
(!/i:/i? !'!

i Q ,x

" ';23 N95- 17538

iii./ii_:/ _i:

....i: ::.:_::_•":"•'" i::3:,:¸ :;._

A SOFTWARE ARCHITECTURE
FOR AUTOMATING OPERATIONS PROCESSES

KEVIN J. MILLER

._/ [c:: it -.._..:_¢

/ '

Operation Engineering Lab
Jet Propulsion Laboratory, MS 301-345

California Institute of Technology
4800 Oak Grove Drive

Pasadena, California 91109-8099

}

• _:i_ _ __

ABSTRACT

The Operations Engineering Lab (OEL) at
JPL has developed a software architecture
based on an integrated toolkit approach for
simplifying and automating mission
operations tasks. The toolkit approach is
based on building adaptable, reusable
graphical tools that are integrated through a
combination of libraries, scripts, and system-
level user interface shells. The graphical
interface shells are designed to integrate and
visually guide a user through the complex
steps in an operations process. They provide
a user with an integrated system-level picture
of an overall process, defining the required
inputs and possible outputs through
interactive on-screen graphics.

The OEL has developed the software for
building these process-oriented graphical user
interface (GUI) shells. The OEL Shell
development system (OEL Shell) is an
extension of JPL's Widget Creation Library

(WCL). The OEL Shell system can be used
to easily build user interfaces for running
complex processes, applications with
extensive command-line interfaces, and tool-

integration tasks. The interface shells display
a logical process flow using arrows and box
graphics. They also allow a user to select
which output products are desired and which
input sources are needed, eliminating the
need to know which program and its
associated command-line parameters must be
executed in each case. The shells have also

proved valuable for use as operations training
tools because of the OEL S hell hypertext help
environment.

The OEL toolkit approach is guided by
several principles, including the use of ASCII

text file interfaces with a multimission

format, Perl scripts for mission-specific
adaptation code, and programs that include a
simple command-line interface for batch
mode processing. Projects can adapt the
interface shells by simple changes to the
resource configuration file. This approach
has allowed the development of
sophisticated, automated software systems
that are easy, cheap, and fast to build.

This paper will discuss our toolkit approach
and the OEL Shell interface builder in the

context of a real operations process example.
The paper will discuss the design and
implementation of a Ulysses toolkit for
generating the mission sequence of events.
The Sequence of Events Generation (SEG)
system provides an adaptable multimission
toolkit for producing a time-ordered listing
and timeline display of spacecraft commands,
state changes, and required ground activities.

The multimission SEG software is easily
adapted and OEL Shell templates are built to
meet different mission requirements. The
SEG system was adapted in a unique way for
the Ulysses mission since the spacecraft does
all commanding in real time. The Ulysses
SEG toolkit allows a user to interactively
build commands on a timeline display in
spacecraft event time and then the system
automatically derives required ground events,
builds a mission sequence of events listing,
and outputs a space flight operations
schedule.

INTRODUCTION

The Operations Engineering Lab (OEL) at
JPL has developed a generic set of tools for
Sequence of Events Generation (SEG) that
have been adapted to many of the current

A-_ _._ _T FKA_F'J 729

';!<ii_, :/• /

i _ :i_;!; ;':i !

?i :_"i_ili_i_: i

iiii i'iii! i

iiiiii_i !ii_-

i_ : <>i;_ _

il

i!>, /ii

flight projects. The toolkit includes what-
you- see-is-what-you-get (WYSIWYG)
editors for the Sequence of Events (SOE),
Space Flight Operations Schedule (SFOS),
and Deep Space Net Schedule (DSNS), a set

of servers to enhance the Per1 language which
is used to generate the SEG products, and a
user-configurable graphical user interface
(GUI) to control the SEG process. All of the
SEG interfaces are text files.

ISSUE DATE: 06/27/94 - 12:44

PDT: 1 2 3
TUESDAY _ =

JUNE 28,1994
179-180

UTC:7 8, _. 1.0
RTLT : 1511_ 58_

VOYAGER 1

FDSL : 11AF

UCBL : AO1B

TWNC : ON
SB : OFF XB : LOW
PYR : 051.10/25
GYROS : OFF

FDS MODE

XB DATA RATE (MI)

31

HPTXR
DSN COVERAGE

32

HPTXR

RTLT : 1 lh 43m 289

VOYAGER 2

FDSL : 11AF

CCSL : 8021
TWNC : ON

SB : OFF XR : LOW
PVR : .05/.I 012_
GYROS : OFF

FD$ MODE

XD DATA RATE (MI)

VOYAGER COVERAGE

NOTES

r-----i SFO SIAl 06

11 12 13 14 15

= J 1200 _RTLT=I_h 23m_6_

J_. 1157 PLS MOD OFF

I 159 i 1200 PWS/RH

,,J. 12OI PLS MOD ON

18= 19 202 21¢ 22 29

16 17 18 19 20 21 22 23 O I 2 3 4 5 6
I I I I I I t I J 0000 _TLT= _,_h 23_iI 6_ / / t

1159

CR-ST CR-ST

160 (32) 160{32)

}.-10735 14 [D] 003_ [- 12 [D]- -.12 [Dl 10720-1130 1955 t" 61 [DI]o055

1Hs F 42 tD) -11540

ICOO _-....................... _s [o} 12_45

00_o F-s5 [D] - qo_so

J 1200 RTLT=I I h 43m 32_

._ 0757 SLEW-) HELLO-4
113711137 PWS/RH
1148= = DTR MAINT 11714

t 2501- PLSCAL -I 1433
1250 I- - - - MACCAL - - - _ 1553
1250 _-.... PESC_L] 1610

171911719 TAPPOS

1137

GST_y773 1611
UV-5A

16o(3z) J

J 0000 RTLTol th 43m 345

-I_ I_37 SLEW->HELIO-5

UV-SA

B00(Be)

F............... VGR................ I
[1] SIC 32=GS-48 @ 1137 XB=2.SK(41) NOT RECOVERABLE
[2] S/C 31=GS-4B @ 1159 XB=2.RK(41) NOT RECOVERABLE

UTC: ; _ _ 110 lit 112 I I I I l I I I I I I I I t I13 14 15 16 17 18 19 20 21 22 23 ¢_ 1 _ _ 4 5 6

Figure 1. Voyager SFOS

The editors are generic object-oriented
programs that display, edit, filter, and
reformat the SEG products, but do not
interpret the data. The editors are X
Windows / UNIX programs written in C.
The same editors are used by all projects.
Rather than writing MSDOS or Macintosh
versions of the editors, we export files that
may be read with most MSDOS or Macintosh
tools.

The SEG process for most missions is to take
the spacecraft sequence file, the Deep Space
Network (DSN) allocations and view periods
files, and the light time file, and generate the
SOE, SFOS, and DSN keyword files.
Simply, SEG integrates the spacecraft and

ground schedules in to a unit. The spacecraft
sequence file is generated far in advance,
does not include real time commands, and is
often based on out-of-date DSN allocations.

The SOE, SFOS, and DSN keywords files
will contain more accurate ground
information, and are used by the Mission
Control Team and the Spacecraft Teams to
schedule ground activities. In addition all
SEG products use ground times for both

ground and spacecraft events.

We chose to write our generating software in
Perl since it is a very powerful interpreted
language designed for processing text files.
We also did not want to write a new

language. Since the delivered executable is

730

i_!_¸i ¸¸ /:

;:i_:!iii!•i!•¸I},_

.;• :i 5:,

7¸¸¸¸:¸i i: _/

_i!i_i :_iiil _i__

,_i _

:} •

/, iii:ix

i!i/il);:

i _i_ :" :;

?ji

:_i>_ "v

also the source code, it is reasonably easy for
the Mission Control Team to maintain the

SEG adaptation. Perl has only two
elementary data types: strings and floating
point numbers, so additional servers were
written in C to manipulate triggers, time-
dependent state variables, time conversions,
and spacecraft command string processing.
The parent Perl script includes a Perl library
that automatically starts up the server process
and sets up a communications channel
between the parent Perl script and the server
similar to the Remote Procedure Call (RPC)
mechanism. The server functions are then

invoked with simple Perl function calls. It is
possible to compile new functions directly
into the Perl language, but the server model
was chosen since it simplifies configuration
management on the operations workstations,
a new version of Perl may be installed
without having to link in any SEG code, and
in fact, the servers are not even tied to Perl.

The final component of the SEG toolkit is the
OEL Shell. This is a user configurable GUI
that lets the user gather input files, specify
output files, and selectively run portions of
the generating process and the SEG editors.
OEL Shells have been built for several

projects' SEG processes

THE OEL SHELL

The OEL Shell is a compiled program based
on the X11 release 5 windowing system, the
X toolkit (Xt), the Motif Widget set, and
David Smyth's Widget Creation Library
(Wcl) [1]. The intent was to provide a shell
that would allow the user to enter UNIX

commands with parameters from a simple
Motif interface. The interface is configurable
by the user by modifying the resource file.
Several copies (which should in fact be links)
of the compiled program may be available on
the system. The appearance of these shells is
determined by the program's name and its
corresponding resource file. Since the user is
encouraged to modify the resource file, and
create one's own shells or enhancements to

existing shells, some knowledge of Motif
widgets and the resource database is
prerequisite.

From a user's perspective, the OEL Shell
consists of a series of push buttons, text
entry areas, and toggle buttons arranged on a
work area or control panel (one or more
Motif drawing areas). Pressing one of the
push buttons causes a UNIX program to
execute. This program may be another Motif
application or a script without a graphical
user interface. The work area provides text
entry areas for the user to enter command line
arguments for the program. Toggle buttons
correspond to UNIX command line options.

Below the panel is a scrolling message area
which displays any output messages from the
executing program or script. In addition, the
actual UNIX command created from the push
button, text, and toggle buttons may
optionally be displayed here. If a text widget
is used for file input, it will generally have a
Select and an Edit push-button located
nearby. The OEL Shell does not need to

open any user files, however the user may
wish to browse through the file hierarchy
with the Motif File Selection Dialog.

To use the File Selection Dialog, choose the
Select button near the file text that you want,
and the File Selection Dialog will appear.
The OK button will cause the selected file

name to be copied to the text entry area in the
control panel that last had focus. You can
focus on a text widget (move the mouse
cursor over the text widget, and press the left
mouse button) and then hit the OK button.
Unlike other Motif programs written in the
OEL, this File Selection Dialog is non-modal.
You may leave it up while you work with the
main window. The OK button does not

unmanage the dialog, so you can use it to fill
filenames into several text widgets. The
Cancel button will remove the dialog. The
Help button will display help text for this

dialog.

The Edit buttons will bring up an editor,
which the user may choose in the resource
file, to view the file specified by the contents
of the currently selected text widget. The
Exit button will cause the shell to terminate.

The shell also includes a Help button which
is user configurable. This will pop up a
single pane of help text. It is intended that

731

%ii%!i_!i_I!!ii

i 12 L <: • _-

!!iiiil
" i_{i '! "_i

<<i' •
< <:_ • •

i<

_ b _

!!i....

i _ , i

; i_

< i_ •

<i -> i¸

u /!•

k" 7 -

?

: iii>:

/

the designer of an OEL Shell also attach help
to each widget in the work area. You may
obtain help on any button or text field in the
work area by selecting that object and then
pressing the Help key. The default Help key
for Motif application is the F1 key. To obtain

help on a push button without activating the
button, move the mouse cursor off the button
until the button no longer appears to be
pressed. You may then release the mouse
button without any activation.

=1 Galilee $EG Flow Control

Working DW. -/homefliorse/kevin/E3.0/demo

I*lu

Sequence ID: lej ^ j

InltJal SIC Slate file:

B I,-o,oj .st.t-fol
NAV Hght lime Fde:

B ba'lt'liti .,ll1
SEQ Sequence of Evenls File:

' B Iata/sef/eJOSdd.sef] rl Expand S/C Sequonce

Ground THgge_s Fdes:

@ F1 ight
Cogtmand Table:

@ Phase 1

lEdit State FilJ lEdit Tri99er File I

Rtm $0E Editor" l

I'IGenerate DSN K_d_ords _ _

JEdit Defaults Filel LPrint L°9 FileJ _ F_

Executin9 Ground expansion:

Program: 9round_exp

Version: E3.0

Created: Mar. 23, 1994 - 21:58 PST

Input S/C state file: ejOSdd.stat-sc

Input S/C tri99er file: ejOSdd.tri9-sc

Input STPLF state File: /home/horse/keuin/E3.0/de_o/ejS-ga.stat-al

Input SIRLF tri99er file: /ho_e/horse/keuin/E3.O/de_o/ej5-ga.tri9-al

Input lisht ti_e file: /ho_e/horse/kevin/E3.0/de_o/data/Itf/litime,911

Input $/C SOE File: ejO_dd.so_-sc

Output full SOE file: ejO5dd.soe

SOE Initialization File = /ho_e/hc_se/kevin/E3.0/tbl/sce_defaults

SOE Ground Expansion Table = /ho_e/horse/kevin/E3.0/tbl/soeground_table

Hergin9 and readin9 state files,.,

Mergin9 and readin9 tri99er Files...

Generatin9 DSN trackin9 alad t_plink states.

Tracking stations: DSS12 _SS14 DSS42 DSS43 DSSG3

Generatin9 tri99ers foe" S/C state changes.

Figure 2. Galileo STALF Shell

WCL allows you to define the widget tree for
an application in the resource file using new
resource names such as wcCreate and

wcChildren. In addition, callbacks are

provided that set resources, manage and
unmanage widgets, run an external program
and exit.

The OEL Shell is a very simple application
built on WCL [2]. It is basically about ten
callback procedures which may be used in the

resource file. The most important of these is
CmdCB (the command callback). This
callback executes its text string argument.
For example, you could create a push button
to execute the UNIX Is command as follows:

demo*lsPb.wcCreate: XmPushButton

demo*lsPb.labelString: Show Files
demo*lsPb.activateCallback: CmdCB(ls)

732

i!iiiii!iiiii:i!!ii!

!ii/i i_!_i•••

• _i_!_

i__ _,i

L

+ :

,:,_i_iii

?

?i :

i :IL

A simple command like this could be
executed with WCL alone. The OEL Shell

permits one to access text widgets, toggle
widgets, and option menus, and pass these in
CmdCB. For example, if demoTog is a
toggle button, then $demoTog[-r] has the
value in the brackets if the toggle button is
true, and is the empty string if false.
Likewise, the value of a text widget is just the
text that the user entered.

Another very useful callback is the FocusCB
which is used to specify the directory filter
string used with the File Selection Box. A
FocusCB is used with each text widget that is
used to contain input file names.

Output from the child processes is sent to the
scrolling message area below the work area.
In addition, there are some special text
messages that the child can send back which
set resources in the OEL Shell.

In addition to SEG, we have used the OEL
Shell for many other functions in operations.
These include training, generating database
queries, and running a command compiler.

Some advantages of using the OEL Shell are:

• It is easily configurable by operations
personnel.

Besides the resource file, two other files are

used by the OEL Shell. These are a drawing
file, that places simple X11 primitives (not
widgets) in the drawing area. This has been
used to give the OEL SheU the appearance of
a flow chart. The other file is the help file.

• It separates the computing engine from
the GUI, thus simplifying testing of the
computing engine.

• All functions may be run with or without
a GUI.

Ulysses SEG Row Control J ° J[

F -l F;q- [] []

Output _il_n_m_s _nd toggle_ hnv_ been :et.

Figure 3. Ulysses SEG Shell

733

ULYSSESSEG

We haverecentlyadaptedtheSEGsoftware
for Ulysses. The Ulysses mission is
considerable different from the other
missionsin that theprimary commandmode
is real time. Thus we do not have a
spacecraftsequencefile asan input to SEG.
We introduced a new graphical document
calledthe Timelinewhich containstheDSN
allocation, view periods, and command
windows translated into spacecraft time.
This is generatedfrom the DSN allocations
andview periodsfiles,andthelight timefile.
The SEGoperator then usesthesetimes to
schedulethe spacecraft. Typical activities
scheduledinclude: records and playbacks,
telemetry mode changesand maneuvers.
Sincethe SFOSeditor is a generalpurpose
timeline editor, it is also used to edit the
Timeline document. The spacecraft
information is then extractedandput into a
file thatroughlycorrespondsto thespacecraft
sequencefile for othermissions.

From this point on, UlyssesSEGresembles
SEG for the other JPL projects. The
telemetrystateof the spacecraftis extracted
from the sequencefile. The groundevents
aregeneratedfor the beginningand end of
eachtrack,theDSNconfiguration,spacecraft
telemetrystatechanges,andothersignificant
activities. This information is thenusedto
create the SOE, SFOS,and DSN keyword
files.

UlyssesSEGwasthe first project wherethe
SFOS editor was used to input data that
would thenbepassedon to otherprocesses.
The SFOSeditor hasfunctionedwell, andit
was easy to extract data from the SFOS
records.

ACKNOWLEDGMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. We would like to
acknowledgethework of the technicalstaff
in the OEL, the JPL Mission Operations

Teams,andtheUlyssesSpacecraftTeamfor
their enthusiasmandsupport.

REFERENCES

1. The Widget CreationLibrary, David E.
Smyth,September,1991.

2. OEL Shell Programmers' and Users'
Guide,Kevin J.Miller, October,1993.

734

