
!i_! /(::i:_¸
::ii i(:i :3=,

:!iiiii::i,_/;_!,

i iii:iil_ ,!= i__,

i: ¸, :'i •¸ _•

:ily •

• ; i_UiI"

:• ,

N95- 17558

TOWARDS AN INTEGRAL COMPUTER ENVIRONMENT SUPPORTING SYSTEM

OPERATIONS ANALYSIS AND CONCEPTUAL DESIGN

E. Barro, A. Del Bufalo, F. Rossi

VITROCISET S.p.A.
Via Salaria 1027

00138 Roma - Italia

ABSTRACT

VITROCISET has in house developed a

prototype tool named System Dynamic Analysis

Environment (SDAE), which aim is to support

system engineering activities in the initial

definition phase of a complex space system.

The SDAE goal is to provide powerful means for

the definition, analysis and trade-off of

operations and design concepts for the space and

ground elements involved in a mission.

For this purpose SDAE implements a dedicated

modelling methodology based on the integration

of different modern (static and dynamic) analysis

and simulation techniques.

The resulting "system model" is capable of

representing all the operational, functional and

behavioural aspects of the system elements

which are part of a mission.
The execution of customised model simulations

enables:

• the validation of selected concepts w.r.t.

mission requirements;

• the in-depth investigation of mission specific

operational and / or architectural aspects;

• the early assessment of performances

required by the system elements to cope with

mission constraints and objectives.

Due to its characteristics, SDAE is particularly

tailored for non conventional or highly complex

systems, which require a great analysis effort in

their early definition stages.

SDAE runs under PC-Windows and is currently

used by VITROCISET system engineering

group.

This paper describes the SDAE main features,

showing some tool output examples.

1. INTRODUCTION

Modern space systems are evolving towards

higher levels of complexity in both the
functional and behavioural domain. This is a

natural consequence of the increasing reliability

of technologies based on intelligence and
automation.

Spacecraft on board autonomy levels are

progressively enhanced, and more "intelligent"

and sophisticated operation control and support

systems are conceived and developed.

Such a context demands for a complex

engineering effort in the first phases of the

system life cycle, when
• the suitable identification and / or selection

of mission elements,

• the definition of system functions and

functional sharing between elements,

• the establishment of a mission operations

concept,

• the identification of system design and

performance drivers,

• the validation of system conceptual

definition w.r.t, mission objectives,

requirements and constraints,

imply in depth analysis and trade-off among a

wide scope of interdependent technology and

implementation solutions.

The selection of an optimum mission

configuration and operational strategy also

affects heavily elements procurement or

development and utilisation risks and costs.

In parallel with the evolution of space operations

conduct and support technologies, it is therefore

necessary to adequately improve engineering

support aids to the conceptual design of the

905



mission and its constituting space and ground
elements.

This can be achieved through extensive use of

modern computer aided modelling and

simulation methods and technologies.

VITROCISET is working since some years in

this field, through:

• a methodological effort based on the

definition of an integral modelling

methodology for a complex system, capable

to suitably support different kinds of

representations (operational, functional,

architectural) for conceptually different

systems.

Such a methodology has been derived by

exploiting commonly adopted description,

analysis and simulation synthaxes (e.g. OOA,

SADT, Petri Nets).

• a development effort for the integration

within a unique computer environment of

system description and analysis capabilities,

providing in this way the user with a single

point of access to the whole system

information, and means for information

derivation, handling, consistency check and

executable simulations preparation,
execution and evaluation.

• an application effort, aimed at exploiting the

computer environment capabilities in the

frame of concrete projects and at deriving

from the application experience requirements

for environment upgrades.

System definition and analysis methodology has

been already presented and discussed in

precedent papers of the same Authors (Ref. 3, 5).

In parallel with the methodology development

and refinement, V1TROCISET has developed a

PC based tool named System Dynamic Analysis
Environment (SDAE), which has been

progressively enriched in the last years up to

covering with automated support a large part of

the methodology characteristics.

The System Dynamic Analysis Environment

finds its natural application in the fields of

system operations analysis and systems

engineering, in the frame of both high level (A

and pre-B phases) studies related to satellite

operations and in the system definition and

design phase.

Currently, SDAE supports mainly the following
activities:

• mission and system requirements definition

and management;

• operations modelling;

• functional static and dynamic modelling;

• behavioural modelling;

• models parametrisation with operational and

performance attributes derived from mission

and / or system requirements;
• executable simulation and statistical

evaluation of simulation results.

2. SDAE MAIN PRINCIPLES

SDAE tool is based on a layered modelling

approach, depicted in figure 1.

Level 1 Modei

Environment

/MaP.'o0 1
Level 2 Model

Figure 1: The layered Modelling Approach.

Each hierarchical layer is constituted by a set of

models which structure and organise system
information within well defined entities.

The scope and the purpose of the modelling

activities vary according with the level of details

of the system description.

906



_il_

_< /ilil/

L i_i_ii_i_i_'I_I

!!i//i!_i _

• :i: ¸ :

_i__ _ :5_,

_ii::ii_i_i i!_/,i

_i_ _il ii :!iiii,_

i: b -

i__ < _

!, i i;

ii_i_,_ i!

'i_)/

-!

On top layer, the entities managed by the tool are

the main mission elements (physical or logical),

such as the flight element(s) and its supporting

ground facilities, or the spacecraft environment
as well.

Entities can be functionally described as

in all those static and dynamic aspects which are

of particular interest for the engineer in order to

analyse a specific problem for the mission.

At this stage modelling supports initial mission

analysis and operations concept definition

activities, such as selection of mission support

infrastructure, assessment of operational

strategies and derivation of related design

requirements and constraints.

A core modelling functionality enables the

definition of dynamic relationships between

(in terms of e.g. data exchange, events or

dynamic modification of model parameters

which affect objects behaviour).

Lower level models can be progressively defined

for more specific analyses (e.g. command and

control concept definition, budget analyses,

element conceptual design and trade-offs).

The utilisation of a unique descriptive

methodology at all the levels of details enables a

straightforward traceability among the different

modelling layers.

At bottom level, the tool can support the

definition and description of end-to-end
functional architecture models for the mission

elements and their sub-components.

Any object at any level can be customised with

characteristic parameters and reused in different

contexts, even though at high level it constitutes

only a partial view of the described element.
The execution of interactive simulations is

therefore supported by a set of configurable

library modules, including environmental models

such as e.g. drag models and orbital propagators.

Simulation input parameters can be derived

directly from associated requirements, as well as

output parameters can be source for lower level

requirements through dedicated derivation rules.

3. SDAE DESCRIPTION

SDAE tool provides the capability to build and

execute dynamic operational, functional and

behavioural models of a system, associating

model parameters to mission or system

requirements.

A high level architecture of the SDAE is

provided in figure 2. Dotted lines in the figure

show functionalities which are presently under

development or test.

- MMI ]

I

suit

ISimulat°rs I L Files

Figure 2: High Level SDAE Architecture.

The SDAE is constituted

environments:

• Model Preparation;

• Simulation Run;
• Evaluation.

by three separate

3.1 MODEL PREPARATION

Models are generated by means of:

• an object management facility (under

development) for the static definition of
basic model entities and their

characterisation by means of a set of

variables;

• a model editor facility for the end-to-end

description of objects dynamic behaviour and

relationships or interfaces;

• a requirements management and link facility

for the models parametrisation with numeric

parameters derived from mission or system

requirements.

The model objects descriptions can be stored

within object libraries and reused.

Models can also be interfaced at design time

with external application specific simulation

_iliii_

907



libraries, with which they exchange data and

status at run-time, providing in this way a
realistic scenario for the simulation.

The Model Editor realises the core modelling

functionality.
Such an editor is based on a Petri Nets-like

synthax, and exploits a dedicated extension of

Petri Nets methodology.
The editor enables the model dynamic

specification through:
• a core state-transition network with

deterministic and /or stochastic

transitions;

• a predicates editor, which supports the

definition of network predicates

(conditions and actions) by means of a

dedicated simulation language, and

enables the model link with external

simulation libraries.

The Requirements Management and Link

facility enables the mission / system

requirements handling, through:

• a requirements database editor;
• a linker between model variables and

numeric requirements parameters, with

possibility to specify input and output

links, together with derivation rules for

derived parameters;

The model preparation environment also enables

the generation of ad-hoc panels for simulation
monitor and control.

An example of SDAE preparation environment

display output is provided in Figure 3.

Figure 3: SDAE Model Preparation Environment.

3.2 SIMULATION RUN [_l

Once the model has been generated, a simulation

can be executed by means of the Simulation

engine of the tool.

The simulation execution environment allows:

• initialisation of simulation parameters (e.g.

duration, step) and variables;
• three different modes of simulation:

• batch (the model works stand-alone with

user interface);

908



15 , '

!_ii_' ,!i_:,:ii_,

 ili !' i ii!iliiiii!i

i!ii_::_:/il _

i!

i_:::i:!:_i__ii
i_i_ _

ii@?i:

!i!

• step by step (the model stops in case of

firing conflicts in order to highlight

decision branches in system behaviour);

• debugging (the user decides which

transition shall fire, among those enabled,

in order to experiment predefined

behavioural paths);

• capability to stop, continue or restart a
simulation with the same or different initial

conditions;

• user interaction in batch mode, by means of

monitoring and controlling the model

through customised control panels defined at

design time;

• simulation history log;

• on-line display of simulation statistics.

During the simulation, the run module executes

the model syntax, interfacing with external
simulation software.

The capability of defining firing conditions for
the network transitions enables the

implementation of priorities, in case the

modelled process is fully deterministic, i.e. no

resource conflict between concurrent functions is

allowed.

The definition of transitions associated actions

enables the parametrisation of network tokens,

modelling in this way the availability of different

kind of resources within the system.

Examples of simulation execution environment

display outputs are shown in Figures 4 and 5.

The shown examples reflect different simulation

and design objectives, as pertaining to different

stages of system life cycle.

The application shown in Figure 4 has been

developed within ESA/Dornier ARISTOTELES
Phase A and Pre-B studies.

Nct Configurotion

Figure 4: Simulation output example: ARISTOTELES ORM Analysis.

ij i?ili_I!_

!i!_iii!ii':

if::: _

•

It constitutes the modelling of a spacecraft

operational process, the Orbit Raise Manoeuvres

(ORM) execution process, which involves

ground, spacecraft and environmental functions.

909

The overall objective of the study was the

definition of an optimum strategy for satellite

tracking and ORM execution, identifying the

impacts of the selected strategy onto the flight

element and ground segment architecture.



'i ¸ 5 ¸ ?:

, ii!_ i

; ?_i_ii_+/i_

_ i _

i_i _ :

In particular the following topics were addressed

by the study:

• define the on board autonomy level, working

on the flexibility of the mission;

• identify a safe orbit maintenance manoeuvre

sequence;
• ensure required scientific return from the

system operations viewpoint;

• identify the interrelationship of chosen

coverage, link budget and memory budget

with the selected operational strategy;

• validate the sequence of events in the

operational scenario;

• analyse consequences of failure on the

chosen design (e.g. redundancy philosophy).

Figure 4 shows:

• the model of ORM process within the

Simulation Run Environment display screen;

• the ORM monitor panel, including an orbital

propagator (external module) outputs and

significant simulation variables monitoring;

• the Altitude display panel with an

atmospheric drag model (external module)

output;

• the log display of satellite contacts with

Kiruna Ground Station, as computed by the

orbital propagator.

The execution of the ORM process model for
different initial conditions and environmental

conditions (contact failures scenario) has enabled

the selection and validation of an operations

strategy, which satisfied all the system

requirements in the defined worst case
conditions.

The model has also been exploited as a

breadboard of the process under study, deriving

and verifying quantitative parameters

determining the sensitivity of the strategy (and

therefore strategy failure conditions) to the

variation of any of the parameters of the model,

like e.g. the spacecraft decay rate or the altitude

determination errors, with respect to the
reference values.

A wide number of statistical results about the

process under study has been derived, as the time
distribution of manoeuvres intervals and of

manoeuvres size, the deadband utilisation figure,
the scientific return distribution.

Finally, concrete impacts on the space and

ground architecture have been identified on the

basis of simulation results, especially with

respect to On Board Data Handling System (in

terms e.g. of definition of autonomous functions,

sizing of mass memory required for manoeuvres

parameters storage) and Ground Station

architecture (e.g. need for a dedicated ground

station, which has been derived as an "a

posteriori" constraint for successful exploitation

of ORM strategy).

The application shown in Figure 5 has been

developed in the frame of ESA/SAT CONTROL

Hermes Board Observability Breadboard (BOB)

software project.

The BOB is a spacecraft simulator which models

the generation and downlink of Hermes

telemetry, with the scope limited to Guidance,

Navigation and Piloting (GNP) functions.

The objective of the BOB is to provide a mean

(breadboard) for the definition of an optimum

telemetry strategy, and the verification of how

this strategy copes with spacecraft observability

requirements.
In this context, VITROCISET has been

responsible for the definition and development

of the on board Telemetry Generation Assembly

simulator, which reproduces the generation of

CCSDS telemetry packets on the basis of on

board events and operator directives, and their

delivery to Communications subsystem for
downlink.

The Telemetry Generator Assembly (TGA) was

designed with the SDAE simulation support.

A behavioural model of the assembly was

generated and executed, in order to validate

system behaviour w.r.t, specifications, to

experiment different implementation solutions

and to derive performance objectives for the

software modules in order to cope with system

requirements.

The model was able of fully reproducing the

system behaviour, including partial modelling of

hardware equipment (disk driver, buffers).

As an example, the model reproduced the

following characteristics:

• packet generation directives acceptance and

rejection policy (including input data format

910



ili_ i

_ _i _

_H _ ,

i_ ii:_I

: i •

<

and parameters check and consistency check

with current packet generation status) and

related timing;

• directives processing operations;

° directives scheduling policy (e.g.

insertion/deletion/update of schedule items,

schedule execution tasks "jumping" in case

of critical delays) and related timing;

• internal synchronisation and priorities (e.g.

enabling / disabling of packet playback on

the basis of schedule status, blocking and

non blocking operations, internal overrides);

• packet generation policy (e.g. handling of

measurement variations occurred during the

generation of a packet, generation policy of

supercommutated packets).

The model accepted as an input a timeline of

telemetry generation directives, and enabled the

operator interaction by means of issuing at any

time new directives for the model. The output of

the model was a list of generated packets, with:

• packet generation and delivery times;
• list of included measurements and related

values.

The time resolution of the simulation was chosen

of 1 millisecond.

_i_:i:!:i:i:i:i :::::::::::::::::::::::::::::::

m

i:i:?_!:!:;: :!:i:i:!:_

_:::_:!:! :i:!:i:i:!:i_:

Figure 5: Simulation output example: BOB TGA Architectural Design.

Figure 5 shows:

• the process model within the Simulation Run

Environment display screen;

• the test operator monitor and control panel,

including:

• directives panel for the generation of

telemetry generation directives by the

operator;

• packet generation status monitoring panel;

• current system schedule;

• status of the main system functions.
The execution of the TGA behavioural model

provided the designer with a lot of information

on the system. In particular different scheduling

policies and packet generation policies have been

tested before selecting the one which optimised

system functioning under nominal and peak load
conditions.

Even though the model was at behavioural level,

inferences on system performances have been

i _I:

911



:} • % ,

i:ii!:_i_i:i!!_I !

)

_:, %!.

i!iiii: _i

:: i _,

x

/_ii_i_!

derived by setting and changing maximum

allowed times for software tasks execution, and

deriving in this way objectives to be pursued in

single functions implementation in order to meet

the overall system performances.

In depth analysis of deadlock conditions has

been performed, by means of identifying and

quantifying the relationship between the input

data rate and the system response, which under

critical conditions is characterised by a

degradation in performances due to the skipping

of packet generation tasks in order to avoid

propagation of delay with respect to the
schedule.

In addition, the system response under different

modes of functioning (e.g. recorder, playback,

filler activated / deactivated with a predefined

rate) allowed the determination of packet

generation rate achievable in the different modes,

deriving in this way differentiated constraints for

packet generation function.

Finally, the partial modelling of some significant

time consuming hardware functions (access to

disk, input/output operations) enabled the

assessment of limits imposed by the hardware

onto system performances.

3.3 EVALUATION.

After the simulation run, the log file is processed

by an Evaluation environment, which computes

and displays the main network statistics, i.e. for
each transition:

• overall number of firings;

• minimum, average and maximum time

between two successive firings.

The environment also supports the generation of

customised graphical reports by means of
interface with standard Windows facilities and

the processing of the log file, providing

statistical figures of predefined network

parameters and variables (e.g. distribution of

parameters values across the simulation).

An example of Evaluation Environment screen

layout is provided in Figure 6, representing the

ARISTOTELES ORM process model simulation
statistics.

Figure 6: Evaluation Environment output example: ARISTOTELES ORM Analysis.

912



i :i_ii ¸¸ ";4 !': : _:H. : ....... , ... . : .... H- ......

_i:5 '

i _ _

• _' , i:!: ¸

::i :•!i¸¸

:;i••ii•:¸ ....

d

i_ _iI_

ili!_i__ _i_

4. CONCLUSIONS

SDAE prototype implementation has been

originated with the purpose of investigating the

system engineering process of a modern space

system in the first phases of its life cycle.

In particular, the ultimate objectives of the tool
were:

1. to provide an efficient

testing "on the job",

implementation costs

methodologies aimed at:

• ensuring a harmonic

breadboard for

within limited

and effort,

and consistent

growth of system information in this

phase;

• empowering system analysis and

validation capabilities, especially for

highly automated or non procedural

systems.

2. to derive requirements for methodologies

assessment and refinement, on the basis of

concrete engineering needs outcoming from

the tool application experience.

SDAE application has resulted to effectively

support both system analysis and conceptual

design, lowering the engineering effort for the

execution of operations analyses and

architectural trade-offs and providing, by means

of simulation, significant support to operations

and system concepts validation capabilities.

In particular the following characteristics of the

prototype have been found of particular interest,

especially in comparison with engineering tools
available on the market:

• the flexibility of modelling methodology,

which enables the easy generation and

maintenance of "on purpose" models,

without constraining the engineer to

rigorous top-down approaches, but at the

same time providing capabilities for system

information consistency keeping;

• the adequacy of modelling and simulation

tools to non procedural, event drive

systems;

• the reusability of model objects and

simulation modules;

• the "live dialog" capability of system

models with mission and system

requirements parameters through numeric

data exchange and derivation rules, which

highly enhance ability to manage, control

and validate system information.

Those positive outcomes suggested the

prosecution of the internally funded SDAE

prototyping activity, which currently is being

performed in the direction of both:

• improvement of tool modelling

powerfulness and engineering support

scope;

• increase of tool application experience,

through the investigation of new

application areas, such as communications

and ground data control and distribution

systems.

REFERENCES

1. Agerwala T. 1979. Putting Petri Nets to

work. Computer, Dec. '89, 85-94

2. CISET. ARISTOTELES Phase Pre-B Study:

Satellite Autonomy. Ref. ARI-TN-CI-001,

Issue 1.1, April 3rd, 1992

3. E. Barro & F. Rossi. An Application of

Timed Petri Nets to Operations Analysis: the

ARISTOTELES Autonomy Concept. In

Proc. ESA Syrup. "Ground Data Systems for

Spacecraft Control", Darmstadt, FRG, ESA

SP-308, 317-322.
4. SAT CONTROL. BOB Software and

Hardware Architecture Description. H-NT-

01210-0286-SATC, Issue V0, September

8th, 1992.

5. E. Barro, A. Del Bufalo & F. Rossi.

Operational Characterisation of

Requirements and Early Validation

Environment for High Demanding Space

Systems. In Proc. NASA 2nd Symp. "Ground

Data Systems for Space Mission

Operations", Pasadena, California, USA,

November 16-20 1992, 845-850.

913


