109637

N95- 16052

National Aeronautics and Space Administration

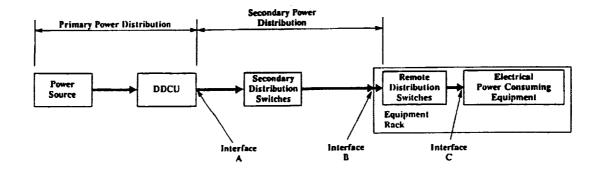
George C. Marshall Bpace Flight Cente

SPACE STATION FREEDOM SECONDARY POWER WIRING REQUIREMENTS

C. R. SAWYER LEAD ENGINEER INTERCONNECTING CABLING SPACE STATION PROGRAM WORK PACKAGE 1

BOEING AEROSPACE & ELECTRONICS COMPANY HUNTSVILLE DIVISION HUNTSVILLE, ALABAMA

> SECONDARY POWER -WHAT IS IT?


• SSF POWER TYPES

131.10

- PRIMARY POWER PRODUCED BY THE ARRAY & ROUTED TO DC-TO-DC POWER CONVERTER UNITS
- SECONDARY POWER PRODUCED BY DDCU'S & ROUTED TO THROUGH SPDA'S TO LOADS OR TERTIARY DISTRIBUTION ASSEMBLIES
- TERTIARY POWER ROUTED THROUGH TERTIARY POWER DISTRIBUTION ASSEMBLIES TO LOADS

FOR PRACTICAL PURPOSES SECONDARY & TERTIARY POWER ARE THE SAME, I.E. SECONDARY POWER

SPACE STATION FREEDOM ELECTRICAL POWER CATEGORIES

DIFFERENCES BETWEEN SECONDARY & TERTIARY POWER

- ELECTRICALLY NO DIFFERENCE
 - NO FURTHER CONDITIONING OF POWER IN TERTIARY POWER DISTRIBUTION ASSEMBLIES
 - SAME VOLTAGE LEVELS AT TERTIARY POWER DISTRIBUTION ASSEMBLY OUTPUTS AS SECONDARY POWER DISTRIBUTION ASSEMBLY OUTPUTS
- PHYSICALLY
 - SECONDARY POWER IS POWER DISTRIBUTED FROM DC-TO-DC POWER CONVERTER UNITS TO TERTIARY POWER DISTRIBUTION ASSEMBLIES THROUGH SECONDARY POWER DISTRIBUTION UNITS
 - TERTIARY POWER IS POWER DISTRIBUTED FROM TERTIARY POWER DISTRIBUTION ASSEMBLIES OR SECONDARY POWER DISTRIBUTION ASSEMBLIES TO LOADS

SPACE STATION FREEDOM EEE PARTS WIRE SELECTION REQUIREMENTS

- SSP 30000, SECTION 9 SELECTION CRITERIA
 - SUITABILITY FOR APPLICATIONS
 - PROVEN QUALIFICATION
 - POTENTIAL USE IN MULTIPLE APPLICATIONS
 - PROVEN TECHNOLOGY
 - AVAILABILITY
 - APPROVAL STATUS

SPACE STATION FREEDOM APPROVED ELECTRICAL WIRE & CABLE

- STANDARD WIRE & CABLE GRADE 1 WIRE & CABLE LISTED IN MIL-STD-975 & SSP 30423
 - M22759/11, /12, /16, /23 & /3
 - M81381/7, /8, /9, /10 & /21
 - M27500 TYPES RC, RE, TE, TM, TN, MR, MS, MT, MV & NK
- NEW PROGRAM STANDARDS BEING ADDED TO SSQ 30423
 - SSQ 21656
 - SSQ 21655

- PDRD STATES APPROVED PARTS ARE LISTED IN MIL-STD-975 & SSP 30423
 - INFERS TO DESIGNERS LISTED WIRE & CABLE MEET ALL OF THE REQUIREMENTS OF SPACE STATION
 - MIL-STD-975 DOES NOT DIFFERENTIATE BETWEEN WHAT IS ACCEPTABLE/NOT ACCEPTABLE BY PROJECT
 - MIL-STD-975 IS NOT UP TO DATE WITH CURRENT PART TECHNOLOGY
 - MIL-STD-975 SPECIFIES SUNSET WIRE & CABLE CONFIGURATIONS NECESSARY TO SUPPORT CURRENT, ONGOING PROJECTS

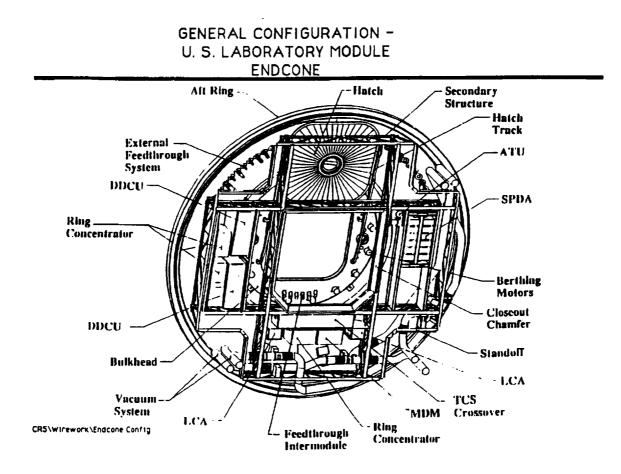
SPACE STATION FREEDOM PDRD LANGUAGE PROBLEM RESOLUTION

- DIRECT USE OF SPECIFIC WIRE & CABLE TYPES IN ALL NEW DESIGN SPACE STATION EQUIPMENT BASED ON APPLICATION
 - JOINT WORK PACKAGE CONNECTOR GROUP HAS RECOMMENDED TEFLON, TEFZEL & SILICONE INSULATIONS BASED ON APPLICATION & PERCIEVED NASA DESIRES
- REVISE THE LANGUAGE IN THE PDRD FOR CLARITY
 - "MIL-STD-975 lists standard EEE parts used in various NASA projects that have been found to be suitable for high reliability space applications and shall be used as a first order of precedance in selecting Space Station parts."

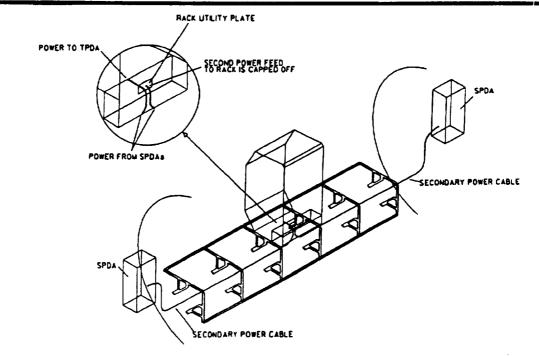
PERCEIVED NASA REQUIREMENTS

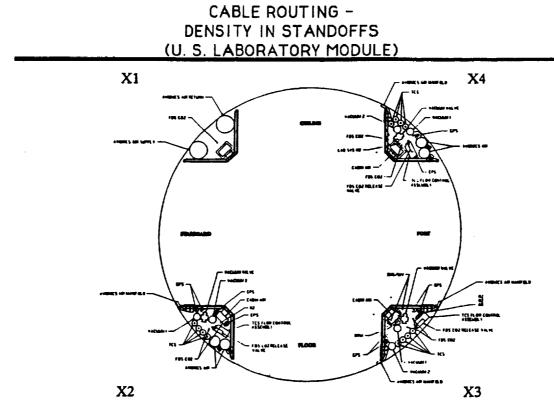
- NO KAPTON (M81381) INSULATED WIRE OR CABLE DUE TO ARC TRACKING
- NO SILVER COATED CONDUCTOR DUE TO RED PLAGUE EXPERIENCE & POTENTIAL CORROSION PROBLEMS
- NO TEFZEL INSULATED WIRE OR CABLE IN INTERNAL MANNED VOLUMES DUE TO MARGINAL SELF-EXTINGUISHING PROPERTIES & CHAR BYPRODUCTS
- MARGINAL INSULATIONS VACUUM BAKED TO REDUCE OUTGASSING
- LITTLE-TO-NO DEVELOPMENT

CONTRACTUAL EEE PARTS WIRE & CABLE APPLICATION REQUIREMENTS

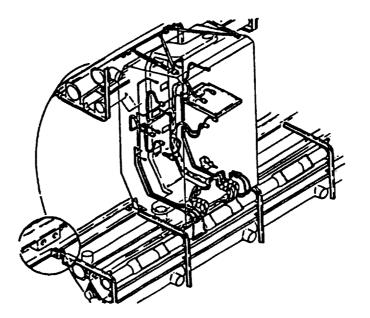

- ENSURE WIRE & CABLE WILL NEVER BE OVERSTRESSED DURING NORMAL OPERATION
- DERATE WIRE & CABLE IN ACCORDANCE WITH MIL-STD-975
- ENSURE ALL EXPECTED ENVIRONMENTAL CONDITIONS ARE CONSIDERED AND EVALUATED WHERE PRACTICAL
 - RADIATION
 - ATOMIC OXYGEN
 - PLASMA
 - VACUUM
 - VARYING THERMAL CONDITIONS

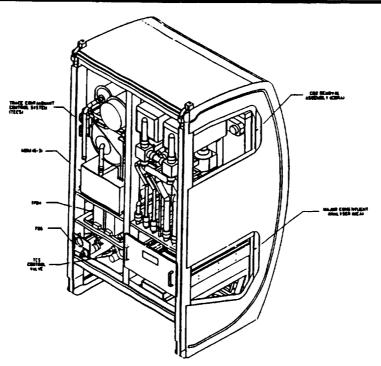
WIRE DERATING CRITERIA


- SSP 30000 SPECIFIES WIRE DERATING IN ACCORDANCE WITH MIL-STD-975
 - CURRENT DERATING BASED ON 200 DEGREE C WIRE OPERATING IN 70 DEGREE C IN HARD VACUUM
 - DERATED CURRENT VALUES ARE APPROXIMATELY ONE HALF OF THE CURRENT THAT WILL RAISE THE INSULATION TEMPERATURE FROM 70 DEGREES C TO 200 DEGREES C
- CONTRACTUAL DERATING IS REASONABLE BASED ON FOLLOWING CRITERIA
 - SCHEDULED MAINTENANCE PERFORMED IN PROXIMITY OF "HOT" WIRES
 - OPERATION IN EVACUATED MODULES AT FULL LOAD

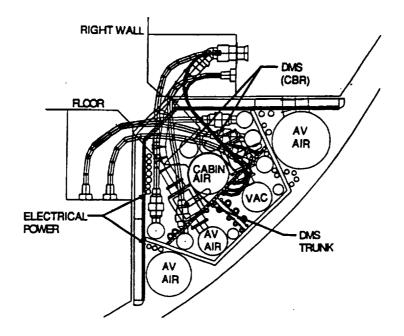

INTERNAL MODULE SECONDARY POWER APPLICATIONS

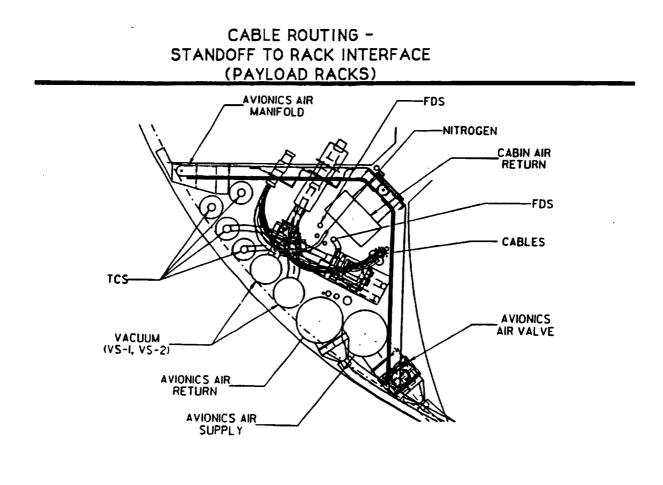
- SECONDARY POWER DISTRIBUTION ASSEMBLY OUTPUT
 - DISTRIBUTE POWER TO INDIVIDUAL HOUSEKEEPING & PAYLOAD RACKS
 - DISTRIBUTE POWER TO EXORACK MOUNTED COMPONENTS REQUIRING ELECTRICAL POWER
- TERTIARY POWER DISTRIBUTION ASSEMBLY OUTPUT
 - DISTRIBUTE POWER TO RACK MOUNTED EQUIPMENT


CABLE ROUTING -SPDA TO RACK INTERFACE


LOOKING AFT

INTERNAL RACK CABLE ROUTING




106

INTERNAL RACK EQUIPMENT CONFIGURATION (OPEN LOOP ARS RACK)

CABLE ROUTING -STANDOFF TO RACK INTERFACE (HOUSEKEEPING RACKS)

SECONDARY POWER WIRE SIZES

- WIRE SIZES ARE BASED ON CONTRACTUAL DERATING CRITERIA, NUMBER OF WIRES IN BUNDLES EXITING RPCM'S AND RPCM RATING
 - 50 A RPCM = 4 AWG
 - 25 A RPCM = 8 AWG
 - 12 A RPCM = 12 AWG
- WITH 8 12 A RPC'S IN A 12 A RPCM 12 AWG IS MARGINAL
 - ACTUAL ALLOWABLE CURRENT WITH ALL RPC'S "HOT" IS 11.5 A

JOINT WORK PACKAGE CONNECTOR GROUP RECOMMENDATIONS

- LARGE POWER FEEDERS (8 AWG & LARGER) REQUIRING FLEXIBILITY/FORMABILITY
 - SSQ 21652 SILICONE INSULATED WIRE
 - HIGH PICK COUNT ROPE LAY
 - HIGH SHORE SILICONE JACKET
- SMALL POWER FEEDERS (12 AWG & SMALLER) INTERNAL TO MODULES
 - SSQ 21656 TEFLON INSULATED WIRE
- SMALL POWER FEEDERS EXTERNAL TO MODULE
 - SSQ 21656 TEFZEL INSULATED WIRE

SECONDARY POWER WIRE & CABLE DESIRED INSULATION CHARACTERISTICS

- 200 DEGREE C RATING MINIMUM
- EXTREMELY DURABLE
- SELF EXTINGUISHING
- NON TOXIC CHAR BYPRODUCTS
- FLEXIBLE
- LOW OFFGASSING
- MINIMAL OUTGASSING
- EASY TO STRIP

POTENTIAL WIRE CONFIGURATIONS (BASED ON NASA DESIRES)

Configuration	Insulation	Conductor coating	51ze AWG	Temperature rating (C)	Conductor material
M22759/3	TEFLON	NICKEL	22-2/0	260	COPPER
-++21759/11	TEFLON	SILVER	20 0		COPPER
M22759/12	TEFLON	NICKEL	28-8	260	COPPER
-102750/16	TER 761	TIN	24-2/0	+50	COPPER
++22753/22	TEFLON	SILVER	20-20		HISEA
-++22759/23	TEFTE			260	
++01301/7		SILVER	26 10	200-	COPPER
-1101301/0	- KAPTON	HICKEL			COPPER
-++8+30+/9	KAPTON	SILVER		200	115CA
-1181781/10	KAPTON	MICKEL -		200	HECA
-1101301/21			26 10	+50	- COPPER-

M22759/3 & /12 CAVEATS

- M22759/3 WIRE IS EXTREMELY STIFF
 - TEFLON JACKET OVER FIBERGLASS BRAID OVER TEFLON
 - STANDARD MULTI STRAND CONDUCTOR CONSTRUCTION
- M22759/12 WIRE HAS LIGHTWEIGHT TEFLON INSULATION
 - REQUIRES CARE IN FORMING, SECURING AND INSTALLATION
- M22759/3 DOES NOT COVER SIZES LARGER THAN 8 AWG

ORGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME
MSFC/NASA	SPACE WIRING WORKSHOP	BILL MCPEAK
CHART NO .	ELV REQUIREMENTS	DATE
1		JULY 1991

HISTORICAL

GROUND LAUNCHED PROPULSION VEHICLES

SATURN

SIC AND SIVE STAGES - THICK WALL EXTRUDED TFE SII STAGE - MEDIUM WALL EXTRUDED TFE INSTRUMENT UNIT - THIN WALL EXTRUDED TFE AND FEP W/POLYIMIDE COATING

SHUTTLE

SOLID ROCKET BOOSTER (SRB) - MEDIUM WALL EXTRUDED TFE SOLID ROCKET MOTOR (SRM) - MED TFE AND POLYIMIDE FILM SPACE SHUTTLE MAIN ENGINE (SSME) - THICK WALL EXTRUDED TFE EXTERNAL TANK (ET) - MED TFE INSIDE AND POLYIMIDE FILM OUTSIDE

CONDUCTORS

PREDOMINANTLY NICKEL PLATED COPPER

FE - POLYTETRAFLUOROETHYLENE

EP - FLUORINATED ETHYLENE PROPYLENE

ORGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME:
MSFC/NASA	SPACE WIRING WORKSHOP	BILL MCPEAK
CHART NO	ELV REQUIREMENTS	DATE
2		JULY 1991

HISTORICAL

SPACE LAUNCHED PROPULSION VEHICLES

- O INERTIAL UPPER STAGE (IUS) POLYALKENE INTERNAL & POLYIMIDE FILM EXT.
- O TRANS ORBITAL STAGE (TOS) POLYIMIDE FILM
- O CONDUCTORS MIXTURE TIN, SILVER, NICKEL PLATED.

SPACELAB, ORBITAL PAYLOADS AND EXPERIMENTS

- O PREDOMINANTLY POLYIMIDE FILM
- O SOME TFE, FEP, POLYALKENE, AND HYBRID CONSTRUCTIONS
- O CONDUCTORS MIXTURE TIN, SILVER, NICKEL PLATED

ORGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME:
MSFC/NASA	SPACE WIRING WORKSHOP	BILL MCPEAK
CHART NO		DATE
3	ELV REQUIREMENTS	JULY 1991

LAUNCH AND PROPULSION VEHICLES REQUIREMENTS

RANKING

- 1 ARC TRACKING PROOF WIRING (NO PROPAGATION)
- 2 270 Vdc OPERATION AT CRITICAL PRESSURE 2500 Vdc/rms MINIMUM AT ONE ATMOSPHERE
- 3 ABRASION/CUT-THRU/NOTCH RESISTANT
- 4 TEMPERATURE

-85 TO 150°C INTERNAL EQUIPMENT AND BOXES

-200 TO 200 OR 260°C INTERCONNECTING CABLES

-255 TO 200°C INSIDE CRYOGENIC FUEL & OXIDIZER TANKS

ORGANIZATION	MARSHALL SPACE FLIGHT CENTER	NAME:
MSFC/NASA	SPACE WIRING WORKSHOP	BILL MCPEAK
CHART NO	SFACE WINING WORKSHOP	DATE
4	ELV REQUIREMENTS	JULY 1991

LAUNCH AND PROPULSION VEHICLE REQUIREMENTS

RANKING

5 RESISTANT TO AND COMPATIBLE WITH:

WATER/SALT WATER/HUMIDITY

LIQUID OXYGEN

LIQUID HYDROGEN AND HYDRAZENE

CHEMICALS

6 CONDUCTOR SIZES 30 THRU D OR EQUIVALENT

DATA BUS, RF, & FIBER OPTIC VERSIONS

ORGANIZATION MSFC/NASA	MARSHALL SPACE FLIGHT CENTER SPACE WIRING WORKSHOP	BILL MCPEAK	
CHART NO 5	ELV REQUIREMENTS	JULY 1991	

LAUNCH AND PROPULSION VEHICLE REQUIREMENTS

RANKING

- 7 FLAMMABILITY, ETC REQUIREMENTS OF NHB 8060.1C
- 8 NO MATERIAL FLAKING, CRACKING, OR DELAMINATION
- 9 VIBRATION 200 G'S ORDNANCE SHOCK 30,000 G'S
- 10 BASIC REQUIREMENTS (MIL-W-22759, MIL-W-81381)
- 11 FLEXIBLE
- 12 WEIGHT/SPACE (LAST ITEM)