
A Proven Approach for More Effective Software
Development and Maintenance

ii ii! Rose Pajerski
NASA Goddard Space Flight Center, Code 552

Beltsville, Maryland

N95- 17566

,..]./ _" ...

, ,.' ,ii)'

t /

H

.... ill
: L

5:i

x ii:ili_ •

70 :

:i >_ /

• ill: •

Dana Hall

Science Applications International Corporation
McLean, Virginia

Craig Sinclair
Science Applications International Corporation

McLean, Virginia

Abstract

Modern space flight mission operations
and associated ground data systems are
increasingly dependent upon reliable,
quality software. Critical functions such
as command load preparation, health and
status monitoring, communications link
scheduling and conflict resolution, and
transparent gateway protocol conversion
are routinely performed by software.
Given budget constraints and the ever-
increasing capabilities of processor
technology, the next generation of control
centers and data systems will be even
more dependent upon software across all
aspects of performance. A key challenge
now is to implement improved
engineering, management, and assurance
processes for the development and
maintenance of that software; processes
that cost less, yield higher quality
products, and that self-correct for
continual improvement evolution.

The NASA Goddard Space Flight Center
has a unique experience base that can be
readily tapped to help solve the software
challenge. Over the past eighteen years,
the Software Engineering Laboratory
within the Code 500 Flight Dynamics
Division has evolved a software

development and maintenance
methodology that accommodates the
unique characteristics of an organization

while optimizing and continually
improving the organization's software
capabilities. This methodology relies
upon measurement, analysis, and
feedback much analogous to that of
control loop systems. It is an approach
with a time-tested track record proven

through repeated applications across a
broad range of operational software

development and maintenance projects.

This paper describes the software
improvement methodology employed by
the Software Engineering Laboratory,
and how it has been exploited within the
Flight Dynamics Division within GSFC
Code 500. Examples of specific
improvement in the software itself and its
processes are presented to illustrate the
effectiveness of the methodology.
Finally, the initial findings are given
when this methodology was applied
across the mission operations and ground
data systems software domains
throughout Code 500.

Introduction

A recent analysis conducted by the NASA
Software Engineering Program found that
over 30% of the NASA Goddard Space
Flight Center (GSFC) Code 500 civil
servants and support contractors spend
the majority of their time directly involved

975

P_JI(;=(K)_N4__AGE ll}L.AI_NOT FLMEI}

:_: ::i• ¸

_i_i_i:__i_i_!__

i;__ _iiliI_

i_i _v _ !_i_

i? iiii:ill!i

• _ _i_ _ _

:ii!i i_,

;iiiiil__iii;_i

_! 15 i

in the management, development,
maintenance, and/or assurance of

software (Reference 1). That represents
over 1600 people out of the total of 5000
GSFC Code 500 civil service and support
contractor community. Correspondingly,
that same analysis found a tremendous
investment in developed, operational
software throughout the Mission
Operations and Data Systems Directorate.
Not including common off-the-shelf
varieties of shrink-wrapped word
processors, spreadsheets, and other
typical tools, GSFC Code 500 is
responsible today for some 21 million
lines of operational code. This represents
almost half of the 43 million lines of code

currently operational throughout GSFC
(Reference 2). Most of that is in one way
or another involved in the preparation for,
conduct of, or results analysis from
spaceflight missions.

Given the importance of software in
much of what the Mission Operations and
Data Systems does and hopes to do, its

not surprising that more attention is being
paid to software; the tools and practices
by which it is engineered; the
management oversight by which it is
coordinated and paid for; and the means
by which products, tools, and know-how
are disseminated and shared. The NASA

Software Engineering Laboratory (SEL)
and its software improvement
methodology is a premier example of an
attempt to understand the roles of
software within GSFC Code 500 and to

identify and promote practices that real
experience shows are effective and
beneficial.

Software Engineering
Laboratory (SEL)

The Software Engineering Laboratory
(SEL), located in the Flight Dynamics
Division of GSFC Code 500, was
developed to study the effectiveness of

new software engineering technologies as
part of the existing Code 500 software
development projects. The SEL is a 300

person organization charged with
producing operational flight dynamics
software for each GSFC space mission,
but it is also an organization that has
intentionally and carefully for eighteen
years experimented with languages,
tools, and techniques to continually
improve its software development and
maintenance process. Within the SEL,
every software project is considered to be
an "experiment" where a new software
technology is injected, its effectiveness
measured, and if it proves useful the new
technology is incorporated into the
software development processes for the
next project. The SEL organization works

as a partner with the production
organization's software developers to
incrementally improve the software and
its processes over time.

Figure 1 illustrates the three key
components of the SEL environment that
are critical to the success of improving an
organization's software development
process and software products. The first
component is the development
organization. This component is
responsible for the software development
of a real missions operations or ground
data system application. This
organization develops the software and
documentation using the processes
provided by the analysis organization°
The development organization also
provides software measurements, project
characteristics, and lessons learned to the
analysis organization.

The second component is the analysis
organization. It uses the software
measurements and project data to
understand the developers' software and
software process characteristics well
enough to propose an improvement goal,
analyze the effectiveness of the
improvement, package the results, and
feedback the result to the development
organization for use in the current and
future development efforts. The analysis
component interacts with the development
component to extracL examine, and
compare the consequences of applying

• i

i" 976

;! i:¸ilii: !i!_̧ ¸¸ ::

v

,i;: "_ :::, :

ili;/ii'!iii_i_i_
i:iii:, :i!iliiiiy_!

:: :.

i:i!i_ :

i. ?:_,i_: ,i__

i) i.

5 ¸

PROJECT ORGANIZATION

SUPPORT ORGANIZATION

SOFTWARE ANALYSIS ORGANIZATION

Analyze _,_(Analysis) ==_

I

i

Experience i

Base

I

Project

Support (Synthesis)

Figure 1: Components of the Software Engineering Laboratory Environment

specific methodologies, standards, and
tools.

The third component is the support
organization, which archives the
information captured from the
development and analysis organizations
such as software measurement data,

process qaodels, training materials, and
other documentation.

Over the last 18 years, the SEL has
worked with more than 100 production
projects where the software was used for
mission operations and ground support of
GSFC missions. In each of these, SEL

analysts quantitatively assessed process
changes on the developed software of real
projects. These software projects ranged
in size from 4 thousand lines of code to a

million lines of code (Reference 3).

Software Improvement
Methodology

The key distinguishing features of the
SEL software improvement methodology
are the following:

• Evolutionary not revolutionary
• Continuous
• Incremental

• Bottoms-up rather than top down
• Quantitative software measures

• Software experimenters work
with software developers

These attributes are the key to success.
Experience in many complex endeavors
has shown that true process improvement
takes time and commitment. The culture

of an established organization must
continually absorb and adapt to better
ways of accomplishing its business.
Experience has repeatedly shown that
mandating a standard software
engineering process from the top, for
example, won't be accepted into an
organization's culture. The people who
comprise that organization must be part of
the evolution of the process, the rules,
and the techniques that they find work
best for them in their particular
environment.

The GSFC SEL software improvement
strategy focuses around the simple three
layer paradigm shown in Figure 2. This
model recognizes that in-depth
understanding must precede any attempt

977

.___ PACKAGING
f _ • Package new process

ITERA-TE f (e.g. standards & policies)

/ _ FOCUSED ANAL YSES & EXPERIMENTS

(

/ _ I " Determine improvements-set goals

/ ! I " Measure changed process and product

:::::::: ::::::::::::::::::::: ::: ::: ::: :::::::::: :::::: :::::::::::::::: :::::::::::::::::: ::

Figure 2: SEL Software Process Improvement Model

to improve. Detailed insight about the
functions an organization performs, the
dynamics of their interactions, the quality
of their products, and the processes and
tools they apply forms the basis for the
second "layer" of the improvement
model. This second layer benefits from
the ongoing understanding activity to
define focused, incremental improvement

experiments. The term "experiment" is
important, because change must be
planned, instrumented, and compared.
Many experiments may not prove helpful
or at least not be beneficial in the ways or
to the extent originally conceived.
Further, the success of each incremental

candidate improvement requires people
"buy-in" which can only be gained
through careful explanation and training,
application, and results analysis. As
stated above, true improvement takes time
and is, by definition, bottoms-up. As
improvements are shown to be helpful,
they are packaged appropriately for
ongoing use by the organization (the top
layer shown in the figure). Usual
examples of packaging are well-written
user guidebooks and training materials.
The state of the organization's business

practice is thus altered. The packaged
processes, tools, training, and guidance
become that organization's software
policies and standards. And those are
effective policies and standards because
they reflect what the organization really
does (Reference 4).

Software Improvement
Results

As an example of the application of
collecting and analyzing of software error
statistics at GSFC, the SEL collected data

to determine the impact of the cleanroom
approach on software error rates. Figure
3a shows the error rates of the baseline

approach and two small (20-40
KSLOCs) development projects
(Reference 5). Each time the cleanroom

approach was used, the error rates
decreased showing that the cleanroom
approach had a positive effect on error
detection rates and possibly should be
adopted as part of the baselined
development process for Code 552.

978

i:i _:_: _:i _

ii; i: ¸

¸¸¸i¸ _ • •

iiii :_:_ii:i!_

_ _ :,i!

/

>

,,: i _-

i>

•!!i//

_: :i: i!/

• i_i: I

8 ,,4

7

0 6 4 _::.

*_ 2 -4

o' !:_!_!ii!_

PROJECTS

[] SEL BASELINE

[] 1ST CLEANROOM STUDY

[] 2ND CLEANROOM STUDY

UJ

UJ
rr

100 -

80-

60"

40

20

0

61%

20%

PROJECTS:
1985 - 1989
8 SIMILAR
SYSTEMS

._::_

PROJECTS:
1990 - 1993
8 SIMILAR
SYSTEMS

9O%

N
:_.::_:_i:_:::_::,.,

5 i

::_:_:::_::::_:

:..':_::::::_:i:'_:_

3,4: CLEANROOM STUDY 3B: REUSE STUDY

Figure 3: Cleanroom Error Rates and Object-Oriented Design Reuse Studies

Another effort focused on the use of

object-oriented technology with the goal
of increasing the reuse levels of software
within the Flight Dynamics Division
resulted in significant impacts as depicted
in Figure 3b. The average level of code
reuse increased from approximately 20%
in the 1985-1989 time frame to over 61%

reuse for FORTRAN projects and 90%
reuse for Ada projects during the 1990-
1994 period (Reference 3). Such
improvements provide evidence of the
benefits potentially derived from the
application of evolving state-of-the-art
software engineering practices such as
object-oriented design.

Since the SEL has been monitoring and

measuring the progress of GSFC mission
operations and ground data software for
over a eighteen years, the cumulative
effect of the SEL software improvement
technique on software error rates was
analyzed. The software error rate is

defined as the number of errors per
thousand lines of code. The analysis
shown in Figure 4 that the average
software error detection rate decreased

from 8 errors per KSLOC to 2 errors per
KSLOC, a 75% decrease from 1977 to

1993. This type of information leads to
well defined models and relationships of
software parameters supporting improved
management and control of future
projects (Reference 3).

Improvement of the product within Code
552 (flight dynamics software) by
changing and measuring results of
software process changes on real projects
has produced real gains in error rates,
reuse, and productivity over the last 5
years. For a set of similar GSFC projects
using this methodology since the late
1980s, the error rates decreased 75%
(from 4 errors/KSLOC to 1
error/KSLOC), reuse increase from 20%

reuse to 75% reuse, and the productivity
increased 75% (from 440 staff-months to

110 staff-months) for an equivalent
amount of software.

979

i¸¸:;_i ,

i

,i

.H

!!!ii__I__i/

• _i_!_I

> i:i_

i'i

:_!i! •

,,ii i!iill
,. [

/ i _ •

.J
03

er
n-

11

10 --

9 --

8 --

7 --

6 --

5 --

4 --

3 --

2 --

1 --

0 I
1976

] Linear Regressi°n: IUpper Data Points

0 ISEEB _ I 0 GROSIM

0 AEM v DEDET_ I

MAGSAT 0 _ |0 DEA _

,,nea Regression:I
_. _ All Data Points

0 DEBt._ _ GOFOR I
0 FOXPRO _ 0 DERBY "_. 0 .

ASP COBEAGSS _ _E_A_oS0 GMASUI

0 SMM _ 0 0 ADEAS 0 _-_';_ _ WINDDV I

0 0 GROAGSS _ 0 0 I

_COBSIM 0 _'_/INDPOPS I

0 ERBS "_'_'_ASFo BBXRT _1

GOADA.,..._

0 GSOO .'3 "_ _ROS$ _ U(_ RST E_-_I,,-ON Si B M I

DESlM =l _ UARSAGSS 0 _WlTS _

AGRODY_GoESI M 0 GROHUD

I 0 COBEDS A_EUVEDS!M

I 'inear Regressi°n: I EUVEAeSS0SAM_'_.._. FASTELS
Lower Data Points A _ SAMPEXTS

EUVETELS A TOMSTELS

I I I I I I I I I
1978 1980 1982 1984 1986 1988 1990 1992 1994

0 Fortran Projects A Ada Projects)

PROJECT MIDPOINT

Figure 4: Software Error Detection Rate Over 16 Years for SEL Projects

Software Improvement
Within GSFC Code 500

The basic methodology used by the SEL
for flight dynamics software was applied
to the Mission Operations and Data
Systems Directorate as a whole. In
accordance with the SEL software

improvement model, a software
"baseline" for Code 500 was established

(Reference 1). The data for establishing

an understanding of the Code 500
software and its development and

maintenance processes was gathered via
four integrated approaches: a
comprehensive nine page survey, reviews
of organizational and project data,
informal roundtable discussions, and
one-on-one interviews.

We sampled the GSFC Code 500 civil
servant and support contractors by
selecting respondents from organizations
performing the majority of the software
work. We then supplemented the insight

gained through the surveys by reviewing
software policies, standards, staffing
data, project plans, and other
organizational and project data. After
initial review of the data, we conducted

roundtable discussions with groups of
respondents to refine the data and to
obtain suggestions on how software
processes might be improved. Finally,
we conducted one-on-one interviews with

selected managers to increase our
confidence that "our data was

representative of the software work
performed by that organization.

The published software baseline included
both software product descriptions
(amount of software, cost of software,
software staffing, software error rates,
etc.) and software process descriptions
(standards used, metrics use, project
volatility, development and test
methodology use, training, etc.). This
baseline data was then analyzed. Using
the basic goals of decreasing cost,
increasing productivity, and decreasing

980

_iiii_i_!ii!iI,(_ii_;)i

Z _ $, _ ' .

_i:I / !

i!)_ii_!_!!_:_i_iiiii_ii:
?i :i ¸ : ;:

:i!i/__.

• i£

i:i::!_iii_)_

•5{,

!iii

:i{i_ ii

p

L_

error rates, specific areas for potential
software improvement were identified.
These areas were researched and a set of

recommendations for improvement of the
software product and processes within
GSFC Code 500 were developed. Three
of those recommendations are presented
here.

Recommendations

Establishing our understanding baseline
for GSFC 500 took time, patience, and
careful analysis. We believe our
understanding was sufficiently detailed
and reasonably correct enough to move
smartly into the second thrust of the
improvement process; i.e., defining
focused incremental improvements and
experimenting with those improvements
in controlled ways.

Three major areas that promise large near-
term payoff for relatively small
investments are:

1) Introduction of ongoing, continual
software improvement into the culture
of the Directorate

2) EstabJishment of an integrated
software training program

3) Implementation of an effective
software measurement program

These improvements can be accomplished
for relatively little money and in a short
time period because significant
components of what are needed already
exist.

Organizational Software Improvement
Infrastructure

In order to implement and sustain any
software improvement change across the
Directorate, it is necessary to put in place
a software improvement infrastructure
throughout the organization. Upper
management commitment and long term

involvement is critical. So is the

participation of everyone throughout the
organization that has anything to do with
software development and maintenance.
People must be involved, have influence
on, and help shape where their
organization is going. Simply assigning
another working group or holding an
occasional meeting won't accomplish the
software improvement goals.
Improvement working teams or Software
Process Groups must be established at all

levels (Directorate, Division, and
Branch). Both process improvement and
software product improvement need to be
emphasized. An initial task might be to
develop a Code 500 approach (not
necessarily standards) for the
development and maintenance of
software. With the help of improvement
guidance such as the Software
Measurement Guidebook (Reference 6),
the Software Manager's Guidebook
(Reference 7), SEL experience, and the
materials from the Software Engineering
Institute, this hierarchy of Software
Process Groups could identify, define,
and implement techniques designed to
continually improve Code 500's software
capabilities°

Software Training Program

GSFC Code 500 could benefit from an

integrated software training program.
Our findings indicate that software
training tends to be focused on specific
"hot" technologies as opposed to overall
software process and development of
personnel for key software positions.
This goal could be accomplished with a
bottoms-up approach by allowing project-
level experiences to drive the content of
the integrated training program. The
needed disciplines are at minimum those
of software project management,
software requirements management,
software contractor management,
configuration management, quality
assurance, and the software engineering
life cycle. The courses must be
consistent in approach, show the role of
software measurement and feedback in

the context of each discipline, and be

981

7 +i :: _- /:!i "< !<_:

• HI _

........ : • • • :_ • : : : : ::_::: <!: ! <:i: <:: <:<:;_:_<ii:_<i:i:_ii!_:;_i:!<!_!;:_i_iiii_!ii;_!_;iii_i_i;i_ii_ii_iii_ii_i_iii_iiiiiiiii_i_iiiiiiiii_iii_iii_iiiii_i_iiiii_;ii_ii_

• _ !_i?<_

!i:ii

i!_ < i :_
H

:_ /<<

!

<

?

!_:ii _,

tightly integrated to the GSFC Code 500
approach to software development.

The curriculum will be most effective if
each course has an overview version that

is 3 to 4 hours in length and a full
duration version (1 to perhaps 3 days
depending upon the subject.) The
overview version would be taken by
everyone involved with software, but not
directly responsible for that discipline
area. For example, only software project
managers and those people training to
become such managers would take the
full length software project management
course. An effective enhancement to the

basic training program would be on-line
refresher modules accessible from any of
the organization's networked
workstations.

The basic elements of this training
curriculum already exist at CSC, SAIC,
and in the SEL at GSFC. This existing
courseware and instructors can be tailored

and enhanced and could be ready for use
without a long delay or large additional
investment.

Software Measurement Program

We found that little attention is given to
software measurement in most GSFC

organizations. Several contracts required
metrics to be collected and forwarded to

the government, but little or no analysis
was being performed and even less in the
way of improvement feedback into the
actual projects. The consequence was the
project and line management and staff had
virtually no real insight about critical
status indicators such as the number of

errors in the delivered code, the amount
of time any activity actually took, or how
well the documentation matched the

design, code, or testing.

Our recommendation is that GSFC Code

500 develop an effective, practical
software metrics program to collect,
analyze, and provide feedback for the
following purposes:

• Continually decrease software cost
• Assist in the management of

software projects
• Assure timely delivery of products
• Improve software reliability

Fortunately, practical solutions and
experience are readily at hand. The SEL
in GSFC Code 552 is one of the few

nationally leading organizations that has
proven, long term experience in the
definition, analysis, and application of
software metrics° The SEL-developed
NASA Software Measurement

Guidebook (Reference 6) will be released
shortly. Code 500 should adopt a top
level software measurement policy with
the local organizations choosing their
own specific goals for measurement,
picking the minimum set of metrics
needed to meet their goals, and
performing metric analysis and feedback.
The know-how in this Guidebook

combined with an integrated training
program are key improvement tools that
are easily available.

Conclusions

The GSFC Mission Operations and Data
Systems Directorate has successfully
developed many millions of lines of code
for 'ground systems of numerous
spacecraft. Even so, our analysis of the
ground and data software systems shows
that are areas that could benefit from a

sustainable, continuous software

improvement program. The Software
Engineering Laboratory is an example of
this. In the past five years, the SEL saw
a 75% increase in productivity and a 75%
decrease in software error rates in flight
dynamics projects. The SEL software
improvement method of working directly
with the development projects and using
quantitative measures to test new
software technologies can be applied
throughout the GSFC Code 500 software
domains.

The SEL approach of understanding,
assessing, and packaging the assessment

982

::i!i,i¸2,:
?_ i_;i_

:;ii::i!_' _:

:i,ii}i i_ .

:i! ¸¸¸¸ 2, ¸

• _/i _ •

i i_i,)i " •

f

i/

:/_i _

>

<_: iI

>!:,_ i:_

!ii_ i_!:i':

results was applied to the Code 500
software domains in general. This study
identified three areas in which GSFC
Code 500 could enhance the success of

their software development and
maintenance projects: institute a
Directorate-wide software improvement
program, develop an integrated software
training program, and develop a software
measurement program. We believe that

GSFC Code 500 has a superb
opportunity to leverage the isolated
experiences already existent in their
organization to adopt a broad, experience-
based software improvement program
that could indeed be a model for both

Government and industry.

References

1. McGarry, F. & Hall, D. (1994, June). Profile of Software Within Code 500 at the
Goddard Space Flight Center. NASA/Code QE. NASA Software Engineering Report
NASA-RPT-001.

2. McGarry, F., Hall, D. & Sinclair, C. (1994, June). Profile of Software at the
Goddard Space Flight Center. NASA/Code QE. NASA Software Engineering Report
NASA-RPT-002.

3. McGarry, F., Jeletic, K. (1993, December). Process Improvement as an Investment:
Measuring its Worth. Proceedings of the Eighteenth Annual Software Engineering

Workshop. SEL Report SEL-93-003.
4. Caldiera, G., et.al. (1993, December). NASA Software Process Improvement

Guidebook. NASA/HQ/Code QE. NASA Software Engineering Report
NASA-RPT-nnn. Draft.

5. Green,S.E., Pajerski, R. (1991, December). Cleanroom Process Evolution in the
SEL. Proceedings of the Sixteenth Annual Software Engineering Workshop. SEL
Report SEL-91-006.

6. Pajerski, R. & Bassman, M. (estimated 1994, July). Software Measurement
Guidebook. NASA HQ/Code QE. NASA Software Engineering Report
NASA-RPT-nnn. Draft.

7. McGarry, F., Waligora, S., Landis, L., et.al. (1990, November). Manager's
Guidebook for Software Development (Revision 1). NASA/GSFC. Software
Engineering Laboratory Report SEL- 84-101.

983

