
: _

];

(:ii!

i!:ii;k! _/
)f: /._

ELISA, A DEMONSTRATOR ENVIRONMENT FOR

INFORMATION SYSTEMS ARCHITECTURE DESIGN.

Chantal PANEM

CNES French Space Agency
18 Avenue Edouard Belin

31055 Toulouse Cedex- FRANCE

Tel.: (33) 61 28 26 72
email: panem@melies.cnes.fr

ABSTRACT

This papers describes an approach of reusability of software engineering technology in the area of ground

space system design. System engineers have lots of needs similar to software developers ones: sharing of a
common data base, capitalization of knowledge, definition of a common design process, communication

between different technical domains. Moreover system designers need to simulate dynamically their system
as earlier as possible. Software development environments, methods and tools now become operational and

widely used. Their architecture is based on a unique object base, a set of common management services and
they home a family of tools for each life cycle activity. Late 92, CNES decided to develop a demonstrative

software environment supporting some system activities. The design of ground space data processing
systems was chosen as the application domain. ELISA (Integrated Software Environment for Architectures

Specification) was specified as a "demonstrator", i.e. a sufficient basis for demonstrations, evaluation and
future operational enhancements. A process with three phases was implemented: system requirements

definition, design of system architectures models and selection of physical architectures. Each phase is
composed of several activities that can be performed in parallel, with the provision of Commercial Off the

Shelves Tools. ELISA has been delivered to CNES in January 94, currently used for demonstrations and
evaluations on real projects (e.g. SPOT4 Satellite Control Centre), it is on the way of new evolutions.

Keywords: PCTE (Portable Common Tool Environment), Satellite Control Centre, Ground segment,

computer science, data processing, architecture, simulation, queueing networks.

This article starts by a presentation of the

rationale for ELISA development, it describes

the implemented life cycle, the workbench
architecture and ends with first conclusions of

the project.

FROM SOFTWARE ENGINEERING TO

SYSTEM ENGINEERING...

After several years studying software engineering

environments, mainly for the needs of the

Hermes program, it appeared that they become

operational and that any software project can

find rather easily satisfying COTS environments,
methods and associated tools.

On the other hand, in the area of system

engineering, the lack of an approved, detailed

and well-defined common design process, the

variety of tools and the poorness of

PAGE I_'LAI_ _T F'_ME_

945

N95. 17563

": :"::!:; _"_':_:': i _i.'¢:' _; ::

..2)/ ; Q2i';".5)

communication between them, increase

difficulties when the project size grows.

The idea that the knowledge acquired in

soPtware engineering area could help the design

of space systems was the starting point for this
new orientation of our activities.

A REUSABLE TECHNOLOGY FOR

"SYSTEM" DESIGN ?

Before trying to show how the technology was

reused, lets explain it in few sentences.

Up-to-date software engineering environments

are based on a so-called "integration platform" or

"integrated project support environment (IPSE)"

or "integration framework", in which a variety of

tools are "plugged-in". The framework offers

tools integration services, in three degrees: data

integration via a repository, which role is to

define, store and control all data needed by

@")i:';;;2:11.... ,.!:, ':,,i,.:.., ,/ :-

;i :<

2: <:/i: :; •

7ii!;<ii;:_

i ¸ _: <i!i • ¸_
<:_ _iii!i,

i_<'ii_ii_ii:i!_

 ,!iiiiii/%

51 i:

<!!:
!(;: <

-_ ii,_

:i i • :

:c ¸ : •

!i

heterogeneous tools, control integration for

communication between tools (interoperability)

and presentation integration for uniform access
to tools via the user interface. Some frameworks

also provide process integration services for

piloting of users activities according to a

predefined life cycle. Two kind of services

complete the environment to get a full

"workbench": "horizontal" services, like

documentation, configuration management,

project management which are used in all the

project phases, and "vertical services" which

support individual life cycle activities by means

of COTS tools (e.g. IDEF tool).
Such architecture did not seem limited to

software engineering applications, but its

adequation for system engineering needs had still

to be proved.

ELISA, A FIRST STEP TOWARDS A
WORKBENCH

FOR DATA PROCESSING

SYSTEM DESIGN

It was thus decided to develop a "demonstrator",
i.e. a demonstrative environment based on an

IPSE technology and supporting a coherent and

consistent set of system activities. The chosen

application domain was the design of data

processing systems for ground space segment.

ELISA (Environnement Logiciel Int6gr6 pour la

Sp6cification d'Architectures informatiques/

Integrated Software Environment for

Architectures Specification) users requirements

specifications were produced in december 92.

The objectives were:
- to demonstrate the benefits of software

engineering IPSE frameworks in the system

area,

- to increase CNES experience on three

points: modeling of a design process, interface

with a technical knowledge capitalization

system and integration facilities,

- to show the interest of specific system tools

and moreover of an integrated workbench

with respect to isolated tools.

946

ELISA development was then reduced to the
minimum set of services needed for demons-

trations and evaluation but as a reusable basis for

future enhancements. The constraint was to

reuse as far as possible commercial tools and to

limit specific developments.

THE ELISA REPOSITORY: a kernel for

traceability and reusability.

ELISA is based on a PCTE repository (ECMA

and Draft International ISO Standard). The

repository is an object management system,

which allows to define entities with the Entity-

Relationship-Attributes model, to store them in a

distributed way and to execute operations on

them (calls to external tools). The ELISA data

model has been defined in a modular way (thanks

to PCTE) leading to an organised network of

objects representing pertinent information for the

user (functions, requirements, documents,

architecture, equipments, simulation scenarios

and results, etc..).

In ELISA, links between the objects represent

either composition relationships, either trace

relationships. Trace links are used to store

implementation/validation relations according to

the process model steps: for example a computer

linked to a performance requirement can mean

that the computer implements it. Traceability

allows the user to navigate directly between

heterogeneous objects, to assess requirements

coverage by architecture trade-offs and to

analyse the impact of changes of a customer's

requirement, or a system function. Through the

trace matrixes produced by ELISA, the list of

objects impacted by a modification is available at

any step of the process.

The ELISA repository is also used as a

"Technical Memory" storage, a place in the data

model allows to capitalize information from old

projects, feedback from previous studies,

catalogues of hardware and software products

and also architectural data from previous

projects realised with ELISA.

:_ili!i,':iiiiii!_!_i:••

:v'} ! ¸ x ¸ x: ¸ ::x, : =&:r:i:i_:Z: ::<¸¸¸ ;?:: < ¸1171:}}¸,7.:i/¸ iqi:: 7: H{; } : x%i &:::_Z_IL :iiLi}ii:_i:/::ii:i{:@: :i.lii!:Zi:!:(iiii

: H " i,_ x "

x

: :,:. The user can at any time consult and reuse a

::_ functional or physical architecture from this

....... : technical memory.

i?i U>.;i!{i ¸¸: !

!i}5 v ¸ ::• ,

The definition of a complete, coherent and
efficient data model is one of the tasks that

require most reflexion, by the fact that it's the

basis for tools integration and invocation.

Extension to the data model is easy, but deletion

or modification of data types seem more delicate

once the environment is used by several projects.

• i! ¸ :: /ii

: {:% i;:!i!_

'i

•_iiii!/_•

_, <+ •

7 ¸

WHICH ACTIVITIES

DOES ELISA SUPPORT ?

Large projects are composed of a large number

of complex and inter-related tasks. The initial

work was to define the reduced life cycle that

should implement ELISA, this comprises the

definition of the activities that will be supported

(WHY), their scheduling (WHEN), the persons

who will perform them (WHO), the tools that

will be used (HOW) and the products that should

be available as inputs and outputs of the tasks

(WHAT). This work appeared to be fundamental

for the good achievement of the project.

The ELISA process model has three phases:

- System requirements definition,

- System architectural models design,

- Physical architectures assessment.

As it concerns a design process for early phases

of a space system, flexibility is the major issue
for an efficient assistance to users. The three

phases are not purely sequential, but the user can

complete them in an iterative way.

The EAST IPSE framework has been chosen,

mainly for its ability to define, control and

monitor any user defined process model, through

the user interface. Different types of users have

been defined (customer, architect, administrator

and project manager). When a user starts the

environment, he can activate tasks that have been

assigned to him by the project manager. Starting

a new project according to the ELISA process

model become a mere operation.

947

PHASE I: DEFINITION OF

REQUIREMENTS

SYSTEM

The first task the designer deals with, is the

capture of the requirements and constraints of

the system. ELISA assists him in performing

three activities: formalization of system and

functional requirements, functional architecture

analysis and definition of the logical sequencing

of data processings.

Extract imposed requirements:

The first step is to deduce from input system

specifications and customer interviews, the

information which will be pertinent and/or

constraining for the system architecture. These

information are identified as requirements and

can relate to several system aspects like

performance, security, integrity, sizing, fault-
tolerance.

With ELISA, requirements are managed by the

LOTUS 123 spreadsheet tool, tables of

requirements are created and filled-in by the user.

Requirements are formalized by several

attributes: an identifier, a textual description, a

status (to be defined, hypothesis, computed,

stable) and a value that can be the result of a

formula computation from other requirements
values.

Input specifications and interview notes can be

stored in the repository if compatible with

FrameMaker format, traceability links can be set

towards them in order to keep the origin of

design choices.

Analyse the functional architecture of the

system:

The second step covers the analysis of the

system functions. ELISA assists the user by the

integration of the ASA tool supporting the

IDEF0 methodology. The designer creates a

functional model, edit it and refines the system

functions in a hierarchical way, until obtaining a

tree where leafs correspond to processes or

software pieces. Each function is extracted and

accessible in the repository as an object,

automatically linked to its father and sons.

Tablesof functionalrequirementscan herealso
be attachedto any function of the tree (nodeor
leaf), for enablingthe user to add details like
performances,input and outputdatavolumesor
activationfrequency.
ELISA ensuresthe consistencyof the functions
tree and the attached requirementstables; if
somefunctionsarerenamed,movedor deletedin
ASA tool, the correspondingobjects in the
repository are automatically changed;on the
reverse, if the user deletes objects in the
repository, he will receive inconsistency
warnings.

Define logical sequencing scenarios:

Starting from functions and associated

performance and data flows requirements, the

designer usually defines a set of data processings

and looks for their sequencing and

synchronization constraints.

Functional analysis only gives a static view of the

system which is not sufficient, the dynamic

behavior is represented via "chronograms".

Chronograms graphically express duration, start

and end dates of each processing execution, in a

given time. scale. Several chronograms are

necessary to analyse nominal and critic paths of

the system. This step allows to highlight possible

parallelism, concurrency and synchronization

constraints between processings. With the

FrameMaker graphical toolbox, it is possible to

create, edit as many chronograms as needed

(exploitation chronograms, telemetry level n

processing sequence..) and to link them to

requirement tables and functions.

At any time, one can query the "technical

memory" for estimation of some processing

duration, by comparison with previous similar

projects.

PHASE Ih DESIGN OF MODELS OF

THE DATA PROCESSING

ARCHITECTURE

A key feature in system design is to predict

system performances as soon as possible, in

order to foresee system evolution ability,

according to potential customer requests. System

designers perform trade-offs between central

processing, distributed, client/server or cluster

architectures and have to propose the best one.

Alternative solutions are often provided on

designers experience basis or on hardware

constraints. But few solutions are in fact really

studied for a given project.

The objective of this phase is to come up with

alternative models of the system hardware and

software architecture, which all satisfy the

requirements defined in the previous phase.

ELISA gives help in three inter-related activities:

- software architecture modeling,

- hardware architecture modeling and
- overall model validation.

The support to the whole phase relies on an

integrated toolset for system modeling and

performance evaluation: MODLINE. It is an

open environment for modeling discrete event

systems, developed and sold by SIMULOG (F).

At the time the ELISA project started, no

commercial tool with a satisfying high level user

interface was available. MODARCH, a new tool

has been added to MODLINE on CNES request,

starting from an existing mock-up.

System designers are rarely familiar with formal

technics (e.g. petri-nets) or with queueing

networks, so they need to manipulate

"macroscopic" and realistic components. With an

ergonomic graphical object oriented interface,

MODARCH let them manipulate and compose

tasks, processors, networks, storage devices,
terminals...

The tool relies on the queueing networks theory

(QNAP2/Queueing Network Analysis Package,

from Inria and Bull F).

It must be kept in mind that the objective is not

to monitor precisely the performances of a

system, but to evaluate roughly the performances

and sizing capacities of a future system. Most of

its parameters and then results will be known in

an approximative way, but in an acceptable

margin, depending on the current project phase

(A, B or C).

948

/:iiii!!i:_ i!_!i !: i::: :: ¸ . . :. : <.,: _ :<_:.> _ . H.. ...

::2 ¸ 5: -,

:'i:/ / _!il_

; _!i_ii__!ii_
_ Z_ •

_ i I' _ , •

Model software architecture:

The activity consists of defining a model of the

software application that answers to the

functional architecture of phase I. For

simplification purpose and demonstration of data

sharing between integrated tools, ELISA

implements a single concept: functions; this

means that a function, a software, a processing

or a task represents the same object in the

environment.

From the function tree, the environment

automatically extracts the leafs and generates the
software tasks each time the user edits the

MODARCH architecture.

ELISA again maintains consistency: the

functional analysis may evolve, software

architecture modifications will automatically

follow, for example adding a function in ASA

will add a task in MODARCH, but removing a

function will generate a warning.

Automation is provided when possible, but the

user is still free to work in inconsistent states,

ELISA guides him in a predefined way but does

not enforce him, at least he is warned.

The initial architectural model is composed of a

set of independent tasks (names of leaf

functions). The designer refines them by filling

attributes (priority, memory) and activation
conditions. The behavior of the tasks is defined

with QNAP2 language and operations (read/

write in a storage, send message to other task,

consume CPU, etc..). Four task types are

provided: sources which allow to activate tasks

by sending requests, tasks which execute some

code on reception of requests, in-out tasks for

modeling files, data bases, exit tasks for deletion

of requests. This ends with an executable tasks
network.

Model hardware architecture:

The architect now looks for a hardware

configuration that satisfies the software

application. Without leaving MODARCH, he

selects components in an equipments data base

(processors, storage devices, terminals,

networks..). Each component is typed (a printer

and a screen are of terminal type, the processor

949

type includes workstations and mainframes), and

its attributes can be instantiated with user defined

values (memory, swap, CPU, rates...). The

behavior of the hardware equipments is coded in

QNAP2 and is hidden to the user, standard

algorithms, systems (Unix) and communication

protocols are available.

A major requirement towards MODARCH was

the flexibility of the projection of software tasks

to hardware equipments. With a simple graphical

link, the user affects a task to a processor or to

another. No user code is modified if the task is

moved or if the storage device to which it sends

write operations is attached to a remote machine.

The objective is indeed to analyse several

solutions as easily as possible. The MODARCH

user interface ensures consistency controls (a

task can only be mapped on a processor, a

source can be mapped on a terminal, an in-out

task can be mapped to a terminal or a storage).

Each hardware and software component of a

model can be parameterized (e.g. a CPU size, a

message length, a task priority), the parameters

values will be used for simulation purposes.

At any time, the user can call the other tools, in

order to have all the system views in his screen.

When he decides to close his model, the

repository automatically imports the system

components and the mapping links between
software and hardware. New tasks will then be

created and linked to the processor objects,

existing ones (functions) will be updated with
MODARCH information.

The user can add trace links between new

objects and previous ones. The result is a graph

of inter-related objects which allow direct

navigation between activities (from a

requirement table relating to function A to the

description of the computer which runs the task

A). The impact of a requirement evolution is thus

immediately visible if the user lists the traced

objects; the reverse is true, if a hardware

equipment evolves, the user can control the

impact on traced requirements or functions.

Statf ons_SS[_es_CUG acq_stgnaux Arch declen_traJ

,_--

"_\ _, ___B_,_."

_ Ethernet

t
I DLArch IT

Tralternents _art_culiers _ -

B_arch -_ t _b__ephe_

Figure 1: ELISA User interface

Validate the overall model:

The last activity consists of executing the

simulation model and analyzing the results. The

MODLINE toolset integration in ELISA is

helpful.

Simulation scenarios (experiment plans) allow to

define variation laws for the parameters values of
the above model.

Via a single operation, MODLINE automatically

checks, generates and compiles the code,

executes and provides results. With a graphical

results analyzer, the user can edit curvs or

resources occupation chronograms An

animation tool allows to follow messages

exchanges dynamically and then helps debugging
of the model.

Each data is stored in the repository: scenarios,

results, analysis drawings, links to its parent

objects are set by the environment. Through the

repository the user can compare output analysis

chronograms and those issued in phase I, this

assessment may help him choosing an

architecture type or another.

The process is iterative, according to resources

utilization analysis, the user can change his

models until obtaining the better optimized one.

Figure 1 shows the ELISA user interface with

views on the repository, ASA and MODARCH

models and a chronogram.

950

>i: • ,

iiS?::>

ii i;> f

ill

i__H

PHASE III: ASSESSMENT OF PHYSICAL

ARCHITECTURES

In the last phase, the designer chooses a real

physical architecture after studying several

implementations for each model (HP, SUN,

IBM?). ELISA supports four activities:

- Selection of real equipments,

- Validation of physical architecture,

- Cost computation,

- Choice of physical architecture.
The tools are the same as above: MODARCH/

MODLINE, LOTUS 123 and Frame Maker.

Select real equipments. The architect selects

existing physical equipments for each compo-

nent of the chosen model. Specially, he chooses,

via the MODARCH component base, a given

workstation (e.g. SUN Sparc 10) or a given disk

(e.g. Sundisk), and all their characteristics are

updated. He may also refine the tasks behavior if

necessary (e.g. Oracle for a data base model in

phase II). When leaving the MODARCH tool,

the repository is updated with new objects and

links towards the origin model and functions.

Validate physical architecture. The validation

of the physical architecture can be directly

performed by using the scenarios of the source

model. The user has to verify that the physical

architecture still satisfies the system

requirements.

Compute architecture cost. The objective is to

provide an overall cost for the physical

alternatives. By affecting a cost to all the

components in MODARCH and with a LOTUS

123 integration, the user gets a table of costs he

can complete and sum.

Propose an architecture. The end step is to

give a proposition to the customer. With all

information issued by previous steps

(performances evaluation, requirements

coverage, functional decomposition and costs

951

estimation), the user can edit a Decision
Justification Document with FrameMaker.

HORIZONTAL SERVICES

Documentation with Frame Maker.

Documentation is a very time consuming task,

specially in early project phases. ELISA supports

the user in composing and editing documents

containing information produced by the tools.

The "specification document" can be assembled

in a semi-automated way: the IDEF0 graphics,

the spreadsheet requirement tables, the

chronogram drawings are imported in a synthetic

document, from a predefined template. The user

can yet complete and polish it before printing.

Configuration management.
The ELISA framework allows the user to

manage versions of objects and to generate full

or user-defined configurations of his project.

Snapshots of his project will allow to stabilize
versions of his work.

Administration tasks.

The administrator is responsible of the

environment evolutions, of the repository

management (save and restore operations), of

feeding the technical memory, and of users and

projects management.

ELISA ARCHITECTURE

The ELISA architecture is compliant with the
one defined in the ECMA reference model

[ECMA 91] and can be represented as in Figure
2.

ELISA runs on a Sun SparcStation 2, SunOS

4.1.3, Motif.

The PCTE repository is the Emeraude

implementation.

ELISA has been developed by CISI S.A.

• _i: _: i__ :

!:ii

i: ii̧ :i:i ¸

ili_i,_i!!_:I_

iii_:i• ii ._

iiii i,i iii!iii!iiii i
_!i_i_IIII_I_!I,I

i iI_ _:

i iI i:! i

. i:i •

"Nil/ _

:!iii!:_iil'

/

/ Process modelingUser Interface

! DEFINE i
SYSTEM

REQUIREMENTS

! DESIGN i
ARCHITECTURAL

MODELS

_A ASSESS !
PHYSICAL

RCHITECTURE

Task Se_ic_

/

/

PCTE/Emeraude

Repository & Technical Hemorv J

/

' I
'\ i

,. \ i

EAST
IPSE

Framework

Figure 2: ELISA and the ECMA reference model

FIRST CONCLUSIONS

ELISA has been delivered in January 94.
Architects have been trained to the

demonstrator. Some demonstrations, at CNES

and externally, have shown the public interest

for the subject for the ELISA solution. Studies

on system engineering environments currently

raise in the european space and confirm our

opinion.

The project allowed to complete our experience

in tools integration, mainly in the impact of real

data sharing between tools and the induced

severe consistency checks.

The benefits of a system simulation tool are

clear for the users. Moreover, with the ELISA

environment, one can measure and better

understand the benefits of integration like

traceability, transparency of tools invocation,

common services , and specially assistance to

the generation of documentation.

ELISA has been delivered with an integrated

real test case based on the CE-GPS project. It is

currently being calibrated by Matra Marconi

Space on the operational SPOT4 Satellite
Control Center.

Some evolutions are going-on: porting on

ECMA PCTE, moving to an operational enviro-

nment, adding demonstrative features (multi-

platform communications), integration of new

tools version and process model enhancement.

References

[ECMA 91] ECMA, "A reference model for frameworks of
software e,agineering environments", ECMA report n ° TR/55.

ASA. is a registred trademark of VERILOG
EAST is a registred trademark of SFGL
Emeraude is a registred trademark of GIE Emeraude
FrameMaker is a registred trademark of Frame Techn. Corp.
Lotus 123 is a registred trademark of Lotus Development Corp.
MODLINE is a registred trademark of SIMULOG
MOTIF is a registered trademark of OSF Inc.
SUN is a registred trademark of SUN Microsystems, Inc.
UNIX is a registred trademark of AT&T

952

