
:i i!ili;...
/ !!:i_i_i: I

i_i:ill :i ,i_I

L

:!_i!:) !i;!!il

N95- 17565

J

OOD/OOP Experience in the Science Operations Center part f:J..

of the Ground System for X-ray Timing Explorer Mission

_ 'xl i <_i, ?iii_

:i!_i_i'ii_,:::i?

ii: :,

•,5¸¸¸

+_ _iii _,

x?_ H

:!i?!;-

ii:__,_:

Abdur Rahim Choudhary

Hughes STX, Technology Applications Group, 7701 Greenbelt Road, Greenbelt, Md-

20770, USA. (301-441-4229), rahim@rosserv.gsfc.nasa.gov

1.0 Introduction

The Science Operations Center (SOC) for the X-ray Timing Explorer (XTE) mission is an

important component of the XTE ground system. Its mandate includes:

• Command and telemetry for the three XTE instruments, using CCSDS standards.

• Monitoring of the real-time science operations, reconfiguration of the experiment

and the instruments, and real-time commanding to address the targets of

opportunity (TOO) and alternate observations.

• Analysis, processing, and archival of the XTE telemetry, and the timely delivery of

the data products to the principal investigator (PI) teams and the guest observers

(GO).

The SOC has two major components: the science operations facility (SOF) that addresses

the first two objectives stated above and the guest observer facility (GOF) that addresses

the third. The SOF has subscribed to the object oriented design and implementation; while

the GOF uses the traditional approach in order to take advantage of the existing software

developed in support of previous missions.

This paper details the SOF development using the object oriented design (OOD), and its

implementation using the object oriented programming (OOP) in C++ under Unix envi-

ronment on client-server architecture using Sun workstations. It also illustrates how the

object oriented (OO) and the traditional approaches coexist in SOF and GOF, the lessons

learned, and how the OOD facilitated the distributed software development collabora-

tively by four different teams. Details are presented for the SOF system, its major sub-

systems, its interfaces with the rest of the XTE ground data system, and its design and

implementation approaches.

2.0 Distributed Development

SOF development is distributed from following points of view:

• Development by a team with components distributed at Hughes STX and the three

PI team locations at Goddard Space Flight Center (GSFC), University of California

at san Diego (UCSD), and Massachusetts Institute of Technology (MIT). It also

implies development under heterogeneous management structures, as each team

component has its own management.

• Development on computer systems distributed at above team component locations,

and internetworked using TCP/IP. This also includes development on

heterogeneous types of machines.

963

_)_i_ lPAG_ _..At_ _T F_.M_D

i' iili !i>: [:
: i!ill ? :/

5: / "?H

i _ i! ?!

:<! •//
_. n/¢ _ _

f_:il _ [i(ij

i_ <,i ii!

i_I / < •

il ii

)[/<•
,< <

i_i < ?

i <i •

i :

/_ i!_

SOF development uses the incremental build approach, with builds roughly six months

apart. It employs the philosophy that the system software will be so modularized that the

modules can be developed by the components of the team that has best expertise for them.

Thus the software development related to a particular instrument is allocated to the corre-

sponding PI team. These include the instrument health and safety, instrument commands,

instrument telemetry unpacking algorithms, and algorithms to construct physically mean-

ingful data partitions from the telemetry.

The rest of the system development is performed by Hughes STX. This includes the over-

all system engineering, development of abstract classes and base classes, integration of the

total software system, testing of the system and the subsystem components, and integra-

tion of the SOF with the rest of the XTE ground system. The overall responsibility for the

SOF remains with Hughes STX. This includes coordination with the various teams, clear

definition of the development interfaces, and meeting the software build schedules.

Legend: _ Object Oriented _ Non Object Ori-
Development ented Development

PI Teams

I PCA]l

I HEXTE I!

I EDS/ASM [_

l Data

Products

I GSFC Code

5,00 Elements

Co_ Modnet/

I L_e_r_°nsl I sasc°m
Instrument _ I [] I
bottware I SOF _ I

[_,_]_ FDF

/_t1_ Cdmmands

// re_itame _ "_ MOC/FOT

Data Prod- Tele_aetry ' I
ucts Input

Calibrations
¥

XSDC
Data

....... _,_ SDPF

_/i _ i I [Pac°r/DDF
GOF : ,

,O il
Products i _ :

Figure 3-1: SOF interfaces and context within the XTE ground segment

3.0 SOF Context and Interfaces

Figure 3-1 shows the distributed parts of the SOF development effort together with the

relationship of SOF with the rest of the XTE ground system. The SOF box shown in the

center represents the net result of object oriented development by the PI teams and the

Hughes STX. It has important interfaces with other ground system elements which are not

object oriented. The GOF is not object oriented, but it needs to retrieve telemetry data

964

,i : i: :ii! <5_:,

/i:? ¸¸ i . :'

ii! :iii_ii_i_!/:
..... . {{

;:i?i_iii!ii!__
•: _ :::/,#::ii_]¸

i:_

:/ i_}_

products from the SOF generated objects in order to generate the Flexible Image Trans-

portation System (FITS) files. This interface is provided by data management subsystem

of the SOF (see Fig. 4-1) that communicates with the XTE FITS Formatter software of the

GOF using a set of data descriptors formulated according to a data description language

(DDL) defined by the GOF for this purpose.

Subclasses
Attributes

Public Constructors

Public Member Functions

Virtual Member Functions

Figure 3-2: An example of

SubsystemConfig

This is the base class for the DesiredConfig and

PredictedConfig classes.

DesiredConfig

P redict edCon f ig

RWCSt ring configurationName ;

The configuration name.

RWCSt ring description;

A descriptive string for the configuration.

SubsystemConfig () ;

Constructs a configuration with no description or configuration name.

virtual ~SubsystemConfig () ;

Destructor.

void setConfigurationName (const char* name);

Sets the configuration name.

const char* getConfigurationName() const;

Returns a pointer to the configuration name.

void setDescription (const char* name);

Sets the descriptive text field.

const char* getDescription() const;

Returns a pointer to the description,

virtual const char* getSubsystemName() const;

Returns the name of the subsystem.

virtual CommandScript* getCommandScript() const;

Returns the command script.

virtual TelemRate* getTelemRate (const Source&

source) const ;

Returns a telemetry rate.

virtual void printShort (ostream& ostr) const;

Prints a description of the configuration.

virtual void print (ostream& ostr) const;

Prints a description of the configuration.

virtual void printLong (ostream& ostr) const;

Prints a description of the configuration.

detailed class prototype from command generation subsystem.

<i / .

The non Object Oriented interfaces are defined in traditional sense. All the data to be

exchanged between SOF and an element of the ground system were identified; their for-

mats were specified; the frequency and mode of each data transfer and the corresponding
data volume was determined; and the standards to be adhered to were noted. A separate

965

ICD wasconcludedbetweenSOFandthecorrespondinggrounddataelement(asopposed
to asingleICD betweenSOFandall otherelements).This approachallowedthelogistic
complexitiesto beminimizedandupdatesto theseICDsmanageableby keepingthenum-
berof involved partiessmall.

TheinterfacesbetweentheSOFandthecomponentsof theSOFto bedevelopedby thePI
teamswerenecessarilyobjectoriented.Thetraditionalmethodsfor theinterfacetreatment
couldnotbeemployedin thiscase.To definetheobjectorientedinterfaces,first theclass
hierarchywasdeveloped.Thebaseclasseswereall allocatedfor developmentby the
HughesSTX team.Thesubsetof derivedclassesto beimplementedby thePI teamswere
specified.Theinterfacesweredefinedin termsof thepublic memberfunctionsthat these
classeswererequiredto support.As partof the interfacedefinition,all suchclasseswere
prototyped;andthosepublicmemberfunctionsof eachclasswerealsoprototypedupon
which theotherpartydependedfor the implementationof their code.Thissetof prototype
classesandpublic memberfunctionswereformulatedearlyin thedevelopmentanddocu-
mentedin anICD. An exampleof suchprototypeclassandits methodswith their signa-
turesis givenin Fig. 3-2.

SeparateICDs weredevelopedwith eachPI team.Further,thecommonalitybetweenthe
ICDs with PI teamswasexplicitly acknowledgedto facilitatetheir development,to avoid
reinventingthepartsalreadydeveloped,andto managetheconfigurationof thecommon
interfaces.This further facilitatedtheinterfaceimplementation,sincethecommonality
explicitly formulatedin theICDs allowedthere-useof thecorrespondingsoftwaredevel-
opmentapproachamongthePI teams.

4.0 Analysis and Design Approach

The book "Object-Oriented Modelling and Design" by Rumbaugh, J., Blaha, M., Premer-

lani, W., Eddy, E, Lorenson, W. (Prentice Hall 1991) was used by the SOF team to follow

the Object Modeling Technique (OMT) advocated by these authors. The following proce-

dure was found useful and worked for the SOF team, even though the various steps

described below were often concurrently analyzed and subsequently refined via iterations.

1. The SOF team started with the usual requirements analysis. The requirements are

sourced from the customer, domain experts, and the users.

2. The requirements were allocated to a set of high level functions. These functions were

grouped into the subsystems, shown in Fig. 4-1. A lead engineer was appointed for

each subsystem. The analysis described below was performed on subsystem basis.

3. The nouns used in the requirements allocated to a subsystem were potential objects.

After the redundancy was weeded out and the overlap between the objects was mini-

mized, the team had a fairly good starting set of the objects.

4. The associations between the objects can be indicated by the verbs in the requirements

definition. This led to some objects being identified as the class attributes. The dynamic

modelling scenarios were used to identify the objects that potentially form the member

functions.The initial objects set was thus grouped into a set of classes, their attributes,
and member functions.

966

,/ i•

< <

:. i:! :¸ :<

-i

GOF _-E_./-

" ,M224
GCommand

enerationj

commands

<):_ •
i 7:/

:< < i_

/

Activity Plans --

DataIngest

I
SDPF]

Desired Time-Line

real-time packets
configuration

housekeepingPacket Files
ii

Data

Telemetry Object Database

science data

i

Predicted Time-Line
i

Lt_ Mission _'_ _

_- k,,,,Monitoring _--_,,

//_Health and"_ _

mkSafety Mon. _ _P"

_# Science >vk,,, Monitoring --

.

Figure 4-1" SOF software subsystems

MOC

Measured
Time-Line
i

Trends
i

= GOF I

A further analysis of these classes based on the bottom up and top down approaches

was used to develop inheritance relationships between classes. The classes were then

generalized to form the abstract classes; various specializations of which led to the

derived classes. Some classes in each subsystem fell in the domain of expertise of the

PI teams. Those were allocated for development by the PI teams. Such allocations how-

ever were not rigid so that they were reviewed as the design progressed and during the

implementation phase of various builds.

Figure 4-2 shows an example of the object model for the command generation subsystem.

The SOF design document has such object models for each subsystem and additional
information as follows:

1. Subsystem introduction

2. Applicable requirements

3. Operating scenarios

4. Outstanding issues

5. Major design features

6. External interface

7. Subsystem interfaces

8. Subsystem object model

9. Subsystem class hierarchy

10. Detailed class design

11. Review comments and responses

The detailed class design is similar to the example presented in Fig. 3-2.

967

 /!iiiilļ̧ :......... • ••

!Z i

'_)i;_I

(/ !::i= •

iiiii!' ii!iii'i

: ii: i :!

PredictedConfig

SubsystemConflg

configurationName
description

virtual getCommandScript

virtual getTelemetryRate

setConfigurationName

getConfigurationName

setDescription

getDescription

virtual inheritPrediction

virtual get DeltaCommandScript

-<

-- HEXTEPred icted Co nflg

-- PCAPredictedConfig

-- EDSPredictedConfig

-- EaPredictedConfig

-- ACSPredictedConfig I

-- ObsPredictedConfig

I DesiredConfig

-[HEXTEDesiredConfig

---_ PCADesiredConfig

_ EDSDesiredConfig

--1 ACSDesiredConfig

_ ObsDesiredConfig

computes CommandScript

insertCommandPacket

insertCommandScript
insertCommandString

nsertNoOp

lg Co,,,.,mmandPacket

etHex

PktCCSDS

Figure 4-2: An example of Object Model from command generation subsystem

5.0 Development Environment

SOF decided for a client-server architecture using SunSparc workstations. However MIT

wanted to use their existing DEC Ultrix workstations for their part of the SOF develop-

ment. This meant that all development standards and the tools needed to be available on

these two machines. To keep the development away from specific features of these two

machines, a SGI IRIS Indigo was acquired to test that the software built on a third plat-

form. The software development environment of the S OF are summarized in Table 5-1.

The internet connectivity between the computers on the four sites facilitated the distrib-

uted software development by the three PI teams and the Hughes STX. This allowed the

developers to collaboratively debug problems on each others' computers using remote

logon. It also allowed the periodic deliveries of the software and documentation from the

PI teams to the Hughes STX for the SOF builds. Monthly meetings of all four components

of the team were held. Other collaborations were ongoing using electronic mail. Each item

in table 5-1 and all upgrades were discussed using these forums and kept in a standards

document. Copies of all XTE SOF documents were available via an anonymous ftp
account.

968

::iI) :: •

TABLE 5-1: Software development environment of SOF

Software Tool

SunOS

Motif

Starting
Version

4.1.3

ida

Current

Version

4.1.3

1.2

Comments

Sun Operating System

GUI

0bjectCenter 2.0 2.0.6 C++ Debugger

CFront 3.0 3.0 AT&T C++ translator

Linpack/Lapack .h++ Linpack. 1.2 Lapack 1.0 Math.h++ and Maix.h++ supersets

xmgr 2.10 2.10 Oregon grad. inst. analysis package

RogueWave tools.h++ 5.2 6.0 C++ library

RCS 5.6.0.1 5.6.0.1 Revision control system

TAE+ 5.2 5.3 GUI Builder

Xll R5 R5 X Windows

FrameMaker 3.1x 4.0 Wordprocessor plus graphics

genman/genman++ 2.0 2.0 Unix style man pages

GNU Make 3.68 3.70

Purify 2.1 2.1

xteprob (home grown) 1.0 1.1

make utility

check memory leaks/corruption

descrepancy tracking system

6.0 Object Persistence

Commercial object oriented data base management systems (OODBMS) were initially investi-

gated for use in SOF. Ontos was selected for detailed evaluation. A pathfinder analysis showed

that in the SOF context Ontos had several difficulties: presence of memory leaks, the perfor-

mance limitations (SOF is required to ingest at an average rate of 64 kilo bits per second and a

peak of one mega bits per second), and the fact that Ontos persistence mechanism required

modifying those class library header files which must be persistent.

SOF's main data management needs are object persistence and persistent object retrieval. The

more advanced features of an OODBMS such as sophisticated query capabilities or the trans-

action commit mechanisms are not required. The RogueWave (RW) Tools.h++ class library

offers a means of making objects persistent. The UNIX file system together with the Dictio-

nary classes in RW offer a means of accessing persistent objects; i.e. a way to simulate a global

namespace. A prototype of the archival portion of the Ingest subsystem using Rogue Wave

Tools.h++ was roughly ten times faster than the equivalent Ontos version. SOF therefore

decided to develop internally the mechanisms it needed to satisfy many of its data manage-

ment requirements.

7.0 Object Oriented Implementation

Some practical experiences during SOF implementation are presented in this section. The

development was facilitated by early implementation of the object oriented interfaces. As can

be seen from the example in Fig. 3-2, these interfaces were defined in terms of the method pro-

969

_ _ __ __' :: <_ : :::_ ::: _;: _ :i::_ii_ii_i:_:_!:! _!_i__ii_i_i_!_i_i_i_iii_!_i_ii_i_ii!iiiiiiiii!ii;iiiiiiiiiiiii?_ _i!ii%ii_ii_i_iiiii_i_i_i_ii_ii_iii_iii_i_i_iii_i_i_i_iii_iiii_iiiiii_ii_iiiiiiiii!ii

totypes in C++. The crucial parts of the code were therefore developed and scrutinized

early in the process. As illustrated in Fig. 3-2, many of the interfaces were defined as vir-

tual methods. This was very helpful in developing software with complete reliance on the

PI teams for their instrument expertise and without the need for the Hughes STX engi-

neers to also acquire such expertise. In fact the virtual method interfaces were often identi-

cally defined with each of the three PI teams; the specific instrument expertise were

encapsulated in the way these interface methods were overridden by an individual PI

team. At the same time the formulation presented a uniform interface to the Hughes STX

engineers that were independent of the intricacies of the individual instrument subsystems.

This approach is taken in many important instances including instrument configurations

specification for command generation and mission monitoring, the telemetry unpacking to

recover CCSDS packets, to assemble CCSDS packets into physically meaningful parti-

tions, and to access that information from the persistent objects. This is a remarkable

advantage of polymorphism in object oriented approach. The class hierarchy in such cases

is illustrated in Fig. 4-2 for the case of instrument configurations. In this case the sub-

classes of PredictedConfig and DesiredConfig (except those for ACS and Obs) are devel-

oped by the PI teams while the rest are developed by the Hughes STX. The PI teams are

free to derive their own sub-hierarchy.

The C++ templates were helpful. The real-time data ingest subsystem has a real-time

server that passes CCSDS packets to the real-time clients. A real-time client template was

developed that proved useful for the PI teams, the health and safety subsystem, the science

monitoring subsystem, and the mission monitoring subsystem to write their own real-time
clients.

The RW object oriented libraries of Tools.h++ proved very useful in saving the develop-

ment effort on mundane things. The RW persistence and retrieval mechanism however

was sometimes difficult for new developers to grasp.

8.0 Conclusion

Our OOD/OOP experience in SOF can be summarized as follows:

• Initial analysis and design activity took a while (the team was also passing through

a learning phase); but the implementation proceeded pleasantly fast (couple of

experienced C++ programmers later came on board, and the example of their work

was helpful for the rest).

• Our decision not to use an OODBMS proved right.

• The COTS object oriented libraries saved SOF time and cost.

• Design changes due to the management decisions and requirements evolution were

gracefully accommodated.

• The total SOF team is 11 persons, which is modest compared to similar past

missions. XTE launch is scheduled for August 1995; the OOD/OOP approach has

so far allowed SOF development on schedule and within cost.

970

