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A trajectory-preprocessing algorithm has been devised which matches antenna

angular position, velocity, and acceleration to those of a target. This eliminates

vibrations of the antenna structure caused by discontinuities in velocity and ac-

celeration commands, and improves antenna-pointing performance by constraining
antenna motion to a linear regime. The algorithm permits faster acquisition times
and preserves antenna-tracking capability in situations where there would otherwise

be an unacceptably sudden change in antenna velocity or acceleration. A simulation

of DSS 13 shows that thb preprocessor would reduce servo error to I mdeg during
acquisition of a low-Earth-orbiting satellite.

I. Introduction

When a large antenna is moved in a sudden or jerky manner, the ensuing vibration of the structure

can adversely affect pointing accuracy. A fast-moving antenna which stops in a precipitous manner upon

acquiring a target may vibrate enough to lose lock. Even in situations for which the vibration amplitude

does not immediately produce an unacceptable pointing error, the servo control may enter a nonlinear,

and possibly unstable, region. This problem can arise when the servo controller attempts to apply an

excessive velocity or accelerationin an attempt to track a sudden command change [1].

In the past, Deep Space Network pointing requirements have been for slow antenna ]notion. While

DSN antennas are reciuired to, track at up to 0.4 deg per sec, they are not required to meet pointing
requirements for other than sidereal targets. 1 The prospect of very accurate acquisition of low-Earth-

orbiting satellites (with angular velocities in excess of even 0.4 deg per sec) is a relatively new idea. The
anticipation "of such requirements has led to the present work.

Trajectory preprocessing is one method used to preserve antenna-pointing integrity. The principal idea

is to make antenna motion smoother during target acquisition, although the algorithm can be applied
to all antenna motion commands. The present antenna control system is nonlinear. Its behavior is

governed by the nonlinearity (acceleration and velocity limits), its inputs, the initial conditions, and
the linear subsystem frequency response (the controller bandwidth). This has resulted in a system with

complicated switching rules for changing the controller bandwidth as a function of inputs. A change in a
velocity or acceleration limit affects the switching rules. The system can still work poorly for some sets
of inputs, initial conditions, and parameters.

1W. Scherr, Deep Space Communications Complex Subsystem Functional Requirements, Antenna Mechanical Subsystem
(I991 through 1997), JPL 13-1179, Rev. C (internal document), Jet Propulsion Laboratory, Pasadena, California, Septem-
ber 1, 1992.
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Since commands which are in violation of these limits cause the system to behave nonlinearly, a simple

method for allowing the system to operate in a linear regime is to force command angles to conform to

the limits. Trajectory preprocessing performs this task.

Even if an antenna were perfectly rigid and could be moved at will at accelerations of up to 1 deg/sec 2,

it could still overshoot a target during a high-speed acquisition. When the difference in speeds between

average acquisition velocity and tracking velocity can easily exceed a deg/sec, some algorithm is needed
to ensure that the acquisition time remains reasonable for a target which may not be visible for more

than a minute or two in the first place. This provides a further motivation for considering trajectory

preprocessing.

The problem to be solved by this preprocessor is to find an optimal, or at least an adequate, path from

an initial antenna position, velocity, and acceleration to some target trajectory. The first idea that was

considered for finding this path was to use the calculus of variations. This idea was abandoned for three

reasons. First, the method is overly complex. Second, the calculation time can be large. The method is

iterative, and the calculation time is indeterminate, making it unsuitable for a real-time system. Finally,

although the calculus of variations can give a least-time solution, it is not easy to include constraints that

will prevent sudden changes in the slopes of the antenna velocity and acceleration profiles.

I!. The Three-Region Method

The method described in this article involves three regions of antenna motion and was inspired by the

following scenario. A target is far away and one wishes to move the antenna towards the target trajectory

as quickly as possible. So one begins by accelerating the antenna to its maximum speed; that is region 1.

Then, in region 2 one moves the antenna at maximum speed until one is near the target. Finally, in

region 3, the antenna is decelerated until it matches the apparent target angular position and angular

velocity.

As applied to a low-Earth-orbiting satellite, the initial scenario envisioned the following preprocessor

steps:

(1) Input a set of target positions and velocities (0 and v) for both local azimuth and elevation as
a function of time using known orbital parameters (updated by optical detection).

(2) Choose an intercept (acquisition) 0et = 00c_. From this obtain the time interval, T, from the
start of region 1 to the intercept time, as well as 0_z and both va_ and vet. Input the initial

antenna pointing (00 and v0) and the maximum angular velocity for the antenna (vm_). Input

or calculate maximum angular accelerations for the antenna (am_x > 0).

(3) If necessary, try a different maximum acceleration (remaining less than or equal to the specified
limit) or a later acquisition time. Set a flag if acquisition is not possible before 0_ > O,na_:.

The same algorithm can be used for reacquisition during tracking (without the flag). One does not

need to start by choosing the acquisition elevation. A total acquisition time can be input instead. This
time can be chosen by noting the distance in position and the change in velocity that must occur. Using

one's experience from previous acquisitions, it will often be possible to choose an acquisition time within
a second of the minimum. Should one's choice be too small, the algorithm can be rerun with steadily

increasing total times input. In practice, the maximum acceleration may simply be set to the specified
acceleration limit.

For acquisition, in both azimuth and elevation, it is best to chase the target rather than approach it

head-on; this lessens the required change in velocity. That means that 00 should be a little less than 0.

Thus, while waiting for the target to appear, the antenna will generally be pointing at a place in the

trajectory close to that anticipated by an optical acquisition aid. The antenna will typically have an

140



initial velocity of approximately zero in elevation (or it might badly overshoot the target). When the
target shows up "late," the Earth's rotation will c-ause it to move.in azimuth as a function of lateness, so

the antenna may initially be moving slowly in azimuth. The formula for the minimum time to acquire is

then T = v]/A, where A is the average acceleration.

When A = ama_, we get the fastest acquisition. An ar_a_ in elevation of 0.5 deg/sec gives T = 2vl,
where v is in deg/sec and T is in sec.

In our acquisition schemes, the average A will often be ampul2 or less, giving a minimum acquisition

time of 4v! sec. When v! is about 0.5 deg/sec, this results in a minimum acquisition time on the order
of 2 sec.

This minimum acquisition time applies only when

V 2

A0._ = _L
2A

If, for example, we initially aim at the acquisition point instead of a point vy/2A below it, the minimum

time increases from T to T/V_- 1.

Figure 1 shows the matching in elevation of antenna pointing with that of a target. Figure 2 shows
the antenna angular velocity for this example. In these figures, the antenna is aimed a little above

the acquisition point. Figure 3 shows how the algorithm matches angular position when the antenna is
initially aimed a little below this point.

The acquisition time will often be determined by the change in vet. The final azimuthal velocity is

usually much smaller, and there may even be an initial azimuthal velocity. However, if the antenna is

simply waiting several degrees from the acquisition, 0_,, the azimuthal acquisition time can easily become
the total acquisition time.

III. Acquisition

Four acquisition

Scheme 1:

Scheme 2:

Scheme 3:

Scheme 4:

Schemes

schemes are considered in this article:

Match initial and final angular position and velocities. Use the maximuna allowable

acceleration throughout each acceleration region.

The same as scheme 1, but use a sinusoidal acceleration pattern to avoid large dis-
continuities in acceleration.

The same as scheme 2, but match the final acceleration as well.

The same as scheme 2, but match both initial and final accelerations.

Each of these ideas has some merit. The calculations needed to implement the trajectory-preprocessing
algorithm are similar for any of the first three schemes.

A. The First Acquisition Scheme

Scheme 1 has the advantage of speed. By using the maximum acceleration, the target can be reached

more quickly. Even when the increased initial overshoot and ensuing oscillations are taken into account,

the total acquisition time may be minimized in some situations. On the other hand, when the angu-
lar distance to the target is large and the maximum allowable pointing error is small, this scheme is
inappropriate.

141



29

28

27

26

_ 2s

24

23

22

21

Fig.

.,-- IOJ ¢0

z
_ I_

-W lUJ W

n-i n- n-

- ",,,.......4

I t I I

4 6 8 10

TIME, sec

1. Matching of antenna and target positions for
constant accelerations (elevation only).

/

>I
0 2

! I

12 14 16

t i

0.6 -

0.4 _

" 0

, rr" n-

F \

L\
I I _ '

0 2 4 6 8 10 12 14

TIME, sec

Fig. 2. Matching of antenna and target velocities for
constant accelerations (elevation only).

o

0.2

(9
"0

:_ 0.0

-0.2

-0.4

29

28

27

26
O3

25

24

23

22

! I

i

0 2 4

,r--

03

z
o

W

n"

1

21 i ,

6 8 10 12 14 16

TIME, sec

Fig. 3. Matching ofantenna and target positions for
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This scheme uses the maximum acceleration in each acceleration region. Although this introduces

discontinuities in acceleration, it permits a straightforward calculation of the acquisition parameters.

Then a = +am = +amax in regions 1 and 3. By integrating twice, we get the velocities and positions as

a function of time in all three regions. The following calculations must be performed both for elevation

and for azimuth:

For region 1,

v = vo + alt (1)

For region 2,

0 = Oo+vot + =alt (2)
2

V ---- V2 = vo+altl = vf --a3t3 (3)
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where T = tl + t2 + ta.

For region 3,

v = ,j - a3(7_- t) (_)

(T - t)2
0 = 0j - ,s(T- t) + a3 2 (6)

1. Calculation of Acquisition Parameters. In the above equations, we do not yet know the signs

of al or a3. Nor do we know the durations, tl or t3, or the constant velocity, v2. These are calculated as

follows. Input the initial and final antenna positions (azimuth and elevation), 00 and Of,

AO = Ol - Oo

as well as the initial and final antenna velocities (azimuth and elevation), vo and v f,

Av : v! - vo

and the total time,

T=ll +12+13

as well as the maximum acceleration, am, and velocity, v,n (in both azimuth and elevation), which must
be less than or equal to the requirements, am_ and Vmax (in both azimuth and elevation).

Prom the above inputs, output tl,t2,t3, and v2 and also determine al and a3. To obtain these outputs,

the following formulas are used. First, a normalized angular position, x, and a normalized angular velocity,
y, are calculated:

AO v0

x- amT2 amT (7)

y=Av

amT
(8)

Next, e0 and Q, intermediate variables that are used to find the signs of the accelerations in regions 1
and 3, are determined:

y2 y2
co =ES =--1 wheny<Oandy+-_- < x _< 2 (9)

y2 y2
Co =ej = 1 wheny<Oand _- < x <-y--_- (10)

Co = 1 andc! =-1 wheny>Oandx>y-
y2 y2
-_- or y < 0 and x > --_- (11)

y2 y2
eo =-lander =1 wheny>Oandx<-_-ory<Oandx<y+_- (12)
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These give us al and ha:

al = ¢oam (13)

a3 = ¢.I am

Now the velocity in region 2 can be found:

y2e! - 2x

foreo=¢l, Y2 - 2(y¢!-1)

(14)

(15)

for e0 _ c I, Y2 =
y¢] - l÷k/y2¢o¢! - 2y¢l+2x(Q - ¢0)+1

¢1 - eo

v2 = amTy2+vo

Finally, the time intervals can be deduced:

(16)

(17)

v2 - vo (18)tl
al

vi - v_ (19)t3
a3

t2 =T-tl-t3 (20)

Once the above parameters have been obtained, position and velocity commands are determined _om

Eqs. (1)through (6).

The main problem with this acquisition scheme is the discontinuity in antenna acceleration at the

borders of regions 1 and 3. The problem is most serious at the border of region 3, where transient

phenomena may significantly affect antenna-pointing accuracy immediately after acquisition. To see this,

consider the example of Figs. 1 and 2. In this, Example (1),

O0 = 25.104 deg

01 = 24.253 deg

v0= -0.001 deg/sec

Vl = 0.479 deg/sec

T = 6.6 sec

]a[ = 0.25 deg/sec 2

which has the solution
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v2 = -0.46 deg/sec

tx = 1.85 sec

t2 -- 1 sec

t3 = 3.75 sec

Figure 4 shows anticipated servo error during and immediately following acquisition for this example

using a simulation in which a PI controller is applied to a model of a 34-m Deep Space Network antenna,

namely DSS 13 in Goldstone, California. This servo controller, which uses both proportional (P) and
integral (I) feedback terms, is in use at DSS 13. The controller and the model of the antenna are described

in [2].
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Fig. 4. Anticipated servo error for Example (1) with

constant acceleration In regions 1 and 3 (elevation

only).

2. Derivation of Results. This section gives a derivation of the results of Eqs. (7) through (20).
Begin by conserving the total angular distance:

Vltl q-v2t2q-vat3---- AO (21)

The values ta and t 3 are obtained from the change in velocity divided by the acceleration. This immedi-
ately gives Eqs. (18) and (19).

The values vl and v3 are the average angular velocities in regions 1 and 3. Since the acceleration is
constant in each of these regions,

Vlm
v2 + Vo v2 + v]

and v3 - (22)2 2

When Eqs. (18), (19), and (22) are substituted in Eq. (21), the result is

2al

- 4
-- + v2t2 + 2a3 - AO (23)
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By substituting T - tl - t3 for t2 in Eq. (23), we get

(v_ - co)2 (vl - v_)2
+2v2T+ - 2A0 (24)

al a3

Further substitution of the definitions of x, y, y2,E0, and cl from Eqs. (7), (8), (17), (13), and (14) gives

y_(ef - E0)+2y2(1 - yQ)+y2ey - 2x=0 (25)

When eo = Q, which is often the case, Eq. (15) follows directly from Eq. (25). When e0 _¢ e l, Eq. (16)
immediately results from applying the quadratic formula to Eq. (25). However, the sign in front of the

square root in Eq. (16) is yet to be determined. This is done as follows. Note that

V0 V2 Y2 V0 V0
t2=T- v!+-----+--+ ---

a3 al al a3 a3 a3

which gives

t_= 1 - yel+y_(e f - Co)
T

The square root term in Eq. (16) is also equal to 1 - yef + y2(ef - e0). Since t2/T must be positive, the

plus sign must be chosen in front of the square root.

The next step is to find out where the solutions for y2 described in Eqs. (15) and (16) are valid. The

values of :c and y for which a solution can be found will be referred to as an "area of validity," which

can be plotted on a graph of y versus x. This area is in "phase space," and as it increases, a larger
number of combinations of target positions and velocities can be matched. Starting from Eq. (16), the
minimum and maximum values of x as a function of Y2 are obtained by setting dx/dy2 = 0. This gives

Y2 = (yE1 - 1)/(cl - E0) and t2 = 0. This means that the discriminant of the square root in Eq. (16), t_,
is 0 at the borders of the area of validity of solutions to Eq. (25). Setting the discriminant to zero gives

1 - 2yef + y2eoQ (26)
x = 2(e0 - _j)

At tile external boundaries of the area of validity, e0 ¢ e I. Thus, the area of valid solutions is bounded

by the curves

Y2+2y-1 (-l<y< 1)
4

and

1 + 2y - y2
x-- 4 (-1 _< y__< 1)

This area of validity is shown in Fig. 5. Notice that solutions for which x and y have the same sign are

favored (have more phase space) than those which do not.
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In these calculations, we have ignored the situation in which Vma, corresponds to ]Ym._[ < 1, which

would cut off the region of valid solutions at y < 1 or y > -1. This can be dealt with as follows: Note

that for the antenna velocity to exceed a velocity limit, either Vo, v], or v2 must exceed that limit. If

v0 exceeds the limit, we already have a problem, but it is one that has little to do with the trajectory

preprocessor. If v I exceeds the limit, we cannot acquire at that point, but we can try other values of T

for which v I may be smaller. If v2 is the only culprit, we increase T to a point at which v2 is acceptable.

Figure 5 also shows internal borders in the area of validity. These borders define the regions where

al and a 3 are both negative, both positive, of opposite sign with al positive, and of opposite sign with

al negative, respectively. At these borders, t_ = 0 (which gives Y2 = 0) or t3 = 0 (which gives y2 = y).

Substituting in Eq. (25),

Y2 = 0 ::_ x - y2C] (27)
2

while

y260

y2 =y=:c'x=y- 2 (28)

By defining the borders of each of the four internal regions, Eqs. (27) and (28) permit us to write down

Eqs. (9) through (12), completing our derivation of the formulas used in the first acquisition scheme.

B. The Second Acquisition Scheme

To avoid the discontinuities in acceleration, one can choose a sinusoidal acceleration pattern. This

trades acquisition rate for pointing accuracy; the price that is paid for improved accuracy is a factor of

two in average antenna angular acceleration. The preprocessor matches position and velocity as before.

The antenna angular acceleration is still not matched to that of the target, but it is zero rather than the

maximum allowable acceleration at acquisition. The idea is to let a = -t-am(1 - cos2rw) for some w and

for am < ama=/2. In particular, for region 1,

Integrating with respect to t,

27rt "_a=al 1-cos _ J
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v=vo+al\t-2-rrsm tl ]
(29)

Integrating again,

For region 2,

0 = 60 + vot + al 41r2
t 2 2rrt'_"t- _'i_ COS

4a "_ -'Q-'l,/
(30)

a=O

For region 3,

V = v 2 = vo+altl = v s -a3T3

0 = Oo + rot1 +v_(t- tl) + --
alti

2

2r(T - t) )a : a3 1 -- cos t3

(31)

(32)

Integrating with respect to (T - t),

t3 . 2r(T-t))v=v s-a3 T-t-_sln t3
(33)

0 = O! - vs(T- t) + a3 fi(T
t) 2

\
t_ + t_ 27r(T-t)) (34)47r2 _ cos t3

Note that da/dt is not merely finite everywhere; it goes to 0 at the borders of each region.

At first, these equations seem more complicated than those for constant accelerations, but the solutions

for their parameters are identical. Equations (7) through (20) still hold. The acceleration is not constant,

but Eq. (22) is still valid. The maximum value of am is reduced by a factor of 2, but Eqs. (13) and (14)

are unchanged. The same four solutions exist with the same boundaries in x and y, as represented by

Fig. 5. The only difference is that Eqs. (1) through (6) have been replaced by Eqs. (29) through (34).

Example (1) still has the same solution for tl, t2, t3, and I/2. However, the anticipated servo error has

been reduced because the acceleration changes more smoothly.

Figure 6 shows the matching of antenna and target angular positions in Example (1) for acquisition

scheme 2. Figure 7 shows the corresponding matching of velocities. Note that the velocity slope is zero

at acquisition for the antenna but not for the target; there is still a slight discontinuity in acceleration

at acquisition. Figure 8 gives the anticipated servo error for Example (1) using the second acquisition
scheme.
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Since T has already been chosen prior to the calculation of ll and t3, it may seem unnecessary to set

am to am_,/2 when a smaller am would sumce. Also, potentially huge values of da/dt (jerk) can arise

in this trajectory preprocessing scheme. These high values of jerk are produced when one is near the

internal borders within the region of valid solutions in Fig. 5, since tl or t3 approaches 0. Since [ a I

goes from 0 to 2am and back in each region, the average Ida�dr[ is 4am�t3 in region 3. The maximum

Ida�dr[ is 8am�t3 in region 3, and as t3 approaches 0, this number becomes larger until the increase is

filtered out by the servo mechanism. Actually, this gives us a very small servo error because for the PI

controller, the maximum error caused by a sudden pulse does not exceed the total displacement caused

by the pulse. Thus, the PI controller does not react much to a t3 of 0.1 sec because 1/2a_ot _ for an

average a of 0.125 deg/sec 2 is only 0.6 mdeg, which is an upper bound on the servo transient error. This

is illustrated by Example (2), for which

Oo = 23.7618 deg

O! = 24.253 deg

vl = 0.479 deg/sec

vo = -0.001 deg/sec
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[a[ = 0.25 deg/sec 2

T = 2 sec

tl = 1.9 see

t2 = 0.0 sec

t3 = 0.1 see

v2 = 0.4665 deg/sec

Figure 9 shows the anticipated servo error for Example (2) with acquisition scheme 2.
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Fig. 9. Anticipated servo error during acquisition for
Example (2), (t 3 = 0.1 sec, t2 = 0) (elevation only).
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If it is thought that the servo controller would react adversely to such a sharp acceleration pulse, one
can modify am so that neither tl nor t3 is small, or at least choose a reasonable a,_ to begin with and

modify either am or t if necessary. For example, one can choose an am that gives t2 = 0 and if tl or t3 is

small anyway, one simply increases T. From Eq. (26), t_ = 0 gives

Picking ¢o¢! = -1,

Let

Then

y2¢oEl -- 2yQ + 1 = 2(_o -- cl)x

y2+2YQ (1- _) - 1 =0

2x AvT - 2AO + 2voT
12=1---=

y AvT

Av

-- = v = - jn + + 1 (35)
amT

The sign in front of the square root in Eq. (35) and the value of _! are readily determined by observing

that y has the same sign as Au and that lYl <- 1. This determines y and gives

Av
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The a = 0 region can also be omitted from the algorithm entirely. The resulting scheme would have

no intermediate region of maximum velocity for large changes in antenna position and would increase
acquisition time as a result. If by some chance,

Av _ v_ -- v02

T 2A0

(and even with some latitude in choosing t, it is unlikely that this will occur), then a one-region solution
is possible where

a=_v v 1-cos

If not, then _o¢I = -1, and y is determined from Eq. (35), which also gives am, while

y+l
Y2-- 2

By leaving out the a = 0 region, overall accelerations are reduced. However, there is an increased flexibility

in maintaining a three-region algorithm, and picking am prior to solving for Y2 may be impractical in
some situations.

C. The Third Acquisition Scheme

In our examples, the target acceleration and servo controller are such that the sudden discontinuity

in acceleration at acquisition does not significantly increase the pointing error. However, there is a

straightforward way to avoid this discontinuity by modifying the previous acquisition scheme so that it

matches the target acceleration at acquisition instead of acquiring with zero acceleration. One simply

switches to a frame of reference which has an acceleration equal to that of the target. Figure 10 shows

the anticipated servo error for Example (1) in this ease.

"O
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-4

I I I I I I I

0 2 4 6 8 10 12 14

TIME, sec

Fig. 10. Servo error for acquisition scheme 3 and
constant velocity track. Acquisition is at t = 6.6 sec.

Let a] be the acceleration of the target at t = T. Then match a position of 01 - 1�2aT 2 and a velocity
of v! - aT.

This means that A0 now equals O! - Oo - ((1�2)aT 2) and Av = v! -- vo -- aT. "Once again, Eqs. (7)
through (20) remain valid. However, care must be taken to ensure that the actual antenna accelerations
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and velocities never exceed the maxima. The acceleration can be kept within bounds by choosing a,_ =

a,,_,, - ]a/I/2. But the velocity is trickier, as the actual velocity in region 2 is no longer constant. For a
situation in which the antenna must traverse a large angular distance to acquire a target, it might at first

appear that the maximum velocity will be reached at the end of region 2. This is not the case. At the

end of region 2, the antenna has an acceleration of al, so the velocity is still increasing. The maximum

velocity is reached when the acceleration first reaches zero in region 3.

The difference between this scheme and the first scheme is that Eqs. (1) through (6) are now replaced

with the following equations:

For region 1,

(a=al 1-cos tl ] +a!

tl 27r___J__
v=vo+al(t-_ sin tl + alt

(36)

0 = Oo + vot -1-al 4r 2 +
tl_ cos 27rt_ 1

--_/] + _alt (37)

For region 2,

am a]

v = v2 + alt

alt_
0 = Oo + votl + v2(t- t,) + T +-

(38)

a'ft2 (39)
2

For region 3,

2_(T - t))a = a3 1 -- cos t3 -Jr a I

t3 27r(T - t)) (40)V ---- Vl -- a3 T - t - _ sin t-z- + al t

O=Of_v/(T_t)+a3((T-t)2 t23 + t_3 27r(T-t)) alt 22 4rr2 _ cos t3 + T
(41)

D. The Fourth Acquisition SCheme

Our final scheme applies to situations where the antenna has an initial acceleration a0 and a final

acceleration a I. In this scheme, both the initial and final accelerations are matched by the preprocessor.
We will assume that an initial value of am is chosen either by setting it to am_x/2, by looking at Eq. (35)

(possibly modified by adding or subtracting a0 or al), or by some as yet undetermined method. Inputs

are then 00, 0/, va, v l, Ao, A 1, Am, T, Vmax, and a,naz (for both azimuth and elevation). Equations

(1) through (6) are now replaced by the following:
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For region 1,

a=al ( 27rt_ ao( _t)1- cos -Ff_) + T 1+ cos

Note that daldt = 0 both at t = 0 and t = tl. By integrating,

v=vo+ al+ t+_ ao sin t-'7-al sin tl J

=80+vot+ (al + -_-+ _ 2ao 1- cos _ -al l- cos _1 .]J

(42)

(43)

For region 2,

V -"

a=0

v2 = vo + (al + 2) tl = VS - (a3 + -_) t3 (44)

For region 3,

(o,+ +--

a "- a3 1 - cos la _- 1 + cos _-

(45)

_) ta ( _r(T-t) 2r(T-t))v=v s- (a3+ (T-t)-_ a s Sin ta a3 sin t3 (46)

0=0 s-vI(T-t)- (a3-t- _)(T-2 t)2 47r2'_ [9as (1- r(T - - a3 (1_os 72 t)) _ 2_(T-t))]COS 73

(47)

When sign (ao) = sign (al),

1 (2a_ -1"ol)la, I =

Otherwise fall = am. When sign _as)= sign (a3),

1 (2am -I'_SI)la_l = 7

Otherwise laai = am.
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The solution from the previous acquisition schemes no longer applies. Although Y2 has a similar form,

eo and e! are changed. The parameters are derived as follows. Once again, vltl + v2t2 + v3t3 = AO. Let

1

al + (a0t2)

1
#I- a3+ (al /2)

Then

tl =flo(v2 - v0)

t_ = #I(vl - v2)

From Eq. (45) we can calculate the change in position from t = 0 to t = tl. Dividing by tl, we get vl:

vo + v2 tlao
vl - 2 + r 2

Equation (22) is no longer valid, so the calculation becomes more complex:

Plugging in,

vI + v2 13a l
v3- 2 + r _

2[ 2#_¢a! [ 2fl____a0] =2AO-2vTT(_s- _2) #_ + -7- - (vo- _)_ #o _ j

Let

Then

e I = a m flf + r2 ) and eo = am 13o r_ j

(_j - v_)_ cj - (_o - v_)_ _o= 2am(_XO- v_T)

Changing variables,

v_(,s - ,o) - 2w(vcl - 1)+ v_cj - 2. = o

When e! = co, we get Eq. (15). Otherwise,

154



y2(ef - co) = ye I - I -4-X/y2eoe: - 2ye I + 2x(e/- Co) + 1 (48)

which is the same as Eq. (16) except that the sign in front of the square root can be negative.

Since e0 can have at most 2 values, c! can have at most 2 values, and the sign in front of the square

root can have at most 2 values, at worst one needs to solve Eq. (48) eight times to see if a valid value of

y_ can be obtained. In practice one does not need to try all eight possibilities. If y > 0, e0 and ( l cannot

both be negative. If y < 0, e0 and eI cannot both be positive. So only six cases remain.

It is tempting to simply write down the equations for the borders of each region and pick which solution

is valid. That would determine e0 and eI. However, this method is not practical in general, as will be

illustrated by trying it for a0 = -am and ay = am. When al and a3 are both negative,

2 8

¢0=-l+_-ff and eI =-2 +-_7

The minimum x is found by setting Y2 to y. From Eq. (48),

y2 GO

x=y 2

Here, -1 < y < 0. When -1-}-af/2am = -1/2 < y _< 0, the maximum z is determined by setting y2 = 0.

Now Eq. (48) gives

y2ef

2

For -1 < y < -1/2 = -1 + al/2am, the maximum x is found by setting Y2 = 1 + 2y. Here Eq. (48) gives

When al and a3 are both positive,

y 1
x = y2 + _(cf + 6) + _(3_o + 4)

8 2

e0=2+_-7 and el= 1+ -_

Now it takes three curves to describe the minimum z. For

__ y20<y< 2 , then Y2 =0=_x=
- - eo+¢f -_cf

ao y_
2 <y<+l+--, then y_ =y::*x=y-

GO -'F C""""_-- -- 2am -_CO

ao

1+ 2--_ _< y_< 1, then Y2 = 1 - y =:_ x = y_(2cf - 3)y + _(4 - 3of)
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The maximum x also requires three curves. When

1 y2eo
0<y<--, then Y2 = y :=c,x = y- 2

G0

1 1 ycI - 1 y2eocf - 2ycf--bl
-- <y<--, then y2 - =_x=
Go - - eI eI --GO 2(C0--Cl)

1 Y2_!
--_<y_<l, then Y2 =O_x-
e! 2

When al is positive but aa is negative, the minimum and maximum x require three curves each.

8 8

eo=2+fi andc! =-2+-fi

The minimum z is as follows. For

1 ao 2y + 1 1 - 2yc! - 4y 2

2(e0 - 1) < y < 1 + --, then Y2 - ==_x =2am 4 8

1 Y2Co

0<y< 2(c0-1)' then y2 =y::C'z=Y 2

y2 Ela!
--1+7----- <y<0, then Y2 =0=_z--

22a,,,

The maximum x is as follows. For

1 ao y2co
--<y<l+--, then y2 = y ::c. x = y - --
co 2a,, 2

1 1-YCl _x= 1-2yel+c!eoy 2
0<y<--, then Y2 -

co 4 8

a! 2y + 1 1 - 2Y¢1 - 4y 2
-1 + _ < y < 0, then Y_ - 4 :=¢': 8

When al is negative but a3 is positive, we obtain our final six curves.

2 2

Go=-l+fi ande! =1+_-_

The minimum z is as follows. For

156



1 y2c!
--<y<l, then y_ = O:::=_x -- --
e! 2

1 ye! - 1
0<y<--, then y_ -

eI 2

-l<y<0, then

-y2c.te o -%2ye I - 1
4

y-1
Y2 ---- ----_ =:_ x ----

The maximum x is as follows. For

1 y- 1 y2 + 2ye] - 1
-- <y< 1, then Y2 ----::_x-
2e! - 1 2 4

_ Y2el
1 then y_ --0==_x---

0<y< 2e]-l' 2

y2_ o

-l<y<O, then y2 = y :_ x = y- 2

For other values of a0 and al, different curves determine the boundaries of the regions. The difficulties

in finding the internal borders of the area of validity are sufficiently great that were this algorithm to be

implemented, one would simply try all six candidate solutions and pick the first one that worked.

Figure 11 shows the area of valid solutions for a0 = -am and a! = am superimposed on the one for

ao = a I -- 0 shown in Fig. 5. Note the loss in phase space for valid solutions in the al = -ao = am case.
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Fig. 11. Shrinkage of region of valid solutions for

af :-ao= am.

6.0

IV. Discussion and Conclusions

Acquisition scheme 4 is overly complex even if one does not calculate the internal borders of the area

of validity. Such an algorithm would be very difficult to implement and maintain. Scheme 3 should
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suffice for high-speed acquisitions and is recommended as an option on Deep Space Network antennas.
The other schemes produce acceleration discontinuities which may cause undesirable excitations of the
antenna structure.

The algorithm can be run with the entire set of commands output at once. However, in practice, it
is not necessary to calculate all commands before implementing the first one. It is sufficient to find an

acceptable acquisition time, T. The position and velocity commands can be calculated in real time as

the antenna moves. If it is inconvenient to calculate the commands in real time, there may be enough
processor time to calculate them in advance and store them.

Since the trajectory preprocessor cannot be used to supply commands until a satisfactory acquisition
time is calculated, the question arises of how to find the acquisition time quickly. The problem is not

trivial, as the target may have a trajectory that is very difficult to match. There are a number of

possible strategies for picking a candidate acquisition time. A trade-off is involved. If the processor is

so slow that it may take several tenths of a second to discover if a candidate acquisition time will work,

one must be conservative in one's choice of candidate acquisition times. Only a few candidates can be

tried. The candidate which is finally selected may not be optimal, but the time lost in finding a better

solution may more than make up for the time saved by the improved answer. On the other hand, if

thousands of candidate solutions can be tried in a second, one should expect to find an acquisition time

that is within a fraction of a second of optimal. Mere processor speed does not guarantee success, as the

processor may need to be shared with other tasks. Nor should it be forgotten that each target position
may need to be translated in a relatively time-consuming manner to an equivalent antenna command.

There may be coordinate conversions to apply, refraction must be taken into account, and subreflector

squint must be corrected for, along with a host of other tabled or modeled systematic pointing errors.
A trajectory preprocessor algoritllm should not be developed for an antenna system unless one has a

reasonable knowledge of the required and available processor time, both before and during the time

period in which preprocessor commands are to be output.

When the trajectory preprocessor is used to match the trajectory of a sidereal object, the acquisition

time is easy to estimate. There is usually no hurry to acquire the object, but even if there were, the

preprocessor could handle the situation rather easily. A problem arises when the algorithm is used to

match the trajectory of a fast-moving object that may be moving at 10 to 50 percent of the maximum

antenna angular rate at acquisition.

It is understandable that one might wish to construct a simple, general algorithm to generate candidate

acquisition times. One can guess a time of 1 sec, and should that be insufficient, continue with guesses

of 2, 4, 8, 16, 32, 64, and 128 sec until a solution is found. If powers of two seem inappropriate, one

call try powers of 3, 1.5, 1.2, or whatever. One can be satisfied with the first acceptable solution, or

one can backtrack, looking for an even better one. Another idea is to start with the maximum AO/v,na_:

and 2Av/a .... Any of these ideas may be acceptable, but it seems far better to produce a carefully

constructed table of candidate acquisition times for each given mode, especially for low-Earth-orbiting
satellites. A simple default mode can be included as well.

This trajectory preprocessor algorithm depends greatly on the ability to predict exactly where the

antenna will be when preprocessor commands are to begin. Any confusion resulting from misapplication

of pointing corrections or differences between hoped for and actual position will result in a discontinuity
in command position, which is precisely the problem that trajectory preprocessing is supposed to avoid.

Choosing anticipated commands for the initial antenna position and velocity does no good if the antenna

is pointed elsewhere. Using the actual antenna position does little good if the antenna is moving quickly
and the preprocessor commands are due to start only a second or two later. Other initialization errors

are possible that could render the preprocessor ineffective. For example, if incorrect or inappropriate

velocity or acceleration limits are used, so that the antenna cannot respond properly to the preprocessor

commands, antenna control will be back into the nonlinear region that the preprocessor was designed to
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rescue it from. As long as care is taken to avoid mistakes of this sort, the preprocessor should serve a
useful function.

There is no reason to demand that an antenna controller always be in a mode for which trajectory

preprocessing is in use. The preprocessor can be an option used especially in cases for which very accurate

tracking is required or for which control problems are anticipated. For this reason, an acquisition scheme
that matches target acceleration may be favored over one that does not; the preprocessor may be used

primarily when one wishes to avoid what sometimes seem like small acceleration discontinuities. However,
use of a preprocessor as an option does not mean that it should be considered as an ad hoc feature rather

than an integral part of a control system design. The issues of how and where to fit preprocessing into

a system should be addressed even if it is not yet decided whether or not such an algorithm will be

implemented. This would avoid problems that may arise when one attempts to add it after the rest of

the system is complete.

As pointing requirements become more strict and tracking speeds increase, trajectory preprocessing
will become a more and more valuable option to improve antenna control. The algorithm described in

this article could be put to good use in the Deep Space Network.
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