28.5 deg (Case 1, Table 1), the total view period at a ground station

at 0-deg latitude for 1 year as computed by P(T) and V(T) is

P(1 year) = 0.021014 yea r

V(1 year) = 0.021030 year

An article describing the full derivation of the integral is under preparation.
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Here P(T) is computed by propagating the orbit and finding all of the view periods of the station at

latitude 0 deg; V(T) is computed from Eq. (2), where the ratio, p, is given by the integral.

Preliminary numerical results indicate excellent agreement between the numerical and the theoretical

values for the view period ratio, p, for circular orbits. The numerical values are computed typically from

1 year's worth of station view periods. For the circular orbits used in the numerical study, Ap is less

than +0.2 percent, where Ap is the difference between the theoretical and numerical values of p. For the
elliptic orbits used in the numerical study, at e = 0.05, the maximum Ap for the cases tested exceeds

15 percent. For orbits whose period is commensurate with the Earth's rotational period, the Ap for the

cases tested is within +1.5 percent. These results are tabulated in Tables 1 through 3 and discussed in
Section V.

III. Heuristics and Theoretical Background

Examine first the geometry of the spacecraft and the ground station. Figure 1 shows the geometry of

the station mask, which is determined by the altitude of the spacecraft and has the following interpreta-

tion. The station mask is the circle of angular radius, 00, about the ground station. When the spacecraft

ground track is within the station mask, the spacecraft is in view of the station. When the ground track
is outside of the station mask, the spacecraft is not in view of the station. The angle, E, is the minimum

station elevation angle below which the station cannot view the spacecraft, due to some constraint or

obstruction at the horizon. In particular, when the spacecraft-to-station elevation angle is _< 0 deg, then
the Earth itself is obstructing the spacecraft from the station view. A spherical Earth is assumed here.

GROUND
STATION

!
MASK

MINIMUM STATION ELEVATIONANGLE

,IGLE

EARTH

Fig. 1. Geometry of the station mask.

Figure 2 illustrates the ground tracks of a spacecraft in circular orbit at a 7714.14-km radius (this
is the radius of the TOPEX/POSEIDON orbit) and a 28.5-deg inclination. The circle centered at the

equator with the label "Case 4" is the station mask of a fictitious station on an ocean platform at the
equator (latitude = 0 deg) with longitude equal to that of the 26-m station at Goldstone. The station



maskof theMadridstationis labeled"Case7" andthatof the Canberra station is labeled "Case 6."

They are only partially in view. Consider a station at the pole; its mask is the cap about the pole. For the

spacecraft in Case 4, this cap does not intersect the ground track pattern. This means that the spacecraft
would not see the station at the pole. The Madrid station mask (Case 7) intersects the ground tracks

in a much smaller area than that of Case 4. Intuitively, one might think that, somehow, the total view

period (sum of all the view periods) is proportional to the area of the intersection between the band of

the ground track and the station mask. After all, when there is no intersection, there is no view period.
When there is a lot of intersection, there is a large view period. But, unfortunately, this is not the whole

story. There are other factors.

ASE 6

Fig. 2. Station masks and ground tracks for cases 4, 6, and 7 (orthographic projection).

Consider the following example: suppose now that the orbit is of sufficiently high inclination and low
altitude that the station mask is a small circle completely within the ground track band, as illustrated

in Fig. 3. Calculations quickly show that Station 1 has a much higher total view period than Station 2,

even though they have the same mask area and are both enveloped by the spacecraft ground tracks. This

agrees with the well-known observation that stations at higher latitudes tend to have more and longer

view periods.

This problem is resolved by looking at Fig. 2 more carefully. Notice that the ground tracks are more

closely packed near the top than near the equator. Furthermore, the speed of the spacecraft nadir along

the ground track is not constant even though that of the circular orbit is constant. This is due to the



rotationof theEarthandtheprojectionofthespacecraftmotionontothesphere.Thus,thetimespent
neartheequatorandthat nearthetopandbottomofthegroundtrackbandisnot thesame.However,
thestationmaskis unaffectedby therotationof theEarth,andit hasthesamesizeregardlessof the
locationof thestation.Hence,goingbackto Fig.3,eventhoughthetwostationmaskscontainthesame
amountof groundtrackarea,theactualtimespentineachareaisnot thesame.Thus,onehasto use
a weightfactorto computetheareaof intersectionin orderfor it to beproportionalto thetotalview
period.In mathematicalterms,oneneedsto findaninvariantmeasurefor thedynamics.Thismeasure
will givetheconnectionbetweentheweightedareaof themaskandthetimespentin themask.This
hasbeendonefor thecaseof circularorbitswithcertainmildrestrictionsandis discussedin thenext
section.

BAND OF

SPACECRAFT

GROUNDTRACK
EQUATOR

EARTH

Fig. 3. Station masksat different latitudes.

The system of spacecraft ground tracks belongs to a class of dynamical systems known as "ergodic."
The discussion on ergodic theory below drew on [1-3]. The analysis used many of the ideas described in

[4]. The important property about ergodic systems for this discussion is the following.

Let F(z) be a well-behaved function on the space where there is an ergodic system. Then the time

mean of F and the space mean of F are equal. The time mean of F is the path integral of F(x) along the

trajectory as a function of time. The space mean of F is simply the integral of F over the space. This is
known as the Ergodic Theorem.

Now let F be the station view function. This means F is equal to 1 when the spacecraft is in view of

the station, and F is equal to 0 otherwise. The time mean of F is just the time average of the total view

period. The view periods require a lot of calculations, which one would like to avoid. But the Ergodic
Theorem states that one can skip all this computation by simply calculating the space mean of F. This

is a great simplification; notice that the space mean of F is just its integral over the sphere, which is easy

to compute. One arrives at the following:

Lira P(T) = time mean of F
T_c_ T

E F(x)dp = space mean of F
ARTH



p __ Lim P(T) _ _ F(x)d/_T--*oa T ARTH

The construction of the weight function, #, also known as the invariant measure, is geometric in nature.

Referring back to Fig. 2, follow a small segment along the ground tracks and see how it gets stretched

as time progresses. This stretching factor.then enables one to compute p. It is this weight function that

enables one to relate the time with the area. Having done so, it becomes an easy task to perform the

integral, F, whereupon, one has computed the long-term view period ratio, p. This demonstrates the

power of qualitative methods even for engineering applications.

IV. The Integral Representation of p

The integral p for a spacecraft in circular orbit is subject to the following perturbations and constraints:

(1) The spacecraft is in circular orbit; the orbit eccentricity is 0.

(2) The spacecraft is perturbed only by the linear J2 term of the spherical harmonic expansion of

the gravity field of Earth. Thus, the first-order linear perturbations for the node and argument

of perigee are:

(3)

(4)

(5)

(6)

The variables and the integral

df_

a(T) = a0 + 7i- T

dw

w(T) = wo + "d-[ T

The derivatives df_/dt and d_/dt are constant. The semimajor axis, eccentricity, and inclination
are constant. Mean elements are assumed throughout this discussion.

The orbit inclination is not 0 deg. Circular orbits with a 0-deg inclination have constant view

periods that can be easily calculated. 2

The orbit has an orbital period that is incommensurate with the period of the Earth's rotation.

Hence, this orbit does not have repeating ground tracks.

The ground station is not centered at the north or south pole.

The intersection of the station mask with the ground-track region forms a simply connected
domain.

for p are

p "-

_oo --

Oo =

RE =

R=

long - term station view period ratio

station latitude _ +90 deg

station mask angular radius

arccos (RE/R) for stations with s =- 0 deg

Earth radius

spacecraft orbit radius

minimum station elevation angle

(3a)

M. W. Lo, "The View Period of Circular Equatorial Orbits," JPL Interoffice Memorandum 312/94.7-10 (internal docu-

ment), Jet Propulsion Laboratory, Pasadena, California, June 3, 1994.
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_o1 =

_2

f(_) =

p

spacecraft orbit inclination > 0 deg ]

]

[ iifi < 90deg
[,180-iifi > 90deg

max {_'o - 0o,-Li}

rain {_o + 0o, Li}

c°s _parcc°s (c°s 0o-sin _ sin_'°)_'2 cos _oo cos _ /

7r2_/(sin 2 i-sin 2 _)

f(:)d:

(3b)

V. Numerical Verification

Three sets of tests were performed to verify the algorithm. The first set used circular orbits; the results

are shown in Table 1. The second set used elliptic orbits with eccentricity = 0.05; the results are shown

in Table 2. The third set used orbits with repeating ground tracks; the results are shown in Table 3. The

parameter that measures the accuracy of the model is Ap (listed in the last column of the tables):

Ap% = 100 PTHEORY -- PNUMERIC
PNUMERIC

Table 1 lists the 31 cases used in the verification of Eq. (3). The numerical view periods are generated
by propagating the orbit using the linear J2 perturbations. Tile integral for p is evaluated using a

mathematical symbolic computation program. The low Earth orbits selected for the verification have

various altitudes with inclinations at 28.5, 48, 88.5, 98.5, and 151.5 deg. For those cases with an asterisk

in front of the inclination, the orbit propagation begins at the descending node. For all other cases, the

orbit propagation begins at the ascending node. The cases in Table 3 use an orbit with repeating ground

tracks with a repeat pattern of 20 orbits in 3 days. All other orbits have nonrepeating ground tracks;

thus, their periods are incommensurate with that of the period of the Earth's rotation.

The stations at latitudes of 0, 5, and 10 deg have the longitude of the 24-m Goldstone DSN station. The

stations at latitudes of -35.4 and 40.4 deg are the 24-m Canberra and Madrid DSN stations, respectively.

The Ap for the circular orbits of Table 1 are plotted in Fig. 4. It shows the differences between

the theoretical and numerical values of p for these orbits to be under 0.2 percent, indicating excellent
agreement.

Figure 5 plots the Ap of the circular orbits from Table 1 as a solid curve on top of which the values

for the corresponding elliptic orbits from Table 2 have been added. For example, Case El and Case 4 in

Fig. 5 have the same test parameters except for the orbit eccentricity. By changing the eccentricity of

the orbit of Case 4 to 0.05 while keeping all other parameters fixed, Ap increased from under 0.2 percent

to about 1 percent. But for Case 23, the change in eccentricity and the high inclination caused Ap to
exceed 15 percent. This shows that the algorithm does not work as well for elliptic orbits. However, the

accuracy may be sufficient for load studies since many of the parameters are even less well known.

Figure 6 plots the Ap of orbits with repeating ground tracks from Table 3; a single fixed orbit with a
repeat pattern of 20 orbits in 3 days is used with different stations for these cases. The difference between

the theoretical and numerical values of p is still quite good at less than 1.3 percent.



Table 1. Comparison of numerical versus theoretical long-term view period ratio for

circular orbits with nonrepeating ground tracks (eccentricity = 0).

Orbit Orbit
Case radius, inclination, b Station Numeric d Theorye Difference f

number • latitude c
km deg

Percentage_

=

1 6578.14 28.5 0.0 0.021014 0.021030 0.000015

2 6578.14 28.5 -35.4 0.014719 0.014740 0.000020

3 6578.14 28.5 40.4 0.004976 0.004985 0.000009

4 7714.14 28.5 0.0 0.154513 0.154505 -0.000008

5 7714.14 28.5 5.0 0.148701 0.148664 -0.000037

6 7714.14 28.5 -35.4 0.085387 0.085383 -0.000004

7 7714.14 28.5 40.4 0.073382 0.073393 0.000011

8 7714.14 *28.5 0.0 0.154513 0.154505 -0.000008

9 7714.14 *28.5 -35.4 0.085368 0.085383 0.000015

10 7714.14 "151.5 0.0 0.154543 0.154505 -0.000038

11 7714.14 "151.5 --35.4 0.085507 0.085383 -0.000124

12 7714.14 "151.5 40.4 0.073483 0.073393 -0.00009

13 7714.14 151.5 5.0 0.148658 0.148664 0.000006

14 7714.14 151.5 --35.4 0.085361 0.085383 0.000022

15 7714.14 151.5 40.4 0.073422 0.073393 -0.000029

16 7714.14 48.0 0.0 0.081425 0.081432 0.000007

17 7714.14 48.0 5.0 0.082509 0.082453 -0.000056

18 7714.14 48.0 I0.0 0.086041 0.086012 -0.000029

19 7714.14 48.0 -35.4 0.100203 0.100189 -0.000014

20 7714.14 48.0 40.4 0.096789 0.0968 0.000011

21 7714.14 61.0 0.0 0.067089 0.067078 -0.000011

22 7714.14 61.0 -35.4 0.099756 0.099737 -0.000019

23 7714.14 61.0 40.4 0.102233 0.102237 0.000004

24 7714.14 88.5 0.0 0.057763 0.057726 -0.000037

25 7714.14 88.5 -35.4 0.072831 0.07285 0.000019

26 7714.14 88.5 40.4 0.079102 0.079127 0.000025

27 7714.14 98.5 0.0 0.05849 0.058413 -0.000077

28 7714.14 98.5 -35.4 0.074554 0.074609 0.000055

29 7714.14 98.5 40.4 0.081762 0.081743 -0.000019

30 10,000.14 61.0 0.0 0.15332 0.153309 -0.000011

31 10,000.14 61.0 5.0 0.155375 0.155142 -0.000233

a Circular orbits. All orbits have nonrepeating ground tracks.

b The * indicates the orbit propagation started at the descending node. All other cases started

at the ascending node.
c The stations with latitudes at 0, 5, and 10 deg have the longitude of the Goldstone station.

The station with latitude at -35.4 deg is the Canberra station. The station with latitude at

40.4 deg is the Madrid station.

a (Total view periods)/(total time), numerically generated using linear d2 orbit propagation.

e Limit (total view periods)/(total time), theoretical value.
Theory - numeric.

$ (Difference/numeric) x 100.

0.072847

0.138198

0.178944

-0.005178

-0.024882

--0.004685

0.014854

-0.005178

0.017454

--0.024589

--0.145017

-0.122614

0.004036

0.025421

-0.039498

0.008351

-0.067993

--0.033821

--0.013972

0.011675

--0.016424

--0.018588

0.003912

--0.064401

0.025538

0.031731

--0.132331

0.073638

-0.02385

-0.007175

-0.14996



Table 2. Comparison of numerical versus theoretical long-term view period

ratio for elliptical orbits (eccentricity = 0.05).

Case Orbit Orbit Station
number _ radius, incUnation, b Numeric d Theory e Difference flatitude c

km deg
Percentageg

E1 7714.14 28.5 0.0" 0.152476 0.154505 0.002029

E2 7714.14 28.5 -35.4 @086059 0.085383 -0.000676

E3 7714.14 28.5 40.4 0.072582 0.073393 0.000811

E4 7714.14 61.0 0.0 0.067196 0.067078 -0.000117

E5 7714.14 61.0 -35.4 0.112791 0.099737 -0.013054

E6 7714.14 61.0 40.4 0.088053 0.102237 0.014184

E7 7714.14 88.5 0.0 0.057875 0.057726 -0.000149

E8 7714.14 88.5 -35.4 0.071308 0.072850 0.001542

E9 7714.14 88.5 40.4 0.081627 0.079127 -0.002500

El0 10,000.14 28.5 0.0 0.261715 0.261864 0.000149

Ell 10,000.14 28.5 -35.4 0.173428 0.173361 -0.000067

El2 10,000.14 28.5 40.4 0.158665 0.158644 -0.000021

El3 10,000.14 61.0 0.0 0.153501 0.153308 -0.000193

El4 10,000.14 61.0 -35.4 0.19271 0.18373 -0.008980

El5 10,000.14 61.0 40.4 0.17489 0.184627 0.009736

1.33082

-0.785138

1.11773

-0.174601

-11.5733

16.1085

-0.256726

2.16308

-3.0623

0.056955

-0.038629

-0.012950

-0.125588

-4.65991

5.56719

Elliptical orbits. All orbits have nonrepeating ground tracks.
b All cases started at the ascending node.

CThe stations with latitudes at 0, 5, and 10 deg have the longitude of the Goldstone station.

The station with latitude at -35.4 deg is the Canberra station. The station with latitude at

40.4 deg is the Madrid station.

d (Total view periods)/(total time), numerically generated using linear J2 orbit propagation.

e Limit (total view periods)/(total time), theoretical value.
f Theory - numeric.

g (Difference/numeric) X 100.
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Fig. 4. Difference of theoretical versus numerical long-term view period ratio (all

orbits with eccentricity = 0, see Table 1).
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Table 3. Comparison of numerical versus theoretical long-term view period ratio for
circular orbits with repeating ground tracks (eccentricity = 0).

Orbit Orbit
Case radius, inclination, b Stationnumber a latitude c Numerical Theory e Difference f Percentage g

km deg

P1 11889.43 28.5 0.0 0.306147 0.30619 0.000043 0.014046

P2 11889.43 28.5 5.0 0,305175 0,305147 -0,000028 -0.009175

P3 11889.43 28.5 10.0 0.301975 0.301929 -0.000046 -0.015233

P4 11889.43 28.5 28.5 0.258294 0.258513 0.000219 0.084787

P5 11889,43 28.5 -35.4 0.226208 0.224439 -0.001769 -0.782024

P6 11889.43 28.5 -35.4 0.22622 0.224439 -0.001781 -0.787287

P7 11889.43 28.5 40.4 0.204349 0.206974 0.002625 1.284567

P8 11889.43 28.5 40.4 0.204369 0.206974 0.002605 1.274655

Circular orbits with a (3/20) repeat pattern (20 orbits in 3 days).

b All cases started at the ascending node.
c The stations with latitudes at 0, 5, and 10 deg have the longitude of the Goldstone station.

The station with latitude at -35.4 deg is the Canberra station. The station with latitude at

40.4 deg is the Madrid station.

a (Total view periods)/(total time), numerically generated using linear J2 orbit propagation.

e Limit (total view periods)/(total time), theoretical value.
f Theory - numeric.

g (Difference/numeric) X 100.
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Fig. 5. Comparison of circular and elliptical orbits: difference of theoretical versus

numerical long-term view period ratio (see Table 2).
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Fig. 6. Difference of theoretical versus numerical long-term view period ratio for
orbits with repeating ground tracks (see Table 3).

40 deg

These results indicate that putting the circular orbit at different inclinations, altitudes, and nodes does

not greatly affect the agreement between the numerical and theoretical values for the view period ratio,

p. The errors are all within 0.15 percent. The error goes up by a factor of 10 when the orbit ground

tracks are repeating, but a fairly good agreement is retained.

VI. Applications

The definite integral for p is easily integrated using a mathematical symbolic computation program,

each case requiring seconds. As mentioned before,

pT = total view periods during elapsed time T

is a good estimate of the total station view period. Thus,

p 24 hr = average daily total view periods

p 7 days = average weekly total view periods

and so on are some useful numbers that are very easy to compute.

Now consider a more interesting problem. Suppose one has a spacecraft and K ground stations.

Compute p for each station: pl,p2,"" ,PK. Suppose the spacecraft requires r sec daily for downlink

using these stations. The following sum represents the maximum average contact time possible with the

K ground stations:

C=(pl+p_+-.-+pK) 24hr

11



If r > C, then it means there is not enough contact time on the average for the spacecraft to downlink

its data. But if r < C, one cannot say very much since the overlaps between the ground stations are not

known. However, if, for example, r/C < 0.5, then it seems very likely the ground stations will be able to

satisfy the downlink requirement. One can look at the geometry of the overlap of the station masks to

further refine this approximation.

This approach gives a very quick way to bound performance. One can consider other scenarios of

N spacecraft with K stations and so on. This would be a good capability to place into a spreadsheet

program to provide quick estimates for what-if studies. It also has the advantage that the theoretical basis
of the method is well understood so that one need not have that uncomfortable feeling that frequently

accompanies statistical analyses not as well understood.

Another application is the performance measure for the location of ground stations. The definite

integral, p, provides a quantitative measure of the well-known observation that ground stations at higher

latitudes generally have more and longer view periods.

These applications require further refinement but indicate the type of calculations possible with this

approach.

VII. Discussion

The circularity of the orbits is not as severe a restriction in applications since, according to Negron

et al. [5], roughly 75 percent of the Earth spacecraft orbits have eccentricity < 0.05. The sensitivity of

the integral in Eq. (3) to eccentricity needs to be determined to see if it can be applied to orbits with

lower (but nonzero) eccentricity. With elliptic orbits, the motion of the argument of perigee causes the
geometry to change with time, which complicates the situation considerably. The extension of th_ theory

to elliptic orbits is under study. The basic approach may be used, but the problem is more difficult and

additional analysis is required to construct the function F(x) and the measure/t.

The period noncommensurability requirement appears to be restrictive, since orbits with repeating

ground tracks are very useful and popular. However, as Cases 26 to 33 show, the same integral provides

a fairly good estimate of p to within 1.3 percent. In fact, for stations at low latitudes, the estimate is

good to within 0.015 percent. This seemed surprising at first; but when one considers the fact that any

orbit can be approximated by one with repeating ground tracks to an arbitrary degree of precision, it

seems less surprising. Also, the number of different view periods of orbits with repeating ground tracks
is finite and can easily be determined numerically. Of course, for orbits that are geosynchronous, this

integral does not make sense at all. But the view periods for such orbits are trivial. Additional analysis

is required to determine the limits of applicability of the integral to orbits with periodic ground tracks.

The integral for p, Eq. (3), depends on the following parameters only: {R_, R, i, ¢0}, which are the
Earth radius, spacecraft orbit radius and inclination, and the station latitude. The station longitude,

the orbit node, and J2 do not appear in the equation. Since this is an averaging process, the absence of

the station longitude and orbit node is reasonable. These two parameters should simply average out in

the long term. The absence of J_ is surprising. But, it is actually hidden in the requirement that the
orbit period be incommensurate with that of the rotation period of the Earth. And it is not so surprising

in light of the Ergodic Theorem, which states that the details of the dynamics such as rates and the

equations of motion that appear on the time-mean side of Eq. (3) can be replaced with an area integral

on the space-mean side of Eq. (3). Thus, J2 and other dynamic quantities appear only in the time mean

but not in the space mean.

The tests described in Table 1 and in Section V above indicate an excellent agreement between the

numerically computed values for p and those computed from Eq. (3). However, additional numerical
results are also needed to further substantiate the theoretical results and scope the limits of applicability.
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Work continues on this approach to analyze station load forecasts. The extension of the integral to

elliptic orbits is highly desirable. Other dynamical systems methods can he used to refine the forecasts,

giving statistical data of more resolution than the mean. These are also being explored.

Acknowledgments

The author would like to thank Johnny H. Kwok and Steven Matousek of JPL

for bringing this problem to his attention; Lawrence E. Bright, Jeff A. Estefan,

David L. Farless, Johnny H. Kwok, and Mark A. Vincent of JPL for the invaluable

input and review of this article; and Professors H. B. Keller and S. Wiggins of the
California Institute of Technology for several useful discussions. The author would

also like to thank Charles D. Edwards and Vincent Pollmeir for their support. In

particular, the author would like to thank Warren L. Martin of JPL for his strong

support, which made this work possible.

References

[1] V. I. Arnold, Ergodic Problems of Classical Mechanics, New York: Addison-

Wesley, 1989.

[2] I. E. Farquhar, Ergodic Theory in Statistical Mechanics, New York: John Wiley
& Sons, 1964.

[3] K. Petersen, Ergodic Theory, Cambridge, England: Cambridge University Press,
1983.

[4] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equa-

tions, New York: Springer-Verlag, 1983.

[5] D. Negron, Jr., S. Alfano, and D. Wright III, "The Method of Ratios," Journal

of the Astronautical Sciences, vol. 40, no. 2, pp. 297-309, April-June 1992.

13


