
• _k-• :<<: ::.;L:.L. u<':nU :f<•.< ::<'•): • < i i? H..II •!i(i < ! ii_ •i:: i<i: i_: .•,•i• •.i:•i:/:,ii• i< i_i. ¸Hn¸• :: • i <:i_:_)_:::i:.i::>. n•.::<:21:::/! ¸ •-<::-+<<:•_:{•i::::•i <::::::<<:::<:::::•:<:_:<::_:::<::::::::.+::+::<::::<_::::::::::::::::::::::::::::::::::::+:+:+:.:+:+_::::::::_::::::::::::::::::::::::::+:+:+:+:::<::_::::;::::_:::::::

':<::1%};:i!

=; << !f:

@ii!,

ii<ii:!:£?__

i¸ i!_

An Agent-Oriented Approach to Automated Mission

Walt Truszkowski

NASA Goddard Space Flight Center, Code 522.3
Greenbelt, MD 20771

Email: truszkow@ kong.gsfc.nasa.gov

N95- 17555

.,<

/

Operations

i< i!! ¸ !•i

: !iill<i<i::i< ¸¸¸

,:• i:. ¸

f,

><!

i!ii! • •

• • k< •

Jid6 Odubiyi

Loral AeroSys, 7375 Executive Place
Seabrook, MD 20706

Email: jideo@groucho.aerosys.loral.com

Abstract

As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there
are many opportunities for the increased utilization of innovative knowledge-based technologies.

The innovative technology, discussed in this paper, is an advanced use of agent-oriented
approaches to the automation of mission operations. The paper presents an overview of this
technology and discusses applied operational scenarios currently being investigated and
prototyped. A major focus of the current work is the development of a simple user mechanism that
would empower operations staff members to create, in real time, software agents to assist them in
common, labor intensive operations tasks. These operational tasks would include: handling
routine data and information management functions; amplifying the capabilities of a spacecraft
analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating
complex data/information sets and filtering error messages; improving routine monitoring and trend
analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes
during critical maneuvers enhancing the system's capabilities to support non-routine operational
conditions with minimum additional staff.

An agent-based testbed is under development. This testbed will allow us to: (1) more clearly
understand the intricacies of applying agent-based technology in support of the advanced
automation of mission operations, and (2) to access the full set of benefits that can be realized by
the proper application of agent-oriented technology in a mission operations environment. The
testbed under development addresses some of the data management and report generation functions
for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team
(FOT). We present an overview of agent-oriented technology and a detailed report on the
operation's concept for the testbed.

<

<

1.0 Introduction

Major advances have been made in the process of automating mission operations over the last
several years. However, in keeping with changing operational requirements and the need to more
effectively realize cost and manpower savings in the area of mission operations, the necessity for
more advanced automation technologies is clear. As examples of areas for continued improvement
consider the following:

Mission Operations Control Center (MOCC) software systems are currently developed using
classical software engineering paradigms. To bring about added degrees of flexibility in how

these systems could handle unexpected problems, the engineering of these systems along
agent-oriented technology lines looks promising.

PAG[_'LANK hK}T FILMED

879

Even with the increasing use of expert systems in support of telemetry monitoring and
command constraint checking much reliance is placed on the manual intervention of operators.
The use of agent-oriented techniques can effectively provide additional levels of automated
support in handling these important types of operational activities and further reduce the need
for manual interventions

With increasing automation of mission operations, there is a growing need for more advanced
approaches to information handling. The use of agent-technology in support of the full
range of information management functions will significantly reduce the growing

possibilities of information overload on the part of operators.

It is becoming apparent that for future automated mission operations, more consideration will have
to be given to the roles that distributed problem solving and computer-supported cooperative work
will play. These increasingly important issues can be addressed by employing intelligent,
distributed processes [6] found in a multi-agent based approach, described in this paper.

The rest of this paper presents an ontology [12], ie., a conceptual framework for describing the
mi ssion operations domain, and an implementation framework for automating the operations in that
domain. Our approach for dealing with the task of developing an agent-based mission operations
environment is to first specialize by applying our agent methodology to automate the report
generation function Once this is accomplished we will then generalize and apply the agent-based
approach to other functions in the MOCC as shown in Figure 1 below Our approach for
generating the agent-based report-generation solution is to employ an information agent model and
define agent roles in a multi-agent environment required for this selected subdomain function

Spacecraft

Commands_

I/ Reld'Tilme Da" M''em n[S 'stem

/ / [I TI==., I I Real-Time Queries

Real-Time][I . A"_ot_wer I u from Operators and

Telemetry Telemetry a,nd _J] I n Responses from the
and __omman s Corrananaana Real-Time System

Command N DateHandlmg t _

Computer -- "

Spacecraft Subsystems
Data

Operations' Workstation

Real-Time Operations Displays

• Alarms
• Recommended Solutions

• Consequences of Proposed Commanding
Actions

Data Analysis Displays

• Trending
• Performance Statistics
• Resource Profiles

• Report Generation

Flight

Operations

Analyst

• Data Search

• Data Filtering
• Statistical

Computations

Non-Real-

Time Data

Management
System

History Data/Statistics I Statisti_cal Analysis
and Graphing

Software Packages

. Telemetry Achive• Stored Commands

Figure 1: An Overview of a Spacecraft Mission Operations Control Center

880

Wepresentrelatedworkon theuseof agent-based approaches for automating information location
and retrieval systems and the contribution of our investigation in proving the utility of agent-based
technology in mission operations.

2.0 The EP/EUVE Report Generation Process

The EP/EUVE's operational environment is a heterogeneous network consisting of two
MicroVAXs (VMS), a Sun workstation (UNIX), an HP-9000 workstation (UNIX), and i386
personal computers, using the X.25 and TCP/IP protocol.

Subsystem engineers for EP/EUVE are responsible for daily monitoring of the satellite's
subsystem performance, detection of anomalous subsystem behavior, weekly reporting of

subsystem performance, generation of commanding products for subsystem operations, and
continuing preparation for subsystem anomaly Detection, Isolation, and Resolution (DIR). These
products reside on heterogeneous distributed computing nodes. Off-line analysis (Trend system)
provides daily plots of over 600 mnemonics for visual checks of subsystem performance and
trends. Subsystem engineers' performance is evaluated based on how well they handle a spacecraft
anomaly, not on their daily activities. For example, based on an analysis of operator activities over
a period of time, it was concluded that 90 percent of their time is spent performing daily routines.
Each week, three of the Explorer Platform's engineers spend a total of 40 hours generating a
weekly report on the performance of the system. The routine activities that consume most of the
operators' time can be automated to allow them to spend time on more critical tasks.

Three categories of reports are generated by the Flight Operations Team (FOT) of the EP/EUVE
system. The three subreports which correspond to the three subsystems of the EP/EUVE are the
Modular Power Subsystem (MPS) subreport, the Command and Data Handling Subsystem
subreport, and the Modular Attitude Control Subsystem subreport. Other subreports included in
the MPS subreports include reports on the Battery Health and Safety, the Solar Array
Performance, the MPS Heater Duty Cycle, the Critical MPS Events' Summary, and the Thermal
System. The critical MPS Events' Summary is generated from the computer workstation which
generates the Real-time and Trend data.

Adequate preparation for a spacecraft anomaly's DIR is the key to successful spacecraft flight
operations. The level of preparedness depends on the amount of "spare time" a spacecraft
subsystem engineer has to study the subsystem, and the time between anomaly detection and
resolution. Automating the report generation process will allow the spacecraft subsystem engineer
to devote their time to more productive mission operations such as early detection of anomalies,
data analysis, and development of scenarios for anomaly prevention.

The subreports for the Command and Data Handling Subsystem result from collecting six other
subreports. The subreports are orbit decay (EP/EUVE's decrease in orbit periods), tape recorder
performance, clock delta trends, transponder performance, Ultra State Oscillator frequency trends,
and Modular Antenna Pointing Control.

3.0 An Agent-Oriented Solution to Support the Report Generation Process

An Agent-based FLight Operations AssociaTe (AFLOAT) is currently being prototyped to support
the FOT in generating weekly reports. Each agent is an entity that can function semi-autonomously
in an environment where other agents exist, accept instructions from a user, and communicate with
other agents. In addition, it can be persistent, and can migrate from one node to another to process
and retrieve information as requested. The agent can operate independently in the background
without interfering with user's actions. An overview of agent-oriented technology and our
approach for applying this technology to automate the EP/EUVE operations report generation
process are described in the following paragraphs.

881

:Q

iiii!!:!i'il

i!ii::iI i:
i", 2

3.1 An Overview of Agent-oriented Technology

What is an agent? In the most general form, a software agent as opposed to a hardware agent (e.g.,
a robot) can be defined as an entity that enables a user to specify what the user wants leaving the
process of how and when to accomplish it to the agent [3]. Huhns and Singh [5] present a more

comprehensive definition for a software agent as an active knowledge-based computational entity
that has knowledge, intentions, and mechanisms for perceiving, reasoning, acting, and
communicating. An agent, in our initial prototype, is characterized by a subset of the capabilities of
the agent in this comprehensive definition, as explained in paragraph 3.5.

3.2 Distinction between Agent-based Systems and other Computer System
Services

There is general confusion on what agent-based systems are and how they differ from other

computer system services such as Directory Assistance Programs and Information Brokers [5].
Directory Assistance Programs support interoperation between conventional software programs by
accepting requests and routing them to appropriate programs for execution. Information Brokers or
Distributed Object Managers such as the Common Object Request Brokering Architecture (CORBA)
the Distributed Information Manager (DIM) for EOSDIS, and the Dynamic Data Exchange (DDE)
programs, either statically or dynamically provide access to information making the source of the
information transparent to the user. In addition to serving as directory assistants, they can also
execute requests and return results. All these system services use procedures to communicate with
other objects. True software agents use declarative directives that are more expressive to reason and
communicate complex concepts with other agents instead of relying on procedural directives which
are efficient but they are less expressive.

3.3 Agent Types

An agent's behavior may vary along a spectrum of factors ranging from a controlled learning
process to self-learning, controlled behavior to full independence, and simple to complex
interactions. An agent's capability may be simple or complex; its interaction with its environment
may be reactive or planned (i.e., deliberative). Reactive agents [2] are robot-like with very limited

internal reasoning mechanisms while deliberative agents [4] have substantial reasoning capabilities.
The agents in a multi-agent system may or may not coordinate their activities. All the agents may be
identical or each may be unique, and they may communicate either by directed message passing or
broadcast. The number of agents may range from a single agent to thousands. As you will see in
paragraph 3.5, the agents in our prototype will be able to learn; each has some degree of
independence. The agents can interact with their environment with deliberative reasoning, and
communicate with one another through direct message passing and multicast via shared memory.

3.4 Essential Architectural Issues of Multi-agent Systems

To be successful in developing a multi-agent based system, the following four architectural issues
must be addressed and the fifth issue is optional: (1) an approach must be established for
describing, decomposing and distributing tasks among the agents; (2) a format must be defined for

interaction and communication between agents; (3) a strategy must be formulated for distributing
controls among agents in which a local control strategy demands that agents communicate only
their results, or centralized control where one agent assigns all the tasks, or a predefined mixed
results/tasks share control; (4) a policy must be made for coordinating the activities of agents,
either by competition through negotiation as in ContractNet Protocol or cooperation through
centralized or distributed planning; and (5) a rationale should be established for maintaining truths,
i.e., consistent beliefs and conflict resolutions among agents [6] or mental states or trusts [10]. Our

882

_ .:5 •

i !_i!:/

i-

i_ i_ _ii •

_i!! _

i_ _ • _

:,iii:ii::̧

current architecture, described below, can address the five architectural problems. Our initial goal
is to resolve the first four issues making the resolution of the fifth issue a long-term goal.

3.5 A System Overview of an Agent-based Solution to Automate Mission
Operations

Our objective is to develop AFLOAT as a multi-agent based system where a user interface agent
interacts with the user to accept user requests, collaborates with other agents at a local host or over
the Internet in locating, retrieving, and presenting the information to the user in appropriate form,
with the correct amount and level of detail, and at the right time. An implementation framework for
AFLOAT consists of an architecture for a software agent, a methodology for implementing the
interactions between the user and a user interface agent, collaboration between multiple agents, and
an approach for making background software agents specialize in data retrieval from distributed
information sources. User-to-agent and agent-to-agent interaction issues are resolved by
developing a communication protocol, a language format, and an agent migration process across
networked computer systems. Our strategy for information location and retrieval is based on the
premise that domain-dependent keywords used by the user will form an index to the information in
the domain and to the specialized agent. If the key word does not exist, then retrieval is not
possible, and the user interface agent will issue appropriate advice. Knowledge in AFLOAT can
be stored as rules, objects, cases (examples), models, and programs. Each agent has access to a
set of support services such as: creating, destroying, managing, or monitoring the activities of
spawned agents; mechanisms for message transport; directory of other agents; information
processing and presentation; and system performance monitoring.

In addition to supporting on-line and off-line flight operations of the EP/EUVE report generation
process, agents in AFLOAT can also support the spacecraft platform and instrument Fault
Detection, Isolation, and Recovery (FDIR) services.

Our architecture for automating mission operations has been designed to address the top four basic
architectural issues and to be extensible enough to accommodate the fifth. The implementation
framework is based on a deliberative agent architecture, depicted in Figure 2. The architecture has
structural elements for data storage, coordination, and monitoring of activities between agents,
execution of internal and external functions, inter-agent communication, and interface with other
domains in the MOCC.

Architecture of AFLOAT's Deliberative Software Agent. Each of AFLOAT's software
agents is deliberative, which means that it will reason before it acts. An architecture of such a
software agent in AFLOAT is displayed in Figure 2. It addresses the issues that must be resolved
in a deliberative multi-agent based system. The coordinator determines the type of coordination

(task sharing or result sharing), and coordination policy (negotiation, shared memory, or an
explicit domain-driven task delegation policy) that will be employed. In AFLOAT, agents
coordinate their activities by sharing results, and an explicit domain-driven task delegation policy is
employed since each agent is considered a specialist in a specific domain. The agent's coordinator
module is also responsible for planning and scheduling the tasks of each agent. Each agent's
monitor is responsible for monitoring interactions between agents, incoming and outgoing
messages, the state of the agent, and maintaining a history of the agent's actions. Saving an
agent's past actions aids it in learning by drawing from experience when presented with new tasks.
The external models module of each agent maintains global functions that are accessible for use
by other agents. Each agent must maintain its access rights to external information so as to aid the
domain agents in the information retrieval process. The internal models module maintains
functions (such as managing access to the skills of each agent or maintaining its message buffer)
that are private to each agent and are not accessible to external agents except the AFLOAT executive

agent. Each agent also has an inter-agent communication module which is responsible for
validating inter-agent, semi-structured language format, sending outgoing messages, receiving
incoming messages, and broadcasting messages to shared memory. The brain of each agent is its

883

information basewhereall themodulesstoretheir dataandother information such as the name

of the local system management agent (AFLOAT executive), buffers for incoming and outgoing
messages, each agent's name, type, and state, and messages in shared memory. Communication

with each agent is done by adding a message to its information base. Each agent can store
knowledge as rules, objects, cases (examples), models, and programs. The structure of each
agent, coupled with its behavior (i.e., capabilities) provides it with enough intelligence to respond
effectively to information retrieval tasks delegated to it.

COORDINATOR

INTER-AGENT COMMUNICATION MODULE

OTHER I
AGENTS AND/

OR USERS
I

Figure 2. Architecture of AFLOA T's Deliberative Software Agent

An Information Agent Model for Supporting Information Retrieval: Agents in

AFLOAT are characterized by five "action-oriented" [9] capabilities: First, migration, is the ability
of an agent to move to other nodes to process or retrieve information. This ability can support load
balancing, improve efficiencies of communication, and provide unique services which may not be
available at a local node. Second, semi-autonomy, is the ability to respond to a dynamic
environment without human intervention, thus improving the productivity of the user. Third,
spawning, is the ability to create other agents to support the parent agent, thereby promoting
dynamic parallelism and thus fault-tolerance. Fourth, persistence, is the ability to recover from
environmental crashes and support time-extended activities, thus reducing the need for constant

poling of the agent's welfare and better use of the system's communication bandwidth. The fifth
and final capability is interaction mechanisms for supporting agent-to-agent and user-to-agent
interactions.

884

: y:

>

. ili!i_ _

i_iiiii_iil/_i
>, , •

i i_ ' ,

Operations Concept for AFLOAT Prototype: An operations concept for the AFLOAT

testbed prototype is illustrated in Figure 3. It describes the procedures for using agents to locate,
access, retrieve and present EP/EUVE reports or information located at remote information

sources. To do this, the user generates a user agent. The user agent requests the system to display
a set of reporting options. The user then selects one or more items from the list displayed by the
system. Upon completing the selection process, the user agent generates a report agent and assigns

it the responsibility of generating the reports. The report agent identifies specific subreports and
requests the agents' directory manager (or name/skill server) for the names, locations, and services
provided by agents that can support the generation of requested reports.

Process Plow: A-->AB-->B-->BA->A-->AC-->C-->D--> 1-->2-->3-->4-->5

] Specialist

SYSTEM Agents'
User Agent DISPLAYS User Agent Distributed --

POSSIBLE Directory +
REPORTS

AB

USER INTERFACE

USER ACTIVATES
COMMAND FOR

GENERATING USER
AGENT

(A)

Heport
Agent +

Requests

Report

Locations +
Services of

< Hopomng_t,ons .A |H_.,-_LN I |

x + ! REOUESTDmECTORY| III GENERATEScLoNETOAI!
upur= ! MANAGER FOR | | | MIGRATE TO i 1

AC Selected Agent_ | NAMES + " '
R.ep_ling _ LOCATIONS + ! -'1 | LOCATION OF| SPECIALIST _i
Opuons / SERVICES OF AGENTS /

| AGENTS /--i (c) / i <D)

d Report Agent Informs User Agent on [I 1

_TatUS 01 Heques!

J
4

1. Cloned report agent migrates to, or communicates with spooalist agents to request repeals.
2. Specialist agents migrate to, or communicate with information sources to gather information and deliver

them to the cloned report agent.
3. The cloned report agent penodically sends status of report generation process tothe user agent via the

primary report agenL
4. Cloned report agent returns to the primary report agent environment upon completion of report gathering

process, reforms primary report agent on where the reports are stored before Destroying ltsetf: The primary
report agent then present the results as directed by the user agent.

5. Based on user'spreference the report agent displays a "Report Generation Completed" message, displayS
reports, or transmrrns itself into a dormant icon on the screen to be reactivated when selected by the user.

Interface to
Information

Servers

1 Specialist |
ents +

i TELEMETRY I +2 .

=_ ARCHIVE _ "_

1 Specialist
Agents + H I-

TELEMETRY
DATABASE

i

Agents + MODULAR
POWER

Manager SUBSYSTEM

(MPB)

_.__._I ',Speciatisl | COMMAND

Agents + I AND DATA
HANDLING

_SUBSYSTEM
(CDHS)

I Specialist I MUUULAH I I
Agents + | ATTITUDE | _ I
Manager | CONTROL

'--'_"_"l SUBSYSTEM J

/ (MACS) |

LORALIFI&D'071-001m

Figure 3: Operations Concept for Agent.based FLight Operations AssociaTe
(AFLOAT)

In addition to knowing the names, locations and services provided by the specialist agent, the
report agent must also determine if there are restrictions to services provided at certain locations. If

an access is restricted to information sources or there is an absence of unique services required by
specialist agents, the report agent may request the reports remotely via message passing. If there
are no such restrictions, the report agent generates and sends a clone with enough information
necessary to generate the report to migrate to remote information sources, interact with agents with
special skills, and retrieve the reports. Allowing the report agent to send its clone to retrieve reports
while it stays at the user's environment adds some fault tolerance to the system. Therefore, if the
cloned report agent fails, the primary agent has all the information needed to create another clone.
Periodically, the cloned report agent informs the primary report agent resident at the user's
environment on the progress of the report generation process. Steps 1, 2, 3, 4, and 5 in Figure 3
explain the interactions between the agents and the report generation process.

Development Environment and Status and Plans for AFLOAT Project: The

development environment for implementing AFLOAT is the NASA/Johnson Space Center
developed C-Language Integrated Production System (CLIPS) version 6.0 with CLIPsTOOL

885

: _!:iil_i!:.... •......_:_ :_,':, _: +_...._ _:<:_::,:+,:::__<_:_• __ _:___!_:_<+:_i_:!_<_!_i_;i_:i:i_i__<<_!_:<_<iilii__<::::i_<<:_:_iii!i_̧i:i:_•!::i<:i_i_i!iiii+!iii!iii_ili_iiii:iiiiiii_iiili_iii_iiii_i_iiiiiiii_i_i_ii_!i_iii]i_i_iiiiiii_iii_i_i_i_iiiii_i_iii_iii_iiiii_iiiiiiii_

' _i_ i' i_

ilI <<!

k _:, i_'

, ii• •

"7 " •

H 15

:? : •

i?

f

iii: ,

iiiii !iii<

?ii_iil

!i!_/_

',< !_:i,
_i:̧ : i!:

software from KNOWARE Inc. (for building the user interface) running on a Sun SPARCstation

with UNIX operating system, X-windows, and OSF/Motif Style Guide. The application of the
defmodule construct (in CLIPS) which promotes the partitioning of knowledge bases will enable
us to achieve agent independence. We have just completed Build 1 of the AFLOAT testbed. This
build provides location transparency to information sources for generating reports on Battery
Charge/Discharge ratios of the three batteries on the spacecraft. This build is also being used by
two George Washington University researchers to investigate the issue of trust of automated

systems. In their experiment, an operator is assigned a task that he/she must perform plus an
additional task of monitoring the quality and number of faults correctly detected by the agents. The
operator's trust level of the agent is based on the frequency and types of incorrect faults. Build 2 of
AFLOAT will provide the users with the ability to generate reports on the operations of the three
subsystems, i.e., the MPS, the CDHS, and the MACS from distributed information sources.

4.0 Related Agent-based Information Retrieval Systems

Several agent-based information retrieval systems are being prototyped at several research
laboratories. Most of the research work attempts to resolve the fundamental architectural issues
described earlier in paragraph 3.4. The research work of Amy Lansky at NASA/Ames [8], and
Bond and Gasser [1] focuses on multi-agent planning and addresses the issues of coordination,

synchronization, and control of multiple autonomous agents. Shoham's work [10] investigates the
issue of an agent's mental states as they relate to beliefs, intentions, and capabilities. Other research
on agent-based information retrieval similar to ours include the work by Kahn and Cerf [6] in
which agents, called Knowbots, each hard coded to perform a specific task, are used to retrieve

information from digital libraries. Etzioni's work [3] on Softbots employs software agents to
perform different UNIX tasks to support a UNIX programmer. A very important contribution of
his work is the ability of the Softbots to retrieve information with an incomplete request.
Papazoglou and Laufmann [9] employ coarse-grained agents with a semi-structured language and
message passing to support information retrieval from distributed information sources. The semi-

structured language format is quite expressive and it can help the agents in communicating their
goals, results, and states, thus facilitating coordination among the agents. Gio Wiederhold [12]

employs very coarse-grained agents called mediators which can be used to filter data by resolving
any mismatches in the data. A major contribution of the mediator approach is the merit of this
architecture over integrated or federated agent-based system architectures. While it is more difficult
to implement, the mediator architecture is easier to scale up and add new interfaces than the other
two.

While each of the research efforts described above address various aspects of the architectural
issues of multi-agent systems, AFLOAT's architecture has been built as an extensible testbed and it

can address all the basic architectural problems of a multi-agent-based system. In addition to its
capability to automate distributed information retrieval, it can also support automation of other
operations such as fault detection, isolation and recovery of satellite subsystems, and other
domains. Whereas in a large majority of other multi-agent systems, the base prototyping language
is either LISP or PROLOG which very often is not well received by the operations staff due to a
lack of experienced programmers; AFLOAT is based on an expressive AI shell written in C with
the UNIX operating system, making it readily portable to other platforms and acceptable to
operations staff.

5.0 Conclusion

The distributed nature of the operations in a satellite MOCC calls for solution approaches to
problems in the domain to consider the use of intelligent distributed modules instead of isolated

intelligent systems. Such intelligent distributed modules have been modeled as a multi-agent
system and prototyped as the AFLOAT testbed to support the automated report generation process,
and described in this paper. An overview of agent-based technology has been presented with

886

:k::_:, ::, _::___::__:__:_:,_:_k_::__i_i_::_:_:_i_i_.ii:_,_:!;:_!_:_ii_i_,_ii:i_iii_:illii::_ili_i:_ii!__i!_:i_:_iiii_:_!!ii_i_¸!iiii_i_i_iiiiii%_ii_!_!i_ii_i_i_ii_iiii_ii_iiiiiii_i_iiiii_iiiiiii_ii_iii_i_iii_iiii_iiiiiiiii_iii_i_i_iiiiiiiiiiiiiiiiiii

ii i _

/i /

!! iii_

! i!̧ !

i/i_i!_!i?

i I_

H •

,i _

!!!i iii _'_,
iii_!i! i_

i _ _/

ii _ ,,

!! if:!¸ r

essential architectural issues that must be addressed to successfully implement a multi-agent based
system to support automated mission operations. We have shown how the architecture of each
agent coupled with its behaviors (i.e., its capabilities represented as an information agent model),
can be used to resolve basic architectural problems of multi-agent systems.

The use of multi-agent based designs is not limited to the mission operations domain. They can be
employed in any environment where the user needs to delegate an associate to perform information
management activities such as in telecommunications network management, software reuse
management, and automated traffic incident management systems.

6.0 Acknowledgements

This work originated with a paper by Truszkowski and Moore [11]. We wish to thank Mike
Moore for his major contributions to the development of the agent model and testbed concepts
which are now being prototyped. The funding for this work is being provided by NASA
Headquarters Code O (Office of Space Communications).

Bibliography

. Bond, A. H., and Gasser, L. (1988). Readings in Distributed Artificial Intelligence,
Morgan Kaufmann, San Mateo, CA.

. Brooks, Rodney A. (April, 1991). Intelligence Without Reason, Computers and Thought,
IJCAI-91, AI Memo No. 1293, pp. 1-27.

. Etzioni, Oren, (1994, July). A Softbot-Based Interface to the Internet, Communications of

the ACM, pp. 72-76

. Ferguson, Innes A. (1992, May). Touring Machines: Autonomous Agents with Attitudes,
IEEE Computer, pp. 51-55.

. Genesereth, M. R., and Ketchpel, S. P. (1994, July). Software Agents, Communications
of the ACM, pp. 48-53

. Huhns, M. N., and Singh, M. P. (1994, May). Distributed Artificial Intelligence for
Information Systems, MCC, Austin, TX 78759.

. Knoblock, C. A., Arens, Y., and Hsu, C. (1994, May). Cooperating Agents for
Information Retrieval, Second CooplS-94 Proceedings, University of Toronto, Canada,
pp. 122-133.

8. Lansky, Amy, (1994, April). Data Analysis Assistant, Recom/NASA Ames Research Ctr.

. Papazoglou, M., Laufmann, S., and Sellis, T. K. (1992) An Organizational Framework
for Cooperating Intelligent Information Systems, International Journal of Intelligent and
Collaborative Information Systems, Vol. 1, No. 1, pp. 169-202.

Shoham, Yoav. (1990). Agent-Oriented Programming, Technical Report, STAN-CS-
1335-90, Robotics Laboratory, Computer Science Dept., Stanford University, Stanford,
CA.

12.

Truszkowski, Walt, and Moore, M. (1992). Towards an Information Ecology, AIP
Conference Proceedings 283, pp. 884-892.

Wiederhold, Gio. (February 1992). Mediators in the Architectures of Future Information
Systems, IEEE Computer, pp. 38-49.

887

