
'. ?/

_ /i •

Software Interface Verifier

Tomas J. Soderstrom, Laura A. Krall, Sharon A. Hope, Brian S. Zupke

N95- 17564

(.•4

i.-J i?

!'

il; ii:•_i ¸¸

! •Z: ¸ !i

!:i_iiiilli_i:_

__!i_i:i• /

:'ii-_ _ ,'

i,

i: i:i _

i̧ Ii_!i!+i_

Z i i_ii

:i _:?i?:_!:

_:: /_ii I _i

Telos Corporation

320 N. Halstead, Suite 260

Pasadena, CA 91107

tomas.soderstrom_pl.nasa.gov

Abstract - A Trios study of 40 recent

subsystem deliveries into the DSN at JPL

found software interface testing to be the

single most expensive and error-prone

activity, and the study team suggested

creating an automated software interface test

tool. The resulting Software Interface

Verifier (SIV), which was funded by

NASA/JPL and created by Telos, employed

92% software reuse to quickly create an

initial version which incorporated early user

feedback. SIV is now successfully used by

developers for interface prototyping and unit

testing, by test engineer for formal testing,

and by end users for non-intrusive data flow

tests in the operational environment.

Metrics, including cost, are included.

Lessons learned include the need for early

user training. SIX/ is ported to many

platforms and can be successfully used or

tailored by other NASA groups.

I. Interface Testing History and Problem
Statement

The Deep Space Network (DSN) Deep

Space Communication Complex computer

environment is highly distributed, with major

functions allocated to subsystems. These

subsystems are hosted in separate computers
and communicate with each other and JPL

via a LAN/WAN. All communications

follow negotiated interface agreements

which prescribe the communications

protocols, data formats, and data ranges.

Over the past four years, JPL and Telos

developers on the Telos DSN Task Contract

fielded 40 subsystems into the DSN.

Frequently, mission requirements forced

subsystems to negotiate new interface

agreements and to deliver asynchronously.

The typical subsystem profile was:

• A telemetry, tracking, command,

supporting applications
• Communications and hardware intensive

• High reliability requirements

• 70K lines of C code, mostly realtime

• Six external LAN interfaces

• Development cost of$70K - $2M

or

The study team found interface testing to

have been the most costly and error-prone

activity. It proved nearly impossible to

manually verify and all possible data ranges

and data combinations for all interfaces

during live tests. This was due primarily to

excessive requirements for test equipment

and test persbnnel in high demand.

Consequently, interface errors sometimes

were not detected until the subsystem was in

operational use.

Metrics collected by the study team

supported the high cost of testing. Typically,

3 - 10 attempts were necessary before the

953

average interface was successfully tested.

End-to-end interface tests required from 5 -

12 personnel, and multiple tests were

necessary. Programmers spent a total of 4 - 6

work months writing unplanned interface

simulation code to support the test activity.

In addition, they spent another 2- 4 work

months per interface in creation and testing
activities.

II. SIV Goals

The study also showed that overall testing

accounted for a large part of the

development effort of the 40 deliveries. This

agreed with an Association of Computing

Machinery study of seven large software

projects, which found that 50% of the

resources were spent on the overall test

effort. The Telos study team estimated that a

comprehensive, automated, reusable test tool
could save 40% of the current interface

costs. The team further found that 173 DSN

interfaces could benefit from this tool within

the subsequent five years.

What features would be needed in such a test

tool? A literature search and interviews of

personnel involved in testing found that the

tool should:

• Understand DSN-specific protocols

• Be flexible and extensible, yet easy to use
• Test interfaces in an exhaustive but

automated manner

• Provide both realtime visibility into the

testing and offline results

• Be available in time to prototype interface

agreements

• Support developers' unit testing

• Support test engineers' formal testing

• Support DSN end-users' application

simulation and data flow testing

In addition, the test tool should combine

three types of test tools and have the

following specific capabilities:

1. Generate Test Data

• Control data to the bit level

• Produce static, variable, and predicted

dynamic data

• Simultaneously run in batch mode and

interactively

• Send single data blocks at specified

times and intervals

• Send data blocks or streams to multiple

destinations

2. Capture and Compare test data

• Specify which streams to capture and

compare to expected results

• Specify expected data values and

ranges

• View automatic comparison of test

data to expected values both on- and
offline

• Mask out data which would not require

an exact match

3. Simulate the entire application

• Create, run, and repeat complete

application scenarios for multiple

interfaces of multiple subsystems

Interactively change the behavior of the

simulated, scripted application

View online and printed detailed results

Telos proposed the Software Interface

Verification (SIV) tool with all the above

functionality. It was to be rapidly developed

and fielded with increased functionality

provided in two subsequent deliveries. SlV

was funded by NASA/JPL and developed by

Telos. The SlV provides all the functions

954

/

ii

,i

listed above listed above and summarized in

Figure 1.

simulate an application session, such as

sending the data from a typical Telemetry

pass.

User Inpu_

I-]1_- = Vasw0_rint rsporte/duml:_ /

I ill_ s initiate automated (batch) tests /

I Ill • //
/

/

Software interface Verifier:

," Generates data blocks that simulate inpute from a subsystem

¢ Receives data from a subsystem under test and verifies that the data is
within valid data range

Provides written reports and on-line displays

LAN DATA FLOW

Simulated Test Data

Generated Output Data

Intedace

Definitions

Automated

Test Scripts

Subsystem &

LAN Configuration Data

.... l....................................

Subsystem(S)UnderJ !_
Test

Figure 1 SIV Conceptual Operation
4. Select which tests to run, such as

The following steps summarize the typical generating test data, logging and

SIVuser scenario, comparing test data, and/or simulating

entire applications.
. Create an ASCH table describing the

interface agreement (called a Rapid 5.

Interface Definition - RID). It contains

interface definitions, including data types

and minimum/maximum/expected values,

incrementing values, etc. (In the next SIV 6.

version, this _ be automatically created

from the interface agreement. For now, it

must be typed in once.)

. Download the KIDs to SIV from LAN or

floppy and select which RIDs to use via a

type-in.

3. Select or create application simulation

scripts, if desired. This will enable SIV to

Select which online displays to view

(detailed data dumps, overall status

monitoring, or none).

Start the tests and, as desired, interactively

start/stop/modify the data flows via SIV

type-ins.

. When the test is complete, or manually

terminated, print the test report or

download it via LAN or floppy. Note

that the tests can be set up to cycle

indefinitely.

955

IlL SIV Development

The SIV development team consisted of one
technical lead who interfaced with the users

plus one programmer and one half-time

tester. The primary obstacles to be

overcome were:

• Users' reluctance to use an unproven test

tool

• Requirement to support multiple operating
environments

• Limited budget

• Quick results needed to meet users'

schedules

In order to meet the budget, time, and

multiple operating environment constraints,

the development team reused a working

skeleton subsystem from the Multiuse

Software reuse library, which had been

previously created by Telos and had already

been ported seven hardware/operating

system platforms. In addition, existing test

software from other development efforts was

adapted for use within SIV.

To overcome the users' reluctance to learn

and trust new test tools, the technical lead

concentrated on frequent communication

with potential users. This included electronic

mail, phone calls, visits, demonstrations, and

presentations. In addition, the team solicited

feedback and carefully folded new user

requirements into subsequent

demonstrations. This convinced skeptical

users by providing them continual visibility

and input into SIV development progress

and capabilities.

Although SIV was created as a DSN-specific

test tool, it was developed in a layered

fashion to facilitate later porting. This could

include adding new protocols, porting SIV

to new hardware/operating system platforms,

changing the user interface, and

adding/changing SIV functionality. Figure 2

describes the SW software architecture and

major functionality. For example, to

incorporate a new, low-level LAN protocol,

only the LAN Protocols module of Multi-use

Software need change.

SUBSYSTEM "_.

/ _ MONffOR & CONTROL

._...... :iliiiiiii_iii_i!iii!ililili!iiiiii: _:_

.. DA1A ,,¢: i iil ! i ! ! _i i i! _! i i i i! ! i! i!!! ! i!_i! ! !_!_:_!_i!i_ii!_ \

G ,_ii...i:_iiiiiiliiii:iiiiiiiiiiiii:ii: :_ilili!ii..........._i_iii_iiiiiiiiii.'.,/ LO_. _.._:......................_::::_ \
/ e<i_::::il CONFIG-\

ii;;_!i;;_ _ URATION \

__:i:i:i:i::===================================_i_ii::iii

_ :::]

' _:_i ::::........................::::::::::::::::::::::::::::::::::::::..==_/
::

DATA Xi: ::/

\ VAL[_AT_N_i_i_iiii_i_ii_iiiiiiiI_i_i_iiiii_i_iiii_iii_iii_i_iiii_i_i_i_.... /

j f--J

Figure 2. SIV Software Architecture

IV. SIV Results

S1Vs primary goal was to reduce the cost of

interface testing and the number of software
interface errors in the DSN. To achieve this

goal, skeptical users had to be convinced that

using SlV would save them time. We

originally hoped that cost savings due to SIV

usage would exceed SIV total lifetime costs

($420K) during SlV's second year of use

(1996).

956

i:_i!i_i!i_ii_!ii•

_ i:iii 71

i}_ 151_/ii
:

i_i i: _

rll •

H

As Figure 3 shows, the goal to obtain user

acceptance was met with a wide margin.

SW was initially targeted for use by only 13

projects, or user groups, during the 1994-

1999 time frame. However, within the first

seven months of development, and one

month aider the first release, SW had

acquired 23 interested user groups, 10 of

which have already used the S1V.

24

22

20

18 -_

t6 _

i

14 -
i

12

10

8

6

4

2 _

D EC JAN

End users - use SIV to simulate entire

subsystems for data flow tests, for

training, and for simulating hard-to-
create error conditions at the official test

facilities.

....

MAR

#

users

Metrics have been collected for three

months: two months before official SIV

release, and one month following the release

|i _i!

FEB APR MAY JUN JUL

FY94

_,UG SEP

.... i

i

i
t

J

FY95

(by end)

i

FY96

(by end)

interested future users _......................._ originally projected users

I actual users _ revised projection

Figure 4 SIV User Interest and Involvement has Surpassed Original Goals

of version 1. The metrics support

In these 23 user groups, there are now three anticipated savings as well as ones

distinct types of SIV users: originally considered.

the

not

Developers - use SIV to unit-test low-

level interfaces in their development

laboratories.

Test engineers - use SIV to

performance/stress test their applications

at DSN's official test facility.

The following relates some specific user

reports:

The Mettle and Pointing Assembly

(MPA) group saved 50 development

hours otherwise needed to write

simulation code to test a new interface

957

i!i ii <i_! __

,ik :_

:i_ii

L

<

which would not be available until well

after MPA delivered.

The Central Monitor and Control group

reported saving 20 work hours because

of SlV's ability to insert predicted errors

in the interfaces. This would have

otherwise taken several weeks and

multiple 350-mile round-trips to the DSN

station to induce the interface errors, test

whether the assembly reacted correctly,
and return to make needed software

corrections.

Multi-use Software saved 80 hours of

dedicated Test Facility resources and

associated travel by using the SlV in

their development laboratory to identify

and correct a complicated software

anomaly.

So far, SIV users have detected and

corrected the following types of errors in

their applications, without the need for live

tests: formatting errors, data range errors,

routing problems, and errors due to

misinterpretations of interface agreements.

The metrics listed in Table 1 represent three

months of SIV usage by six user groups.

Let us tackle the difficult process of

estimating cost savings achieved. Of the six

user groups, an average of three user groups

were concurrently using the SlV each month

for a three month period. To estimate cost

savings achieved, let us assume the DSN

average development cost (including burden

charges) to $67 per work hour and test

facility usage to $200 per work hour

(including support personnel, rent, hardware

maintenance, etc.). These values when

958

Table 1. Initial SIV Metrics

SIV U_age

Subsystems Int_'aces Tested

Data Flows Tested

//Interface Defmitic_s Generated

Code/Interface Errors Discovered

Est. Test Facility Time Saved

Est. Additional Use_ Time Saved

Metric

11 interfaces

20 data flows

63 RIDs

24 _rrors corrected

146 work hours saved

190 work hours saved

Est. Simulation Code Time Saved 100 work hours saved

Est. SIV Learning Curve Total Cost 10.5 wc_rk hours

invested

combined with the savings m the above table

result in a total savings of $48.6K for the

three months or $5.4K per user group per

month. Applying the $5.4K to our projected

Fiscal Year 1994 (FY94) and FY95 users

(see Figure 3), results in a total cost savings
of $216K for FY94 and $875K for FY95.

This exceeds our originally projected cost

savings of $51K for FY94 and $324K for

FY95. In more general terms, this minimally

translates into the developer having more

time to work on other subsystem

development areas. It also means more

available test facility time to other users.

Overall, SIV usage should significantly

reduce the risk and cost of the typical DSN

subsystem delivery.

Additional savings due to automated testing

using SW include:

• Reduced amount of travel to -- and use

of expensive -- Test Facility

• Faster turn-around times when testing

within development labs--no need to wait

for scheduled test times or personnel

availability

• Costly simulation code need not be

generated nor maintained

i _ _i_i_

ii,_iill_,iiii_:

i:i_:i!_%:i!¸ '

_i_i/ii_if!?_

: _ :i_ii_-
i_̧i̧ :I!•(:

:i i_!ii

ii

,/

?i

• Fewer end-to-end test resources required

since data content and protocol routing

can be pre-verified with SIV

• Automated regression tests can be run at

computer speed

Although the initial SIV version has just been

fielded, early results clearly indicate the value

of automated testing and that SIV met its

goals and will help test DSN interfaces at all

levels. Developers, test engineers, and end

users no longer have to be "sold" on using

automated test tools such as SIV. The early

results indicate that automated testing will

continue to pay dividends

V. Lessons Learned

What did we do right?

We solicited user acceptance. The SIV

Technical Lead spent a considerable amount

of time with skeptical users to learn their test

and simulation needs and teach them SIV.

We hem early and frequent demonstrations.

These also allowed for design refinement and

identification of new requirements. When

acted upon, this was especially important as

it created user acceptance.

We selected an experienced staff. The

developers, who were experienced with the

reused packages and testing in the DSN

environment, experienced no learning curve.

We employed significant reuse. The

completed SIV consists of 8% (or 8K lines)

application-specific code and 92% reuse

from Multiuse Software and adapted

simulators and test software obtained from a

reuse depository. Besides for helping speed

up the SlV development, the reused software

959

had been previously proven, extensively

tested, and ported to seven platforms.

What could we have done better?

We shouM have allocated more schedule

time to the demonstrations. Although

invaluable for the eventual SlV progress, the
cost of each demonstration was 3,5 work

days to plan and hold plus 3 work days for

user requirements change requests, follow-

up, and action items.

We shouM have provided earlier user

training. This would have lessened the drain

on SIV personnel for user support which we

under-estimated.

We shouM have hem smaller training

classes customized to the group's needs.
This would have allowed more customized

training to better enable the users to

recognize and use the powers of simulation

and automation that SIV possesses.

VI. Applicability For Other Groups

SIV can be successfully used on all large,

distributed software development efforts

where computers interface over a LAN.

Although standards, such as the Distributed

Computing Environment, and Abstract

Syntax Notation, have great promise, they

are often too late to immediately benefit

current, large software environments. The
SlV is a flexible test and simulation tool

which can test other subsystems over a LAN.

It can be easily adapted to use new custom

or standard high- or low-level protocols.

SW is written in C and currently runs on a

Sun under the Solaris operating systems and

on Modcomp's Unix work stations running

the Real/ix operating system It can easily be

adapted to run on all other platforms

supported by Multiuse Software (PDOS,

VxWorks, VADSWorks, and OS/2). It is

currently being ported to run on Intel 80386

computers (and greater) running a shareware

Unix variant called Linux. SIV is fully
documented and available l_om Telos or JPL

by request to the authors. We plan to

implement TCP/IP during Fall/Winter 1994,

which should make the SIV instantly usable

by groups outside the DSN.

Acknowledgments

The work described in this paper was

accomplished by Telos Corporation under

contract to the Jet Propulsion Laboratory,

California Institute of Technology and

sponsored by the National Aeronautics and

Space Administration.

We would like to thank Joseph Wacldey,

Roger Crowe, and Sheila Davis of JPL for

their support of Multiuse Software and the

Software Interface Verifier project and for

their vision and relentless efforts to create an

automated testing environment in the DSN.

96O

SD.3.a

3. Methods

OOD/OOP Experience in the Science Operations Center Part of

Page 961

963-970.............._:_i;;_

><_/i!i>:_
i<_!¢, < <<

<:J ,,<n_

!!ii_ii i _i_i;

ii_ <!il;i>¸

<7 7 _

!:

<

<

i!

• (>

ii,/

SD.3.b

SD.3.c *

SD.3.d

SD.3.e

SD.3.f

SD.3.g *

SD.3.h *

SD.3.i

the Ground System for X-Ray Timing Explorer Mission

Abdur Rahim Choudhary

Mission Operations Development: A Structured Approach

Michael Fatig

The Cooperative Satellite Learning Project: Space Missions

Supporting Education

Michael Fatig

A Proven Approach for More Effective Software Development
and Maintenance

Rose Pajerski, Dana Hall, Craig Sinclair

XMM Instrument On-Board Software Maintenance Concept

N. Peccia, F. Giannini

Integration of a Satellite Ground Support System Based on

Analysis of the Satellite Ground Support Domain

R. D. Pendley, E. J. Scheidker, D. S. Levitt, C. R. Myers,

R. D. Werking

Software Process Assessment (SPA)

Linda H. Rosenberg, Sylvia B. Sheppard, Scott A. Butler

Taking Advantage of Ground Data Systems Attributes to

Achieve Quality Results in Testing Software

Clayton B. Sigman, John T. Koslosky, Barbara H.

Hageman

SCOS II - An Object Oriented Software Development Approach

Martin Symonds, Steen Lynenskjold, Christian Mi_ller

/.j

973 :::::<:: :;:::::

.... £:.::+:':

975-983 "_:

,% /'

985-992:<i_i::_:_:::_

_.:. _:::'"i:!

993-1000_ _:'

1001-1008_._

1009- I014 <.ii!!i ::!f

{0
1015-1022 >_".i:,,;_

* Presented in Poster Session

961

