
::: :. • ::i: ?i::: ::: ?_: :_31!:Y=i:_;:i_;:.;!:i i: :_; iL]i: !J]_ IY/:::(7! iA::!i•i: !ili_::i:i:i_i:!i.?i]()i.i:;::i:?i ¸I¸ : : /?:;ii:/::_ L :::..:.?i:!:?:,L:?:!?i:::,:?:,•_i:::Y!:i';::i:Li:i!3_i ¸ _:_:I;:_=L:_:_:_:::_U:L::,:::I:_:_:i:i::.I::_::::::I_¸:_::_¸_:¸¸`_:Z_::_Z_::;:::_:_:_::::::::_::_::_:_:_:_:_:_:._.:_:_:_:::_:::_:::::_:::::::::_::::::::::_:_:_:_:_:_:_:.:._.:.:`:.:.:._.:`:

N95- 17567
{//!52

i:

XMM INSTRUMENT ON-BOA'RD SO_PIWCARE MAINTENANCE CONCEPT

Mr. N_ Pe¢c|a

European Space Operations Centre (ESOC),

Robert-Bosch-Str. 5, 64293 Darmstadt, Germany

,.-) (:l

Mr. F. Giannini

European Space Technology Centre (ESTEC),

Keplerlaan 1, 2200 AG, Noordwljk, The Netherlands

!iili__i_iii'i_i_!i5

Hy ii:(_ L,

:iii....

• i

Y!;N

_i!':jiiL

i__,/ _,

H

ABSTRACT

Whilst the pre-launch responsibility for the

production, validation and maintenance of

instrument on-board software traditionally lies

with the experimenter, the post-launch

maintenance has been the subject of ad hoc

arrangements with the responsibility shared to

different extent between the experimenter,
ESTEC and ESOC.

This paper summarizes the overall design and

development of the instruments on-board

software for the XMM satellite, and describes

the concept adopted for the maintenance of

such software post-launch.

The paper will also outline the on-board
software maintenance and validation facilities

and the expected advantages to be gained by

the proposed strategy.

Conclusions with respect to adequacy of this

approach will be presented as well as

recommendations for future instrument on-

board software developments.

Keywords: On-Board Software, System

testing, Software life cycle,
Software maintenance

1. INTRODUCTION

In the last decade, the complexity of space

missions has increased significantly due to the

more demanding requirements on mission

efficiency and quality of mission products.

Such requirements could only be satisfied by

designing intelligence on board for increased

autonomous operation of the spacecraft and the
instruments in its orbit.

On-board software and autonomy however

have a significant impact in the design of the

ground facilities for the support of the

mission. Although instrument on-board

software is designed, developed and tested

following strict quality assurance procedures,

experience of past and current missions show

that the capability of reprogramming

instrument on-board software from the ground

is an essential requirement throughout the
instrument lifetime.

Certain events during the instrument lifetime

can create the necessity to modify the flight

software. The causes of change in the on-
board software are manifold •

Change of specification (e.g. errors,

essentially numerical, in the specification

of thresholds, calibration, delays, etc.)

Non conformance of the software with

the original specifications (e.g hidden

985

bugs not detected during testing on

ground)

On board hardware failure following

which the instrument can only be

recovered by reprogramming the on-
board software. This event is the most

likely reason for the necessity of

maintenance activity because its

unexpected nature renders it impractical

to implement complete autonomy in the

software with respect to such failures.

Change in strategy in instrument

operation (e.g. changes to improve

capability or efficiency)

The complexity of instrument on-board

software maintenance is directly related to the

on-board software configuration.

Different approaches have been taken to
instrument on-board software maintenance

from mission to mission. The main variation

has been the responsibility for actually making

software corrections and implementing new

on-board software requirements, which has in

some cases been done by the experimenters

and in other by ESTEC and/or ESOC.

The factors influencing the choice of a

particular maintenance scheme are :

• availability of expertise

• availability of :

a Software Development Environment

(SDE) which contains CASE tools

supporting on-board software lifecycle

for development and change of the

software, verification and validation,

configuration management and
documentation. The facilities also

include cross-compilers, cross-debuggers

and downloaders to compile, load and

debug the instrument software from the

host to the hardware target.

a Software Validation Facility (SVF) for

on ground testing and validation. The

SVF provides facilities to emulate or
simulate the hardware environment of

the instrument on-board software.

Facilities range from software simulators

and emulators to replicas of instrument

on-board hardware systems.

duration of mission

2. XMM OVERVIEW

The X-Ray Multi-Mirror Mission (XMM) is a

high throughput X-ray spectroscopy mission

(photon energy range from 0.1 Kev to 10

Kev), which is the second cornerstone of the

ESA long term scientific plan. The XMM is a

facility type observatory open to the

worldwide astronomical community. The

scientific payload forms an integrated mutually

complementary package optimised to fulfil the

scientific aims of the mission and fully exploit

the ESA supplied X-ray optics.

The XMM observatory will offer a major step

forward in the field of X-ray astrophysics in

the 21st Century. It is envisaged as a long

duration facility class mission aimed at

performing detailed imaging spectrophotometry

of a wide variety of X-ray sources. The

observatory will be placed in a 24 hour highly

eccentric inclined orbit to allow uninterrupted

observations up to 16 hours using the

groundstation of Perth (Australia). The

spacecraft consists of a service module which

carries the payload module.

The scientific instruments are:

986

O European Photon Imaging Camera

(EPIC)

The XMM x-ray telescope consists of

three separate co-aligned mirror

modules, for each of which EPIC will

provide an imaging x-ray focal camera.
Each of these cameras will be mounted

at the focus of the respective mirror

modules. Two different types of Charge

Coupled Devices (CCDs) will be used:

one type based on p-n and the other on

MOS technology.

• Reflection Grating Spectrometer (RGS)

RGS features two independent

instrument chains placed behind two of
the three mirror modules. Each chain

incorporates an array of reflection

gratings which pick off roughly half of

the X-ray light and deflects it to a strip
of CCD detectors offset from the

telescope focal plane. The remaining

light passes undeflected through the

grating stack where it can be utilised by
other instruments located in the focal

plane.

• Optical Monitor (OM)

OM is a UV / optical telescope with two

chromatically split channels, the blue
channel and the red one. Both beams are

transmitted to the CCDs detectors.

The XMM spacecraft will be operated in a
continuous interactive mode from a Mission

Operations Control Centre (MOC). XMM

Science operations will be conducted from a

Science Operations Centre (SOC) in close
interaction with the MOC.

Considering

the long duration of the mission (10

years)

each experimenter has his own
SDE/SVF

distributed processor architectures are

present in the payload

different languages are used on the

processors

the following sections describe how a different
set of instrument on-board software

maintenance and validation facilities could be

assembled, which would allow the SOC, given

the appropriate expertise, to assume the

responsibility for instrument on-board software

maintenance in the majority of the cases.

Additionally the following items will be
addressed

• Design choices

• Inclusion of hardware-in-the-loop

• "worst case" testability

• exception handling in the software

The current baseline is that the Instruments

Software will be maintained in the SOC with

the Instrument Software Subsystem (ISS);

however during the early phases of the XMM

mission support from the instrument

development teams will be available (e.g. for
validation).

3. XMM INSTRUMENT SOFTWARE

MODULES

This section describes briefly the various on-

board software modules in the Instruments,

987

ii 2:: • •

i _ _i:i.... •

i!!i_?i;;!!i!!ii::,i

i!iii__/ i

?i iiiiiii_ii!!il;!_
::: L : :_ 2 ¸ •..

¸!¸•¸%¸:¸!¸i¸¸

!!!!_:_ _i_:(i •

:?:_iii'IIIII_II_

ii::i' i̧

ii?iiii ii!'ii:•

/i/
• i_ i_i_

ii:ii_(i_iI_

iii: _:_I i"
i= ?; i ./

ii!!i%i!ili!i'
• i@ /

i! ¸ i

i_;_i _ i

mostly on different hardware units

(instruments contain more than one processor

with a maintainable software module) •

In the EPIC experiment SW is present in "

a)
b)

c)
d)
e)

EPIC Mos Data Handling Unit

EPIC Control and Recognition

Unit

EPIC Pn Data Handling Unit

EPIC Pn Event Analyzer Unit

EPIC Pn Analogue Electronic Unit

In the RGS experiment SW is present in the

RGS Digital Electronic Unit running on the

following processors:

f)
g)

Instrument Controller Processor

Data Pre-Processor

In the OM Software is present in:

h)

i)

Instrument Controller Unit

Data Processing Unit

In the following the Software Modules will be

indicated by the above letters. These modules

are of different size and complexity, and they

can be classified in 2 categories:

o Running on what is traditionally
identified as the Instrument Controller

(a,c,f,h)

Running on secondary processor

(b,d,e,g,i)

Regardless of the names used for the Units,

we will call IC the units interfacing with the

Spacecraft On Board Data Handling System
(OBDH).

The Software Modules run on different type of

processor:

• MIL-STD-1750A (a,c,f,g,h)

• HARRIS 80C86 (b,d,e)

• MOTOROLA 56001 (i)

and different language are used:

• Ada (a,c,f,h)

• C (b,d,e,i)

• Assembler 1750A (g)

Assembler is also used on other software

modules which are on PROM and are not

modifiable (e.g. boot/loader code for f and h).

do XMM INSTRUMENT

DEVELOPMENT ENVIRONMENTS

(SDE)

The XMM instruments are being developed by

different experimenters across Europe (United

Kingdom, France, Italy, Belgien, Germany

and Netherlands) with some collaboration

from USA (RGS and OM instruments). The

consequence is the use of different host

machines, target processors, languages and

tools among the instruments.

Figure 1 summarizes the Software

Development Environments which are being

used to develop the various instrument on
board software modules.

5, XMM INSTRUMENT ON-BOARD

SOFTWARE MAINTENANCE

APPROACH

The following assumption are made:

Instrument simulators will be available

and they will be based on Instrument

Controller (ICU) processor emulator

running the on-board SW.

iiii, _ _

988

• i ¸

i ¸ ::

i•̧¸_Iii:i_/il¸_ii_/!iI

iii_ii_il¸_¸_•_¸_•I!
i: H ' !_ •!::i_

:iili! ¸ :!i?/:
i_:/ :i _ '

__::i;::ii!_i _ :_i

i_iI :i/_'_

: i_!

• i:: ¸

/: T

H

SW Host

Module Mschine

a, c SUN

b, d, • HPgO00

f, h, g SUN

Solaris 1.1

t SUN

Target
Processor

MA31750

80C86

MA31750

56001

Language

Ads

Ads

Assembler

C

Tools

TLD APSE,:

Debugger,

Simulator,

TEK

V1750

Emulator

HP AXLS

CI80C86

Cross-

compiler,

Debugger,

Emulator,

Simutator

Tartan

Compiler /

assembler,

AdsScope

debugger

GCC,G56KCC

,OM _rnullto_

Figure 1; Instrument Software Development
Environments

All software modules need to be

maintained

Modification of the instrument on-board

software cannot damage the instruments

while the instrument is monitored from

the ground.

The Software delivered with the

instrument flight model (FM) has been

fully validated.

The purpose is to outline a coherent approach

in the frame of a plan for the maintenance of

the software on the various on-board

processors and during the various relevant

phases (development, commissioning and

routine operations).

The trade-off between instrument on-board

software maintenance at the XMM SOC on the

one hand and maintenance via each

experimenter on the other hand has been based

on the following assessment criteria •

Criticality of the on-board software,
which covers an assessment of the

impact an erroneous software

modification might have on the

performance of the instrument

Software complexity versus availability

of expertise, which addresses the degree

of expertise needed for a specific

software maintenance during the

commissioning and the routine

operations phases.

• Cost aspects which addresses

investment costs for hardware,

software and documentation

including installation at the SOC

and training of personnel

operations costs at the SOC

6. DEVELOPMENT ENVIRONMENT

The set of activities involved in the

maintenance of the XMM instrument flight
software will be executed at the XMM

Scientific Operations Centre (SOC).

In order to perform, these activities the SOC

will require a common SDE which will ease
the maintenance activities and will limit the

costs. The development environment for the

Instrument Software will be composed of the

total set of Software tools used by the

developers of the Software modules.

All tools mentioned in the Figure 1 on section
4 will be available for modification of the

instruments Software to ensure compatibility

with the implemented instrument flight
software.

989

Y % f

L •

i i _i_

i

J

i<i_
i

!:

Other tools will be used in the development of

the Software (e.g. AdaNice HOOD tool for

the Architectural design of the EPIC Data

Handling Software), but the use of such tools

is not considered necessary for the

maintenance, due to the limited structural

changes in the code during the maintenance

phase.

The development environment will be hosted

on the smallest set of computer needed to host

all tools in a version equivalent to what used

by the developers. At the moment a SUN
SPARC and an HP9000 are needed to host all

tools. In order to ensure that the compiled

code produced by the SOC SDE is compatible

with that flown during the mission it will be

necessary to freeze the compilers version at

the version delivered with the instrument

Flight Model.

A configuration management tool should be

added in order to keep track of changes. No

configuration information prior to delivery will

be used. Configuration management will be
restarted with the Software as delivered for the

launch.

Full documentation of the Software

development will be available on paper as

delivered by the developers. Electronic form

of the documents might also be available, but
no standard format has been mandated.

The following will be available:

• Source code of all instrument Software

O All "makefile" and any image generation

procedure used by the developers

7. VALIDATION ENVIRONMENT

The validation environment will be different

for the various type of processors used and the

functionality of the Software module. The

main driver of the proposed approach is the

high investment and maintenance costs

associated with a SVF based on an

Engineering or spare Flight model.

7.1 INSTRUMENT CONTROLLER

For ICU software (modules a,c,f,h), the

capability of the instrument simulators to run

the Software will be exploited. This solution

does not have the fidelity of the actual

hardware, and therefore its adoption is
associated with an element of risk. The level

of risk is related to the degree to which the
instrument on-board software is sensitive to

the flight hardware performance (timing, I/O

performance).

Other solution would be the "hardware-in-the-

loop" design, based on commercially available

VME cards and hosting the target processors.

This approach was discarded due to higher

costs because additional secondary processor
hardware is needed.

The use of the instrument simulator as a

validation tool has the advantage that it

implicitly contains a realistic environment

simulation and the means to easily vary this

environment. The preparation for and conduct

of validation tests is easier than for an EM

(Engineering Model) or a spare FM (Flight

Model) based system.

After the unit testing and software integration,

the new executable image of the module will

be first executed on the 1750 processor

emulator for simple tests.

It will be then loaded on the instrument

simulator, exercised by TC and stimulated by

data files reproducing the Instrument data

990

il)ii_,_i_:ili__

, i_ L

&il =

:_i(iI_.

: _!i__)

) i,!_

i?
ii/

!

i_;/(

i_:ii

flow. The data files used in these tests are

available from unit tests or calibration tests.

This will allow to "partially" validate the

Software before up-linking into the instrument.

The settings of the instrument simulator will
allow to simulate Hardware failure in the

instrument. This strategy for test and

integration causes some difficulties on real

time embedded software, as follows :

Emulators have limited facilities for

exercising in real time and

simultaneously monitor the embedded
software

0 It is often impossible to reproduce a test
100%

O It is very difficult to create a "worst
case" test

Q It is difficult to exercise exception

handling in the software

The proposed approach is also based on the

criticality of the Instrument Controller on-

board software. Error in new images or

software patches causes no damage to other

instruments. A power on reset will bring the
software back to the PROM reference. Full

ground validation is not required because of

criticality. The proposed partial validation is

necessary due to the complexity of some
software modules.

7.2 SECONDARY PROCESSORS

!i Modification to all other software modules

will only be tested on the host computers and

on the processor emulators (b,d,e,g,i) with

data files generated by simulation software or

collected during instrument testing. The impact

of software modifications on the secondary

processors is considered negligible.

Additionally the XMM instrument simulator
can not be used for validation because it does

not emulate the secondary processors.

Anyhow, the relative simplicity of these
Software modules makes them easier to test

except for timing behaviour. Furthermore, the

modification to these modules are more likely

to be needed during the early phases of the

operations, because of the possible difference

of the actual data from the expected ones.

During the early phases of the operation (6

months), the instrument developer teams will

modify the software using the Instrument

Software Subsystem at the SOC; validation of

the Software modules will be complemented

by the possible use of the test equipment

available at the experimenter premises.

After this period, if the experimenter facilities

are not available, the Software will only be

tested on the host computers; the last tests

before declaring the Software operational, will

be executed on the flying instrument using

when possible the period of the orbit below

40,000 Kin.

It is, however necessary, that it be

demonstrated that changes to the instrument

software do not adversely affect the

performance of the system as a whole, either

functionally or in the consumption of

resources. This can be done by analysis (in

the absence of a validation facility), or by
demonstration.

The responsibility for demonstrating that any

changes to instrument software will not

adversely affect the system will lie with the

XMM SOC during the routine operations

phase.

991

8. CONCLUSIONS

In the XMM SOC project the instrument

software maintenance problem is tackled by

setting up a centralised software maintenance

facility, the ISS (Instrument Software

subsystem), which will take over the on-board
software maintenance of all instruments when

the commissioning phase is over.

In order to fulfil the requirements and

responsibilities for such facility the XMM

SOC requires •

O a common Software Development

Environment (SDE) compatible with

that used by the experimenters to

produce the flight software and
maintainable for the mission duration.

This common SDE will ease the

maintenance task and will limit the costs.

delivery of the software module source

code, the standards applied during

development and testing, the test

harnesses, test procedures and test
results.

a Software Validation Facility ,also

maintainable throughout the mission,
which consist of :

the instrument simulator running
the instrument controller emulator

simple emulators of the secondary

processors for testing and

validation on the host computer

The final decision whether or not to implement

an instrument software change resides with the

XMM Project Scientist.

The proposed solution is based on the analyses

of the criticality of the XMM instrument on-

board Software as regards instrument

performance, on the availability of expertise at

the SOC during the various phases of the
mission as well as on a cost estimation.

9. RECOMMENDATIONS

For missions with long lifetime, as XMM,

ESA should take over post launch instrument

on-board software maintenance. This will be

more cost effective, since it involves only a

marginal expansion of existing teams. It will

also result in a better and more responsive

service, will simplify the operational interfaces

and will help continuity of expertise in the
SOCs.

Standardisation of Software Development

Environments should be managed / mandated

early in the project in order to reduce the cost
of the maintenance environment without

penalising the instrument developers.

2.

3.

4.

5.

6.

REFERENCE DOCUMENTS

Science Operations Centre Implementation Requirement
Document (SIRD). PX-RS-0392

SOC Implementation Plan (SIP). XMM-SOC-PL-0100

Software Project Management Plan for EPIC Experiment. TL

10002 EPIC-LAB-PL-001 Issue 1, April 1994

XMM-OM Instrument Control Unit Software Development

Environment. XMM-OM/MSSL/SP/0025.01 25/5/94

XMM-OM Instrument Control Unit Software Verification &

Validation Plan, XMM-OM/MSSL/SP/0026.01 2515194

Digital Processing Unit Electronic Ground Support

Equipment and Software Development Environment

XMM..OMIPENNISPIO005.1 2415194

7. DPU Software Validation Plan. XMM-

OM/PEN/SP/0006.dra ft 315194

8. Huygens On-Board Software Maintenance. DOPS-SMD-

HUY-OBS-001. Issue 1. 17.02.94

992

