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Abs_act

Selecting the best option among alternatives is

often a difficult process. This process becomes even more

difficult when the evaluation criteria are vague or qualita-

tive, and when the objectives vary in importance and

scope. Fuzzy logic allows for quantitative representation

of vague or fuzzy objectives, and therefore is well-suited

for multi-objective decision-making. This paper presents

methods employing fuzzy logic concepts to assist in the

decision-making process. In addition, this paper describes

software developed at NASA Lewis Research Center for

assisting in the decision-making process. Two diverse
examples are used to illustrate the use of fuzzy logic in

choosing an alternative among many options and objec-

tives. One example is the selection of a lunar lander ascent

propulsion system, and the other example is the selection

of an aeration system for improving the water quality of
the Cuyahoga River in Cleveland, Ohio. The fuzzy logic

techniques provided here are powerful tools which com-
plement existing approaches, and therefore should be con-

sidered in future decision-making activities.

Nomenclature

AHP

BV

ci-I4

CIF s

DO

IME

JSC

LeRC

Lh

LH2

Lm_x

Lmia

Analytic Hierarchy Process

Best value of a criterion

Methane

Chlorine Tetrafluoride

Dissolved oxygen

Integrated Modular Engine

NASA Johnson Space Center

NASA Lewis Research Center

Final composite index value

Liquid hydrogen

Maximum of final composite index values

Minimum of final composite index values

LO 2 Liquid oxygen

MMH Monomethyl hydrazine

N204 Nitrogen tetroxide

S First-level index value

U Total utility value

UI, Left utility value

U R Right utility value

w Weighting factor

WV Worst value of a criterion

Z Evaluation criterion actual value

lag Mmimizing set

I_M Maximizing set

Engineers and managers are often required to

make decisions on the basis of objectives or criteria which

vary widely in scope and complexity (for example, perfor-
mance, cost and schedule). Adding to the difficulty of the

process is that many of the criteria are by their very nature

vague and difficult to quantify. The decision-maker must

combine the vague criteria with criteria which are known
quantitatively to obtain the best possible alternative.

Without systematic approaches to the process one cannot

be sure that the proper decision has been made.

Recently efforts have used fuzzy logic to assist

in the decision-making process, l's Fuzzy logic is a super-

set of conventional logic which allows for degrees of truth

- truth values between true and false. The concepts of

fuzzy logic become especially useful when the values of

the decision criteria are not only vague but uncertain. An

example of such a case might be the selection of a dis-

posai site for hazardous waste material.5 In this example

the criteria may include transportation of the material, sur-

face water quality, ground water quality, and aesthetics, as

well as other factors. Transportation may be quantified in



termsof number of miles, which may be known with a

high degree of certainty. Surface and ground water qual-
ity may refer to the amount of waste which could run off

the site or leach into the ground, respectively. These fac-

tors may also be quantified, but the uncertainty is large
because of the lack of data on existing systems. Finally,

the aesthetics of the hazardous waste operation is gener-

ally considered qualitative; therefore, the decision-maker

must convert vague linguistic descriptions such as good

orpoor to quantitative rankings. Fuzzy logic methods can

be used for combining criteria which are vague and
uncertain with those which are well-known to assist in the

selection of an alternative.

This paper will present the concepts of fuzzy set

theory, the basis for fuzzy logic, including a description
of the differences between classical and fuzzy set theory.

In addition, the report will describe methods from the lit-

erature and those developed at NASA Lewis Research

Center which use fuzzy logic to assist in the multi-objec-

tive decision-making process. As part of the discussion

on methodology, DECISION MANAGER, software

developed at NASA LeRC to automate the decision-mak-

ing process, will be presented. The fuzzy logic methods

shown here were originally applied to aerospace applica-

tions; namely, the methods have been used to evaluate
rocket engine and space launch vehicle concepts. 1How-

ever, the methods have wide applicability, especially in
civil engineering disciplines. This paper will provide two

diverse examples of the use of the fuzzy logic methods

described here. One example will be the selection of a

space chemical rocket engine for lunar lander applica-

tions, and the other will be the selection of an aeration

system for improving the water quality of the Cuyahoga
River in Cleveland, Ohio.

Fuzzy Set Theory_

Fuzzy logic is based on fuzzy set theory, which
was developed in 1965 by Lotfi Zadeh. 6 In classical set

theory, the basis for most decision-making processes,

objects are defined either as being a member of a set or

not a member. Therefore, mathematically, there are two

values for the degree of membership: 1 (member) and 0

(nonmember). Conventional sets are also known as biva-

lent sets because two values are possible. Fuzzy set the-

ory, on the other hand, declares that everything is a matter

of degree, and sets can have imprecise boundaries. There-
fore, in fuzzy set theory, membership can gradually tran-

sition between membership and nonmembership. Fuzzy
sets are also known as multivalent sets.

The concept of a fuzzy set is best illustrated by
an example. Consider the set of deep lakes, where deep is

a vague or fuzzy term. According to bivalent set theory, a

discrete dividing point is necessary for defining member-

ship. In this case lakes over 40 m in depth might be called

deep, and would have a membership value of 1. All lakes
less than 40 m in depth would therefore be shallow and

hence have a membership value of 0. In a fuzzy set, how-

ever, a lake that is 25 m deep might be called somewhat

deep, with a value of 0.4 for the degree of membership. A
lake 80 m deep would be very deep and therefore have a

membership value of 1. The comparison between these

sets is shown in Fig. 1.

As illustrated in the above example, the concept

of a fuzzy set makes sense when real world situations are

examined. Fuzzy sets become especially useful when

applied to multi-objective decision-making processes. In

most decision-making situations the input data are vague

and contain a high degree of uncertainty. Uncertainty can
be treated with probabilistic methods. 7However, probabi-

listic methods require that the data have a statistical basis,

and that the imprecision is a result of randomness in the

system. Because many of the input variables in a deci-

sion-making process do not have a statistical basis, other

methods are required. In these cases ranges of values are
used to describe the uncertainty. A trapezoidal fuzzy set

can be used to mathematically represent this range. An

example of a trapezoidal fuzzy set is shown in Fig. 2,

which describes the range of values for the purchase price

of an automobile. When buying an automobile we usually

do not have data for the mean price or the statistical vari-
ance. However, we do have a range of values in mind

from previous experience. In this case we would define

prices within the most likely interval ($9,000 to $11,000)

as having a membership value of 1, and prices outside of

the largest likely interval ($8,000 to $12,000) as having a

membership value of 0. The membership value is
assumed to be linear between the most likely and largest

likely values, thus providing the trapezoidal shape. Fuzzy

set theory then allows for manipulation of these fuzzy sets

to obtain the best possible alternative.

The process for selecting an alternative includes

several steps: defining the alternatives and criteria, deter-

mining the importance factors for the criteria, specifying
the raw scores for each alternative with respect to the cri-

teria, and calculating the final scores to rank the alterna-
tives. Two scoring methods employing fuzzy logic

concepts are presented in this paper: arithmetic averaging

and fuzzy set methods. The details of these methods fol-
low.

The first step in the decision-making process is

to define the alternatives and the criteria for evaluating

the alternatives. Because the criteria vary in importance



(for example, cost may be more important than reliability

to the decision-maker), weighting factors must be used to

indicate relative importance. The weighting factors may

simply be selected, or techniques such as the Analytic

Hierarchy Process 3's may be used. In the Analytic Hierar-

chy Process the criteria are compared against each other

systematically. The result is a matrix of paired compari-

sons. By solving the matrix for the eigenveetor of the

maximum eigenvalue, the weighting factors are calcu-

lated. Examples of this technique are provided in refer-
ences 1, 3, 5, and 8.

Once the alternatives and criteria have been

determined, the trapezoidal fuzzy sets are specified which

give values of the criteria for each alternative. As dis-

cussed previously, these fuzzy sets characterize the uncer-

tainty in the criteria values. Note that if the trapezoid is

reduced to a single vertical line, no uncertainty is present

and a crisp number results. Because the units of the crite-
ria values, or "raw scores," are different, the raw scores
must be transformed into an index value to allow for

direct comparison, as described in references 1-4. This

transformation normalizes the fuzzy sets in relation to the
best and worst values for each criterion. For each crite-

rion value, Z, the first-level index value, S, is obtained as

follows:

If Best Value (BV) > Worst Value (WV):

S = 1 (Z > BV)

S = (Z - WV)/(BV - WV) (WV < Z < BV)

S=0 (Z <WV)

If Best Value (BV) < Worst Value (WV):

S = 1 (Z < BV)

S = (Z - WV)/(BV - WV) (BV < Z < WV)

S = 0 (Z > WV)

For example, if reliability is the criterion, higher
values are better than lower values and the first set of

equations is used. If, on the other hand, cost is the crite-
rion, then lower values are better and the second set of

equations is used. Because there are four values which
define the trapezoidal fuzzy set (corresponding to the

most likely and largest likely intervals), there will be four
index values for each criterion. Figure 3 illustrates this

transformation for the purchase price of an automobile.

For example, the first-level index values of 0.3, 0.4, 0.6,

and 0.7 correspond to prices of $12000, $11000, $9000,

and $8000, respectively. The best and worst values can be

defined using the largest and smallest values of all the

alternatives ($12000 and $8000, for example), or these
values can be chosen to fall outside of these bounds (for

instance, a best value for price could be $5000).

Once the first-level index values have been obtained, the

final composite index values must be determined for each
alternative. Two methods can be used to obtain these final

index values: arithmetic averaging and fuzzy set theory.
In arithmetic averaging TM the ftrst-level index values for

each criterion are multiplied by the corresponding weight-

ing factors and then added together. Mathematically this

is given as follows:

L h = __wiS i

Four values will result for the final composite index value

for each alternative, corresponding to a fuzzy set.

Because the arithmetic averaging method may

provide results which are dominated by a few high scores
in the selection criteria, 1 another method was developed

at NASA LeRC to determine the final composite index
values. In this method, based on fuzzy set theory, 5'9 the

first-level index values axe raised to the power of the

weighting factors to give weighted rankings. The

weighted scores give the degree to which the alternative
meets the criterion. Then, according to fuzzy set theory,

the minimum of the weighted scores is used for the final

composite value. The minimum represents the intersec-
tion of the sets, because all the criteria are necessary to

the final decision. Mathematically, the composite index

value is represented as follows for the fuzzy set method.

As in the arithmetic averaging method, four values will

result representing the four corners of the trapezoidal

fuzzy set.

Because the fuzzy sets which result from the

final composite index values will overlap, a method is

required to obtain a discrete score to rank the alternatives.
One method uses the maximizing and minimizing set con-

cepts of fuzzy logic as shown in references 1-4. This

method is illustrated in Fig. 4. The maximizing set is
defined as follows:

laM = (Lh - Lmin)/(Lmax - Lmi n) Lmin < L h < Lma x

I.tM = 0 otherwise

The maximizing set intersects the trapezoidal fuzzy set
for each alternative in two places, as shown in Fig. 4. The

right utility value, U R, is the largest of these two intersec-



tion values. In a similar manner the minimizing fuzzy set
is calculated as follows:

lag = (Lh "Lmax)/(Lmin - Lmax) Lmin < Lh < Lma x

= 0 otherwise

The value for the left utility value, U L, is then
determined from the maximum of the two intersection

points between the minimizing set and the fuzzy set for

the alternative. The ranking value, or total utility value,
for each alternative is then calculated as follows:

UR+ I-U L
U=

2

Because the decision-making calculations may

become tedious, especially if the analysis includes many

alternatives and criteria, software was developed at

NASA LeRC to automate the process. This software,

called DECISION MANAGER, was developed for a

Microsoft Windows operating environment and runs on a

system with a 80386 or higher microprocessor. The soft-

ware currently has the capability for 16 alternatives and
28 criteria. The initial screen layout for DECISION

MANAGER is shown in Fig. 5.

To begin an analysis in DECISION MANAGER

the user selects the Define Alternatives option on the

screen by clicking on the button with a mouse. A new

screen will then be displayed which allows the user to
enter a 10-character name for each alternative followed

by a detailed description of that alternative. When the

user has finished defining all the alternatives the criteria

must then be specified. This is done by clicking on the
Define Criteria button. Again, a new screen will be dis-

played where the user enters the name of each criterion,

the criterion description, best score, and worst score. In
addition, the user can choose to enter a weight for each

criterion or use the Analytic Hierarchy Process to deter-

mine the weights. Once the alternatives and criteria are

defined, the raw scores are entered by the clicking on

Input Raw Scores for Alternatives after choosing the Raw
Score Type on the initial screen. DECISION MANAGER

allows for single values, ranges of values, or normal prob-

abilistic distributions for the raw scores. For the Range of

Values option most likely ranges and largest likely ranges

are input, whereas for the Normal Distribution option the
mean and standard deviation are entered.

Finally, after the alternative, criteria, and raw

scores have been input, the user can determine the pre-

ferred alternative by using the arithmetic averaging or the

fuzzy set scoring method. By clicking on either of the

buttons a new screen showing the preferred order of alter-

natives will be displayed. DECISION MANAGER also

allows the user to see the effect of changing the weighting
factors on the criteria by displaying the preferred order of

alternatives when all the criteria have the same impor-

tance. In addition, when the fuzzy set method is chosen

DECISION MANAGER displays the limiting criterion

for each alternative. Once the analysis is complete the

user may choose to save the data by selecting the File

menu on the initial screen and choosing the Save As

option.

Exam_vie Application: Lunar Lander Propulsion System

Concepts are currently being considered for the
ascent propulsion system of a lunar lander vehicle. In a

trade study performed by NASA Johnson Space Center in

1993, fourteen options were examined using thirty-one

different criteria, l° The JSC study employed the Analytic

Hierarchy Process to select the best propulsion system. In

the AHP method used in the JSC study, paired compari-

sons were made not only to determine the weighting val-
ues of the criteria, but also for comparing options against

each other. Details of this technique are provided in refer-

ence 8. In the present study fuzzy logic methods were

employed to determine the best alternative among the

fourteen options, and these results were compared against

those obtained from the original JSC study. In the present
study only the top 15 criteria were used in the evaluation

to simplify the example. In addition, the present study
accounted for uncertainty in the criteria values; uncer-

tainty was not considered in the original analysis.

The lunar lander ascent propulsion options are

shown in Table 1 and the selection criteria are provided in

Table 2. The propulsion options were based on propellant

type and configuration (such as pump-fed versus pres-

sure-fed). The relative weights for the selection criteria
were obtained from reference 10. The raw scores for the

alternatives are provided in Table 3. For quantitative cri-
teria such as numbers of components, number of opera-

tions, number of instrumentation locations, abort response

time, and number of subsystems (criteria A-D, G, H, I,

O), ranges of values were used on the basis of data pro-

vided in reference 10 and judgements made by this
author. The values for other criteria were obtained

through qualitative assessments in the original study. For
instance, hardware readiness was rated on a scale of 1 to

9, with 9 meaning excellent. In the current study no uncer-

tainty was considered for these qualitative criteria, and

only the discrete values from the JSC study were used.

Therefore, the present study combined uncertain quantita-
tive data with discrete qualitative data.

The results from the analysis are provided in

Table 4. The results of the arithmetic averaging method



showed some differences in comparison to the original

JSC study. The "CIF5/N2H 4 Both Stages" system was

preferred in the arithmetic averaging method, whereas

"N204/MMH" system was preferred for the Analytic
Hierarchy Process. In addition, the arithmetic averaging

method showed the "LO2/LH 2 Pressure" option to be

much higher in the order of preferences. Although the
order was somewhat different, both methods resulted in

the same top three alternatives. Differences in order were

primarily the result of the method used to convert the raw

scores to index values. The AHP uses paired comparisons
between criteria values to obtain these index values,

whereas the arithmetic weighting method normalizes the
raw scores on the basis of best and worst values. The

inclusion of uncertainty in the raw scores also affected the
final score; the AHP is limited to discrete values.

When the fuzzy set scoring method was used,

the "LO2/LH 2 Pressure" option gave the highest final
score. Examination of the data showed that the number of

flight operations was the limiting factor (the factor which
gave the minimum score) for most of the options in deter-

mining the final scores by using the fuzzy set scoring

method. Because this criterion had a high weight relative

to many of the other factors, the fuzzy set scoring method

emphasized this criterion. Although the "CIFs/N2H 4 Both

Stages" system had fewer flight operations than the "LO2/

LH 2 Pressure" system, the ascent engine hardware readi-
ness criterion was the limiting factor for the "CIF5/N2H 4

Both Stages" system.

Examining the results in Table 4 clearly shows
that different methods can provide different results. In

these cases the decision-maker must examine the infor-

ma.tion provided by each method. For instance, the fuzzy

set scoring method uses the minimum values of the

weighted score, thus emphasizing the attributes which can
hinder future development. This method, however, does

not include all attributes as does the arithmetic averaging
method. As shown in reference 1, the arithmetic averag-

ing method emphasizes the attributes which are good, but

this method can also ignore attributes which can nega-

tively affect design. Therefore, in making a decision

under uncertainty, both arithmetic averaging and fuzzy

set scoring methods should be used.

Example Application: Cuyahoga River Aeration Options

Recent studies have been conducted in the

Cuyahoga River in Cleveland, Ohio to examine the

impairments to the use of the river, it One key finding of
these studies was that low levels of dissolved oxygen

(DO) exist in the Cuyahoga River. This problem is most

severe in the navigation channel, the last 5.6 miles of the

river before it empties into Lake Erie. Low levels of dis-

solved oxygen can lead to reduced quantity and variety of

aquatic life. Several factors enter into the low DO levels,
including periodic dredging of the river to allow ship nav-

igation. Because of the increased depth of the river fol-

lowing dredging, the Cuyalaoga River flows at a rate
slower than what would occur naturally, thus reducing the

natural aeration in the river. Therefore, dredging is seen

as a significant factor in the low oxygen levels in the
Cuyahoga River. Options are currently being examined to

improve the dissolved oxygen levels in the navigation
channel.

One potential option for increasing the oxygen
levels is artificial aeration of the navigation channel. On

the basis of this previous work and the physical character-
istics of the Cuyahoga River, submerged aeration appears

to be the the most feasible near-term option for the reaera-
tion of the river. 12'13In this study five submerged aeration

systems were examined by using fuzzy logic techniques

to determine the optimum system for the Cuyahoga River.

Diagrams of these systems are provided in Fig. 6. Both
fuzzy set and arithmetic averaging scoring methods were

used to assess these systems.

The criteria for evaluating the aeration systems

are provided in Table 5. The weighting factors for the cri-
teria were obtained from a previous study which exam-

ined aeration options without consideration of

uncertainty. 14The raw scores for each of the options are
shown in Table 6. The transfer efficiency, initial cost, and

operating cost were considered to be quantitative but

uncertain. Estimates of these parameters were obtained
from the literature. 12'13'15 The other criteria were qualita-

tive in nature. For instance, the coarse and fine diffusers

have low potential for interfering with navigation, and
therefore receive a score of 0.8, whereas the sparge tur-

bine aerator will have extreme interference with naviga-

tion and therefore receive a score of 0. (It should be noted

that in any evaluation where values are assigned to lin-

guistic descriptions, the score of zero should be reserved
for extreme cases, such as in the case of the sparge turbine

aerator. A score of zero implies that the alternative cannot

meet the minimum requirements to be considered in the

evaluation.)

The results of the analysis are provided in Table

6 for both the arithmetic averaging and the fuzzy set scor-

ing methods. As shown in the table, the preferred option

appeared to be the coarse diffusion aeration system. The

results did not depend on the scoring method, giving high

confidence in the preferred order of alternatives calcu-

lated. In the fuzzy set analysis the limiting criteria was the
transfer efficiency for the coarse bubble diffuser, the

operating cost for the static mixer and fine bubble dif-

fuser, and navigation interference for the jet aerator and



sparge turbine aerator. Note that although the analysis

showed that the scoring method did not affect the results,

the criteria weights will impact the preferred order of

selection. If all the criteria are assumed to have equal

weights, the fine bubble aerator and jet aerator will pro-
vide the highest score, followed by the coarse bubble dif-

fuser, static mixer, and sparge turbine aerator. Therefore,

the selection of the aeration system is highly sensitive to

the relative importance of the criteria in this case.

Concluding Remarks

A study was performed to demonstrate the use of

fuzzy logic techniques to assist in decision-making under

uncertainty. Such situations occur often in engineering

applications, especially in cases where a statistical data-
base does not exist for the criteria or where the criteria

themselves are qualitative in nature. This paper described

methods from the literature and those developed at NASA

Lewis Research Center to assist in selecting the best alter-

native when the inputs are vague or qualitative. Examples

were provided to illustrate the use of the methods not only

for aerospace disciplines but also for civil engineering

applications. In addition, the DECISION MANAGER

software developed at NASA Lewis Research Center was
described. DECISION MANAGER automates the deci-

sion-making process, allowing for rapid comparison of
alternatives.

The fuzzy logic techniques described by this

report provide powerful tools for the evaluation of vari-

ous alternatives under uncertainty. Fuzzy logic allows for

quantifying vague or qualitative criteria, a common

occurrence in engineering evaluations. It is important,
however, in any evaluation that multiple techniques be

used in arriving at a final decision to assure that the best

decision has been made. Therefore, two scoring methods

were described in this report: arithmetic averaging and

fuzzy set methods. As demonstrated in the examples, dif-

ferences in the order of alternatives may occur when the

results of the scoring methods are compared, providing

the decision-maker with further insight into the selection

process. The techniques illustrated by this report do not

replace engineering judgement. However, the fuzzy logic

methods described here provide a systematic approach to

the often difficult process of decision-making in an uncer-
tain environment.
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TABLE 1.- LUNAR LANDER ASCENT PROPULSION oI:rITONS.

Number Description

1 N204/IVIMI-I Baseline

2 Lo2/_2n4

3 ClF _q'2H4.

4 N204/MMH Optimized

5 LO2/CH 4 Pressure

6 N204/MbfH Pump

7 LO2/CH 4 Pump

g LO2/LH 2 1:barnp

9 LO2/LH 2 Single Stage

10 LO2/'LH 2 ltA Stage

11 CIFs/N2I-I 4 Both Stages

12 LO2/LH 2 IME 2 Stage

13 LO2/LH 2 Pressure

14 LO2/LH 2 IME 1% Stage

TABLE 2.- LUNAR LANDER ASCENT PROPULSION SELECTION CRITERIA.

Designation Criterion Description Weight

A Total number of components .1148

B Number of abort operations .0987

C Number of flight operations .0987

D Number of instrumentation locations .0963

E Ascent engine hardware readiness .0894

F Descent engine hardware readiness .0894

O Number of return engine components .0608

H Number of unique components .0608

I Abort response time .0573

J Descent stage launch operations index .0470

K Ascent stage launch operations index .0470

L Redundancy .0390

M Readiness of ascent pressurization/tank/feed .0344

N Readiness of descent pressurization/tank/feed .0344

O Number of subsystems .0321



TABLE 3.- RAW SCORES FOR LUNAR LANDER PROPULSION OPTIONS.

Option

1 2 3 4 5 6 7

Most Lsrgest Most Largest Most Largest Most Ltagest Most Largest Most Largest Most Largest
Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely

Criterion Interval Interval Interval Interval _ Interval Interval Inm_al Inte_al Interval Interval l.ntervsl Interval Interval

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

490-542 464-568 447-494 423-517 437-483 414-506 437-483 414-506 456-504 432-528 658-728 624-762 666-736 631-771

3-5 3-5 4-6 4-6 3-5 3-5 3-5 3-5 4-6 4-6 7-9 7-9 7-9 7-9

62-66 60-68 67-71 65-73 62-66 60-68 62-66 60-68 69-73 67-75 83-87 81-89 83-8'7 81-89

211-233 200-244 180-200 171-209 175-193 166-202 175-193 166-202 191-211 181-221 263-291 249-305 278-308 264-322

9 9 3.75 3.75 3.25 3.25 4 4 3.75 3.75 3.5 3.5 3.6 3.6

7 7 7 7 7 7 7 7 7 7 7 7 7 7

133-147 126-154 95-105 90-100 86-95 81-99 86-95 81-99 105-116 99-121 307-339 291-355 314-3481 298-364

104-114 98-120 115-127 109-133 104-114 98-120 104-114 98-120 111-123 105-129 124-137 117-143 122-134 115-141

0-.5 0-.5 0-.5 0-.5 0-.5 0-.5 0-.5 0-.5 0-.5 0-.5 1.3-L7 1.3-1.7 1-1.5 1-1.5

.44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44 .44

.66 .66 .59 .59 .65 .65 .66 .66 .62 .62 .61 .61 .51 .51

.644 .644 .644 .644 .644 .644 .644 .644 .644 .644 .644 .644 .644 .644

7 7 7 7 3.25 3.25 7 7 6.3 6.3 7 7 6.3 6.3

7 7 7 7 7 7 7 7 7 7 7 7 7 7

10-12 10-12 11-13 11-13 10-12 10-12 10-12 10-12 11-13 11-13 11-13 11-13 12-14 12-14

Option

8 9 10 I1 12 13 14

Most Largest Most Largest Most Largest Most Largest Most Largest Most Largest Most Largest
Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely Likely

CIjterion Interval Interval Interval Interval Interval Interval Interval Imerval Interval Interval Interval Interval Interval Interval

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

714-790 677-828 410-454 389-475 418-462 396-484 216-238 204-250 368-406 348-426 442-489 419-513 262-290 248-304

11-13 11-13 7-9 7-9 6-8 6-8 3°5 3-5 6-8 6-8 5-7 5-7 7-9 7-9

88-92 86-94 87-91 85-93 88-92 86-94 24-28 22-30 85-89 83-91 56-60 54-62 84-88 82-90

291-321 275-337 198-218 187-229 198-218 187-229 90-100 85-105 280-310 266-325 211-233 200-244 205-227 194-238

7 7 4.8 4.8 4.8 4.8 3.25

7 7 9 9 9 9 3.25

363-401 344-420 346-382 328-400 357-395 338-414 86-95

107-119 102-124 76-84 72-88 82-90

•5-1.5 .5-1.5 0-.5 0-.5 1-1.5

.44 .44 .42 .42 .41

.48 .48 .71 .71 .75

.644 .644 .085 .085 .085

7 7 7 7 7

7 7 9 9 7

14-16 14-16 6-8 6-8 6-8

3.25 2.1 2.1 4 4 2.1 2.1

3.25 2.1 2.1 7 7 9 9

81-99 172-190 163-199 71-79 68-83 146-162 139-169

77-95 61-67 57-70 91-101 86-106 103-113 9%119 64-70 60-74

1-1.5 0-.5 0-.5 1-1.5 1-1.5 0-.5 0-.5 1-1.5 1-1.5

.41 .63 .63 .58 .58 .44 .44 .59 .59

.75 .65 .65 .6 .6 .59 .59 .78 .78

.085 .644 .644 .644 .644 .644 .644 .085 .085

7 3.25 3.25 3 3 7 7 3 3

7 3.25 3.25 3 3 7 7 6 6

6-8 7-9 7-9 11-13 11-13 10-12 10-12 5-7 5-7



TABLE 4.- PREFERRED ORDER OF LUNAR LANDER PROPULSION ALTERNATIVES.

Analytic Hierarchy Process Fuzzy logic/ Fuzzy logic/

(Original JSC Study) Arithmetic averaging scoring Fuzzy set scoring

Option Score Option Score Option Score

N204/MMH Optimized .756 CIFyrN2I-I4 Both Stages .904 LO2/LH 2 Pressure .963

N204_ Baseline .739 N204/MMH Baseline .826 CIFs/N2I- _ Both Stages .897

ClFs/N2H 4 Both Stages .733 N204/MMH Optimized .755 N204/M2vlH Baseline .881

CIFs/N2t-/4 .693 LO2/LI-I 2Pressure .698 N204/MMH Optimized .881

LO2/_2H 4 .653 CIFytN'2H4 .692 CIFs/N2H4 .866

IME LO2/LH 2 1½ Stage .595

LO2/CH4 Pump

LO2/NoH4 .674

LO2/LH2 Pump

LO2/N2H 4 .801

LO2/LH 2 1½ Stage

LO2/CH 4 Pressure .580 LO2/CH 4Pressure .652 LO2/CH4 Pressure .766

LO2/LH 2 Pressure .552 LO2/LH 2Single Stage .568 N204/MMH Pump .433

LO2/LH 2 Single Stage .515 IME LO2/LH 2 1½ Stage .520 LO2/CH4Pump .433

LO2/LH 2 1½ Stage .481 LO2/LH 2 1½ Stage .466 IME LO2/LH 2 1½ Stage .400

N204/MMH Pump .436 N204/MMH Pump .213 IME LO2/LH 2 2 Stage .366

LME LO2/LH 2 2 Stage .420 LO2/CI-I 4 Pump .196 LO2/LH 2 Single Stage .289

LO2/LH 2 Pump .407 IME LO2/LH 2 2 Stage .187 LO2/LH 2 Pump .246

.350 .176 .246

TABLE 5.- AERATION SYSTEM SELECTION CRITERIA.

Weighting
Criterion Factor

Transfer Efficiency .091

Initial Cost .212

Operating Cost .212

Clogging Potential .152

Navigation Interference .273

Mixing Capability .030

Icing Potential .030



TABLE 6.- RAW SCORES FOR AERATION SYSTEM OPTIONS.

Criterion

Transfer eft. 0b/hp-hr)

Initial Cost ($/1000)

Operating Cost ($/1000)

Clogging Potential

NavigationInterference

Mixing Capability

IcingPotential

Coarse

Most L_
L_b, Likety
lateral lamrval

.9-I.1 .7-1.2

200-300 150-500

120-180 100-220

.5 .5

.8 .8

.5 .5

1 I

Fine

Most Largest
L_.ty L_ely

Interval Interval

1.6-2.0 1.4-2.5

200-300 150-500

500-600 400-700

.2 .2

.8 .8

.5 .5

1 1

Option

Static

Most Largest
L_ty L_ty

Interval Interval

.9-1.1 .7-1.2

200-300 150-500

500-600 400-700

1 1

.5 .5

.5 .5

.8 .8

Sparge Jet

Most La_ost Most Largest
Likely Likely Likely Likely

Int_'wl Interval Intefwl Intc_rval

1.2-1.5 1-1.7 1.6-2.2 1.4-3

200-300 150-500 550-700 400-800

500-600 400-700 150-300 100-400

.5 .5 .8 .8

0 0 .2 ,2

.8 .8 .8 .8

.5 .5 .8 .8

TABLE 7.- PREFERRED ORDER OF AERATION SYSTEM OPTIONS.

Fuzzy logic/ Fuzzy logic/

Arithmetic averaging scoring Fuzzy set scoring

Option Score Option Score

Coarse .883 Coarse .973

Static .662 Static .915

Fine .623 Free .887

Jet .468 Jet .734

Sparge .213 Sparge .000
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Figure 1.- Comparison of a classical set with a fuzzy set for the set of deep lakes.

Membership

function

0 I I I

7000 8000 9000 10000

Most likely interval

I I I I I 1

11000 12000

Largest likely interval

Purchase price, $

Figure 2.- Trapezoidal fuzzy set for automobile purchase price.
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1.0

.7

.6

.4
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0
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Figure 3.- Example of transforming raw score to first-level index value.

Membership
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O Left utility value, U L

• Right utility value, UR

la_ First alternative Second alternative Third alternative

_tM

Lmin Lma x

Final composite index value, L h

Figure 4.- Ranking method of fuzzy sets.
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Figure 6.- Aeration system options.
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