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ABSTRACT

Virtual reality can enable a robot user to off line generate and test in a virtual environment a sequence of
operations to be executed by the robot in an assembly cell. Virtual models of objects are to be correlated
to the real entities they represent by means of a suitable transformation. A solution to the correlation

problem, which is basically a problem of 3-dimensional adjusting, has been found exploiting the surface
matching theory. An iterative algorithm has been developed, which matches the geometric surface
representing the shape of the virtual model of an object, with a set of points measured on the surface in
the real world. A peculiar feature of the algorithm is to work also if there is no one-to-one
correspondence between the measured points and those representing the surface model. Furthermore, the
problem of avoiding convergence to local minima is solved, by defining a starting set of states ensuring
convergence to the global minimum. The developed algorithm has been tested by simulation. Finally,
this paper proposes a specific application, i.e. correlating a robotized cell, equipped for biomedical use,
with its virtual representation.

1. INTRODUCTION

The most recent developments of computer graphics
allow to create high quality virtual representations of
real entities.

Such virtual images provide a useful representation of
the real world only if a transformation is defined,
correlating the virtual models to the real world.

This paper investigates the problem of finding a
correlation between a real entity and its virtual model.
Such a problem is often encountered in many
specialistic fields (i.e. in biomedical applications).
Virtual reality, intended as the capability to represent a
3-dimensional environment by means of virtual models
of the objects constituting it, is used in robotics as a
powerful support to off line programming.
As a matter of fact, the off line progrananing technique
increases the productivity of a robotized cell, by
avoiding that the robot be stopped for a long time, in
order to be reprogrammed by means of teach-in
operations.

Recent developments of CAD systems allow to build
robotic simulators that can associate the typical CAD
data structures with high quality images. These
features enable the user of the simulator to off line

generate operating sequences representing the
movements of the robot and to test its interactions with

the parts inside the cell.
These sequences, easily generated in the virtual
environment, can be applied to the real cell only ff the
correlation between the virtual and the real cell is
known. A recent paper [1] describes a procedure of 2-
dimensional adjusting, that finds this correlation in the
case of an object lying on a working table. This
procedure has been tested and applied to the field of
automatic assembling. An infrared sensor is used to
detect the position of the object.
This paper proposes a more general solution of the
adjusting problem, i.e. a solution in the 3-dimensional
case. The approach to the problem is rather different: a
laser sensor has been used instead of the infi'ared
sensor, so that analog distance measurement in a
longer range are now possible, and the developed
algorithm is based on the surface matching theory
instead of simpler 2-dimensional geometric
considerations.

The paper is organized in three main sections: the first

section contains an overview of the surface matching
theory, the second one proposes an ad hoc algorithm to
solve the surface matching problem in the 3-
dimensional case and some tests to validate it; finally,
a combined robotic and biomedical application is
discussed.
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2. THEORY

The surface matching theory is aimed at finding a
correlation between two different representations of the
same surface.

In most applications one of these representations is
obtained scanning the surface of a real object by a
sensor, so that all the data are referred to the sensor's
reference frame, whereas the other representation is a
virtual model of the same surface, stored in the

memory of a computer.
A two-level definition of the matching problem can be

given, depending on how the surfaces are represented:
1) given two sets of points, representing the same
surface in two different reference frames, find the rigid

transformation (expressed by a rototranslation matrix)

mapping one set of points into the other. Such a
transformation has the following characteristics:

a) must be optimal with respect to some criterion
(e.g. minimize the maximum or the mean squared
difference of the distances between corresponding

points);

b) must work for sets of points with different
dimensions;

c) must work also if points in one set do not
correspond exactly to points in the other;

d) must work also ff the points of the data set are
corrupted by noise.

2) given a real surface and its virtual model, a set of

points is obtained by sampling the real surface. Find
the rigid transformation rototrauslating the modeled
surface in order to minimize its "distance" from the set

of points. This case may be seen as a generalization of
the previous one: therefore, the transformation must
have the same characteristics a) thru d).

2.1 State of the art

The following are some more formal remarks on the

matching problem.

Be X a set of points and (R,/") a rototranslation

defined by a rotation matrix R and a translation vector

/', let us call P the set of points obtained applying the

rototranslation (R,/" ) to the set X. It is simple to obtain

the rototranslation matrix (R,/") starting from the
knowledge of X and P, if the one-to-one

correspondence of the points of the two sets is known.

The problem of determining the transformation (R,?)

becomes more difficult if the points of one set are

affected by noise, in the sense that the relationship

ii = R./3i +? (1)

does not hold for all pairs of points of X and P. In the
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above equation _ and ,3_ are the coordinates of the i-th

point (i = 1...N) of the sets X and P respectively.
In this case the problem becomes a minimization

problem: it is required to found the matrix R and the
vector/" that minimize the sum of the errors

_i = ii - R-i3, -/" (2)

The general matching problem does not require any

one-to-one correspondence between the points of X and

the points of P. This implies that no rototranslation
exists, which maps exactly every point of X into a point
of P even in the case of zero noise.

Some authors have investigated the matching problem,

applying their algorithms to specific cases.
If the one-to-one correspondence is known the

matching problem can be solved using the methods
proposed by Horn and Haralick.

Horn [2] proposes a very simple method to determine
the rototrauslation matrix in the 2-dimensional case

(i.e. when all points of each set lie in the same plane).

A 3x4 rototranslation matrix is obtained finding the
3x3 rotation matrix first and then the 3xl translation

vector.

The algorithm proceeds as follows: given two sets of
points X and P, with the same dimension N,

considering three not aligned points of the P set, and
the corresponding ones of the X set, build an adequate

reference frame for each set of points, according to the
following rules:

a) the origin be the first point;
b) the X axis be the line connecting the first and the
second point;

c) the Y axis be the line, eoplanar with the three
points, and normal to the X axis;

(t) the Z axis be chosen following the fight hand rule.
Once these frames have been built, it is straightforward
to find the 3x3 rotation matrix R between them. The

translation vector is then found recalling that
corresponding points in the two sets are linked by the

following relationship:

ii = R "/_i +/" (3)

The algorithm yields an exact result only ff the points
are not affected by noise; otherwise, it is not possible to

find the translation satisfying the above equation

exactly, but the transformation correlating each pair of
corresponding points is affected by an error:

ei = £i - R./3i - t" (4)

Thus, the problem becomes: find the rigid
transformation that minimizes the sum of the squared

errors, due to the transformation of all the points of the
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N

Zlle,ll= (5)
i=l

Another approach to solve the problem in the 2-
dimensional case has been developed by Haralick [3].
His method finds the 3x3 rotation matrix considering

all the points in the set simultaneously (whereas the

Horn's technique considered only three points at a

time). If N = N x = Np is the number of points in each

of the two sets, the mean squared error e2 to be
minimized is now:

N

i=1

(6)

where the weights w; should meet the conditions:
N

wi>O,_w i=l (7)
I

i=1

By choosing the weights in a convenient way, the
method is made robust and stable. A good nile to

choose the weights is to associate a greater weight to
those points with lower squared error. The steps to

build the Haralick estimator are the followings:
a) starting from an initial value for the rotation matrix

R and the translation vector }", determine the errors

ei 2 for each pair of corresponding points;

b) the weights can now be chosen, using the Tukey

function, applied to the errors ei 2 :

-- (g)
otherwise

where c and S are parameters of the Tukey function;

namely, c is chosen between 6 and 12, and S is the

median of the absolute deviation of the errors ei 2;

c) solve the minimization problem using the weights

that have been computed in the previous step; in this

way new values for R and }" are obtained;

d) iterate the steps b) and c) until the global error _2
decreases below a fixed threshold.

The Haralick technique can be extended to the 3-
dimensional case (see [3]).

Another solution to the surface matching problem in

the 3-dimensional case is given by Besl. He proposes a
method, based on the Iterative Closest Point (ICP)
algoritlma, to match two 3-dimensional surfaces. This

technique, described in [4], utilizes quaternions to
represent rotations; thus, the rototranslation

transformation is described by a 7-dimensional vector
instead of a 3x4 matrix. This method reveals itself

accurate and computationally efficient; furthermore, it
works also if there is no one-to-one correspondence

between the two sets of points representing the
surfaces.

3. DESCRIPTION OF THE ALGORITHM

An algorithm has been developed, which matches the

descriptor of a surface representing a virtual model
(e.g. a set of points gotten from the model), with a

surface descriptor extracted from the corresponding
real object (e.g. a set of points measured on the surface

of the object in the real world). This algorithm is a
modification and an evolution of the Closest Point

Algorithm proposed by Besl [4]. An important feature
of this algorithm is that it works also if there is no one-

to-one correspondence between the points of the X and
the P sets.

Some preliminary definitions will now be given. Let us

callXthe model set, i.e. a set of points representing the

modeled surface and P the data set, i.e. a set of points
representing the real surface (e.g. points gotten
sampling the surface by means of a sensor). Both sets
have the same dimension N.

The matching problem is solved finding:
- a correspondence K between the two sets of points;

- a rotation matrix R and a translation vector }" linking
each point of the model with the corresponding data
point, that minimizes the sum of the squared errors (5).

Two kinds of errors that are implicitly included in (5)
are: the measurement errors (affecting the data set P),

and the errors in the model (affecting the model set X).
The latter are due to the fact that the virtual surface is

not an exact model of the real surface; the former in

most cases may be neglected. However, both these

errors cannot be minimized by the matching algorithm.

The matching problem can be classified into:
- global matching
- local matching.

In the first case, there is a biunivocal correspondence

between all the points of the model and all the data

points, because the data represent the whole surface. It

is required to determine R and }" that minimize the
function G:

(9)

In the case of local matching, the data represent only a
part of the surface (thus, the dimension of P is

necessarily smaller than the dimension of X). It is
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required to determine not only R and t', but also
which part Z of the model X minimizes the function L:

JL(X,P)=zn_ ' _[Z-(R.P+t')][ =

= minG(z,p)
z_.a-

(1o)

Before going further into the description of the
algorithm, let us define which type of distance between
geometric entities is assumed in the algorithm.
The distance between two points _ =(xbyl,zl) and

_2=(x2,Y2,z2) is assumed to be the euclidean
distance:

=
(11)

LetA = {_} be a set of points, (i=l..Na), where No is

the number of points, the distance between a point
and the setA is defined as:

d(_,A)= rain d(,_,_) (12)

Let l be a segment connecting _ and F2, the distance

between a point _ and the segment l is:

+v.  -hll (13)
u+v=l

where u ¢[0,I]and v ¢[0,I].

Then, if L = {li} is a set of segments, (i=l..Nt), where

N l is the number of segments, the distance between a

point _ and the set L is defined as:

d(_,L)=_ l_m_} d(_,ti) (14)

Let t be a triangle whose vertices are _, _ and _3; the

distance between a point _ and the triangle t is defined
as"

rain I1=- (15)
IJ+ _'+W'_-- !

where u e[0,1], v ¢ [0,1] and w ¢[0,1].

Then, ff T ={ti} is a set of triangles, (i=l..Nt), where

N t is the number of triangles, the distance between a

point _ and the set T is defined as:

d(?,T) = _,} d(_,ti) (16)

Both a curve and a parametric surface are described by
a relationship _(_), where:

= u EA c _t 1 for parametric curves;

= (u,v) EA _ _t2 for parametric surfaces.

The domain A is a segment if F(_) is a curve; it is a

closed region in the plane if F(_) is a surface.

The distance between a point _ and the parametric

entity E is defined as:

d(_,E) = rain d(_,F(_)) (17)
_(_)_

Then, if F={Ei} is a set of parametric entities,

(i=I..N_), where Are is the number of entities, the

distance between a point _ and the set F is defined as:

These mathematical concepts will be useful in the
following description of the global surface matching
algorithm. The subseript k is used to indicate the
quantifies involved in the k-th iteration of the
algorithm.

Let?= } andx = }bethetwosetsofpointsto
be matched.

If P and X have the same dimension (N x = Np), the

matching problem can be solved using the above
described Haralick method, setting the initial

conditions:R0 = 13, ?'o= 0 (so that Po---P). We define
the Q operator as the function that performs the
registration between P and X, i.e. computes the optimal
rotation matrix that matches P and X. So, for each

iteration new values for R and ? are obtained by
applying the Q operator as follows:

(Rtot'e,d_) = Q(Pe,X) k > 1 (19)

where dt is the mean squared error given by (5). The

value of Pt is obtained applying the rotation Rt__ and

the translation/'t-_ to the whole set Pk-l, summarized
by the formula:

-Pt = Rk-IPk-1 + t'/_-I (20)

The iterations stop when the absolute value of the
difference between two consecutive mean squared
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errors is lower than a fixed positive threshold x •

[dk -dk+l[ < _" (21)

Now, let us consider the more general problem of
matching two sets of points with different dimensions.

To solve this problem an iterative algorithm of the
"closest point" type is used.
Let us suppose that the dimension of the set of the
model points is greater than that of the set of data

points (N x > Np), and let us call Yt the set of the Np

points of Xwhich are the closest to the points of P (i.e.
are the "oest correspondent points") in the k-th
iteration; this defines, for each iteration, a new
correspondence K. Let us call C the operator
performing this computation:

Yk = C( Pk ,X) (22)

Now the optimal rotation matrix R and the optimal
translation vector t" can be computed using the above
defined Q operator applied to the Ykset:

(Rk,_'t,dk) = Q(Pk,Yk) (23)

The rototranslation (Rk,t'k) thus computed is then

applied to all the points of X, obtaining a new set Pe+_

which is closer to theX set (see [4] for a proof).
The C operator is now applied to the new set Pt+l in

order to determine the new set Yt+_ of points closest to
X.

The loop is iterated until the difference between the
mean squared errors in two consecutive iterations is
lower than a fixed positive threshold x.

The convergence of this algorithm to a local minimum
has been demonstrated [4]. However, the convergence
to the global minimum is not assured in the general
case. A way to make the algorithm converge to the
smallest local minimum is to start the algorithm
choosing R o in an adequate set of initial rotations,

called "states", instead of choosing Ro = 13. Besl [4]

has investigated how to find a suitable set of initial
states.

This algorithm can be used also to solve the local
matching problem; in this case, it is necessary to
introduce a set of initial translations in addition to the

set of initial rotations, in order to avoid convergence to
a local minimum.

The algorithm has been tested for both global and local
matching. The set X of points of the model is made of
55 points sampled on the surface of an ellipsoid. Four
tests have been made using different P sets.
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The first test applies the algorithm to the case of a

global matching in ideal conditions (i.e. there is no
noise). Of course, the algorithm converges exactly.
In the second test a gaussian noise has been added, to
account for errors in the model and in the
measurement. The error has zero mean and its
variance is one twentieth of the maximum absolute

value of the coordinates of the data points.
The algorithm converges after testing four initial
rotations.

Fig. I and 2 show the sets before and after the
algorithm has been rim.
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Figure 1 - Sets of points to be matched
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Figure 2 - Result of matching

The third test is a local matching between 24 and 55
points, with additional noise. The results are shown in
Fig. 3 and 4.
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Figure 3 - Sets of points to be matched
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Figure 4 - Result of matching

Finally, the algorithm has been run to match two sets
of 15 and 55 points, with a gaussian noise with zero
mean and variance three times greater than the
previous value. The results are shown in Fig. 5 and 6.
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Figure 5 - Sets of points to be matched
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Figure 6 - Result of matching

This technique to match two sets of points can be
emended to the case when the model is not represented
by a set of points but by a surface. This can be
converd_ent when the surface is expressed in an
anal)_ieal form (e.g. if the model is built using a CAD
system, orif the analytical form of the surface is
known). To run the algorithm, the points of the model
set are chosen to be the points on the surface which are
the nearest to each point of the data set.
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In this ease the algorithm requires a method to
compute the distance between a point and a parametric
surface. To compute the distance between a point and a
parametric surface, the latter can be approximated by a
set of triangles, whose vertices lie on the surface. The
shorter the edges of the triangles are, the better the
approximation is.

Therefore, the problem of computing the distance
between a point and a parametric surface is turned into
the problem of computing the distance between a point
and a set of triangles, which has been defined above.
The next three figures represent the matching between
the set of the data points and the surface expressed in
an analytical form.

Figure 7 - The surface and the set of points to be matched

Figure 8 - An intermediate result of matching
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Figure 9 -Result of matching
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4. APPLICATION TO ROBOTICS

A special system has been developed, whose structure
is made of two levels: a real workceU equipped with an

ASEA type IRB2000 industrial 6 d.o.f, robot and a
simulation environment based on a prototype of a

robotic simulator able to represent exactly the real cell.
This system was initially conceived for automatic

assembling purposes; therefore, it has been equipped

with a sliding worktable and a set of automatically
changeable tools (e.g. grippers, screwers, IR and laser

sensors).
The flexibility of the system is such that it can be used
also in a rather different research field as robotics

applied to biomedics. While in the automatic

assembling field a 2-dimensional adjusting procedure
turned out to be sufficient in most cases, a more

sophisticated 3-dimensional adjusting procedure is
necessary to find the real position of the object, being

this now a patient.

A major difference from the mechanical case, where all
parts are modeled by means of a CAD system which is

already integrated with the simulator, is that in the
biomedical case the virtual models of the part of

interest of the patient are obtained by correlating
images gotten by different diagnostical exams (e.g.
NMR, CT, DA). (See [6], [7], [I0], [14], [15], [19],

[20] for reference).
The proposed application refers to a skull represented

by a dumb in the real world, and by a virtual model

reconstructed from diagnostical images in the
simulation environment.
A correlation is then to be established between the

virtual model and the patient's skull, by matching the
virtual surface and a set of points taken on the real

skull using a laser sensor mounted on the end effector

of the robot. In this way it is also possible to make a
further correlation between the skull and the robot, so
that to establish a full correlation between the virtual

reality and the real world.

An operating procedure on this skull can then be
defined in the simulation environment, and the 3-

dimensional surface matching based adjusting
procedure can be used to translate the operational

sequence into a code suitable for the real cell, and
executable by the robot. The translation procedure can

be done automatically, since the translator already

developed for the robotized assembling system can be
employed.

5. CONCLUSIONS

The problem of finding a correlation between a real

entity and its virtual model has been investigated in
this paper. Solution to this problem can provide a

powerful tool in robotics, particularly useful for off line
programming.

An algorithm has been proposed, based on the surface
matching theory, which matches the surface of area'

object with its virtual model. Two cases have beer

taken into account, namely the matching between twc
sets of points representing the real and the modeled

Figure 10 - The real skull

Figure 11 - The CAD model of the skull

Figure 12 - The real cell
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Figure 13- The virtual model ofthe cell

surface respectively, and the matching between a set of

points gotten from the real surface and the virtual
_, expressed in an analytical form. A peculiar

feature of the algorithm is to work also if the two sets
of points have different dimensions, and if there is no

one-to-one correaponden_ between them. Moreover,

both the global and the local matching problems have
been defined and a solution to them has been proposed.
The proposed algorithm has been tested by simulation.

Finally, a special system, composed of a robotized cell
and a simulation environment, initially conceived for
automatic assembling purposes, has been presented,
and its application to the biomedical field has been
discussed.
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