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It is well known that the presence of a weak cross flow in an otherwise two-dimensional

shear flow results in a spanwise variation in the mean streamwise velocity profile that

can lead to an amplification of certain three-dimensional disturbances through a kind of

resonant-interaction mechanism (Goldstein & Wundrow 1994). The spatial evolution of an

initially linear, finite-growth-rate, instability wave in such a spanwise-varying shear flow is

considered. The base flow, which is governed by the three-dimensional parabolized Navier-

Stokes equations, is initiated by imposing a spanwise-periodic cross-flow velocity on an

otherwise two-dimensional shear flow at some fixed streamwise location. The resulting

mean-flow distortion initially grows with increasing streamwise distance, reaches a maxi-

mum and eventually decays through the action of viscosity. This decay, which coincides

with: the viscous spread of the shear layer, means that the local growth rate of the insta-

bility wave will eventually decrease as the wave propagates downstream. Nonlinear: effects

can then become important within a thin spanwise-modulated critical layer once the local

instability-wave amplitude and growth rate become sufficiently large and small, respectively.

The amplitude equation that describes this stage of evolution is shown to be a generaliza-

tion of the one obtained by Goldstein & Choi (1989) who considered the related problem

of the interaction of two oblique modes in a two-dimensional shear layer.



1. Formulation

To fix ideas, we consider an incompressible shear flow formed at the interface between

two parallel streams of differing velocity or alternatively between a single parallel stream

and a flat plate. The Cartesian coordinate system (x, y, z) is attached to the interface with

x in the direction of the external flow, y normal to the interface, and z in the spanwise

direction. All lengths are non-dimensionalized by 6. where 6. characterizes the local shear-

layer thickness at x = 0. The time t, velocity u = iu + jv + kw, and pressure variation

p from the external value P. are non-dimensionalized by 6./U., U. and p.U2._ respectively,

where U. characterizes the velocity of the external flow and p. is the density. With this

non-dimensionalization, the Navier-Stokes equations become

V.u = 0, (1.1)

ut + u.Vu + Vp = R-1V2u,

where V - iO/Ox + jO/_y + kO/Oz is the gradient operator,

(1.2)

R =- 6.U.#,. > 1 (1.3)

is the local Reynolds number, _,. is the kinematic viscosity and an independent variable

used as a subscript denotes differentiation with respect to that variable.

The solutions to (1.1) and (1.2) that are of interest here can be represented as the sum

of a steady base flow plus a time-dependent perturbation,
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where e characterizes the local amplitude of the perturbation at x = 0. Substituting (1.4)

and (1.5)into (1.1) and (1.2) gives

V-U = 0,

U.VU + VP = R-1V2U,

for the base flow and

for the perturbation.

V.z2 = 0,

_t + U.V4 + _.V(U + e_2) + Vi6 = R-1V2_,

(1.8)

(1.9)

The steady spanwise-periodic base flow {U, P} evolves over the long streamwise scale,

x2- x/R, (1.10)

and has an O(_.) wavelength in the spanwise direction. This implies that the base-flow

solution expands like

U = iUo(x2, y,z) + R-:Vo(x2, y,z) +...,

P = R-2p0(x2, y, z) +...,

(1.11)

(1.12)

where V denotes the base-flow velocity in the transverse (or y-z) plane. Substituting (1.11)

and (1.12) into (1.6) and (1.7) shows that the leading-order base-flow solution is determined

by the parabolized Navier-Stokes equations (Rudman & Rubin 1968),

U0,2 + Vr'Vo = 0,

Uo(ir]o+ Vo)._ + Vo.VT(iVo + go) + V.Po = v_(iuo + go),

where VT ----jO/Oy + k0/Oz is the gradient operator in the transverse plane.

(1.13)

(1.14)
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It is assumed that the initial amplitude of the perturbation is small enough so that

e_ << U0 over the streamwise region of interest.

then yields

V._ = O,

D4 + i(VTVo._Z ) -]- V_ ----O(R -1)

Substituting (1.11) into (1.8) and (1.9)

(1.15)

(1.16)

where D - O/Ot + UoO/cgx is the leading-order convective derivative relative to the base

flow. These equations are just the familiar equations for the linear perturbations about

a uni-directional transversely sheared base flow (Goldstein 1976; Henningson 1987). It is

well known that the velocity fluctuations can be eliminated between (1.15) and (1.16) (see

Goldstein 1976, pp. 6-10 for a detailed derivation) to obtain the following equation for the

DV2i6- 2VTU0"VT_. = O(R-1).

pressure fluctuation

(1.17)

Attention will be restricted to perturbations that are spatially growing and periodic in

time with, at least initially, a single angular frequency, say F.. The relevant solutions to

(1.15)-(1.17) then form a spanwise periodic instability wave that propagates in the stream-

wise direction. The local amplitude of the instability wave increases as the wave propagates

downstream, but its local growth rate will ultimately decrease owing to the combined effects

of the viscous spread of the basic shear layer and the viscous decay of the mean streamwise

vorticity. Nonlinear effects can then become important first within a thin critical layer

located at the transverse position where the phase speed of the instability wave equals the

base-flow velocity U0 (once the instability-wave amplitude and growth rate become suffi-

ciently large and small respectively). In this stage of development, the unsteady flow outside



the critical layerremainsessentiallylinearbut the instability-waveamplitudeis completely

determinedby thenonlinearmotioninsidethe critical layer.

With this in mind, the originof the x axis is chosen so that the deviation,

aoel = S - So < 0, (1.18)

of the local Strouhal number (or non-dimensional angular frequency) S =- _.F./U. from its

neutral (or zero-growth) value So is O(a) where a <_ 1. The precise relationship between e

and a will be specified below when the flow in the critical layer is analyzed. The relevant

solutions to (1.16) and (1.17) are then of the form

(1.19)

(1.20)

where A(Xl) is an amplitude function that accounts for the slow growth of the instability

xl - ax (1.21)

wave,

is the streamwise scale over which the wave growth occurs,

X_ aoX - St, (1.22)

is a normalized streamwise coordinate in a reference moving with the wave, and a0 is the

neutral wavenumber. The ellipses in (1.19) and (1.20) indicate harmonics of the fundamental

instability wave that are generated by the critical-layer nonlinearity. Since these harmonics

do not interact outside the critical layer (to the order of accuracy considered here), their

outer solutions can be determined a posteriori.
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Substituting(1.20)into (1.17)showsthat, outside the critical layer, the function i_ of

xl, y and z is determined to the required order of accuracy by

where

and

VT" L(U0 - c)2J (U0 - c) 2 - 0 (1.23)

a =_ao - aiA'/A, (1.24)

c - S/a, (1.25)

are the generalized wavenumber and phase speed, respectively, and a prime denotes differ-

entiation with respect to the argument. It follows from (1.15), (1.16) and (1.19) that the

velocity fluctuations are determined in terms of t5 by

and

i.(i_/_) + Vr._ = O,

i_(u0 - c)_ + i(vTu0._ + lap) + v@ = 0.

The solution to (1.23) that satisfies

py=0at y=0 ;boundarylayer[

J_ 0 as y -. -oo ; free-shear layer

and

(1.26)

p---+ 0 as y---+ 00,

is analyzed in the following section.

(1.27)

, (1.28)

(1.29)

6
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2. Unsteady flow outslde the critical layer

Outside the critical layer, the shape functions {_,i5} expand like

---- _o(y,z) "_ dr't_l(21, y, Z) JC'" ",

= to(y, z) + _Pl(xl, y, z) +...,

as a _ 0, where the Reynolds number R has been assumed to be large enough so that the

coefficients {Um,Pm} depend only parametrically on the slow streamwise variable x2, i.e. x2

plays the role of a constant. Substituting (2.2), (1.24) and (1.25) into (1.23) and equating

like powers of a leads to

and

v_. L(U_=_o)2j (Uo- co)2 - o, (2.3)

v_. [ v_l 1 <_o_#, _o_o V_Vo.V_o
[(U0 - c0)2J (U0 - c0) 2 - 2°¢1(Uo - c0) 2 + 2cl (Uo - co) 4 ' (2.4)

where co - So/vto, Oq ___-iA'/A, and Cl - ($1 - alco)/Vlo.

Equations (2.3) and (2.4) must, of course, be solved numerically subject to the bound-

ary conditions (1.28) and (1.29). However, for the present analysis, it is only necessary to

know the behavior of the solutions near the critical level. This is most easily determined

by first expressing (2.3) and (2.4) in orthogonal curvilinear coordinates, say (_, _), with one

set of coordinate surfaces corresponding to surfaces of constant base-flow velocity Uo - as

was done, for example, by Goldstein (1976, pp. 6-10). The functions y and ¢ of y and z are

chosen so that

Vo = Uo(_2,_), (2.5)

_=Yo at Y:Y0, _--*co as y-+co, (2.6)



and

where

(=0

v,v0.vT¢ = 0, (2.7)

at z=0, (=2n/fl at z=2n/fl, (2.8)

0 ; boundary layer
y0= , (2.9)

-oo ; free-shear layer

fl is the (non-dimensional) spanwise wavenumber of the base flow and (2.8) requires (without

loss of generality) that z = 0 and z = 2r_/fl be the planes of symmetry of U0. In terms of

_/and (, the gradient operator in the transverse plane is

=llO lO
vT _ + m-_-_C, (2.1o)

where (/,m) - (gVr/, hV() are the unit vectors and (g,h) - (IVz/]-_, ]V(1-1) are the scale

factors corresponding to the coordinates (_/, (), respectively.

It follows from (2.5) that the critical-level position is given by r/= _/c where

U0(x2, 7/)= co at r/= _k. (2.11)

The near-critical-level expansions of/_0 and/_1 can now be found by the method of Frobenius

(Hall & Horseman 1991; Horseman 1991; and Hall & Smith 1991). To the required level of

approximation, these expansions are

_o = a00+ ao2(_- _o)2+ (_0_)lnI__ _ol+ b0%)(n-_)3

+ (6o_)lnI_- nd + _o*+ bo%)(_-_o)*+ O[(n- _o)_lnI_- _ol], (2.12)

and

A = a_0+ d_(_- _) + (d_' l_ In- n_l+ a- + dtJ(n - _o)_

8



+ [(a(l_)+ d(,_))lnI_- _ol+ b,%](_-_c)3+ O[(_- _o)41nI_- _ol], (2.13)

where the 4- superscript denotes differing values for _/<> yc and the fact that the pressure is

continuous across the critical layer to O(oe) (see (3.13), (3.17) and (B 3) below) has been

used. At this point, the coefficients amo and b_m3are arbitrary functions of (. Expressions

for the remaining coefficients in terms of these functions are given in appendix A.

The boundary-vMue problem (1.28), (1.29), and (2.4) only possesses solutions for cer-

tain values of al since/_0 is a homogeneous solution to (2.3). These values can be found

without explicitly solving for lfl by integrating the difference between/30 times (2.4) and

/_l times (2.3) over the transverse domain, applying the divergence theorem to the simply

connected regions and then making use of (1.28), (1.29), the z periodicity ofi6 and the ex-

pansions (2.12) and (2.13) to arrive at a solvability condition. For definiteness, we consider

the simplest case where the critical level forms a single closed or open curve that divides the

transverse domain into two simply connect regions. In this case, the solvability condition

becomes

L2 n//_ _50 [ (2a0o Cl_bl
Uo rl c _O

3ao \ ao co ]
, (2.14)

where the functions _o and 4_ of ( are given by (A26), the c subscript denotes evaluation

at _/= %,

f2 _//_ 7c_ 2 ^2Ie - a°P°
Jo J_o (Uo - co) ighd_d('

- 7°° +

(2.1_)

(2.1_)

and _: denotes the Cauchy principal value.



For purposesof analyzingthe nonlinearflowwithin the critical layer,it is convenient

to expressthe velocityperturbationas

a=,_+t-£+ m--. (2.17)
g

The near-critical-level expansions of the shape functions corresponding to _, _ and _ are

given in appendix A where it is shown that the discontinuities in (2.12) and (2.13) lead to

a jump in the streamwise velocity component

Aa- 3eo_0b0+3_bg3+_(_3_bi_3)_2_kV0_o_0+_ (b_3-bg3) +... (2.18)

across the critical layer. Matching this jump with the one induced by the flow in the critical

4-
layer determines the functions bm3. However, when determining b4- it is more convenient13_

to express the jump condition as

_,, -- _- _(o_>+ 2_ (,7 ,7c)
UO_e tr "Ol / -_Or/c ]

=i3_o (b+o3- bo3) -t- a(b+3 - b_3) + a 2_c

which follows directly from (A 29) and (A 30).

°') ](6+3_bo_) +..., (2.19)

3. Unsteady flow inside the critical layer

As already noted, nonlinear effects first come into play locally within the so-called

critical layer once the deviation of the local Strouhal number from its neutral value becomes

sufficiently small. The thickness of the critical layer, which is determined by the balance of

wave-growth and base-flow-convection effects, turns out to be order a on the r/scale so the

appropriate scaled coordinate for this region is

#- (_- _)/_. (3.1)

10



The nonlineartermsin (1.9)producea critical-layervelocityjump at thesameorderasthe

linear-growtheffectswhenthe scaleof the frequencydeviationa, which was introduced in

(1.18), is chosen to be

(3.2)

(Goldstein _ Choi 1989). Viscous effects will enter into the dominant balance for the critical-

layer while making only insignificant modifications to the outer flow when the Benney-

Bergeron parameter

=- 1/a3R (3.3)

(Benney _: Bergeron 1969) is order one. In the present analysis, A is assumed to be small

enough so that viscous effects, which may arise from the x2 dependence of the base-flow

solution as well as the viscous-diffusions terms in (1.9), are negligible.

Since the flow inside the critical layer depends on x and t only through the variables

(1.21) and (1.22), the appropriate governing equations for this region are obtained by ex-

pressing (1.8) and (1.9) in terms of xl, X, _7and (. Upon introducing (2.17), these equations

become

a2_xl -F aao_x + _ + a_¢ = 0, (3.4)

(°),C_ + ghUon_ + g2h2(a_:, -4-ao_x) = -a3gh.A f _-_ ,

--AT"--E" J'

(3.5)

(3.6)

(3.T)

and

11



where

£ =- aghUo + c_ogh Uo - co - (3.8)
Olo ] -_"Z '

_0 _0 .__0Af = a_ + aoU_-_ + -a0-_ + w_-_. (3.9)

Introducing (3.1) into the expressions for _, _, _ and i5 obtained from (A 18), (A 29)-(A34),

(2.2), (2.12) and (2.13) and re-expanding the result shows that the unsteady flow in the

critical layer should expand like

: 5r-l.t00 Jr-"t01_- (r_ 2 _- ...,

= Po + apl + a2p2 -[- "",

(3.1o)

(3.11)

(3.12)

(3.13)

where, in general, the functions tim, _m, ?-_m and Pm of Xl, X, _] and ¢ have an implicit a

dependence of the form

Um = fi_)ln a + fi_). (3.14)

In this region, the known functions U0_ g and h are given by their Taylor series expansions

about _ = Yc when expressed in terms of _.

Substituting(3.10)-(3.13)into (3.4)-(3.7) and equating like powers of a leads to the

following set of equations at leading order

_ofiox+ _o_ + _ol = O, (3.15)

£0% + U0,c_0 + aogchcPox = O, (3.16)

P0_ = 0, (3.17)

12
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where

gc

£.o_o + ";---Poe = O,
nc

(3.18)

L:o = co_-_-_-xl+ ((x0U0,c£ / - S1) • (3.19)

The solutions to (3.15)-(3.18) must reduce to the appropriate linear solutions as Xl --* -oe,

they must be periodic in X, and they must match with the outer solutions discussed in §2.

It follows from (2.12), (2.13) and (A 29)-(A 34) that the last condition implies that

"[uo, vo, wo,po}---* I_e({ifo-lc/_ofl, eoo, fo-1/_l, aoo}AeiX), (3.20)

as _/---, -Foe, where the functions eo0 and f0-1 of _ are given in terms of aoo by (A 35) and

(A44). It is easy to show that the appropriate solutions to (3.15)-(3.18) are

{uo, vo, wo,po} = Re({-Uo,lcfo_liE, eooAe Ix, io_oUo,Tcfo_lE , aooAeiX}), (3.21)

where the function E(xl, X, £1)is determined by

f-.oE = Ae iX (3.22)

together with the condition that E -+ 0 as xl -+ -oe and that E be periodic in X. Therefore

E = 1/xl A(_)ei[X+9(___:l)]d_ (3.23)
Co J--co

where 1_ _= (a0Uovc_- S1)/co.

The higher-order critical-layer problems are derived in appendix B. There it is shown

that the relevant solutions to the order-a problem can be expressed as

_ ( UoUo_ _ (3.24)

'/Vl----Wl -}-'t01 -{- \gchcU0z/c] , (3.25)

13



where the linear components fi_ and _ are given by (B 18)-(B20) and the nonlinear

components fi_ and _ must be determined from

_oCo_I,=_0v0.c_¢- (,)'3¢- 29'4)Re(iAeiX)Re(iE..). (3.26)

£:oW_ = (9',- 29'2)Re (Ae ix) Re(iE_)-73Re (iAe iX) Re(E_)- 29'2aoUoncRe(E) 2, (3.27)

where the functions 9'n(_') are given as

ge (a2o¢'_ 1 (gca2oo¢_ , (a2oa_o)(, °_oaoo¢{9"..9"_.,),3.9"_}=-2_o_.Uo.o\_/¢ go\ _ ]¢

and it has been assumed (without loss of generality) that aoo is purely real. The solutions

to (3.26) and (3.27) turn out to be

O_0_ 1= -_(9'1 - 9'3)¢Re(F_ - a) - (,)'3¢ - 29'4)Re(iVx + G) - 9'2(Re(V)

+ ½(9'1 + 9'3)eRe(H) + 9'2¢P_e(E)Re(E,_z), (3.29)

_ = 9'IRe(Fx - iF) - 9'3Re(iF) - 29'2Re(E)Re(iS_), (3.30)

where the functions F, G and H of xl, X and _] are determined by

£o{F, G, H} = {AeiXRe(Z_), AeiXRe(E_), o_oUo,7_(Fx - i2F)} (3.31)

together with the condition that {F, G, H} _ 0 as x_ _ -c_ and that {F, G, H} be periodic

in X. Therefore

i aoUon_ _2
F = 2c 3 /;:/;¢ (_2 - _,)A(_2){A*(_l)e 12"('_2-(')

-- A(_1)e i[2x+?(_'+_'-2x')]} d_ld_2, (3.32)

,_u_..
G- 2c4 /;:/_(_2 - _,)2A(_2) {A*(_l)e I'(_'-''}

+ A(_1)ei[2x+_'(_'+_'-2'')]}d_d_2, (3.33)

14
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and

H _ _°_U_'oJ_(x, -c_ /_ - _¢2)(_2 _l)A(_2)A*(_l)ei?ff2-_')d_zd_2, (3.34)

where the asterisk denotes complex conjugation.

In appendix B, it is shown that the relevant solution to the order-a 2 problem can be

expressed as

_2_rT=_t +_t - [. _°_'_ ( _°3 _ ]
2_ 20_ ao [g_h_Uo,7_ + t6.2h2rT 2 / i

\ uc cvo,cl_jx_.oo +..oor .o
- gchcUo,Tc + " _Vi-i-2

_,2gchcU_,7 c,] j__g
(3.35)

where the linear component _ is given by (B 36) and the nonlinear component satisfies

(B 40). For purposes of obtaining the evolution equation for A(xz), it is only necessary to

determine the quantity

v_nn=- -_1Jof2'_ jof2"_l_a°°e-iX_n#d¢dX (3.36)

which, as shown in appendix B, is determined by

L_# = ARe[(2k, + k4 + 3ks)G(_ °)- (k3 + 2k4 + ks)Ho - (k I + k2)(E(1)E(_)*)¢_

-- (k I ..[_ lk3 1 #.. "_/_.(1) _-_(1)*'_-- _,_4)tx:, x:,_ )_Ol 3c iARe[-i(k3 + 2k4 + k5)G(_ °)

+ i(k, + _2)(E(_)E_)*)_.]+ ½A*[(2_,- _ + _ + _k_)a_2)

-- (kl -- k2 )(E(z)E(z)_-.._r_s,_- (k2 + ½k3 + ½k4)(E(1)E(Z))_r_] - L¢_ (3.37)

where

0

L -= Coax z + i(c_oUo.c_ - Sz),

( )(m)= 1 L 2'_. _ -- e-imX
2_r (-)dX,

(3.38)

(3.39)

15



the real constantsk_ are given as

fo 2 _/_ hc -{kl,k2, k3, k4, k_}- _'_{7172, 7273, 712, 7173, %2}d(, (3.40)

the function qb2(xl, fl) is given as

1 fo 2'_$_ ; - ie-_XRe(E)[_3Re(Fx)- (k_+ k_)Re(iF)
7I

+ i(2kl + k3)Re(iE)Re(iEq)]dX, (3.41)

and the fact that F_°) = G (°) has been used in arriving at (3.37). The solution to (3.37)

turns out to be

V2_# = (2kl + k3 + 3k4 -{-4ks)Q1 + (2kl - k3 - k4 + 2k5)Q2

+ (2h - k3+ k4+ 2k_)Q3- (h + 2k4+ ks)Q4- (h + k2)Q5

_ 1- (ki - k2)Q_- (2k,+ k_+ ½h - ½k_)Q_+ (k: ½k_+ _)Q_

- (k_+ ½k_+ -_k4)Q_- A_, (3.42)

where the functions Q_(xl, _) are determined by

L{Q1,Q2,Q3, Q4} : !'fAG[°)2tn , AG(°)*, A'G(2), 2ARe(Ho)}_ (3.43)

1 0) (1)*L{QS,Q,} = _{2ARe(E Eo_ )_, A*(EO)E(_)O} (3.44)

L{QT, Qs, Q9} = __ t_._a(_(1)_(1)*_r_;r_r_, A(EO)*E(1))r_r_, A*(E(i)E(1))r_r_}, (3.45)

together with the condition that the Qn _ 0 as x_--* -c_° Explicit expressions for the Qn

are given in appendix C.
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4. Amplitude evolution equation

The velocity jump induced by the flow in the critical layer will now be computed and

±
combined with (2.18) and (2.19) in order to determine the functions bin3. These results will

then be used in (2.14) to obtain the governing equation for A(xl).

By using the relation

--I- oo o_

/__ e,y(__X)dy/_ 2_Co oU0--- o - x) (4.1)

where _ denotes the Dirac delta function, one can show from (3.10), (3.21), (3.24), (B 18)-

(B20) and (3.29) that

/_t-oo _dO = _ _____Re(e(o_)AeiX) _ ._ Uonc fx,oo 40 zn-_03 72¢ j_ootxl_ - ¢)2lA(_)12d ¢ + O(a), (4.2)

which, when combined with (1.19), (2.18) and (A36), yields

b+3 - bo3 = in-(L)'_03 • (4.3)

In order to match with the X-independent term on the right-hand side of (4.2), a mean-

flow component must be included in the solution for the perturbation {z_,i6}. The 'steady'

Rayleigh problem that governs this component outside the critical layer is given in appendix

D where it is shown that the corresponding streamwise velocity is of the same order of

magnitude as the instability wave that produced it and further that the slowly varying

amplitude of this velocity component is given by

'l
B = (xl - _)21A(_)12d _.

(x)

(4.4)

Again using (4.1), one can show from (B 37) together with the definitions of al and cl

17



that

where

±/::/+:/o7rA JO J--c_
a0oe -iXqdCd_TdX = 2i U°'c (IR al + j cl_

ao \ ao Co/

.-t-3_L2_ril_ao0+o [(_0 -- ClU°iplc._ a(OL3)--aIL3>] d<,vg.= )
(4.5)

rjo2_r/_ . (gn_ _ 2g,l_ a2od¢, (4.6)
s. - -i _ _°2g_

gcU_vc- 2 \ gc + 2-_o_c,] a(oL3)--g-_vCa°2gc+ D2aoo de, (4.7)

=- gUovlh and D2 is defined in appendix A. It now follows from (2.19), (3.11), (3.35),

(3.36) and (4.3) that

2Cl_51 + _
]

bo3) - +o(bl-l-3- b_-3 - i _a(l§))] de
,.I

_ c,,l+ S_+23_o \ ao Col
+_#dF/o (4.8)

Using (3.42) and the results of appendix C, one can show that

where

i _ [z_ A *= /<3=.+1_eoSJ__ _ [,_3,(2) (_3)A(_2)A (_¢3+_¢2-x:t)d_C2d_3, (4.9)

K -- (x 1 - _3)[//l(Xl - _2)(_3 - _2) -/12(Xl - _3) 2 -//3(Xl - _2)21, (4.10)

2 2 L 2 2 d_, (4.11)Ul -- 4aoUOnc(k3 + 2k4 -4-ks)---- 2-/,5' g..=_c{a2o¢
he _,--_-2 + aoaoo _:

h-_ - k o oo/<j de, (4.12)

2 2 L 2_r/D' 2 (gca°2°_:'_ ( a°2°< 2 2) d(:. (4.13)
#23--/]1 _ -8°_°Y°r]c(]gi-l-k2) _- - hZ t h_ /_ tW"i""oao0 ¢

18



Combining(4.8) and(4.9)with thesolvabilitycondition(2.14)andusingthe result

2n/Z4io(aooa(1n3) _ a(o_)alo)d( _- |=----_(a00alo¢ - aoocalo) - 0

k°°_onc <:=o

leads to the following amplitude-evolution equation

(4.14)

flf,A' = nA + i# K(xl [_I,_2)A(_I)A(_2)A*(_I + _2 - xl)d_2d_l (4.1s)

where

iaoJS1

( J - I)So'

n a2o

-- 8c_v0,c(J- x)'

Jo2'_/P _: (Uo :':o)2ghdr]d(,a°P°I--Ip+IR= ----

J-=JP+J_= o (U0- co) 3

(4.16)

(4.17)

(4.18)

(4.19)

and the 7/integration in (4.18) and (4.19) is performed along a contour in the complex-_/

plane that lies below the singularity at _ = 7b.

Appendix A. Near-critical-level expansions

In this appendix, the near-critical-level expansions of {/tm,15m} are determined by first

expressing (2.3) and (2.4) in terms of _ and (. The resulting equations are

//

_o,, - _ _ _opo," + _o = O, (A 1)

and

// /2

i51" v] - _ -151'c+ vi51 -- 2a1AiS° + 2Cl (r] - vk,2iSo.,) (A 2)

where

[ ]R_(,_,_)_(Vo_ - g(vo c0): =_n_(,_,o). (A3)
C0)2

n=0
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7:)(" )=--hoe h0-((" ) -a°2g2(" )= _On(" )(_/-_/c)", (A4)
n=0

co

A =_ aog 2 = ][7_,An(_- _1'_, (A 5 /
n=0

and

U0_/ oo

= (_l- rI_)2(U ° _ Co)2 - _ _,_(_l- _k) n. (A 6)
n=0

Expressions for :Pn and An are easily obtained from the Taylor series expansions of :P and

A about _/= _]c. The first few coefficients in the near-critical-level expansions of//and/2

are

and

//0=2, /&= _--:-, //2= o,_,_ (A 7)

Vo_l_ C 2
U_.._ (A8)

_2o = Uo----7,1 _l = O, 1"22= 6U(_,_c 4U3n c

where _ _= gUon/h and the c subscript denotes evaluation at _/= _k.

Substituting (2.12) and (2.13)into (A 1) and (A2) and equating like powers of _/- _/c

leads to

1
am2 = _0am0,

a_)3 = --l (_lamo -- 2I-llam2)_

=

am4= -_[_2_0 + (Do- 2m)a,,,2 - IIla_)3+ 5a_4)],

b_m4 3 4-= _//_ bin3 ,

(A9)

(A10)

(All)

(A12)

(Ala)

and

dll = -2clQoao2, (A14)

2O



d(L) _3cl _oa(o_),12 =

d 5 = -vqAoaoo - Clf20(a(0_) + 3b_3 ) - l(/-/ldl, -- di_)),

d(l_) -- 2alAlaoo -{-_c112_2a02 H- _o(a(o_ ) -{-4a04 H-4bo:t:4)]

--_[(Vo_- rr_)_l,- R,(4_)+ 2_5)],

(A15)

(A16)

(A17)

where m = 0, 1.

In view of (2.1), the shape functions corresponding to the normalized velocity compo-

nents introduced in (2.17) should expand like

{?_, _, W} = {?_0, _0, WO} + O'{Ul, Vl,'Wl} "_''', (AI8)

as a --+ 0. Substituting (A 18) into (2.17) and the result together with (1.24), (1.25), (2.2)

and (2.10) into (1.26) and (1.27) and equating like powers of a leads to

ic_o'_o + '_o,7+ Woe = O, (AI9)

(A20)

and

where

and

{_1,_1} -

!

i
{_o, _o} - { _15o,, (915oi}, (A 21)

_/- 7/c

Y -- Yc _00 Cl {V0, _0}, (A 22)

h OO

-- O1- _l_)c_og(Uo-co) = _ @n(_l- _l_)'_, (A23)
n----0

oo

g
(9 =_-O1- _l_)o_oh(Uo -co) = _ O"O1- _l=)n' (A24)

n----0

OO

1 - _ _n0l- 7/c)n" (A25)
- (7- _)Uo - co .=o
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Thefirst fewcoefficientsin the near-critical-levelexpansionsof _, O and _ are

and

_o = ---:-_ _ -
_oge' _o_c\_-g0_o,_ _c/'

(A26)

1 1 ( Uo,m_ /z,_c'_
eo- o_o_c' e_= ,_ohc\_ < )'

=--= ( u_,,c _,,o _,eUo_,o _)
02 1 Uo,,._ 2

c_ohc 3Uo._ 4U_. c 2he 2hcUonc + '_ ' (A27)

i Uonn_ Uonn% U_2

_o-Uo,_ c, _--2Uo2 c, _2-6U[_,_c +4ua: _, (A28)

where h _= hUo,_/g. It turns out that _m and Wm expand like

_0= _00+ (_(0_)InI,_- ,7cI+ %a=l)(n- no)+ (_(0_)inIn- ncl+ %a=2)(n-he)2

+ o[(n- ne)ainIn- '_el], (A29)

'b, = e(a_)In It/- '_cl + e_o+ (e(1])In It/- r/el + efi)(r/- rk) + O[(r/- rk)2 In 1,7- ,_cl], (A 30)

and

_o = fo-_(r/- r/c)-_ + foo + fol(r/- r/_) + O[(r/- r/_)=In It/- nd], (A31)

Wl = fl-2(T/ -- /'/c) -2 "4- fl-l(g/-- Tic) -1 q-" f10 "l- O[(T] -- no)InI,_- rid], (A32)

as r/+ _?c, where the coefficients em,_ and finn are at most functions of zl and (. It therefore

follows from (A19) and (A20) that

Uo= iao_[fo-l((_ - _/c) -_ + e(o_)In lu- ncl+ e(o_) + e@_+ foo¢

+ (2%_)1nI_- ncl+ e(o_) + 2eo%+ foa¢)(n- nc)]+ O[(_- no)_InI_- nell, (A33)
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(ilL)
_1 = iceol[fl-2(( r] -- r/c) -2 -[- _,L-IO"[- 11-1( -- OQO'olf0-1()( T] -- _c) -1

ro( ) -  o1+4 + fxo< + Yooc)l+ _:1 -

+ O[(r/- r_) In It/- rM] , (A34)

as r/_r k.

Substituting (2.12), (2.13) and (A 29)-(A 32) into (A 21) and (A 22) and equating like

powers of r/- rk leads to

eoo= i2 _oao2, (A 35)

e(o_) i3 "_ -(L) (A36)---- w-0¢_03

= _ ,_(L) 3bo:k3)], (A37)eo_l i[2_:ao2 q- _o_"o3 +

e(o_) = i(3 '_-(L)u_:,,03+ 4 ¢oa(o_)), (A38)

eo=k2= i[2_52ao2 q- _51(a(o_) q- 3bo:1:3)-t- _5o(a(o_) q- 4ao4 q- 4bo:k4)], (AZO)

e(_ ) = i2_o41 ) + c: _oe(o_), (A 40)

el_O ---- i[_51d11 + _5o(4 _) + 2a12 + 2d_2)] - alaoleoo + Ca( _leoo + _oeo:l:l), (i 41)

e(_) = i[2._.: ":'_(L)2+ 30o(ai_ ) + 4_))] - .x .o' e(o_) + e:( @,e(o_) + _oeo2(Z)), (A 42)

e_ ---- i[_2dl1 + _51(di_ ) -{- 2a12 + 2d_2 ) + _o(a(l_ ) + d(l_ ) + +3b_3)1

- oQo_o I _o_1 + Cl( _2eoo + _leo:t:l + _o_o:t:2),

fo-1 = iOoaoo(,

foo = iO_aoo(,

f01 = i(02aoo( + Ooao2(),

(A43)

(A44)

(A45)

(A46)
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and

fl-2 = cl _Pofo-1, (A47)

fl-1 ---- iOoalo¢ - alaolfo-1 + c1( _lf0-1 -[- _0f00), (A48)

flo = i(6)iaio¢+Qod11()-o_1c_olfoo+cl(_P2fo_l+ _Plfoo + _Pofol). (A49)

Appendix B. Higher-order critical-layer problems

In this appendix, the higher-order critical-layer problems obtained by substituting

(3.10)-(3.13) into (3.4)-(3.7) and equating like powers of a are given. The order-a problem

reads

+

ao_Zlx + fio_ + _1,_ + _1C = 0, (B 1)

Jc ]

Pl_ = O_

£o_1 + £1_o + _PlC + 2 glPo¢ = -01,
C

(B3)

(B4)

(gh),_£ ° _ 1 _ 2 0£1
+ Uo,TcflCgXl + _aoUo,7,_c_l --_-_, (B 5)

\ gchc ] x k g_hc ] rj

_1 = O_0 -[- -{- (n 7)

It follows directly from (B 3) and matching with the outer linear solution that

pl = Re (aloAeiX) . (B8)
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It turns out that, for purposes of computing the velocity jump Aft across the critical layer,

it is only necessary to know fi'o, _'00 and _,. Therefore (B 1), (B 2) and (B 4) are rewritten

as

ao(fi,0 - u_)x + v'00 - v_oo + (z_, - z_)_¢ = 0, (B9)

£o(filo - ill0) = Uooc(zv, - zvl)¢ - ¢10, (B 10)

£:o(Z_, - _) = -e,, (B 11)

where_I_,,_I,_,_and_I satisfythennearequations

aofZlnx + fio*,o + _t,oo + wI_¢ = 0, (B 12)

Co_}+ C,_o+ _p,_ + 2 f/poe= 0, (B14)

and have the following large-f/behavior

,_(L)/,_ foo}AeiX) (B 15)

which ensures that the solutions to (B 9)-(B 11) match with the outer linear solution as

f/--* 5:oo. By using (3.21) and (3.22) together with the relation

l:1(-)= Z:o[MI(-)]-[(Uo,_c Uo,_,_c_ $1] Of "I.k c---_ _]F/-_o ° F/_--_o(" ), (B16)

where

Co 2Uooc] FI- "_o fiN(" ) + gcheco F?( . ), (B 17)

it can be shown that

- -t (B18)_o_I, = (%.,o+ vlo, + _,¢)x'
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_ = Re(iaoUo,lce(o_)E), (B 19)

[0oo o jo, l+  ooo,o+
It follows from (B 6), (B 7) and (3.15)-(3.18) that

oo ( ooo [(ooooo ]_'1_ - U--_ncp°xu°o_ + \gchc ]_¢ - £o fc ]4 '
(821)

, _o ' (_°_/-_o
81 h2Uo,T Po¢fioz Uo, POx@o_ + _ \ g_ ] ¢

Combining these expressions with (B 10), (B 11), (3.21), (A35) and (A44) then leads to

(3.26)a.d (3.2_).

The order-a 2 critical-layer problem reads

ao'_2x + _1=_ + _2r_ + _2C = O, (B23)

where

_ i..o_2_£0_2 + _lUl + £2U0 -{- Uo,c v2 + _Vl '{- _c _ Vo)

(g2h2)nn,
+ 2(gh),Tcfl(aoPlx +Pox_) + 2gch_ £12a°P°x = -¢2,

gc - h_c -2
_c£OVo + P2_ = g2-_Wo,

_0"t_2 + _lWl "{- _2W0 -{- _cP2i + 2 £]P1( + (g2)v"c2g_h_ £/2p°c = -82,

+ g_hc(aop2x + Plx_ )

(B24)

(B25)

(B26)

(gh).,c (g_)_,_]
2g_hc _ "gche J

(gh), c _., 1U, 2 0 1 3 0
_2Zo+ g--_-_-_ + -_ o,,_ _ + -_.oUo,,,o# -5-2' (B27)

( _0_,1 '_
¢2 ----2ao \ g_h_ ] X + \ gchc + (_l"mO "_ __O'tO1 '_

(_),o i [(_),,o]
2 2 UoVo _?ZoWo_

g_hc g_c L g_hc J¢
(B28)
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(B29)

Fortunately, only the solution for v2_ is needed in determining the governing equation for

A(xl). Therefore the above equations are combined to give

where

\ hc a¢ ,I

is determined by the linear equation

+7) _ (B30)

2 02
+ aoy_hc_-_2, (B31)

[(_2),,_ 1+_Q_o_o)0oo_o_oo_+t-_:,o<_

together with the boundary condition

a2 (g2h2)nn_po ]

+ o _xxf

-t- ag(gh ),l_Pl xx ] = O, (B32)

o t _l:te[(2e(o_)lnla_71 ±'_'>(') 2eo:1:2 e_)/_)Ae ix] as" "_o2 + + --+ 4-oo (B 33)

which ensures that the solution to (B 30) matches with the outer linear solution. By ma-

nipulating (3.15)-(3.18) and (B 1)-(B4), one can show that

0(oo  o  oo +
- 2aog_h_po::_x - h_I)op, (B 34)

g_
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and

I. gchc J( 'c _cPl( -- _ [_] ( _cP0(
(B35)

where the :Dn are defined in appendix A. Combining these results with (3.21), (B 8), (B 16)

and (B 19) then leads to

- 2hne_ - Uonnc -t _Re(i2_oOoao2AeiX)
V2_O@ "-" -- IdOl J- (_-_cc -- hc,] _] v_@@-t - Uoil-_i-cVlO

_Re{2_[iaor[Tn_ 2,nc_ 2 O - 3 (L)]E}- -- goaoo_-;7_,+ g_""_ao2_-_aoo_ + 5°,3j (B36)

For purposes of computing the induced velocity jump, it is convenient to express (B 36) as

Uorl_ c e:t:

_Re{3g_[a(13 >_'l,(L) .2 (goc-2gvc_ _O--O-]E}So_o3 + t Pc -_-_/-- l_OL 0 g2aoOoxlj

gc

+Re[ g_ 03 co 2UoncjL-_oo LEo
(B37)

where

iaoUo, c
(B38)

and (3.22) and (B 19) were used in arriving at (B37).

It follows from (B 28), (B 29), (3.15)-(3.18)and (B 9)-(B 11)that

(ao¢2x + 62¢)n- _o ,_ _,__ 1 ___
Vo..o'"°'<".'.',<Vo..ot_ 7<

[ ,2oo ,ooooo )] + (_o¢_x+ o_)o

i _ O

X

o_ o

_o..o(,o,<qo°)<

( ooo 1} (B39)
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where¢t and 82t aregivenby the right-handsidesof (B 28)and (B 29), respectively,but

with {ul, Vl, Wl} replaced by {ill,-t -tvz, w 1}. Introducing the above relation into (B 30) leads

to

fit _ 1 |Poc._ln#] ao _

°no k _ / ¢

°2 ],o- o I

where 0_ is given by (3.35). Substituting (3.21), (3.29) and (3.30) into (B 40), multiplying

the result by aooe-lX/w, and integrating from _ = 0 to 2 w/fl then using the relations

[2aoU0ncl_e(E)l_e(Fx )]x_ = Re (Ae IX) [l%e(Fx) + Re(E)Re(iEq)]_q

+ Re (iAe ix) [Re(Z)Re(Ea)]_q - £.o[Re(E)Re(Fx)]_q, (B41)

[2aoUo,7_Re(E)Re(iF)]x_ = Re (Ae ix) [Re(iF)]_

+ Re (iAe iX) [Re(Z)l_e(Z_)]_ - L:0[l_e(Z)l_e(iF)]fi_, (B42)

[aoUo,_cRe(E)_P_e(iE_)]x x_ = Re (Ae ix) [Re(iE)Re(iE_)]_

+ Re (iAe ix) [Re(E)Re(iE_)]_ -/:o[Re(E)Re(iE)Re(iE_)]o_,

and integrating from X = 0 to 2 n leads to (3.37).

(B43)

Appendix C. Expressions for the Q,_

The solutions to (3.43)-(3.45) are

(c ])
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•M fxlf f_2_a

Q2:1--_ ]_oo ]_oo ]__oo(_2 -- _1)3C2(Xl, _1[_3, _2,_l)d_ld_2d_3_ (C2)

= oo - (_2 -- _1)2(2_3 -- _1 -- _2)C3(xl, f/[ _3, _2, _l)d_ld_2d_3, (C 3)

;,/?/_,"Q4 = iM (_3 - _)(_2 - _1)2[C1(xl, f/[_3, _2, _1)
J--OO OO CO

- C2(xl, _/[ _3, _2, _l)]d_ld_2d_3, (C4)

and

Qs = -iM /;_ /__ //: (_2 - _l )[(_3 - _2) 2

+ (_3- _)2]C_(_l,rTl¢3,_2,_)d_id_2d_3, (C5)

06 = iM /;_ /__ //_ (_a- _1)2(2_3- _2- _1)C3(z1,rll_3,_2,_l)d_ld_2d_3, (C6)

Qz=-iM_/__/_(_3-_l)(_2-_1)2Cl(xl,_]l_3,_2,_1)d_1d(2d_3, (C7)

j'_;j'_,'j;;'Q8 = iM (_3 -- _2)(_2 -- _1)2C1('1, #1 _3, _2, _l)d_,d(2d_3, (C 8)
oO oo

where

C_ = A(_3)A(_2)A*(_I)e iF(_3+_-_-:_),

C2 =- A(_3)A*(_2)A(_I)e IF(_a-_+_-x_),

C3 _ A*(_3)A(_2)A(_l)eiF(-_a+_+_-x_),

3 3 6
and M -- aoU_)nc/2c o.

By using (4.1), one can show that

Q_d_ = -iN ½(x_- _3)3D(x_ I_3,_2)d_2d_3,
OO J--OO .]--CO
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_ txl t_.3Q4d_] = Qsd_l=iNT_c_J_c(Xl-_3)_(_3-_2)D(Xli_3,_2)d_2d_3, (C14)

i_ i_ 2i?Qbd0 = -iN (xl - f3)[(Xl - _2) 2 -_- (_3 - f2)2lD(xl I _a,f_)df:d_3, (C 15)
OO oo

= -- _3)2(Xl -- f:)D(xll f3, f:)df2d(3, (C 16)

and

f f_S I_U /_SQ2dO = QadO = Q6d_l = Qod O = O,
O0

where

D =_A(,_3)A(,_2)A*(,_3 + ,_ - _1),

7_ '2 TT2 ! 5and N = aou6,_jc o.

(C17)

(c18)

Appendix D. Mean-flow distortion

In this appendix, the solution for the mean-flow distortion generated by the critical-

layer nonlinearity is analyzed. When the mean-flow distortion terms are made explicit in

(1.19) and (1.20), these equations become

( ')xAizeiX,-I- Re -t- + +..., (D 1)Re
\ g

(Aloe ix) + P_e(a2B"[_)T..., (D2)R.e

where B(xi) is a slowly varying amplitude function and the functions _, _, _ and _ of zl,

y and z expand like

{_, _, _, i5} = {u0, v0, w0,/)0}(Y, z) T'" ", (D 3)

Substituting (D 1)-(D3) into (1.15)-(1.17) shows that i5o satisfies the 'steady'

(V._o_
v.. _--y2-_) =0, (D 4)
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while the velocityfluctuationsaredeterminedin termsof 150by

1 ¢ hUo, _ h g.
--  00,

Near the critical level, i50 expands like

(D5)

_o = r00+ r_(_- 7°) + "- (D 6)

where (3.21), (B 8) and (B 25) have been used to conclude that the mean pressure fluctuation

is continuous across the critical layer to O(a2e). It follows from (D 5) that the discontinuity

in (D 6) leads to a jump in the streamwise velocity component

hcV°_c -I-

nto - _ ("o_- %,)

across the critical layer. Matching this jump with (4.2) yields

(D 7)

-2 _ go'Y2(, (D 8)r+l - %1 = hceo

and the amplitude equation (4.4).
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