
:+ :+/::>! >::::::+:::: x,::::,:.._ _+ :: +, . _<. H_ ¸ : H _..,,

i:i!:_!_::_ii:

:_!i,:_i::__i__
i '__i _: _ i

:i ¸ : :_i;

i_:ii_!?iii?::':.
_!ii_i!ii_il!ii

i,,;i:::'i_? '!I_

!ii_,i_ii_' _

iii /_

il _ ,

__i_:i_:15_'

N95- 17540

SEQ_GEN: A Comprehensive Multimission Sequencing System

Jose Salcedo, Thomas Starbird

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Abstract

:7

straight forward to do. There is,
however, no limit to the complexity of
activity definitions or of spacecraft
models; both may involve unlimited
logical decision points. Commands and
activities may involve any number of
parameters of a wide variety of data
types, including integer, float, time,
boolean, and character strings.

SEQ_GEN will be used by the Mars
Pathfinder, Cassini, and VIM (Voyager
Interstellar Mission) projects in an effort
to speed up adaptation time and to keep
sequence generation costs down.

SEQ_GEN is hosted on UNIX
workstations. It uses MOTIF and X for

windowing, and was designed and coded
in an object-oriented style in the
language C++.

Introduction

SEQ_GEN is a user-interactive

computer program used to plan and
generate a sequence of commands for
the spacecraft. Desired activities are
specified by the user of SEQ_GEN;
SEQ_GEN in turn expands these
activities, deriving the spacecraft
commands necessary to accomplish the
desired activities. SEQ_GEN models the
effects on the spacecraft of the
commands, predicting the state as a
function of time, flagging any conflicts
and rule violations. These states,
conflicts, and violations are viewable

both graphically and textually at the
user's request. SEQ_GEN also displays
the entire sequence graphically, showing
each requested activity as a bar on its
graphical timeline. SEQ_GEN includes
a full-screen editor, allowing the user to
make changes to the requested activities.
After a change has been made to the
sequence, SEQ_GEN immediately
revalidates the sequence, updating its
models and calculations along with its
displays based on these changes.
Because SEQ_GEN is user-interactive
and because it has the ability to
recalculate spacecraft states
immediately, the user is able to perform
"what-if" sessions easily.

SEQ,GEN is a flexible software tool
that can be used in several roles in the

uplink planning and sequence generation
process. In this paper, we address
various tasks that are done during uplink
planning and sequence generation, and
show how SEQ_GEN supports each of
them. We begin with comments that
apply to all uses of SEQ_GEN.

• 2:_>,

H/

i:i i

_: 5 +/

_i!7
i::}.!?

!i_:/i::'_i.;
'i_}_; ,,'i_

SEQ_GEN, a multimission tool, is
adaptable to any flight project. A flight
project writes its adaptation files
containing project unique information
including in its simplest form, only
spacecraft commands. For more
involved projects the adaptation files
may also contain flight and mission
rules, description of the spacecraft and
ground models, and the definition of
activities. SEQ_GEN operates at
whatever level of detail the adaptation
files imply. Simple adaptations are

741

Typically, SEQ_GEN is used
interactively. The user sees results of
SEQ_GEN computations on a graphical
timeline (see Figure 1). If there are
conflicts or rule violations, the user
changes the sequence by using
SEQ_GEN's editor to alter, add, or
delete requests. SEQ_GEN then
recomputes the state of state of the
spacecraft, and reevaluates the rules.
This process is repeated until the user is
satisfied with the sequence, at which

Fo

Environ_ent: Panel J I RcEivtE_ Panel I I REEribuEe Panel I | Model Panel I I TIRe Panel I

I , r , 1 , r , I _ I
2007 UTC 290T04: O0 290TG8:O0 290T12:00 290T1B:O0 290T20:00

2OO7

Modeling: ON
Model ConFlicEs: 0 V

Rule ViolaElons: 15 I I I I

210 ... 2_ '

pouer - pouer_usage (1) 1_ __100

O_

NOTE_3

OP MOBE TRRNSITIONS

OPNRV

CDS RLLDCRTION5

SSR RLLOCRTION=3

UVIS

CONTEXT: CONTEXT.subsgsEen
CONTEXT: CONTEXT.uuts
SEQUENCE: DEMO.SRSF
ALLOCATION: sEaElon_a]]oc
OEOMETRY:
TELEMETRY: TLM_CRP

VIEgPERIOD: sEaEton_vleus
LIGHTTIME: llghEmEines
CONDITIOHS: CON]]
MR_K: MRSK

COPYR ICHT NOTICE

Copyrighh (C) 1993, _aliFor'nia Ir_iEuEe oF IechnoloE_,
U.S. OouerrmenE Sponsorship under NRcGR ConEracE NR$7-918
is acknou ledEed.

Envtr'ormer__Pmlel = Load
Reading Model EleAenE: RRC_3
Reading Model ElenenE: CRP3
Reading Model ElenenE-" CDR

Figure 1. SEQ_GEN TIMELINE

time SEQ_GEN writes results into
computer files.

i

i!5: : 5 •

i_i!_i,_i!i_i__

?ii_: :

A key feature of SEQ_GEN is that it is a
multimission program. Adaptation of
SEQ_GEN for use by a specific flight
project in a specific role is done by
supplying SEQ_GEN with files of data
about the project. Only the information
pertinent to the intended use of
SEQ_GEN is required. In this paper we
use the term "adapter" to denote the
person or persons that supply the
information about the flight project. The
term "user" denotes a person who is

using an adapted SEQ_GEN.

Now we discuss how SEQ_GEN

supports various uplink planning and
sequence generation tasks, showing
SEQ_GEN's flexibility.

Generating Command-Level
Sequences

Command-Level Editing

One simple use of SEQ_GEN is as an
editor, enabling a person to write a
sequence of spacecraft commands. The
adapter provides the list of all spacecraft
commands for the flight project. If the
commands have parameters, those are
named by the adapter. The adapter can
specify what the allowable values are for
each parameter of each command, and
what type of value is appropriate
(decimal integer, hexadecimal, octal,
binary , floating point, duration, time,
character string, boolean, or a one-
dimensional array of any of the previous
types). The adapter can also specify the
default value of each parameter. In this
way, SEQ_GEN "knows" a project's
spacecraft commands.

When the user wants to add a command

to the sequence, SEQ_GEN lists all the
commands, letting the user choose one,
SEQ_GEN displays the name and
description of each parameter (as
supplied by the adapter), to guide the
user in specifying the requested
command. SEQ_GEN will use whatever

information the adapter has supplied
concerning the parameters of the
command. For example, if the adapter
has supplied the allowable range,
SEQ_GEN will warn the user when a

value given by the user is not in range.
SEQ_GEN's editor enables a person to
form a request, consisting of one or more
commands (and also "activities"; see
below) and to add that request to the
sequence.

Command-level Sequence

One output of SEQ_GEN in the simple
adaptation described above is a file of all
the commands (in mnemonic form), in
time order, ready to be translated to bits
and sent to the spacecraft.

In addition, SEQ_GEN produces a
timeline (see Figure 1), both
interactively on the screen, and on paper.
The timeline shows visually the position
in time of each request in the sequence.

Such an adapted SEQ_GEN is useful for
building sequences for use before launch
in the testing of the spacecraft. It is also
useful for simple projects where
command-level sequence planning is
adequate, and where any constraints on
interactions of commands can be

checked by hand.

Spacecraft Clock

If precise timing of commands with
respect to the spacecraft's clock is vital,
the adapter can define the units of the
clock and their nominal durations. The
definition is then used in some of

SEQ_GEN's calculations. For example,
there is an option in SEQ_GEN to align
all commands' times to the nearest whole

unit in the spacecraft's clock. The
relation between Universal Time and the

values of the spacecraft's clock is given
to SEQ_GEN at run-time, to account for
differences in the clock's rate from its
nominal rate.

i¸ i!ii •

743

Merging Sequences

Another feature of SEQ_GEN is the
ability to merge sequence files. For
example, SEQ_GEN could be used
individually by different flight team
members making their individual request
files. Those files can then be merged to
produce a single time-ordered file with
all of the requests. Each request retains
its requestor's name (or other identifying
string), so that the individuals can check
that their requests were properly
handled.

Different requestors could include
members of the engineering team (for
example, an attitude control analyst
requesting a calibration), or of the
navigation team (requesting a
maneuver), or of science teams

(requesting scientific observations).

Predicting Events

It is often useful to predict the effects of
the commands in a sequence. The
adapter can supply models to SEQ_GEN
that enable predictions of the state of the
spacecraft based on the commands in the

sequence.

Flexibility of Models

A nice feature of SEQ_GEN is the

variability possible in the models. One
possibility, of course, is to have no
models at all. In this case, as discussed
above, SEQ_GEN's output is the time-
ordered list of commands in the

sequence.

Models of varying complexity can be
added. For example, if the amount of
power being used at any time during the
sequence is of interest, a power model
could be added. The adapter defines a
model element by specifying its
attributes (i.e., state variables). An
attribute can be of any type (same
choices as for parameters of a command;
see above), and the adapter can define

the allowable range of each (in which
case SEQ_GEN will give a warning to

the user if the attribute's value ever

becomes out of range). For each
spacecraft command that affects an
attribute, the adapter describes the effect,
using a simple language provided by
SEQ_GEN. The language includes the
basic programming language constructs,
such as IF statements and loops. In
addition, the language C can be used by
the adapter to specify calculations. No
compiling or linking of SEQ_GEN is
needed to incorporate the adapter's
compiled C code; the linking of the
adapter's code is dynamic, done at run-
time.

The effect of a command can depend on
the state of the model before the
command. The most common effect of a

command is to change the value of an
attribute.

Simple models, such as ones that keep
track of whether a switch is "on" or

"off", are simple for the adapter to
specify. Each project can model the
details appropriate for its sequencing
needs.

The modeling done in SEQ_GEN is a
discrete event simulation, where the

commands in the sequence are the
triggering events. SEQ_GEN processes
each command by interpreting the
simple language in which the adapter has
written the effect of the command, and
by calling any C functions the adapter
may have used." The adapter can use
SEQ_GEN's "stimulus" concept to
promote the effect of a command to
future time or to several model elements.

SEQ GEN has built-in the ability to read
files of Deep Space Network view

periods and allocations, a file that
contains predictions of downlink data
rate capability, and a file that contains
trajectory events, such as occultations.
The adapter can write effects of such
events in the same way as writing effects

of commands. For interplanetary
missions, where the light time is non-
negligible, SEQ_GEN has the capability
of adjusting times between ground time

744

and spacecrafttime using a file giving
thelight time.

i_i _ _ _i • ._

if!ill__i::

• 5:.
• 2•

Predicted Events File

SEQ_GEN produces a comprehensive
file that contains the results of the

modeling (see Figure 2). The file is a
time-ordered list that contains an entry
whenever an attribute of a model is set to

a value. The entry consists of the time,
the values of the attributes of the model

element, and an indication of the causal
command. The file also lists all

commands in the sequence. (Activities
and rule violations are also in the file;

see below.) The file can be used to
review a sequence.

i• • •

_' ii! _

>!i_' i! _

,i

:i i_i!!_"

iii iiii_i_ii

%

Interactive Display of Models

The user of SEQ_GEN can turn the

modeling on or off at will. The user can
also have SEQ_GEN display a graph of
the value of any one or more attributes
above the timeline of requests (see
Figure 1). The user can change what to
display any time during the SEQ_GEN
session. When the user changes the
sequence, SEQ_GEN models the part of
the sequence being viewed and updates
all the displays.

Thus the adapter has great flexibility in
what models to build and how detailed to

make them, and the user has complete
flexibility in choosing what model
attributes to display on the screen during
the session.

Different Users, Different Models

Even on a single flight project, different
adaptations of SEQ_GEN could be used.
For example, an attitude control expert
may include more detailed models of
attitude, but omit models of interest only
to a scientist, and vice versa.

Checking Rules

The adapter can add "rules", which are
stated in terms of the model attributes.

SEQ GEN has eight types of rules. A

745

rule contains a boolean-valued

expression of model attributes. During
modeling of a sequence, if the
expression becomes true (or remains true
for too long, or for not long enough, or
becomes true too many times, or not
enough times, or becomes true before
some other state has occurred for long
enough), the rule is considered violated.
An indication of the violation occurs

above the timeline of requests (see
Figure 1). The user can click on the
indication to get details of the violation.
Rule violations are also included in the
Predicted Events File.

By defining rules, the adapter enables
SEQ_GEN to perform some of the
validation of a sequence.

For situations where none of the eight
built-in types of rule adequately reflects
the constraint desired to be checked, the

adapter can use logic in the models
themselves to declare a conflict. An

indication of conflict appears above the
timeline (see Figure 1), and appears in
the Predicted Events File.

Thus SEQ_GEN is flexible in the rules it
can check. Just as different users could

use different models, so they could use
rules tailored to their interest.

Making High-Level Requests;
Activity Types

SEQ_GEN offers flexibility in the level
at which a user requests commands for
the sequence. The adapter can define
"activity types" (also called "blocks"),
which can then be used in users'

requests.

A simple activity type is a list of
spacecraft commands, with their relative
timing specified. The activity type has a
name. By requesting an activity of that
name, the user is effectively adding all
the commands in the activity type's
definition to the sequence, timed relative
to the time specified for the request.

k .

IPROCESSING I IOUTPUTSI

...j
4_

DEEP SPACE NETWORK

ALLOCATIONS and VIEW PERIOD FILES_

LIGHT TIME FILE

SPACECRAFT CLOCK/EVENT TIME
COEFFICIENTS FILE-

y

TELECOMMUNICATIONS CAPABILITY

PREDICTIONS FILE

FILE (S) of REQUESTS

ACTIVITY TYPE FILE (S) r

MODEL FILE (S) i==.._

RULE FILE (S)- \. _--

ENVIRONMENT _\ "\ _%.!.\

CONTEXT V \'_:_':/_:: _ .,..

co.,),'"mA" "

US' ,L)

• READ and MERGE
REQUESTS

• EXPAND ACTIVITIES to
COMMANDS

• MODEL, PREDICT STATES

• CHECK RULES

• ADD, DELETE, EDIT
REQUESTS

• DISPLAY TIMELINE

• WRITE OUTPUT FILES

SPACECRAFT
"- SEQUENCE FILE

PREDICTED EVENTS
FILE

MERGED and EDITED
= FILE OF REQUESTS

PLOT FILES

FINAL MODEL and RULE
"- CONDITIONS FILE

Figure 2. SEQ_GEN FUNCTIONS

!;i!!iil;¸...
i¸.i:_:i_iļ if:i:

_:7 ¸ q:,-.

_ii _

_x

SEQ_GEN is flexible in how

complicated the definition of an activity
type can be. An activity type can have
parameters. The user, when requesting

an activity of that type, is prompted by
SEQ_GEN's editor for values of the
parameters. The Values can be used for

parameters in commands that appear in
the definition of the activity type. The
values can also be used in logical
constructs (such as IF statements) that
govern what commands will be used in
the activity. For example, in an activity
type that represents a maneuver of the
spacecraft, a parameter could be an
option determining whether or not to
turn on the gyroscopes.

The definition of an activity type can
refer to other activity types (i.e.,
activities can be nested).

Activity types are "expanded" by
SEQ_GEN to produce commands. The
commands are modeled along with any
commands requested explicitly by the
user.

i; _ "

%1

• ii ,

Using activities allows the user to think
at a higher level than individual
commands. Also, the definition of an

activity type can be written or checked
by experts, and tested before use. A
person who is not an expert can then
safely use the activity.

Some activity types represent on-board
programs that can be invoked in a
sequence to yield several commands.
Such an activity type, called an on-board
block, is expanded by SEQ_GEN for
modeling, but is not expanded on the
Spacecraft Sequence File (see below).

Writing the Spacecraft Sequence File

Another output of SEQ_GEN is a
computer file called the Spacecraft
Sequence File. This file contains (a
mnemonic representation of) the
information that must actually go to the
spacecraft, i.e., spacecraft commands
and calls to on-board blocks.

Conversion of this file to binary in a

form packaged for transmission to the
spacecraft is not a function of
SEQ GEN.

Planning without Commands;
d_commands

Activity types can actually be defined
even if spacecraft commands have not
been defined, SEQ_GEN has the concept
of d_cornmands (dummy commands),
which are requested by the user and
modeled by SEQ_GEN as commands
are, but which are not placed in the
Spacecraft Sequence File. In this way,
an adaptation of SEQ_GEN can be made
wherein activity types are defined in
terms of d_commands, which can trigger
abstract or approximate models. An
example of an abstract model is one
telling whether a maneuver is in
progress. Such an adaptation is useful
for planning sequences early in the
planning stage, or early in the life of the
project.

Both actual commands and dcommands

can be used in the same activity type and
in a single sequence. Thus modeling and
rule checking involving actual
commands can be supplemented by
modeling and rule checking of
abstractions.

Changing Adaptation

The adaptation information is given in
ASCII files (plus optional C code in the
model or activity definitions). The
adaptation can be changed as the mission
progresses. Another program, called
SEQ_ADAPT, is being developed to aid
the adapter in producing syntactically
correct and consistent adaptation files.

History and Use of SEQ_GEN

SEQ_GEN (under different names) has
its historical roots in the Mariner Mars

1971 project, a Mars orbiter. Most
major later projects at the Jet Propulsion
Laboratory, including Voyager and
Galileo, wrote new versions specific to
the project. In the last few years, the

<i ¸

747

J _ . : • • : =•-:: -: : • :•: _ : i: • • • ••? • • • i

:i ii::_:_
iI •

i i i__

_!I_I

current version, which is a multimission

version, was developed.

Its activity features were used on Mars
Observer. It will be used on Mars

Pathfinder, VIM (Voyager Interstellar
Mission), and Cassini. SEQ_GEN is
hosted on Sun SPARC and Hewlitt-
Packard workstations.

Development of SEQ_GEN

SEQ_GEN has about 55,000 lines of

code, written in C++ in an object-
oriented style (Wirfs-Brock et al., 1990).
SEQ_GEN is Category A; it was
developed with full rigor and testing.

The SEQ_GEN program was developed
by Russ Brill, Imin Lin, Win Lombard,
Bob Oliphant, John Sisno, Jose Salcedo,
and Tom Starbird.

References

McLaughlin, W.I. and Wolff, D.M.,

"Automating the Uplink Process for
Planetary Missions", AIAA 89-0580,
AIAA 27th Aerospace Sciences
Meeting, Reno, January 9-12, 1989.

Salcedo, J., "Version 19 SEQ_GEN User
Guide," D-11261, December 1, 1993
(JPL internal document)

i_ i iI • _

Summary

SEQ_GEN is a comprehensive and

flexible tool for use in uplink planning
and sequence generation. SEQ_GEN is
flexible in that

•it can be adapted for use in any
flight project, or for different classes
of user in a single project

• it can be adapted in several versions,
with or without spacecraft
commands, models, rules, and

activity types

•models can be simple or detailed

Wirfs-Brock, R., Wilkerson, B., &
Wiener, L.(1990). Designing Object-
Oriented Software. Engtewood Cliffs,
New Jersey: Prentice Hall.

•models can be of actual spacecraft
parts and/or of abstract quantities

• models can be triggered by
spacecraft commands or by
d_commands

• adaptation does not require
compiling or linking of SEQ_GEN

Acknowledgement

The work described in this paper was
performed by the Jet Propulsion
Laboratory, California Institute of
Technology, under contract to the
National Aeronautics and Space
Administration.

