
N95- 17185
fO/'iO

.. <;

k_

?

¸7¸¸¸

x H .

: ?7 ::

i:i?:!

i ',,ii_ill

_iii! :,

ki_i?

Table-Driven Configuration and Formatting of Telemetry

Data in the Deep Space Network

Evan Manning

Telos Information Systems

320 N Halstead, Suite 260

Pasadena, CA 91107

manning@alumni.caltech.edu

":._9 / ,..//" ':_'"'_ :rr

,....

................

Abstract 1. Deep Space Network Telemetry 1990

With a restructured software architecture for

telemetry system control and data

processing, the NASA/Deep Space Network

(DSN) has substantially improved its ability

to accommodate a wide variety of spacecraft

in an era of "better, faster,

cheaper."

In the new architecture, the permanent

software implements all capabilities needed

by any system user, and text tables specify

how these capabilities m'e to be used for

each spacecraft. Most changes can now be

made rapidly, outside of the traditiona!

software development cycle. The system

can be updated to support a new spacecraft

through table changes rather than software

changes, reducing the implementation-testo

and-delivery cycle for such a change from
three months to three weeks. The

mechanical separation of the text table files

from the program software, with tables only

loaded into memory when that mission is

being supported, dramatically reduces the

level of regression testing required.

The format of each table is a different

compromise between ease of human

interpretation, efficiency of computer

interpretation, and flexibility.

In 1990 NASA's Deep Space Network

(DSN) supported fewer than a dozen

spacecraft, all them using minor variants on

a single NASA output format. Each new

spacecraft was a major event, frequently

accompanied by upgrades of DSN hardware
and software.

In addition, support for frequent minor

processing changes was creating a bottleneck

because each change required a formal

software build and delivery, and regression

testing° One example of such a change is an
increase in data rate and frame size as an

encounter approaches.

2° Changing Environment

In recent years both the number and vm'iety

of missions supported by DSN has grown

explosively. Today, the DSN supports over

seventy deep-space and near-Earth spacecraft

operated by NASA/JPL, other NASA centers

(e.g., GSFC), other US government agencies

(e.g., NOAA), and other nations' space

agencies (e.g., CNES, ISAS). And these

spacecraft are beginning to be produced with
shorter lead times.

It would be impossible to support all these

spacecraft with the old system.

PA_,,_ IDL.AN1K NOT FH.,M.E]D
49

• i_i_ :

i_!2!iiii)_i:

3. Tables Save the Day

Spacecraft specifics had to be removed from

the main build-test-delivery cycle.

Text tables presented an opportunity to

isolate mission-specifics from the telemetry

processing software, and thus from much of

the delivery cycle's cost in time and money.
With a software architecture where tables are

clearly read in by the computer only when

the appropriate mission is commanded, table

changes need no software build and little

regression testing.

Three tables are sufficient to encapsulate all

mission specific behaviors of telemetry

processing: spacecraft initialization tables,

rules tables, and format tables.

3.1 Spacecraft Initialization Tables

going to a table driven approach is a loss in

speed because each command must be

interpreted each spacecraft tracking pass.

3.2 Rules Tables

Realtime changes of certain key

configuration parameters sometimes require

changes to other related configuration

parameters. For example, a change of bit

rate may imply changes to frame length,

coding type, and data output format.

Rules tables reconfigure devices and data

output formats when key parameters change.

The current implementation can accept only

data rate as the key parameter because that

is the only key parameter needed by any

existing mission for changes to anything but
format.

The spacecraft initialization table (SIT)

configures devices based on mission-specific

telemetry parameters (subcarrier frequency,

coding type, frame length, Reed-Solomon

interleave depth, etc.). Their format is almost

exactly the same as that used for interactive

Operator Directives (ODs) except for the

addition of comments. Implementation of

these tables was integrated with

implementation of a warmstart file

capability. Both send commands to the

existing front end for interpretation, and so

are easy to implement despite their power.

Example 1 is a SIT table.

3.1.1 Tradeoffs in SIT Table Design

SIT table design is natural, giving ease of

operator use through familiarity and ease of

implementation through use of existing

interpretation facilities. The only loss in

3.2.1 Rules Tables Format

The format of rules tables also uses the

existing operator directive format as much as

possible. The only enhancement is that

these tables have two columns of ODs: key

parameters in the first column, corresponding

ODs to be processed in the second column.

Although the first column is identical in

format to the telemetry bit rate (TBR) OD,

its meaning in context is different. When

the operator enters "TBR 32000" the TGC

reacts by configuring hardware to expect

incoming data to change data rate to 32,000

bits per second (including any commands

specified in the rules table). "TBR 32000"
in the first column of a rules table directs

the TGC to execute the corresponding ODs
whenever a TBR OD is received with a new

bit rate closer to 32,000 than to any other bit
rate in the rules table.

Before the latest DSN upgrade there was no

5O

/ •

] •

i<'i::<P<,:

/•i!!i!L;:;:j

!.Cii>://i

ii/•/<•i:

i: iiJ iiII :

> •

•••H •

• j

7! i!i_

!!<i_%<i¢

i__ i!: •

i_i: <

iiiili<i_

fit_

• ii>

<<i_

!<:/

,ii_

<

• , (

ii_iiii

Example 1. Spacecraft Initialization Table

###
SPACECRAFT: DSPSE

#

Characteristics: GSFC data type

Single channel

MCD coded

NRZ-M to Bi0-L conversion

###
#
PGM DSPSE

OFT1 DSPSE

#
XBBM is internal form of the BBM OD

#
XBBM

#
TBRI

FSUI

FOMI

FLGI

FBTI

FLTI

FSWI

APCI

FES1

MCVI

MLTI

MCAI

uu

128000 C

s
A

P=2048 S=0

IL=I OL-I

IL=2 OL=2

32 EB90146F

D

E
CCSDS
3 3048

MNR 256 2048

DIFDI NM

RSUI D

#
XPRn replaces IGP and USP ODs

#
XPRI D D D D D D

#
PTOI 0 000000

MNOI ACC=0.0 AGN=0.0 DOP=0.0 SCF=0.0 SNR=0.0 TBR=0.0

BBS i_ 9, 2, I0

LBWI M 3

SERI D

SLTI -2.5

SNRI 0.0

SCFI 1700000.0

Input symbol is NRZ-M

PCMI NL

DSAI E

Example 2. Rules Table

#
SPACECRAFT: DSPSEI

DATE CREATED: 09/15/93 - First edition

TBR 125 TSO DSID=ED

TBR 250 TSO DSID=EE

TBR 500 TSO DSID=EF

TBR I000 TSO DSID=F0

TBR 2000 TSO DSID=FI

TBR 8000 TSO DSID=F2

TBR 64000 TSO DSID=F3

TBR 128000 TSO DSID=F4

51

(partial)

!_ 5 < ' 2

corresponding capability. Operators had to

enter all ODs manually every time bit rate

changed.

Example 2 is a rules table.

3.2.2 Tradeoffs in Rules Tables Design

Like SIT tables, rules tables use the same

interface as ODs, making them easy from

both a human and a machine perspective.

Conceptually, rules tables are almost part of

SIT tables. Both are implemented from the

same documents with invariant fields going

to a SIT table while bit-rate dependent fields

go to a rules table. Care is needed on the

part of the table implementor to make sure

all fields go to one or the other and to put

only the needed fields in rules, as these will

override operator-entered commands

whenever bit-rate changes.

3.3 Fon'natter Tablea

Format tables specify the packaging of data

from a_a internal representation to the format

required by the mission. (Formats currently

supposed include 1200. mad 4800-bit

asynch:conous mid frame.-synchroncus blocks

as well as v;wiable-length St,'mdm'd

Formatted Data Units.) In addition to data,

formatted output generally incorporates a

variety of information about processing: bit

rate, sequence number, signal strength, Earth

Receive Time, etc.

3.3.1 Formatting in the Bad Old Days

Before the recent DSN upgrade formatting

was implemented directly in computer

language, with a separate executable overlay

for each supported mission. So every

change to a formatter required an entire

build and delivery, and the computer

language implementation left open the

possibility that typos could create apparently
unrelated errors.

3.3.2 Format Tables

Format tables are much more complex than

SIT or Rules tables. In essence they are

almost a mini-language, but this language is

focused only on the ability to format

telemetry data.

The first part of each table (after a

conventional comment header including

name and change history) is a preamble that

specifies whether the rest of the table will

use 8-, 16-, or 32-bit words mad whether

word and bk counting will number from

zero or one. This makes it easy to translate

any document to a format table.

The rest of the table is divided into event

blocks. Each event block specifies actions

to be taken at a specific event:
when the femnat table is first loaded

when new information on upstream

processing is received
- when new data is received

- when a _._ew output block is started

- when an output block is completed

Within each event block is a series of table

entries. These entries are executed in the

order they are encountered. Generally it is

preferable to order entries within each

section by increasing address of destination

within output data, but sometimes

dependencies among fields make it necessary

to vary this order.

The first column of each entry specifies the

source, the second column specifies the

destination, and the optional third column

52

H

i_! _ i_i_

specifies operations to be performed on the

data.

Source and destination fields can be

constants (source only) (numeric, restricted

ASCII, or symbolic), fields from within the
formatted data block

(/[<start-word>]. <start-bit>:[<word-length>

].<bit-length>/), or named data store fields.

Data stores correspond to formatter

structures. There are structures associated

with each input and output data block, with

status information for display, with the

formatting process, and with upstream

processing information. A few fields are
available for internal use when more than

one operation is needed at a time.

Operations can be simple replacement,

bitwise-or with current contents, floating

point conversions, addition of a constant,

table lookup, or if-style flow control.

Example 3 is a format table.

3.3.3 Formatter Implementation

For reasons of speed, operational software

uses binary frrms of format tables. The

translation from text to binary format is

normally performed when the delivery media

is prepared.

Tables can also be modified and "binarized"

(compiled) in the field if necessary using a
standard text editor.

on each file, so problems are not created

when structures change.

3.3.4 Formatter Tradeoffs

Formatter design was essentially

unconstrained by prior art, leaving many

decisions to the implementer. The two

major considerations were ease of

implementation and ease of use. Ease of use

seems best served by making the format of

the tables as similar as possible to the format

of the documents that specify them. In cases

where document format could not work, ease

of use is best served by similarity to familiar

computer languages.

But with limited implementation effort,

many decisions were made to favor easy

one-pass interpretation. These include

separating out event blocks instead of

allowing pure ordering by address and

placing the optional operation field last.

It is worth noting, however, that the binary

file implementation leaves open the

possibility that a "friendlier" binarizer could

be written, producing the same binary format

and therefor not impacting the formatter
software at all.

It is also worth noting that user-friendliness

is relative. Even the week that might be

required for a new user to implement a new

spacecraft is a great improvement over the

previous "hard-coded" method.

Inside the binarizer, the 'C' preprocessor is

used in a way called Plastic List

Manipulation to allow use of C structure
field names to access those fields from

within tables. The binarizer translates field

names to structure offsets and lengths.

Version checkwords make sure that the

appropriate version of the binarizer was used

4. Difficulties of Working with Tables

Adding table capability to any program

increases its complexity and therefore its

upfront costs.

53

_ !i̧

ii/

Example 3. Format Table

; Formatter Table for mission DSPSE

; The following fields tell the binarizer how to interpret the word.bit

; destination and length fields below. They do not correspond to any fields

; of Out Form.

WORDLENG_H=I6 ; Number of bits in word for dest & length fields below.

FIRSTBIT=I ; 1 or 0, if bits are counted starting from one or from zero

FIRSTWORD=I ; 1 or 0, if words are counted starting from one or from zero

::

on(COND_NEWFORM); Tag meaning following oPerations are to take place when

; this file is first read in as a new format.

; source destination operation (blank => simple copy)

FALSE of.ts last bit ; Timestamp on last bit =

; FALSE => timestamp on

; first bit.

OPS67_FMT of.fmt_type

NO__PAD of.padmode

0 of.pad_pat

ASYNCH of.in_per out

144 of.start bit[0]

; Format type: OPS-6-7,

; OPS-6-8, or SFDU

; Data pad mode: byte mode,

; word mode, or no padding.

; Pattern for data padding.

; Number of input frames

; per output block.

; Bit of start of data field.

; Bit 144 is first bit of word

; i0.

4735 of.end bit[0] ; Bit of end of data field.

; Bit 4735 is the last bit of

; word 296.

CHK NO REMOVE of.chk_symb

TRUE of.use fsw

0 of.numfill

600 cfg.basetranlen

0x627627 /1.1:1.8/

0xll /3.12:5/

; TCA always thinks it's real time.

0x46 /5.1:8/

; Never remove RS check symbols

; Do use synch word in output

; No (nonzero) data filling

; Number of bytes to transmit

; sync code

; Block Format Code.

; Message type code

; 26-meter throughput telemetry

::

on(COND_CONFIG) ; Tag meaning following operations are to take place when

; new configuration data (cfg.*) is received.

destination operation (blank => simple copy)

/2.9:8/ ; Source code

; source

cfg.src code

54

• i_i!i
ii_ •

ilii4!i̧ _
H •

H

iii!_

•Li

i %•

iii̧

•i!¸

ii!il

L

9

• i]̧

Example 3. Format Table (continued)

sap.scn /4.1:8/ ; Spacecraft Number

::

on(COND IN) ; Tag meaning following operations are to take place when

; each input block is received.

::

on (COND_BIT_I) ; Tag meaning following operations are to take place when

; a new output block has been started.

::

on (COND_OUT) ; Tag meaning following operations are to take place when

; all data to be sent has been placed in the outgoing block.

; Hard-coded calculations will determine the out.out dest used here

; from DEST specified above and TSO commands and the--VCID.

out.out dest /3.1:8/ ; Destination code

out.out dsid /4.9:8/ ; Data Stream ID

sap.bsn 0 /5.9:8/ ; Message Block Count

; First three bits of word 6 are flags set to zero. Ignored because all
; fields are zeroed.

out.fill next /6.4:13/ ; Number of telemetry bits in

; data field.

; First two bits of word 7 are flags set to zero. Ignored because all

; fields are zeroed.

; following fields are timestamp of first bit in data field.

out.doy /7.3:9/ ; Day of year

out.msec__day /7.12:1.11/ ; milliseconds of UTC

out.usec msec /9.7:10/ ; microseconds of millisec

; Telemetry data (and filler) words 10-296

sap.bsn_0 /297.1:16/ ; Block Serial Number

; Zero-filled CGF Error fields words 298-300

55

4.1 Documentation

When a new interface is invented for tables,

as for format tables, it must be documented.

The format table documentation, including

examples, index, and descriptions for each

data store field, runs to over 200 pages. The

work of documenting an interface must be

included in the cost of adding table

capability. The size and complexity of the
documentation seems to increase as tradeoffs

are made to simplify the implementation of

tables at the cost of more work in making
tables.

4.2 Speed

The extra level of indirection introduced by

tables carries with it a significant run-time

computational expense. I estimate it at 10x

for formatting header fields but no added

expense in the move of actual data,

averaging out to a 2x to 3x cost penalty.

Current software and hardware can pay this

penalty and still process data at the highest

rate currently needed: 2.2 Mbits/sec. If

higher rates are needed, special hardware

may be needed.

5. Conclusion

DSN has now been operationally using

format tables for nearly three years and SIT

and rules tables for 1 year for all telemetry

adaptation and in that time has successfully
added over a dozen new missions without

any required software changes. The only

modification to the software has been to

accommodate NIMBUS frame stripping,
where most of the data is discarded because

most of the instruments are no longer

functioning. Even this could have been done

with format tables, but would have been too
slow.

In addition, turnaround time for for

implementation of mission-specific changes

from inception to installation has been

reduced by a factor of four.

6. References

Deep Space Network Telemetry Group

Controller Software Operator's Manual.
TDA/DSN No. UG-DOT-5464-OP Rev. A.

NASA Ident No. 23835. May 2, 1994.

Deep Space Network Telemetry Channel

Assembly Software User's Guide. TDA/DSN
No. UG-DOT-5464-OP Rev. B. NASA

Ident No. 23835. July 16, 1993

7. Acknowledgements

The work described in this paper was

accomplished by Telos Corporation under

contract to the Jet Propulsion Laboratory,

California Institute of Technology and

sponsored by the National Aeronautics and

Space Administration.

I would especially like to thank Michael

Stoloff of JPL for his foresight and

encouragement.

Within Telos, this effort benefitted from the

support of Tom Soderstrom and the DSN

telemetry operations expertise of Ron
Holden.

L

H

56

