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ABSTRACT

This paper presents an application of a fault detection and diagnosis scheme for the sensor faults

of a helicopter engine. The scheme utilizes a model-based approach with real time identification and

hypothesis testing which can provide early detection, isolation, and diagnosis of failures. It is an

integral part of a proposed intelligent control system with health monitoring capabilities. The intelligent

control system will allow for accommodation of faults, reduce maintenance cost, and increase system
availability.

The scheme compares the measured outputs of the engine with the expected outputs of an engine

whose sensor suite is functioning normally. If the differences between the real and expected outputs

exceed threshold values, a fault is detected. The isolation of sensor failures is accomplished through

a fault parameter isolation technique where parameters which model the faulty process are calculated

on-line with a real-time multivariable parameter estimation algorithm. The fault parameters and their

patterns can then be analyzed for diagnostic and accommodation purposes.

The scheme is applied to the detection and diagnosis of sensor faults of a T700 turboshaft

engine. Sensor failures are induced in a T700 nonlinear performance simulation and data obtained are

used with the scheme to detect, isolate, and estimate the magnitude of the faults.

INTRODUCTION

On-line fault detection and diagnosis is an area with great potential for high payoff, especially

in the battlefield environment. The ability to detect and isolate a fault as it happens a!lows a decision

to be made immediately about the viability of the system and the likelihood of completing the mission.

In a situation where the unavailability of a system may have much direr consequences than merely the

loss of some information or capability, every possible piece of data helps in gaining the advantage.

Sensor malfunctions are particularly pernicious because they might cause a mission to be

terminated when all systems are actually functioning properly. Prime examples of this come from the

Space Shuttle where numerous sensor failures over the years have caused subsystem shutdowns and

aborted launches at great expense as well as posing potential danger to the astronauts.



It is well known that the variables in complex systemsare often correlated and that this

information can be used to detect and isolate incorrect sensor readings. This technique allows sensor

failures to be isolated, and it allows lost or incorrect values to be recovered using the remaining valid
measurements (DeLaat and Merrill 1984, Guo and Nurre 1991).

A proposed intelligent control system contains the sensor fault detection, isolation, and

accommodation scheme coordinated with complementary schemes for the actuators and components

(Figure 1). If the differences between the estimated and sensed system outputs exceed some threshold

values, the fault detection logic will initiate a parameter estimation algorithm which determines the type

and magnitude of the failure. This is achieved through the use of fault parameters, variables defined

to convert the model from that of the fully functioning system to that of an impaired one as their values

move off nominal. Once the fault is isolated, the control system will accommodate it if possible (Litt
1990).

The test bed for this research is the T700 turboshaft engine, which is used in pairs in the army's

Blackhawk and Apache helicopters. It is a 1600 horsepower-class modular two-spool engine consisting

of a gas generator and a free power turbine (Figure 2). In the simplified model used here there is one

input: fuel flow, Wf. There are four measured output variables: gas generator speed, Ng, interturbine
gas temperature, T45 , interturbine gas pressure, P45, and power turbine torque output, QPT- Should

any of the sensors fail, the engine would appear to be malfunctioning and, if the faulty measurement

were fed back through the control system, the engine would operate off the design point.

SENSOR FAULT DETECTION AND ISOLATION

The Sensor Fault Detection and Isolation scheme is developed using a fault model. A simplified

linear perturbation model has been developed which switches between several point models for full

envelope coverage (Duyar, Gu, and Litt 1992)o The simplified model at an operating point is of the
standard form

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) (1)

The variables in these point models are all normalized with their zero values corresponding to the

operating point. We assume that the (A, B, C) realization of the system is in or-canonical form (Eldem

and Duyar 1993). Lack of space precludes a thorough presentation here, but, very briefly,

C = [0 _H -1]

A = A 0 + KHC (2)

where Kis a deadbeat observer gain (Kwakernaak and Sivan 1972), and A o is nilpotent, i.e. Ao_=O for
some # > 0. There are several other requirements which are listed in the references°
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The modelis createdby substitutingtheequationfor A from (2) into (1), evolving (1) through
time from 0 to k, and rearranging, thus

' 1y(k)=Cao_X(O)÷E ca_-'trn BI[Xk-0 (3)
i.1 J[u(k- 0

The fact that A o is nilpotent is important because it allows (3) to be simplified to

y(k) = _E]CA_-I[ KtI _ (4)
_=, Jtu(k-OJ

when k_>#. Once in this form, the unknown parameters can be identified using a least squares

technique. This way the initial model is developed.

The sensor fault model is built on top of (1) in the form

x(_+_)=ax(k)+Bu(_)
y,(z,)_,Cx(_)+f,o (5)

where ys(k) is the set of normalized sensor readings at time k. In the case where all sensors are fully

functional, Fs is the identity matrix andfs o is the zero vector, thus reducing (5) to (1). The diagonal

matrix F s accounts for changes in sensor gain while a non-zerofs o represents bias errors. Substituting
and rearranging as before

k k

Ys(k) = FsCAokx(O) _ _ t-1 -1 FsCA 0 [KHF sF$CAo KnFs fso + _._ i-1 -1

i=1 i=1 ][u(k-i)J + f_ (6)

Using the nilpotency of A o to simplify (6) we get

i-1 -1y,(_)=/,o - E e,c,4_-'Kxe;l:,o÷E F,CAo[KnF,
i=l i=1

_]I_(_-o1

when k_#. Once a failure is detected, an on-line estimation technique calculates values for the fault

parameters, fso and F s. As long as Fs is nonsingular, the value of the parameters along with some

simple logic provides an assessment of the type and magnitude of the error. In the case where Fs
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becomes singular, implying that the gain of a sensor became zero, a logical check can be used to
determine which sensor has failed.

SIMULATION SETUP

A full nonlinear simulation of the T700 turboshaft engine subjected to a load (Ballin 1988) is used in

the simulation test bed to represent the engine in question (Kurtkaya 1992). The fault detection and

hypothesis testing modules run in parallel with the nonlinear simulation as shown in Figure 1. The time

step used is 60 ms. All programs are written in FORTRAN and are embedded in Model-C, a control
analysis and simulation package.

Past controller outputs together with the sensor readings are fed through the fault detection model

described by (7) and the resulting estimate of the set of sensed variables is compared to those received

from the simulation at the current time step. The differences, or residuals, are checked against
threshold values which, when exceeded, activate the fault detection scheme.

Initially, the system is assumed to be functioning normally, thus the value for F s is identity andfs o is

the zero vector implying no multiplicative sensor gain error and no sensor bias, respectively. The fault

detection scheme contains models appropriate for each type of failure, i.e. actuator, component, and

sensor. Just as the sensor fault parameters are associated with the C matrix as shown in (5), the

actuator fault parameters are associated with the B matrix of (1) and the component fault parameters

are associated with the A matrix (Duyar et al. 1991). Fault models similar to (7) are derived for the

actuator and component failures. When the residual exceeds the activation threshold, an on-line

parameter estimation scheme is initiated which calculates the fault parameters, e.g. F s and fso in the
sensor case.

It is important to run the parameter estimation scheme using data from the impaired system so that the

results are not skewed by pre-failure information. Therefore, the parameter estimation module begins

collecting data only after the activation threshold is exceeded. A recursive least squares technique with

a forgetting factor of 0.98 is used to compute the value of the fault parameters. The models of the

actuator, component, and sensor failures are developed in parallel and the three sets of fault parameters
are computed simultaneously.

At each time step the resulting fault parameters are passed to the hypothesis testing module, actually

a battery of simple logical checks, which determines what fault occurred using the identified parameters.

The logic assumes that only one failure occurs at a time. The result is checked by confirming that the

selected model using the identified fault parameters produces a smaller sum of the squared errors

(residuals) over a fixed time than do the other estimated models using their fault parameters. In this

case a moving window of five data points was used for summing the squares of the residuals before

comparing the models, resulting in a delay of at least 0.3 seconds (5 samples x 0.060 seconds/sample)

before the error is isolated and its magnitude estimated. This data length is selected to produce reliable

results in relatively few samples.
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RESULTS

Testing was performed at the 96% power level. Results for two types of faults are presented: gas

generator speed sensor bias, and multiplicative gain error of the gas generator speed sensor.

For the first case, a sensor bias of 1.8% of nominal was introduced to the nonlinear simulation's gas

generator speed sensor's output at the start of the run. As soon as the bias was added, the

misinformation, which was fed back for control purposes, disrupted all of the other output variables and

caused the engine to operate off of the design point. The fault parameters were first computed after the

impaired system was sampled twice, i.e. 0.12 seconds after the threshold was exceeded. Figure 3

shows how the fault parameters corresponding to the multiplicative sensor gain converged immediately

to their correct values of 1.0 as determined through recursive least squares, indicating no sensor gain

failure. Figure 4, on the other hand, shows that the bias on the Ng sensor converged to approximately
0.018 while the other bias values stayed within the normal expect_ variation around zero. F_gure 5

shows the results of the hypothesis testing using the fault parameters determined for each type of failure.

The sums of the squared errors over a five sample moving window for each type of failure were

computed beginning with the sample after the fault parameters had been first estimated, i.e. 0.18

seconds after the threshold was exceeded. It can be seen that the sensor fault parameters provided a

much better match to the simulated failure than either the actuator or component faults parameters did.

For the second case, the original unity gain of the Ng sensor was scaled by a multiplicative gain of 0.1
at the start of the run. Figure 6 shows the multiplicative gain fault parameters as determined by the

recursive least squares technique from past data. It took significantly longer to converge than the

previous example did but eventually the parameter corresponding to the Ng sensor's gain converged to
about 0.1 while the other three hovered near 1.0. Figure 7 displays the estimated values of the bias

parameters, which, after some initial hunting, converged to approximately 0.0o

The maximum time it takes to achieve a good identification depends upon how quickly the fault

parameters converge, which can vary from almost instantaneously to several seconds as demonstrated

by the examples. In general, however, with the combination of logic used to examine the fault

parameters and the windowed residual information, it is usually possible to identify a failure and

estimate its magnitude in a short period of time.

CONCLUSIONS

A scheme to detect, isolate, identify and estimate the type and magnitude of sensor faults in a T700

turboshaft engine has been developed and demonstrated. It is an integral part of a proposed Intelligent

Control System.

The injection of a fault caused the residual to exceed the threshold value and trigger the identification

scheme. Once running, the scheme produced accurate results, usually in under a second. The identified

fault parameters can be used in the state equation to cancel the bias or eliminate the incorrect gain,

thereby accommodating the sensor faults and allowing the closed loop system to run as if unimpaired.
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