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Summary

The space program is faced with two difficult ra-
diation protection issues for future long-term oper-

ations. First, retrofit of shield material or conser-

vatism in shield design is prohibitively expensive and

often impossible. Second, shielding from the cos-

mic heavy ions is faced with limited knowledge on
the physical properties and biological responses of

these radiations. The current status of space shield-

ing technology and its impact on radiation ilealth
is discussed herein in terms of conventional protec-

tion practice and a test biological response model.

The impact of biological response on the selection of

optimum materials for cosmic ray shielding is pre-
sented in terms of the transmission characteristics of

the shield material. The transmission properties arc,

in turn, related to the nuclear cross sections of the

cosmic heavy ions, for which an inadequate experi-
mental database exists. Clearly, these physical and

biological issues must bc resolved before an adequate
shield design can be defined.

Tim choice of structural materials composition is

a means of reducing astronaut exposure risk from

space radiations in future NASA missions. The use

of a performance index for shield materials related to
the change in biological protection at constant shield

mass and varying shield composition indicates perfor-

mance indices up to a factor of 20. Although the sys-
tematics of nuclear cross sections are able to demon-

strate the relation of exposure risk to shield-material

composition, the current uncertainty in nuclear cross
sections will not allow an accurate evaluation of risk

reduction. Even so, the unique role of hydrogenous

materials used as high-performance shields is clear.

Shinn ct al. suggested that polyethylene with its

short nuclear absorption lengths is an effective shield
material in spite of the favoring of massive projectile

fragments, and this is demonstrated herein for mono-
energetic ion beams. This paper presents a theoret-

ical study of risk-related factors and a pilot exper-

iment to study the effectiveness of choice of shield
materials to reduce the risk in space operations.

Introduction

In the past exploratory manned space missions

lasting up to scveral weeks, only the more intense
sources of space radiation, such as solar cosmic rays

and trapped radiations, were considered to be the

primary radiation hazards. The principal radiation
protection issues were the control of early somatic ef-

fects of radiation exposure and their impact on mis-

sion safety. Few astronauts, if any, were expected to
make more than one high-profile trip to the Moon so

that career exposures were of secondary importance.

In this context, the galactic cosmic ray (GCR) back-

ground exposures at rates of 150 to 200 mGy/yr were

not of great concern (refs. 1 and 2).

With the advent of the Space Shuttle, the con-

text of an astronaut changed from space explorer to

space worker and career exposure limits came into
focus with late somatic effects seen as the ultimate

limiting factor on mission activity (ref. 3). Such a
radical shift in astronaut exposure patterns led to

a reevaluation of the importance of low-level GCR

background exposures. (A detailed review is given in

ref. 2.)

Within a few years of the discovery of particles

of high charge and energy (HZE) as components
of the GCR, the unique pattern of energy deposit

on the microscopic scale raised issues with respect

to effects on living cells (ref. 4). Also, the light

flashes induced by proton reactions and HZE ion

passage through the vitreous humor observed by
astronauts in space had already been predicted in

the infancy of the space program (ref. 5). Although

radiobiologieal knowledge has greatly improved, our

ability to estimate risk to the astronaut from such
exposures is still quite uncertain (ref. 6). Even a

crude estimate using the linear energy transfer (LET)

dependent quality factor (ref. 2) results in as much

as 1.2 Sv/yr exposures, depending on shielding near
solar minimum. This shows a large potential impact

on the career of a space worker or a deep-space

explorer.

Clearly, 1.2 Sv/yr is an important number, but
one must hesitate in applying it to astronaut risk be-

cause it implies extrapolation from the human data-
base for late somatic effects that are based primarily

on X-ray and "/-ray exposures (refs. 7 and 8). Evi-

dence is growing of biological end points which are

peculiar to high-LET HZE exposures that are not

produced by X-rays or "y-rays for which thc relative
biological effectiveness (RBE) is infinite or undefined.
Evidence that the usual extrapolation of risk from

the _,-ray database is inadequate has been provided

by the measurement of sister chromatid exchanges
in resting human lymphocytes irradiated with 2aSPu

a-particles (ref. 9), by the observation of abnormali-

ties in stem cell colonies surviving similar a-particle

irradiation (ref. 10), and by the partial disintegration
of chromosomes after irradiation with high-energy

heavy ion beams to simulate space radiation (ref. 11).

In these examples, a quality factor related to RBE

becomes meaningless because at (loses comparable

to that delivered by one particle (or a few parti-

cles), and for radiation effects that arc not manifest
for low-LET radiation (e.g., X-rays), the RBE be-

comes infinite. Thus, new methods to predict the



risk resultingfromexposureto GCRradiationmust
bedeveloped.

Thebiologicalresponseof living tissuesdepends
(inpart) on thetemporalandspatialfluctuationsof
the energydepositswithin thetissuesystem.Such
fluctuationsdependnotonlyonthespecificenviron-
mentto whichthe astronautis exposedbut alsoon
howthatenvironmentismodifiedbyinteractionwith
theastronaut'sbodyin reachingthespecifictissues.
Onlybyknowledgeofthespecificradiationtypesand
their physicalpropertiesat thetissuesitecana ba-
sis for estimatingastronautrisk be found. Evenif
the environmentto whichthe astronautis exposed
is knownprecisely,theenergydepositwithinspecific
tissuesdeepin theastronaut'sbodyare,for themost
part, knownonly throughtheoreticalestimatesand
arc,therefore,limitedby theuncertaintyin the cal-
culationalmodels.Clearly,anaccurateconversionof
theastronaut'senvironmentto estimatesofexposure
fieldsat specifictissuesitesis a highpriority in the
space-radiationprotectionproblem.
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Sketch A

Apart from the issues of tile astronaut's self-

shielding factors and uncertainty in human response
to the HZE particles, radiation shielding implies
some control over the radiation environment to which

the astronaut is exposed. The traditional structural

material within the space program has been alu-
minum. The absorbed dose at solar minimum from

an annual GCR exposure behind an aluminmn shield
is shown in sketch A. Tile absorbed dose increases to

a maximum at 3 to 4 g/cm 2 and declines to the free-

space value at about 30 g/cm 2. Clearly, no shielding

advantage is found in reducing the energy absorbed

by tile astronaut, and if any protection is provided,

it results from changes in the microscopic pattern of

the energy-absorption events (ref. 12).

Herein, we examine the modification of the phys-
ical parameters of the attenuated GCI/environment

in various materials to develop an understanding

of the qualitative changes in environmental compo-

nents as a function of shield composition (including

tissue-equivalent shields). In this context, one be-
gins to appreciate the role of nuclear cross sections

in modifying the local environment and the associ-

ated microscopic fluctuation in the energy-absorption

events. Furthermore, we will begin to understand

the effects of nuclear cross-section uncertainty as

it applies to the change in tile microscopic energy-
absorption fluctuations. W'e shall assess the impor-
tance of these local environmental modifications on

biological systems in terms of conventional dosime-

try by using defined quality factors and a biological
model that is dependent on track structure.

Although tile human risk associated with such ex-

posure is uncertain, radiobiology experiments with

immortal cell populations (cell cultures that can be

sustained indefinitely) have yielded biological data

suitable for estimating GCtl exposure effects on

those specific cell populations. The response of the
C3tI10T1/2 mouse cell cultures (ref. 13) has been

used to evaluate shield properties for the biological

end points of clonogenic death and neopla_stic trans-

formation (ref. 12). Clonogenic death is closely asso-
ciated with the early response of radiation sickness

(nausea, vomiting, eryt.hema, etc.), and neoplastic
transformation is related to cancer induction. A cell-

repair kinetics model including track-structure effects

for the C3H10T1/2 system (refs. 13 t5) provides a
basis for studying shield performance.

In the present paper, we first discuss the problem
of radiation risk assessment in the context of micro-

dosimetry. V_'e then examine the shield parameters

related to shield performance and evaluate the per-
formance on the basis of conventional risk assessment

and the C3II10T1/2 cell model. On this basis we ex-
amine the effects of shield-material selection on shield

design. Light hydrogenous compounds are shown to

hold great promise Ks high-performance shield mate-

rials. Encouraged by this prospect, we then examine

the effects of hydrogen-bearing compounds as poten-
tial space structural components. A pilot experiment

to study such effects is described.

The importance of hydrogenous materials in mod-

ifying the biologically important components of ion

beams makes these studies important in evaluating
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thetherapeuticvalueof heavyion beamsin medical
applications.Indeed,the computationalprocedures
used,the qualityof the nucleardatabase,andthe
biologicalresponsemodelsshouldbeusefulin the
designof therapeuticprocedures.

Microscopic Fluctuations and Biological

Response Models

The response of living tissue (refs. 3 and 8) to a

dose D r with low LET is represented by a sensitivity

coefficient k_ and a quadratic coefficient Do as

Rq = k_D._ (1 + L) (1)

where R, is either the risk of inducing a specific end
point or the level of severity. Tile parameter Do is
dose-rate dependent and is oil the order of 1.2 Gy for

dose rates larger than 50 mGy/day (refs. 3 and 8).

We assume a low dose rate herein so that D_ may be

neglected, where

= k,D, (2)

The concept of dose as a physical or chemical insult

per unit mass of tissue is a carryover from the con-
cepts of pharmacology and assumes that dose is a

measure of effects on individual cells (ref. 16). Tis-

sue cells are, in fact, not all equal at low exposures
because the energy deposits are quantized and en-

ergy is deposited in only a fraction of cells; similarly,

volumes within a given cell are not all equally sensi-

tive. In general, the absorbed dose D is not a good

measure of biological damage because this average
quantity can be decomposed (ref. 16) as follows:

D - E E NH (3)
VN E VNH NE

where V is the sensitive site volume (unit density),

e i is the energy absorbed per sit(; hit (referred to

as the "hit size" of the ith event), and NE is the

number of exposed sites. At a low dose, not all sites

are hit, and so the number of site hits N H is less than
the number of sites exposed. Only when N H ----,N E

is D meaningflfl in terms of individual cell response

(ref. 16). The fraction of sites that are hit at low

exposure (that is, N H << NE) is

NH _ age (4)
NE

where ag is the site geometric cross section and ¢ is
the charged-particle fluence within the tissue system.

In reality, the cross section can be larger than the

geometric cross section because of the &ray diffusion
for which the number of site hits is increased by sites

hit far from the ionizing particles path. The fluence ¢

is related to the macroscopic absorbed dose D and

to the value of the unrestricted LET (L) as

D

¢ = 6.24_ (5)

where ¢ is given in particles/pro 2, D in Gy, and L

in keV/pm. For _/-rays, L._ corresponds to the

secondary electrons generated and has a value of

about 0.25 keV/pm; the corresponding ¢-_ is an
effective secondary electron flucnce that is dependent

on the photoabsorption coefficient and the "7-ray
fluence.

The average hit size (_) is given as

ci
= N. (6)

Z

and is known from basic physical principles and spec-
ifications of the site volume V. The mean number of

hits per exposed site is then

NH DV
- (7)

N E

and is related to the number of hit sites assuming

Poisson statistics. W'e have estimated _ from the the-

ory of Xapsos et al. (ref. 17) for various ion types
as shown in figure l(a) for a 1-Gy exposure and

0.l-pro site size corresponding approximately to the

width of a single chromatin strand and its immedi-

ate environment. In figure 1 we have ignored con-

trit)utions froln fragmenting nuclei of the biological

target. The effect of site size is shown by compar-
ing the 0.1-pm site size with the 0.5-pm site size

in figure l(b). Note that the hit size and average
number of hits increase with the site size. The re-

cently defined quality factors (ref. 7) are also shown

in figure l(c). The region of unit quality factor for

this 1-Gy exposure is marked by a sizable fraction
of hit sites with a fraction of keV hit size, and the

corresponding excess fatal cancer risk to this expo-
sure would be about 3 percent. In distinction, the

100-keV/_tm exposure has a quality factor near 20
to 30 and would result in an estimated excess cancer

risk of 60 to 90 percent. The mean hit size in this case

is several tens of keV, and a small fraction (less than

1 percent) of the sites are, in fact, hit. The HZE par-
ticles show a smaller hit size because of their range

and 6-ray diffusion than the smaller ions at the same
LET. A corresponding increase occurs in the number

of sites hit. A further distinction of HZE exposure is



that a clusteredgroupof contiguouscells(or sites)
is affectedby a singleion passagebecauseof their
rangeand &ray diffusion(ref. 18)in distinctionto
smallerionsof thesameLET.

Figure1 aptly illustratesthe greatvariabilityof
themicroscopicfluctuationsexpressedpreviouslyas
the meanhit sizeand the fractionof siteshit for
variousradiationfield components.Althoughthe
meaningof this variabilityis somewhatrepresented
by thequality factor,asnotedin figure1, anadded
distinctivefeatureof theHZEexposuresis that large
clustersof contiguouscellsareaffected.Wedonot
yet understandthe radiationresponseof manyof
the GCRcomponents,but it is surelythe changes
wroughtby shieldmaterialson thesemicroscopic
fluctuationsthat will serveastheprimarymeansof
radiationprotectionandnot a declinein theenergy
absorbedwith the additionof shieldmaterial. (Sec
sketchA.)

of exposureand/or lowerdoseratearemuchlarger
(ref.19),asshownin table1,andoccurfor lowerex-
posureanddoseratesthanwereusedin derivingQ.
In that the achieving of (RBE)M is accelerated at

a low dose rate, the RBE values in table 1 may, in
fact, be more appropriate for space exposures. This is

one source of the rather large uncertainties in space-

radiation exposure risks. The second source of un-

certainty concerns the response to HZE exposures
for which little is known. The assumption is made

that single-ion track effects for which 7-ray exposures

have no analog are possible. One such mechanism

was suggested by Todd (ref. 18) in which tile cells

exposed at 0.25 Gy have a high probability of being
transformed whereas the dead cells of the track core

must be replaced, thus causing promotion to a cancer

growth by this one event. (See fig. 3.) The RBE for

such results is undefined (infinite), and extrapolation
from the human database is not possible.

Conventional Risk Assessment

According to equation (1), excess cancer risks for
humans are estimated based on cocfficients derived

from X-ray and 7-ray exposures. The conventional

method of extrapolating the human database to high-

LET exposures is to replace D 7 in equation (1) by
the dose equivalent H given by

H=QD (S)

where Q is the LET-dependent quality factor shown

in figure 1 (c). Equation (8) follows from analogy with

the relative biological effectiveness given for 7-ray

and ion exposure levels D_ and D i which result in
the same biological end point by

RBE- D7 (9)
Di

We note that the quality factor is a defined quantity

(not given by a measurement) and represents trends
of measured RBE in cell culture, plant, and animal

experiments. The RBE values depend on end point,

dose, dose rate, and quality of the radiation usu-

ally represented by LET. Usually, RBE is assumed

to reach a maximum value (denoted by (RBE)M) at

sufficiently low dose as related to the initial slopes

of the response curves of each radiation type (refs. 3
and 19). Furthermore, the dose at which (RBE)M

is achieved is assumed to be dose-rate dependent as

shown in figure 2. The values of RBE from which Q is

defined as a function of LET are largely for high dose
rates at the O. 1-Gy level of exposure for which fission

neutrons have Q = 25 corresponding to a 7-ray ex-

posure of 2.5 Gy. The RBE values for lower levels

Table 1. (ItBE)M for Fission Neutrons

"ISmmr induction (approximate) .......... 3 200

Life shortening ................. 15 45

Transformation ................. 35 70

Cytogenic studies ................ 40 50

Genetic end points in mammalian systems ..... 10 45

Other end points:
Lens opaeification .............. 25 200

Miermmcleus assay .............. 6 60

Testes weight toss ............... 5 20

The use of an LET-dependent quality factor as re-

lated to dose equivalent implies additivity of diverse

components in estimating risk. Such assumptions
may underestimate the actual risk as was discussed

by Scott (ref. 20). Furthermore, risks associated with

different time intervals are likewise not additive, es-

pecially if radiation proves to be an effective promo-

tion factor in carcinogenic response (rcf. 21). For
low-LET exposures, substantial repair is often oper-

ative and results in reduced risk. For high-LET ex-

posures, dose-rate enhancement effects arc possible
in which risk is substantially increased at lower dose

rates (ref. 22) as shown in figure 4.

The uncertainties in radiation-induced risk have

been estimated in the NASA Radiation Health Pro-

gram (ref. 6) and are presented in figure 5. In the

approximation used here, the risk is assumed to bc
related to tile total value of dose equivalent. This as-

sumes that the dose-response curve is of similar shape

for each radiation component which is linear at low

: 4



doseanddoserate. Theexcessrisk (tile addedrisk
dueto exposure)is thengivenby

R = k.yH = k_(Hz + Hz) (10)

where H is tile close equivalent (given in Sv), Hac is

the component of (lose equivalent due to low-LET

radiation, and Hz is the dose equivalent due to

tile HZE component of the radiation. By mak-

ing the fllrther approximation that the uncertainties

in k_ and H,- arc negligibh' in comparison with the
uncertainty in ttz, we obtain

A It: It
AR = k-_ _i_- _ : = k_,UHz

(11)

so that tile net effect of the uncertainty in R is to
increase the relative risk, which becomes

R + AR = k.,H + k._UHz = k_,Hu (12)

This equation defines an effective dose equivalent

(Hu) which corresponds to the increased risk due to
uncertainties. If a limit 12 is defined on the basis of

excess risk R, then it is required that

R + AR <__£ (13)

where 12 is the defined limit of acceptable risk. A

safety factor (S) can 1)e defined with reference to

equation (12). Let S be an upper bound on the es-
timated vahm of the uncertainty in HZE dosc equiv-

alent (that is, S = nU), where n = 1,2... corre-
sponds to the number of standard deviations required

to establish an acceI)table safety margin. Then,

equation (12) becomes

R + AR = k._H + k._SHz = k_H_ (14)

where the effective dose equivalent, including the

safety factor, is given by

Hs = H + SHz

Alternatively, the HZE component in equation (10)

can be increased according to

H_z = Hz + SHz = (1 + S)Hz

This formulation suggests the possibility of using the

ratio between experimental values of RBE (as appro-

priate for GCR exposure) and Q as an approxima-
tion for 1 + S; for example, the measured RBE for

life shortening in mice has been reported to be as

large as 80 for fission neutrons (ref. 22), whereas the

estimated value of Q is on the order of 20. Thus,

an estimate for the value of S would be 3 (which

corresponds to an effective dose equivalent that is

300 percent greater for HZE exposure than would be
obtained from currently accepted conventional dosi-

metric analyses). Such a value (300 percent) nfight
be considered reasonable from a radiobiological point

of view and may not be too restrictive on mission

design and operations (ref. 23).

In the present study we will ignore the uncer-

tainty in risk estimates (S -- 0) and apply the qual-
ity factor Q in estimating the dose equivalent that

is assumed to be linearly related to risk. The vari-

ation of close equivalent, with shield thickness and

composition will be one means of estinmting shield
effectiveness.

Track-Structure Repair Model

Although the use of quality factors may give
some indication of the attemmtion of biologically im-

portant components, their use in space protection

against HZE particles has specifically not been rcc-

ommended (ref. 3), and we consider herein a test

biological system for the study of shield properties.

Ionizing radiation interacts with matter through the
formation and interaction of radicals which wc call

the nascent lesions. These highly active chemical

species may" result in structural change or restore the
cell to its initial state, but they are finally consume(t.

If these structural changes occur within the DNA and

cannot be repaired by enzymatic proccsscs, then sub-

sequent generations may exhibit new characteristics
or the cell may be unable to undergo cell division for

which clonogenic death occurs.

Many ways exist in which the DNA can be

changed to cause cell death, but only a few spe-

cific changes are allowed to reach other biological end

points. First, we treat those lesions that lead to cell
death and write kinetic equations (ref. 13) for the

time development of the cell population hi(t) with
/-fold lesions as

(X3

hO = __, ar-ini - kno (15)
i=1

i-1

hi = Z ki-jnj -- kni -- ctini (16)
j=0

i=1

where k i is proportional to the charged-particle flux

(primary and secondary), ari is the repair rate,

5



ami is the misrepair rate, and n d is the population
of misrepaired cells. Conservation of cells within a

given cell cycle requires that k = kl + k2 + ... and
-1 is the kinetic r_ai = ari + _mi" The ratio O_r_O i

pair efficiency and m d is the smallest i for which the

repair efficiency is zero.

The ki kinetic coefficients are related to the

Katz model (ref. 24) for the highly repair efficient,

stationary Gt phase cells as

kl = (rod!) 1�rod L)_/ (18)
Do

kind = a¢ (19)

where all other values of ki are taken as zero (refs. 25

and 26) and the remaining quantities are all given by
Katz as

in which ¢ is the local charged particle flux (primary

and secondary), L is their corresponding LET, and a

is approximated by using the Katz model. (See

ref. 13.)

The cellular track model of Katz et al. (ref. 24)

attributes biological damage from energetic ions to

the secondary electrons (5-rays) produced along the

path of the ion. The effects caused by energetic
ions are correlated with those of "),-rays by assuming

that the response in sensitive sites near the path of

the ion is part of a larger system irradiated with

"y-rays at the same dose. The response due to ion

effects is then apprgximately related to the "y-ray
response and the 5-ray dose surrounding the path

of the ion. For a multitarget response with target

number m, the inactivation of cells by "},-rays is
assumed to follow a Poisson distribution reflecting

the random accumulation of sublethal damage, with

a radiosensitivity parameter D 0.

For the inactivation of cells by ions, two modes

are identified: "ion-kill" which corresponds to intra-

track effects and "gamma-kill" which corresponds to

intertrack effects. Here, the ion-kill mode is unique

to ions corresponding to single-particle inactivation
of cells described by the cross section c_. The inacti-

vation cross section for a sensitive site whose response
to radiation is ahistoric is determined as

a = _°C 27rtdt(l -- e-D/D°) m (21)

where D is the average dose at the sensitive site

from the 5-rays of the ion. The evaluation of the

cross section is separated by Katz et al. (ref. 24) into

a so-called grain-count regime (where inactivation

occurs randomly along the path of the particle) and

into the so-called track-width regime (where many
inactivations occur and are said to be distributed like

a "hairy-rope"). In the grain-count regime, a may be

parameterized as

a= a0(1-e-Z*2/n_q2) rn (22)

where a0 is the saturation value of the cross section,

the effective charge number is given by

Z*= Z(1-¢ -125fl/z2/3) (23)

and t_ is a parameter related to the radius of the

sensitive site (a0) by

D°a2 _ 2 × 10-Terg/cm (24)
t_

The transition from the grain-count regime to the

track-width regime is observed to take place at a

value of Z*2/rc/32 of about 4; we are in the grain-

count regime at lower values and in the track-width

regime at higher values.

The fraction of the cells damaged in the ion-
kill mode is P = _r/aO; note that in the track-width

regime, a > a0, and the assumption is made that
P = 1. The track model assumes that a fraction of

the dose of the ion (1 - P) acts cumulatively with

that for other particles to inactivate cells in the
gamma-kill mode.

The repair coefficients are found to be cell-phase

dependent, and the Gl-phase repair efficiencies are
near maximum for i < rn d and near zero other-

wise. The exponential population showed relatively

high single-lesion repair efficiency and much lower

multiple-lesion repair efficiencies (see table 2) in an-

alyzing the repair-dependent experiments of Yang

et al. (ref. 15). As examples, the G1 repair-enhanced

exposures (made by delayed plating, the process by
which G1 exposed cells are delayed in the G1 phase

for 24 hours after exposure) and exponential phase

repair exposures (made by immediate plating, the
process whereby G1 exposed cells are separated and

immediately introduced to nutrients after exposure)

are compared with the present results in figure 6 for

various ions (ref. 14) and with fractionated exposures

from 225-kVp X-rays (ref. 15) in sketch B. We will
use this model to study the functional dependence of

RBE at low total dose and low dose rate for G1 phase

and exponential phase repair processes.



Table 2. Parameters for Track-Structure Repair Model

(a) Survival repair rates and repair efficiencies

G1 phase for-- Exponential phase for

Rate and efficiency i = 1 i = 2 i = 1 i = 2 >rnd

ai (rate), per hr ....... 0.25 0.125 0.25 0.125 <0.08

ar, a'( 1 (efficiency) ...... >0.97 >0.84 0.7 0.118 _0

(b) Katz C3H10T1/2 cell parameters

Biological response _0, cm2 k rnd Do, Gy

Survival .............. 5 × 10 -7 750 3 2.8

Transformation ........... 7 x 10 -n 475 3 150

(c) Transformation repair rates and repair efficiencies

Exponential phase for

Rate and efficiency

ai (rate), per hr .......

ar, a_ 1 (efficiency) ......

G1 phase for--

i=1 i=2

0.25 0.125

1.0 1.0

i=1 i=2

0.25 0.125

0.99 0.70

>_rnd

<_0.08

0
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Sketch B

We consider now a special solution of equa-

tions (15) to (17) for an exposure field with a low

constant dose rate (ai >> kj for all i, j). At low

dose rates the populations of cells with lesions can be

approximated as

n l(t) _ kl n0(t) (25)

n2(t) _ k2 no(t) (26)

_1c_2

\ Oq O_20_3 O_3]

In the case of low total exposure, no(t) may be taken

as constant and the accumulation of misrcpaired cells

is written as

nm(t) ,._ c_rn_______61/3 (1 - P)D

n o oq D o

+ C_m.__.2_262/a (1 - P)2DD

oe2 D2cq

+ C_m____a6 (1 - p)aD2D c_ma _--D (28)

a 3 D3ctlC_2 + o_3 L

where /) is the dose rate and P = cr/a 0. In the case

of an exponential population, O_rn1/_1 _ 0.3 so that

the first term is always dominant over the second

and third terms for very low dose-rate exposures

(/)c_i -1 << Do). The (RBE)M is found to be

(RBE)M = 1 - P + 6 -1/3°zma c_l aD
o_3 c_ml L 0

(29)

as was found for our earlier result (ref. 25). If

the repair efficiency of the G1 phase is high



(aml/al << [9/aiDo), then the higher order terms of

equation (28) cannot be ignored in determining the

RBE for which important dose-rate-dependent fac-

tors exist whenever D >> aiD 0 ,-_ 0.01 Gy/min. At

much lower dose rates (D << 0.01c_m_/at Gy/min),

the (RBE)M given by equation (29) is obtained. A

parameter study using the data in fignlrc 6 shows that

aml/ctl < 0.03, which corresponds to a 97-percent
repair efficiency as noted in table 2.

In exposures by galactic cosmic rays, the dose rate
is very small:

D _ 0.5m Gy/min << aiD o ._ 10rn Gy/min (30)

for which the nonsurviving fraction is

nm(t) _ am__At61/3 (1 - P)D a
no _ al DO + C_rn3a3LD (31)

One may similarly show that the fraction of trans-

formed cells is given by the same functional form
as nm(t)/no, with the kinetic parameters associated

with transformation as given in table 2.

Galactic Cosmic Ray Transport

To predict the propagation and interactions of

the deep-space nucleons and heavy ions through var-

ious media, the galactic cosmic ray (GCR) transport
code, HZETRN (ref. 27), that was developed at the

Langley Research Center is used. This code includes

the transport of high-energy heavy ions up to an

atomic number (Z) of 28 and solves the fundamental

Boltzmann transport equation. With the straight-
ahead approximation and the target secondary frag-

ments neglected, the transport equation is written
as

[00x
oc

= _fajk(E,E')¢k(x,E')dE'
k>_j E

(32)

where

Cj(_, E)

aj

©k

flux of ions of type j with atomic

mass Aj having energy E (in units

of McV/amu) at spatial location x

macroscopic total nuclear-absorption
cross sections

change in E per unit distance

differential nuclear-interaction cross

sections

To evaluate the flux of particles of type j with
energy E, the input database required consists of the

stopping power, the macroscopic total nuclear cross
sections, and the differential nuclear-interaction cross

sections. The differential cross sections aik describe

the production of type j particles with energy E by
type k particles of energies E t > E. These data are

those compiled for the present HZETRN code system
(refs. 2 and 27).

The absorbed dose D due to energy deposition

at given location x by all particles is calculated
according to

cx?

D(x)= _ / Sj(E)¢j(x,E)dE
3 0

(33)

For human exposure, the dose equivalent is defined

by the quality factor Q which relates the biological

damage incurred because of any ionizing radiation to
the damage produced by soft X-rays. In general, Q is

a function of linear energy transfer which depends on
both particle type and energy. For dose-equivalent

calculations, the quality factors used are those de-

fined by the International Commission on Radiolog-

ical Protection in 1990 (ref. 7). The values of dose
equivalent H are computed as

oo

H(x)= _ / Qj(E) Sj(E) Cj(x,E) dE
3 0

(34)

In addition to the standard dosimetric techniques

used to evaluate health risks due to high-energy,
low-dose-rate exposure from the GCR heavy ions,
the fractions of cell destruction and transformation

are calculated by using radiosensitivity parameters

derived from biological experiments (ref. 13). The

nonsurviving fraction is found by using

rim(t) _ E 61/3 ct,,q [l -- Pj(E)] Sj(E)
no . ct 1 Do

3

+ a(E)}¢j(x, E) dE (35)

where a(E) is the appropriate Katz cross section for

ion j. A similar expression applies for the evaluation
of the fraction of transformed cells. The cellular

parameters used in the present analyses are given in
table 2.
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Characteristics of Shield Materials

Shieldingtheworkareaof anastronautcrewwill
alwaysresultin a wall thickness(givenin cm)that
is smallin comparisonwith the lineardimensionof
the crewcompartment.The shieldmassis then
proportionalto the arealdensity(givenin g/cm2)
whichweuseasthe appropriatemeasureof shield
thickness.

Theshieldpropertiesdependonthebasicatomic/
molecularand nuclearcrosssections. Atomic/
molecularstoppingcrosssectionsdependon the
numberof electronsperunit volume,the electronic
meanexcitationenergy,andtightbindingcorrections
for the innershellelectrons.Thestoppingrangein
unitsofarealdensityareshownin figure7forseveral
ionsandgreatlydifferingmaterials.Materialswith
themostelectronsperunit mass,theleastmeanexci-
tationenergy,andtheleasttight bindingcorrections
makethebestenergyabsorbers.Thus,liquidhydro-
genis afavoredmaterialandleadis lessefficientas
anenergyabsorber.

Thenuclearcrosssectionsrelatenot onlyto the
freepathsfor nuclearreactionbut to thenatureof
thereactionproducts.Theprojectednuclearcross
sectionperunit massof materialis theappropriate
parameterasshownin figure8. Equallyimportant
is thenatureof thereactionproductsproduced.The
productioncrosssectionsperunit massof shieldat
high energyareshownin figure9. Althoughthe
low Z shields are favored by the short free paths

of figure 8, the effects of the products produced in

figure 9 are unclear.

The microscopic fluctuations in the energy-
absorption events of several ions are represented

parametrically as a function of LET in figure 1. Al-

though LET is a less-than-perfect indicator of the
microscopic patterns, it is a useful physical quantity

to indicate radiation quality; it remains the focus

of many biological investigations and serves as the

basis of conventional radiation protection practice

(ref. 7). The transmitted differential LET spectra

through four shield materials arc shown in figure 10.
The left-hand discontinuities are associated with the

minimum ionization at relativistic energies for each

ion type. The far-left discontinuity consists of hydro-

gen isotopes followed by helium isotopes and so on
through Ni isotopes. The smaller right-hand discon-
tinuities are associated with maximum ionization in

the stopping region. At one time these stopping ions

were suspected of being the primary hazard (ref. 4).
One should keep in mind that an uncertainty factor

of 2 to 3 exists for the LET region above 100 keV/#m

because of an uncertainty in the nuclear cross sec-

tions (ref. 28). Even adding energy dependence in
the nuclear cross sections %sulted in a 50-percent in-

crease above 100 keV/pm (refs. 29 and 30).

In each case, we see the attenuation of the high-

est LET components in each material with liquid hy-

drogen being the most efficient and lead the least
efficient. When viewing the transmission curves for

aluminum (fig. 10(c)), one notes that the spectral
changes are minimum in the range of several keV/pm

and that the LET spectrum attenuates at higher LET

and amplifies at lower LET. This pivotal LET value,
which is a function of the shield composition, in-

creases to 40 to 50 keV/pm for lead and decreases

to less than 1 keV/pm for liquid hydrogen. The

pivotal LET value is associated with the loss of a

given species because of attenuation being matched
by the production of that same species in nuclear
events. The location of the pivotal LET value is crit-

ical to the changes in the microscopic fluctuations in
energy-absorption events which ultimately affect the

biological response. Clearly, the shield effectiveness

is intimately related to the nature of the nuclear cross

sections through the change in the microscopic fluc-
tuations in biological exposure, but selection of the

shield material must wait for improved knowledge of

the biological response.

Illustrations of Shield Effectiveness

We examine the aforementioned concepts in terms

of two biological models. The first model is the
conventional risk-assessment method (ref. 7) using

tile quality factor as a function of LET. The sec-
ond model is a track-structure-repair kinetic model

(ref. 13) for the C3H10T1/2 mouse cell for which a

large body of experimental data exist with various
ions in which repair kinetic studies have been made

(refs. 14 and 15). We will evaluate the effectiveness
of these materials to reduce the biological effects as
a function of shield mass.

The distribution of particle fluence at 5 g/cm 2 is

converted (ref. 30) to the distribution of an absorbed
dose over the same LET intervals in figure 11. Also

in figure l l is the dose-equivalent distribution ob-
tained by multiplying the absorbed (lose at each LET

by the corresponding quality factor as shown in fig-

ure l(c). A large contribution to the dose equivalent
results from ions in the LET interval ranging from 10

to 103 keV//_m. Shown in figure 12 are the geometric

hit frequency, the initial level of cell injury, and the

unrepaired cell injury leading to clonogenic death in

a C3H10T1/2 mouse cell population as calculated in
reference 13.

The attenuation of dose equivalent as a func-

tion of areal density is shown in figure 13(a). The



modificationoftheLET distributionasit dependson
shieldcompositionis obviouslyacriticalissue.Lead
shieldingwith theLET pivotpoint nearthepeakof
the LET contributionsto doseequivalentis a poor
shieldmaterialfor the GCRenvironment.Clearly,
the loweringof the LET pivot point enhancesthe
shieldperformanceof the materials,with liquid hy-
drogenbeinganoptimumselection.Liquid hydro-
gen,isof course,a difficultmaterialto usebecauseit
is a liquid with a verylowtemperature.Evaluation
of therelativegainmadeby the useof off-optimum
shieldmaterialsthat aremoreusefulin construe-
tion is a critical issue.Furthermore,the adequacy
of resultsderivedby usingquality factorsto repre-
sentbiologicalsystemsisstill questionablefor HZE
particles.

A secondillustrationis foundusinga modelfor
neoplastictransformationof the C3H10T1/2mouse
cellfor whichsufficientexperimentaldataexistfor
developinga reasonablemodel(ref. 13).Tile repair
kineticsmodelwassolvedat a low doseratefor a
1-yearexposurebehindtheshieldsin figure10.Fig-
ure12showsthat althoughthecell ismostoftenhit
byprotonsandheliumions,theprobabilityofinjury
is smalland the repairefficiencyis highwith little
permanentinjury. Conversely,a highprobabilityof
injury andnear-zeroefficiencyof repairoccurfrom
hitsof siliconandironions.Asa consequence,most
elonogenicdeathfrom GCR exposurecomesfrom
ionswith anLET above10keV/pm(ionsaboverel-
ativistic carbon).Radiationinjury from theseions
showsminimalcellularrepair.Asa result,dosepro-
traction (anextendedexposureperiodat the same
accumulateddose)for GCR exposurewill be less
effectivein reducingtilebiologicalresponse.

Thechangein radiation-inducedtransformations
for a 1-yearexposurein spaceis shownin fig-
ure13(b).Althoughtheattenuationcharacteristics
for variousshieldmaterialsare qualitativelysimi-
lar to the attenuationof doseequivalentshownin
figure 13(a), important quantitative differences ex-
ist. This is best seen in terms of the attenuation

of the transforlnation rate in a given material com-

pared with the attenuation of the dose equivalent in
the same material. The relative attemmtion for the

transformation rate and dose equivalent are shown in

figure 14 for the data shown in figure 13.

The rates of attenuation of biological effects as

estimated by the two risk models are similar only

for the liquid hydrogen shield. This implies that the

quality factor in ICRP-60 (ref. 7) represents in some

way the dependence on radiation quality in this case.

The quality factor is less useful for shields containing

nonhydrogenous components and is a poor indicator
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for lead shields. Very similar results are found as well

for clonogenic death of the C3H10T1/2 cells (ref. 13).
What is very clear from figure 14 is that the use of

local materials (such as regolith) for a hmar base or

for martian exploration shielding designs based on
quality factors remains in great doubt. A meaningful

design can be made only when improved risk models

and the nuclear fragmentation parameters become
available.

Proposed Shield-Performance Index

In an attempt to assign a quantitative measure of
shield performance, we consider a track-structurc ki-

netics model of the C3H10T1/2 cell system for clono-
genie death and transformation (ref. 12). Results of

this model for a 1-year exposure behind a 5 g/cm 2

aluminum shield is shown in figure 12. V_% have fur-
ther evaluated this model for various shield materials

used in the present study at the various depths in fig-

urc 13(b). _Te note that the depths in units of areal
density are proportional to the total shield mass of

a large shielded region. The exposure conditions as-

sume a stationary G1 phase exposure for a constant

dose rate over the 1-year period. We compare the cell

transformation behind an aluminum shield (TM(x))
of areal density x with thc cell transformation for a

different material (Tin(x)) of the same areal density.

Thus,

Cell-transformation ratio -- TAI(x)
Tm(x)

(36)

as a measure of relative biological protection of the
two materials.

As shown previously, the cell-transformation ratio

does not correlate well with the dose equivalent. (See

ref. 12 and fig. 14 herein.) The separation of physical
and biological factors is accomplished by using basic

concepts in microdosimetry. The physical factors
are the moments of the LET distribution and are

determined by the shield properties (rcf. 12). A new
quantity that correlates well with cell transformation
behind various shield thicknesses and materials is

defined from the postulate of Bond, Varma, and

Sondhaus (ref. 16). The risk function within a cell

population for the radiation of the LET (L) value is
approximated as

DL Bi(e i)= 6.24 "g-T (37)

Because average lineal energy is numerically equal

to the LET (that is, (cn) e¢ {Ln)) in a mixed



Table 3. Moments of LET Behind Various Shield Materials for a 1-Year Exposure

of GCR at Solar Minimum and Their Correlated Quantities

Shield Moments of LET, (MeV/cm)%m -2, for

Thickness,

lvlaterial g/cm 2 i = 0 i = 1 i = 2 i = 3 i = 4 Pm (x)

Free space 1.29 × 108 1.00 x 109 1.70 x 1012 3.70 × 1016 118 × 1019

AI

Fe

Polyethylene

2

5

10

2

5

10

2

5

10

1.32 x l0 s

1.35

1.38

1.34 × 108

1.35

1.38

1.31 x 108

1.33

1.34

0.916 x 109

.897

.866

0.938 x 109

.942

.923

0.849 x 109

.787

.716

0.47 x 1012

.365

.253

0.493 × 1012

.407

.302

0.4 x 1012

.261

.143

0.278 x 1016

.201

.124

0.303 x 1016

.235

.158

0.22 x 1016

.128

.0586

4.84 x 1019

3.42

2.05

5.41 x 1019

4.1,1

2.72

3.65 × 1019

2.03

.864

P,,,(x)

10.6 x 1015 1

8.78 1

6.57 1

12 x 1015 0.88

10.4 .85

8.11 .81

8.33 x 1015 1.27

6.05 1.45

3.65 1.80

environment, the total risk R is the sum over all LET

components as (ref. 12)

R = f kT(L + al2 L2 + d3L 3 +...)eL dL

Tt

t i
= kT(L}¢+ k7 Eai(L )¢ (38)

i=2

Here, k 7 is the 7-ray response at the limit of low

LET, the zeroth-order moment is the total particle

flux, the first-order moment is the locally absorbed

dose, and the second-order moment is related to the

dose equivalent. A correlation of cell transformation

was found in terms of the square of the ratio of the

fourth moment to the second moment (ref. 12)

(39)

The relative performance index is defined as

PAl(x) (40)
P.,(x)= p.,(x)

The cell-transformation ratio does correlate well with

the relative performance index (ref. 12), which is

shown with the five lowest moments of LET in ta-

ble 3. The material dependence of cell transforma-

tion is characteristic of the higher LET moments, and

a relative performance index is proposed (ref. 12)

for evaluation of GCR shield materials. The cell-

transformation ratio is shown as a function of areal

density for different shields and is relative to the alu-

minum standard in figure 15. The comparison of cell-

transformation ratios for liquid hydrogen, lithium

hydride, and lead is shown in figure 15. In this fig-

ure, the cell-transformation ratio for liquid hydrogen

shows a linear relationship to its areal density x with

a best fit of

TAl(X)
- 1 + 0.383976x (41)

TH2(x)

The ratio has an exponential relationship to x with

a best fit of

TAI(X) - exp(0.07176x - 0.0014999x 2) (42)

for lithium hydride and

Tgl(_)

Tpb(_)
- exp(-O.O8366x + 0.001965x 2) (43)

for lead. The liquid hydrogen shows great promise

as a high-performance shield material with an in-

creasing shield depth x. This value can provide the

relative performance index for all shield materials

because of the excellent linearity between the cell-

transformation ratio and the relative performance in-

dex (rcf. 12). We can only presume that such an ad-

vantage applies to astronaut exposure risks but must

await a clearer understanding of the essential radio-

biological factors. Furthermore, the required nuclear

cross sections are uncertain and must await further

development of the nuclear database and validation
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of the shielding codes. This must be accomplished

through experimentation at high-energy heavy ion
accelerator facilities.

Nuclear Attenuation and Shield

Performance

The analysis of shield performance in prior sec-

tions has been cast in terms of the microscopic fluc-

tuations of the energy deposit in tile exposed bio-
logical systems. The range of such fluctuations is

determined by the particle type and energy. (See

fig. 1.) Relating any particular LET interval with
any particular species of the radiation field or to the

specific nuclear processes by which the field compo-

sition is altered is difficult. The nuclear data are rep-

resented by two aspects as they affect the radiation
field. The first aspect is the mean free paths of indi-

vidual species to a nuclear reaction site given in fig-

ure 8, and the second aspect is the array of secondary

products of the reactions as given in figure 9.

The nuclear free paths are among tile best-known

nuclear parameters. Although the physical mea-
surements of frcc paths are limited in the number

of projectile-target combinations and beam energies,
theoretical calculations can be made without a de-

tailed knowledge of the nuclear excitation spectra

and corresponding wave functions because free paths
are calculated from the elastic channel amplitudes

and are little affected by coupling to inelastic pro-

cesses (ref. 31). Confidence is gained in that the lim-
ited experimental nuclear-absorption cross sections

agree well with theoretical caieulation (ref. 32).

In distinction, the nuclear breakup depends on

the details of the nuclear excitation spectra (both
discrete and continuous) and theoretical calculations

are not possible (with the exception of very light nu-

clei). Fortunately, the charge distribution of any par-

tieular fragment mass is dominated by the nuclear

binding and not so much by the means by which the
fragments are produced. Such charge distributions
for proton-induced reactions have been studied ex-

tensively by Rudstam (ref. 33). The mass-removal

cross section could be estimated by a semiempirieal

liquid drop model in which the surface energy has
an empirical correction for highly misshapen nuclei

(ref. 34). The semiempirical correction is adjusted

to fit the available experimental data, but because of

the paucity of experimental data, the validity of this
model is in question. Current estimates are shown in
figure 9.

In viewing the nuclear free paths in figure 8, the

hydrogen shield clearly presents the greatest cross
section per unit mass. In addition, the lighter mass

shields are more effective in reacting with the heavier

ions. Still, the fi'agment distributions produced also

affect the results a.s shown by Shinn, Townsend, and
Wilson (ref. 30).

The effects of the fragment distributions can be

studied by looking at the physical limits of the frag-
mentation event. These limits are expressed as an

extreme peripheral collision in which a single nucleon
is removed per collision to extreme central collisions

in which the nucleus is completely dissociated into

nucleonic components. The effects of these physi-

cal limits on several shield types are shown in fig-

ure 16. Tile uncertainty in the nuclcar fragmentation
events has a great effect on the transformation rates

of the C3H10T1/2 cell system. This uncertainty is
undoubtedly due to the dependence of the trans-

formation rates on the higher moments of the LET
distribution that are sensitive to the distribution of

fragments produced in the nuclear events (ref. 12).

Although the LET distribution is closely related

to the energy fluctuation within specific target sites

in the tissue system, LET is not directly related to
particle type and, thus, relating the LET distribution
to the fragmentation process is difficult. An alternate

means of represcnting the biological response data

is to use contributions of biological change from
each charge group of the environment as shown in
figure 17.

Figure 17 clearly shows that the efficiency of the
liquid hydrogen shield comes from its rapid attenua-

tion of the HZE components. For example, the iron

flux in free space accounts for nearly 30 percent of

the cell transformations, and this flux is reduced by

several orders of magnitude in the 30 g/cm 2 liquid
hydrogen shield compared with a reduction factor of

only 3 behind an equivalent mass of lead shielding. In

the liquid hydrogen shield, all components are atten-

uated to some degree, whereas in the lead shield, the

light ions tend to increase as the heavier ions slowly

attenuate. In addition, the neutron, hydrogen ions,
and helium ions are greatly enhanced over their free-

space values, partly because of tile secondary pro-

duction from the target nuclei. These charge dis-
tributions are intimately related to the reduction of

the high-LET moments and are closely related to the

shield parameters studied in laboratory experiments

with HZE beams. Clearly, hydrogen-bearing mate-

rials will play an important role in shielding from
long-term space exposure. In the next section, we

examine several possible choices in space construc-
tion and begin an evaluation of their effectiveness.
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Table 4. Values of Atomic Parameters for Pure Epoxy With p = 1.32 g/cm .3

Parameter Hydrogen Carbon Nitrogen Oxygen Sulfur

Atomic number, Z ............

Mass number, A .............

Number of atoms in each repeat unit ....

Weight in each repeat unit .........

Atom density, 1022 atoms/gm .......

1

I

42

42

[ 3.77

6

12

37

444

3.32

7

14

4

56

0.37

8

16

6

96

0.54

16

32

1

32

0.09

Table 5. Values of Atomic Parameters for Lunar Regolith With p = 1.5 g/cm 3

Parameter

Atomic number, Z ............

Mass number, A .............

Normalized weight, percent .........

Atom density, 1021 atoms/gm .......

Oxygen

8

16

44.7

16.8

Silicon

14

28

24.5

5.28

Aluminum2.059.32713t

Iron Magnesium

26 12

56 24

15.4 6.0

1.67 1.50

Table 6. Values of Atomic Parameters for Lunar-Regolith/Epoxy Composites

With pf = 1.5 g/cm 3 and Pe = 1.32 g/cm 3

Elements

H

C

N

O

S

Si

Al

Fe

Mg

Atomic parameters Atomic density, 1021 atoms/gm, for--

Atomic

number, Z

1

6

7

8

16

14

13

26

12

Mass

number, A

1

12

14

16

32

28

27

56

24

Wt = 0.1 epoxy;

Pc = 1.48 g/cm 3

3.78

3.32

.359

.539

.09

3.74

1.51

.59

1.24

Wt = 0.2 epoxy;

Pc = 1.46 g/cm 3

7.53

6.65

.72

19.57

.179

3.32

1.34

.525

1.10

Potential Materials for Space
Construction

The calculation is extended herein to more com-

plex polymer molecular structures that are hydrogen

containing and which may be fabricated and supplied

as shield media. The model (ref. 35) of tetragly-

cidyl 4,4 p diamino diphenyl methane (TG 4,41 DDM)

epoxy that is cured with diamino diphenyl sulfone

(DDS) is among those considered. Figure 18 shows

this epoxy model, in which the dashed line encloses

the cured repeat unit. Table 4 contains the values

of the atomic parameters for the pure epoxy with a

density (p) of 1.32 g/cm 3.

For more specific extended-duration lunar mis-

sions, a lunar-soil model by Nealy, Wilson, and

Townsend (ref. 36) is used to predict the fluxes of

energetic galactic cosmic rays in the internal environ-

ment after passing through the thick regolith shield

for the protection of the lunar inhabitant. In the

case of a lunar-soil model, the five most abundant

elements, comprising up to 99.9 percent of the re-

golith samples, are chosen. The lunar-soil compo-

sition, which is normalized to the measured abun-

dances of SiO2, A1203, FeO, and MgO, has the

elemental percentages given by Nealy, Wilson, and

Townsend (ref. 36). Table 5, which contains the val-

ues of atomic parameters for lunar regolith with an

average soil mass density of 1.5 g/cm 3, is used based

on the density range reported of 0.8 to 2.15 g/em 3.

Table 6 contains the values of atomic parameters for

lunar-regolith/epoxy composites.

The properties of one group of condensation poly-

mers, the aromatic polyetherimides, are well known.

These materials have an unusually high melting

13



Table7.ValuesofAtomicParametersforPolyetherimide,Polysulfone,andPolyimide

Polymers
Polyetherimide

Polysulfone

Polyimide

Elements
H

C

N

0

H

C

O

S

H

C

N

0

Atomic parameters

Atomic

number, Z

1

6

8

16

Mass

number, A

1

12

14

16

1

12

16

32

1

12

14

16

Atom density,

1022 atoms/gin

2.44

3.76

.203

.61

310

3.68

.545

.136

1.58

3.47

.315

.788

Density,

g/cm 3

1.27

1.24

1.42

point, are easy to process, and possess outstanding

thermal stabilities. The commercial polyetherimide

Ultem from the General Electric Company (ref. 37)

is evaluated as a shield material.

Many polyethers are amorphous, rigid, tough

thermoplastics with high second-order transitions,

glass transition temperatures (Tg), and notewor-

thy electrical properties. One of the aromatic

polyethers, polysulfone Udell P-1700 (ref. 38) from

the Union Carbide Corporation, is also investigated

for shielding.

Aromatic polypyromellitimides are materials with

excellent thermal, oxidative, and hydrolytic stability.

One of the polyimides from the Du Pont Corporation,

the thermoset Kapton, is also investigated as a shield

material. Films of the aromatic polypyromellitimides

with a thickness of 2.0 mils have shown outstanding

resistance to irradiation from high-energy electrons

and from thermal neutrons (ref. 39). Table 7 contains

the values of the atomic parameters for polyetherim-

ide, polysulfone, and polyimide, and the repeat units

of these polymers are shown in figure 19.

The addition of boron powder to a polymer al-

lows the material to absorb iow-cnergy neutrons

(rcf. 40) because neutrons have a high probability

of reacting with a nucleus in a process called neu-

tron capture whcn the neutrons have been slowed

down to very low energies. Neutron thermalization

is a natural consequence of transport through the

hydrogen-bearing polymers. Low-ener_,-_ neutrons

react with a stable isotope of boron (*UB), which

constitutes 19.6 percent of the naturally occurring
4 7

clement. Tile products of the reaction, He and Li,

are not radioactive. Thus, various weight fractions

14

where

Cj (X, E)

of boron in films of these polymers are studied to

compare their neutron-absorbing capability. Natu-

ral boron, which has an atomic number (Z) of 5, is

used in tile form of an amorphous submicron pow-

der with a density of 2.59 g/cm 3. Table 8 contains

the values of the atomic parameters for the polymer-

boron composites. We next evaluate the effects of

the shield composition on the astronaut environment

and ultimately on astronaut risk.

Experimental and Theoretical Studies

With the straight-ahead approximation and the
target secondary fragments neglected, the transport
equation is written as (refs. 1 and 2)

O0---jESj+oj)¢j(x,E) : ___m,kak Ck(x,E)
k>_j

(44)

flux of ions of type j with atomic

mass Aj at x moving along x-axis

at energy E (in units of MeV/amu)

o'j corresponding macroscopic nuclear

absorption cross sections

Sj change in E per unit distance

mj_: fragmentation paranmter for ion j

produced in collision by ion k

The primary beams were taken as 56Fe at

605 MeV/amu or 2°Ne at 425 MeV/amu. An ini-

tial range for the primary ion beam for a mate-

rial with known density is calculated by using the



Table8.ValuesofAtomicParametersforVariousPolymersContainingBoronandHydrogen

Atomicparameters Atomdensity,1022atoms/gm,for--
Atomic Mass

Polymers Elementsnumber,Z number, A 5 percent B l0 percent B 15 percent B 20 percent B

Polyetherimide

Polysulfone

Polyimide

H

C

N

O

B

B

H

C

O

S

B

B

H

C

N

O

B

B

1

6

8

16

5

5

1

12

14

16

11

10

1

12

16

32

11

10

1

12

14

16

11

10

23.2

35.8

1.93

5.80

2.23

.558

28.6

35.0

5.19

1.30

2.11

.527

15.0

33.0

3.0

7.52

2.15

.538

22.0

33.8

1.83

5.49

4.46

1.11

27.0

33.1

4.90

1.22

4.46

1.12

14.2

31.2

2.84

7.10

4.46

1.12

20.7

32.0

1.73

5.18

6.69

1.67

25.5

31.3

4.63

1.16

6.66

1.66

13.4

29.4

2.67

6.69

6.82

1.7

19.5

30.1

1.63

4.88

8.93

2.23

24.1

29.6

4.38

1.10

8.76

2.20

12.6

27.7

2.52

6.31

8.9

2.23

Bethe formula where the linear energy transfer per

unit mass Sj is quite accurate at high energy. The

solution (ref. 41) to equation (44) is

Cj(x,E)-- ¢(j°)(x,E)+ ¢(jl)(x,E)+ ¢(j2)(x,E) (45)

where ¢_°)(x, E) is the attenuated primary ion flu-

ence, ¢_l)(x,E) is the first collision term, and

3(.2)(x, E) is the second collision term. The results of

the first collision term ¢_l)(x, E) and of the second

collision term ¢_2)(x, E) are integrated numerically

over their entire energy spectrum.

The total integral flux associated with each term

is evaluated as

(:X)

_1) (X)---- i ¢_1)(xiE)dE _ _ _1)(x, Ei)(AE)

0 i

(46)

and

00

- i+? (.,.,)(A.)
0 i

(47)

For a three-term perturbation expansion, the total

ion fluence is

To compare the flux of each identified nucleus

with charge Z, Cz (x, E) is defined as

Cz (x, E) _- _ Cz,Aj (x, E) (49)

Aj

where Cz,A)(X, E) is the same as Cj(x, E) of equa-

tion (45) for all the isotopes of projectile fragment

charge Z with different atomic mass Aj. Equa-

tion (49) is integrated numerically over the entire

energy spectrum and the total integral flux for each

charge Z is approximated as

OO

_z(X) = J Cz(x, E) dE _ _ Cz(x, Ei) (hE)

o i

(50)

The high-energy heavy ion radiation components

are usually attenuated to lower LET as a result

of nuclear interactions between projectile and tar-

get nuclei, and these processes become more signifi-

cant as the particles penetrate further into the shield

medium. Recall that LET is proportional to the

15



Table 9. Calculated Initial Range for Different Polymeric Materials

Polymers

Pure polyetherimide ........

5 percent B ...........

10 percent B ...........

15 percent B ...........

20 percent B ...........

Pure polysulfone .........

5 percent B ...........

10 percent B ...........
15 percent B ...........

20 percent B ...........

Pure polyimide ..........

5 percent B ...........

10 percent B ...........

15 percent B ...........
20 percent B ...........

Polyethylene ...........

Poly (tetrafluoroethylene) ......

p, g/cm 3

1.27

1.30
1.33

1.36

1.40

1.24

1.27

1.30

1.34
1.37

1.42

1.45
1.48

1.51

1.54

Initial range of
56Fe beam at

605 MeV/amu, g/cm 2

13.8

13.9

14.0
14.0

14.1

13.7

13.8
13.9

14.0

14.0

14.1

14.1

14.2
14.3

14.4

12.2

15.7

Initial range of
2°Ne beam at

425 MeV/amu, g/cm 2

19.2

19.3

19.5
19.6

19.7

19.1
19.2

19.3

19.5

19.5

19.6

19.7

19.8
19.9

20.0

square of the ion charge. The internal environment

within the spacecraft or habitat structure that inter-
acts with onboard personnel or equipment depends

on the shield composition resulting from the differ-
ences in atomic cross sections, nuclear attenuation,

and the distribution of fragmentation products. In

preparation of experimental studies of the attenu-
ation of ion beams in potential space construction

materials, theoretical predictions based on current

understanding are used as a guide to an experimen-

tal program. In the following calculations, the frag-
mentation cross sections of Silberberg, Tsao, and

Shapiro (ref. 42) were used in that they were the

only database available for these codes at the time of
USe.

The initial range of penetration of a 605-MeV/
amu 5aFt beam in lunar rcgolith with a density

of 1.5 g/era 3 is approximately 10 cm (15.4 g/cm2).

The calculations show (see fig. 20) that lighter par-

ticles with energies lower than 605 MeV/amu are

predicted to be in relative abundance for a lunar-

regolith brick with a thickness of 16 g/cm 2, which is
slightly larger than the range of 15.4 g/era 2. Note

that the addition of hydrogen-bearing epoxy to the

regolith brick increases the protection. Figure 21
shows that the lighter particles with energies lower

than 605 MeV/amu are also predicted to be in abun-
dance for a lunar-regolith brick with a thickness

of 18 g/cm 2. These results demonstrate that most
of these particles are secondaries from the nuclear
interaction processes. Most conspicuous is that the
maximum contribution comes from a broad range of

charges above Z = 3 (for Li).

The calculated initial ranges of the primary 56Fe

beam at 605 MeV/amu and of the 20Ne beam

at 425 MeV/amu for each polymer are shown in
table 9. From these calculated initial ranges,

a 10 g/cm 2 thickness is considered to be a thin tar-
18get and an _. g/era 2 thickness is a thick target for

a primary O6Fe beam at 605 MeV/amu, whereas

an 18 g/cm 2 thickness is considered to be a thin
target for a primary 2°Ne beam at 425 MeV/amu.
The fluenees of identified projectile fragment nu-

clei are compared for 18 g/em 2 thick targets for

the primary 56Fe beam at 605 MeV/amu and for

20 g/cm 2 thick targets for the primary 2°Ne beam

at 425 MeV/amu where the thicknesses are slightly

larger than the initial ranges.

Because of the greater hydrogen content of poly-

ethylene, the charge difference in fragmentation by
polyethylene is smaller than that by poly(tetra-

fluoroethylene) and other polymers. However, thin
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polyethyleneenhancesthe high Z fragment. The

second fragmentation event occurs more often in the

thicker polyethylene shields because the nuclear at-
tenuation rate is higher in polyethylene than in the

other polymer shields. The second charge difference

greatly reduces the fluence for a polyethylene shield

(ref. 30).

The lighter material such as polyethylene en-

hances the high-energy heavy ion fluence relative
to poly(tetrafiuoroethylene) for thin shields (see

fig. 22) and reduces the fluence more efficiently

than poly(tetrafluoroethylene) and other polymers

for thick shields (see fig. 23). In fact, the succes-
sion of curves in figures 22 and 23 is governed by the

amount of hydrogen per unit mass, and polyethy-

lene is the most abundant in hydrogen. Studies on

the effect of shield composition on LET distribution
at several depths has already shown that polyethy-

lene is the most effective high-LET degrader beyond

5 g/cm 2 at solar minimum (ref. 30). Again, polyethy-
lene is the most effective shield material among

these pol_g_ners beyond an 18 g/cm 2 thickness for the
primary 56Fe beam at 605 MeV/amu.

The addition of boron (B) powder to a material
allows the material to absorb low-energy neutrons

without any degradation in glass transition temper-

ature or Young's modulus in the polymeric materials

(ref. 40). The fluence for a polyetherimide containing
various weight fractions of boron is shown in figure 24

for a primary 56Fe beam at 605 MeV/amu and in fig-
ure 25 for a primary 2°Nc beam at 425 MeV/amu.

These results show no significant difference for var-

ious weight fractions of boron. For thick shields,
the pure polymer shows a slightly better attenua-

tion of fragments at Z > 3 than a composite contain-

ing 20 percent boron. As the fraction of B increases
from 5 to 20 percent by weight, both the density

and the initial range increase because boron has a

higher atomic number (Z) than hydrogen. Similar
results are obtaincd for the polysulfone and the poly-

imide. Hence, pure polymers with slightly shorter

initial ranges are expected to attcnuate fragments at

Z > 3 better than materials containing any fraction
of boron. The laboratory code used does not include

light fragments of Z < 3 in any realistic way because
a greater knowledge of nuclear fragmentation pro-

cesses and a corresponding transport theory are re-

quired for these fragments.

A target with a high percentage of lighter atoms

such as hydrogen would, therefore, be an effective
shield material for thick shields, whereas a target

with a heavier atom composition might yet prove

to be more effective in thin shields for energetic ion

beams. Pilot experiments to validate these theoreti-

cal results have been performed, but data reduction

is not yet complete.

Concluding Remarks

Radiation risks to astronauts depend on the

microscopic fluctuations of energy-absorption events

in specific tissues. These fluctuations depend not

only on the space environment but also on the modifi-
cations of that environment by the shielding of the as-

tronaut's surrounding structures and the attenuation

characteristics of the astronaut's body. The effects of
attenuation of the shield and body depend on the tis-

sue biological response to the microscopic fluctuation
effects. A great deal of uncertainty presently exists

in estimating astronaut risk because of uncertainty

in the nuclear properties and risk models. Clearly,
these uncertainties must be reduced before the shield

design can be made.

Using current estimates for nuclear cross sections

has shown that the high charge and energy (HZE)

ions in space pose a significant hazard to biological
systems and that the linear energy transfer (LET)

distribution above about 10 keV/#m is an impor-

tant indicator of biological damage. Furthermore,
the LET distribution is a function of shield compo-

sition, even with materials of the same areal den-

sity. Shinn et al. suggested that polyethylene with its
short nuclear absorption lengths is an effective shield

material in spite of the favoring of massive projectile

fragments, and this has been demonstrated herein for
monocnergetic ion beams. The establishment of a re-

liable nuclear fragmentation database, astronaut risk

methodology, suitable polymer materials, and struc-

tural design methods remain as critical issues in the

long-term exposure to space radiations.

NASA Langley Research Center
Hampton, VA 23681-0001
August 29, 1994
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Figure 7. Stopping ranges of selected ions in four diverse materials.
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