
:/ ///:: :.x:-:.:+; _:_..; .. , , :_ • -.__._ _ < < + ,,.. •

//i _L_ii

:i:iill_':i
'!iii?'_ i ?

:, 2 "

i: L !?:: :

;: :<:L!:L_,'L

_!!7!,iii!iii!ili:

:i ¸

: ill

17

SCOS II

N95- 17571

....L%;' :::=......'/ /" _.::....

7<'TY

- An Object Oriented Software Development Approach

Martin Symonds, Steen L ynenskjold, Christian Muller.

Computer Resources international A/$

Bregner_dvej 144

DK - 3460 Birker_d, Denmark

ABSTRACT INTRODUCTION

The Spacecraft Control and Operations System II (SOOS II), is
intended to provide the generic mission control system
infrastructure for future ESA missions. It represents a bold step
forward in order to take advantage of state-of-the-art technology
and current practices in the area of software engineering. Key
features include:

Use of Object Oriented Analysis and Design techniques

Use of UNIX , C++ and a distributed architecture as the
enabling implementation technology

Goal of re-use for development, maintenance and mission
specific software implementation

• Introduction of the concept of a spacecraft control model.

This paper touches upon some of the traditional beliefs
surrounding Object Oriented development and describes their
relevance to SCOS I1. It gives rationale for why particular

'approaches were adopted and others not, and describes the
impact of these decisions.

The development approach followed is discussed, highlighting the
evolutionary nature of the overall process and the iterative nature
of the various tasks carried out.

The emphasis of this paper is on the process of the development
with the following being covered:

The three phases of the SCOS II project - prototyping &
analysis, design & implementation and configuration / delivery
of mission specific systems

The close co-operation and continual interaction with the
users during the development

• The management approach - the split between client staff,
industry and some of the required project management
activities

The lifecycle adopted being an enhancement of the ESA
PSS-05 standard with SCOS II specific activities and
approaches defined

An examination of some of the difficulties encountered and
the solutions adopted.

Finally, the lessons learned from the SCOS II experience are
highlighted, identifying those issues to be used as feedback into
future developments of this nature.

This paper does not intend to describe the finished product and its
operation, but focusing on the journey to arrive there,
concentrating therefore on the processes and not the products of
the SCOS II software development.

SCOS H

SCOS II (Spacecraft Control and Operations

System II), ref. [10][11][12][13] is the latest of

ESA's (European Space Agency), efforts to
increase standardisation and reuse within its

control systems. SCOS lI has as a predecessor

SCOS I which provides standard functionality

for the telemetry processing chain and various

data management features. These standard

features such as telemetry displays, out of limits

checking, database maintenance etc. were

provided as a collection of middleware routines

and tasks around which a mission would build

its Telecommanding chain and any other mission

specific components. SCOS I uses as front-end,

non standard, custom built workstations

connected to centralised VAX computers. An

enhancement to SCOS I which has recently

been made available provides the same

underlying functionality but using Sun
workstations connected to the VAX's.

SCOS II goes some steps further. In addition to

the functions provided by SCOS I, it not only

provides standard telecommanding facilities but

is also designed to allow much more mission

specific customisation of the kernel system. This

customisation is readily available as a result of

the Object Oriented approach and underlying

technology adopted, and is outlined in the

sections which follow.

Martin Symonds (martin@msymonds.demon.co.uk), Steen Lynenskjold (steen@acm.org) and Christian M011er(cmueller@esoc.bitnet) are

currently assigned to the European Space Operations Centre in Darmstadt, Germany. They have worked for CRI on the management,
analysis, design, implementation and testing of the Application part of the SCOS II project under a contract with the European Space Agency.

1015

The approachtakenby the SCOS11project was
designedto provide the maximum benefit from
use of current "State of the art" tools and
techniquesin the field of SoftwareEngineering.
Thesewerenot chosenfor their own sake,but in
order to deliver very real benefits to the
developmentlifecycle and the final SCOS 11
products. In particular, the use of Object
OrientedAnalysisandDesign techniques,anda
move towardsan open distributedarchitecture
basedon the useof C++ running underSolaris
on Sunworkstations,complementedeachother
well. In addition, tools such as thoseusedfor
userinterfacedesignandimplementationhelped
the prototypingand userrequirementsdefinition
considerably.

Probablythe most important designdriver was
thatSCOSII shouldbegeneric.Thatis, notonly
should it makeuseof the available technology
and the re-usability provided by object
orientation,but it shouldalso ensurethatthe re-
useis embeddedin the designand not just the
implementation.

For example, one can imagine the system
needing to know about gyros, heaters and
thrusters.To use the object orientedapproach
one could implement theseas separateclasses
andthen specialisefrom them in order to make
different kinds of gyro, heaterand thruster.The
SCOS1Iapproachhoweverhas found a way to
ensurethatgyros,heatersandthrusterscanall be
specialised from a single parent, called the
System Element. The adopted client-server
conceptplus thedistributedarchitecturebringsa
flexible system with high performance.It is
theseextrastepswhich will deliver someof the
realpowerandbenefitof SCOSII.

OOA '_OOD

As well as the standard functional goals and

requirements of a satellite control system, SCOS

1I has a number of other goals for ESA/ESOC. In

particular these are centred around the concept

of reuse of the software and tools used during

the requirements definition, development and

maintenance phases of SCOS]1. SCOS 1I is also

required to allow easy mission specific

customisation of the kernel whilst providing for

the mission specific components to be optionally

later included into SCOS 1I. This is achieved by

implementing a building block approach for both

the design and use of SCOS II.

Previous Mission
SCOSII (Customised) Software (Re-use)

Mission Specific Software

_= Use SCOSII
:::_:5_1Unchanged

• [_ = Customise SCOSII

i g'_ = Mission Specific

] _ = Re-use Existing Software New Mission Control System

Figure 1 : SCOS II Building Block Approach

The concept behind this will allow a control

system to be put together from the SCOS II

supplied components, modified SCOS 1I

components and mission specific components.

This approach is illustrated in Figure 1 where the

final components of the system are shown as

being built from each of the various sources.

This building block approach is supported by the
use of C++ and the class libraries that the SCOS

1I project provides, allowing a "mix and match"

approach to system construction as shown in

Figure 1.

In addition to the goals and expected benefits for

the developers, there are also changes occurring

for the users. These changes include increased

involvement in the analysis and design process,

the capability to represent and control their

spacecraft through the use of a model and

changes in the physical appearance of the

system.

1016

_i i;> " _'

! i!iiii/¸

;i_i;i

i/

i:i

One of the most significant changes that SCOS

II users have had to come to grips with is the

change in emphasis between focusing on the

mechanisms used for controlling the spacecraft

to focusing on the spacecraft itself. For example,

the tendency in the past has been to think of

commanding and monitoring of the spacecraft in

terms of telecommands and telemetry, whereas

the SCOS 11 approach encourages focus on the

actual spacecraft and its components, i.e. those

objects being commanded or monitored (gyros,

heaters, thrusters etc.). This manifests itself

primarily as a consequence of the Object

Oriented Analysis and Design approach which

allows the spacecraft model to be developed as

part of the tasks carded out by the users when

configuring the system. These modelling

features allow the easy expression of physical,

thermal and electrical relationships as well as

abstract relationships as and when required by
the users.

OBJECT ORIENTATION

The concepts of object orientation have been in

the software industry for some years now but it

is only recently that the tools, methods and

experience have become readily available to

allow the widespread take-up of this approach

and the techniques it supports. The benefits of

object orientation permeate the entire software

development lifecycle, from the analysis of user

requirements through to maintenance and

operations. The major advantages of object

orientation within the software development

lifecycle can be summarised as follows:

• Analysis of Problem Domain - Allowing a

better understanding of the problem domain;

encouraging user/analyst interaction;

providing a basis for evolution towards the

design and implementation

• Design of solution Encouraging

identification and utilisation of underlying

commonality within the problem domain;

providing a means of concealing changes to

1017

the design specification; extending results of

analysis phase

• Maintenance and operations - Promoting

reuse of developed components; concealing

low level code changes.

These advantages can be considered a result of

the tools, methodology and languages used. In

particular the object oriented concepts of

encapsulation, inheritance and polymorphism

allow a number of the advantages listed above to
be realised.

The object oriented approach also supports an

iterative lifecycle where iteration is considered

part of the analysis and design process as further

detail is added to the analysis/design model.

Figure 2 below shows the iterative nature of the

lifecycle approach taken, which can be compared

with the traditional waterfall lifecycle in Figure
3.

Figure 2 : Object Oriented Lifecycle

The major difference is that iteration and

feedback is a fundamental part of the object

oriented lifecycle, whereas for the traditional

waterfall lifecycle, this feedback is generally

only permitted to rectify errors. The object

oriented approach allows the analysis results to

be gradually expanded and refined with

successive layers of detail until the design is

complete. It is hence of outmost importance to

define eachiterationand its productsaspart of
theplanningcycle.

[0n...............k.

•"-. iSR-- b-.
AD

• • Architectural
"i "

Feedback to _

previous ohases is]DD iallowed to address . Detailed
|Design !

errors.,
•-. ITR i

• • _ Transfer i
........................

Figure 3 : Traditional Waterfall Lifecycle

SCOS II

In order to satisfy the demands placed upon

SCOS II, the project was approached in two

phases. In the first phase, the technology to be

used was proven in terms of functionality and

performance, and the initial analysis work was

carried out in conjunction with a significant

amount of user interface prototyping.

Once the technology had been proven and the

initial analysis performed, the project moved

into its main development phase which saw the

underlying technical services being provided and

the analysis/prototyping activities moving

forward into design and implementation of those

generic parts of the system identified in the

analysis.

Whilst the initial phase was not a pilot project as

such, it did allow the project team to get to grips

with the technology, tools and problem domain,

providing them with the means to determine the

route to the system goals as part of the second

phase.

The project team structure saw a peak of some

20 software engineers. Of these, 5 were client

staff responsible for the overall management,

technical management and system testing

support. Industry was represented by two

consortia, each of 3 companies with clearly

defined responsibilities. The Application Team

was responsible for providing the analysis of the

problem domain and for ensuring that the users

functional requirements were satisfied. This
team also carried out extensive functional

prototyping and is responsible for delivering

SCOS II applications. The second industry team

was responsible for providing the low level
technical infrastructure such as software to

handle the transmission and caching of data
across the network.

DEVELOPMENT APPROACH

In describing the development approach, it is

necessary to understand the standard ESOC

activities, how these activities were mapped on

to the phases adopted by SCOS 1/, the modified

lifecycle used by SCOS II and what were the key

features of the development under these
constraints.

Activities

ESA software development projects are

developed according to the ESA Software

Engineering Standards, ref. [9]. These standards

recognise five phases of the development

lifecycle known as:

• User Requirements Definition - definition

of the problem domain to be solved by the

system to be procured

• Software Requirements Definition -

Analysis of user requirements to define a

model to allow satisfaction of these

requirements

• Architectural Design - Design of the
hardware and software architecture

including data and control flow

• Detailed Design - Design, code and test of

the system design

1018

!_!_:i__!II_..

iii_i!!iiii__
ii_ !_i: i

/i/ i

_i • • -

i:: :i:!!iii _'

J

H

H

• Transfer - Installation of software in target

environment; performance of acceptance

testing

These have traditionally been performed using

the traditional waterfall lifecycle shown in

Figure 3.

Whilst this is a well proven method, it has a

number of difficulties and inconsistencies. These

are emphasised when attempting to use this

approach in an object oriented environment. The

major difficulty is that in the waterfall lifecycle,

the output from one phase is the major driver for

the following phase, and to a large extent stands

alone. The object oriented approach however

encourages successive refinement of the initial

analysis model right through to the code, without

being able to easily produce the corresponding

breakpoints of a traditional lifecycle. This is

demonstrated by Figure 4 which shows how the

relationship between the successive phases of a

traditional approach is less closely coupled to its

previous phase than that of an object oriented

lifecycle.

With the waterfall approach, there are clearly

defined deliverables at the end of each phase,

which stand alone. With the object oriented

approach, each iteration sees further refinement

and not necessarily a specific stand alone

product. Each iteration product should be

defined in a manner that it is tangible; hereby

giving the management the necessary

information to monitor progress.

1019

_ Traditional Waterfall

\
/

i" oo

O0 Iterative Evolution /Ao\DD

Figure 4 : Use of Lifecycle Products

Phases

The SCOS II approach required that the

development be object oriented yet maintain,

wherever possible, a correspondence to the ESA

PSS-05 phases and deliverables. This was not

easy and became more challenging as the project

progressed.

The prototyping and analysis phase

corresponded closely in some ways to the

traditional lifecycle with the SCOS II

development team producing an object oriented

SRD (Software Requirements Document), ref.

[2]. It was found that the nature of the object

oriented analysis was such that the SRD

activities could in fact be performed in parallel

with the URD, with final SRD updates lagging

behind the final release of the URD. During this

phase, extensive iterative prototyping took place
in order to:

• help elicit user requirements

• define user interfaces.

This proved to be a valuable exercise for the

users.

The methodology followed for this analysis

phase was the Coad/Yourdon method, ref.

[5][6][7]. The object/class diagrams were

created using the OMTool product which uses

the Rumbaugh notation, ref. [3].

The Design and Implementation phase saw
SCOS 1I covering the traditional AD/DD
activities. Once more the nature of the object
orientedapproachis suchthat it was found that
the SRD was more detailed than a traditional
SRDandaddresseda levelof detailnot normally
found until AD activities. Similarly, the AD
documentationprogressedto a point where
traditional DD issueswere being addressed.It
was also noted that the coding and detailed
designactivities were highly iterative,allowing
thedesignandsoftwareto evolvetogetherandto
take into account feedback from users.
Integration however has been more of a
continuous process rather than one which
progressesin clearlydefinedstages.

The next phase of the project which will
commencein late 1994,will be to continueroll-
out of the SCOS II kernel in readinessfor
customisationandenhancementby its first client
missions.Thesedeliverieswill consistmainlyof
collections of C++ class libraries that will be
Usedby the client missionsas a basisfor their
custom and mission specific software
development.

Lifecycle Considerations

The mismatch between the traditional lifecycle

and that encouraged by the more iterative object

oriented lifecycle continues to be a source of

frustration. It is not easy to present documents

for external review that correspond to some

degree with the contents of traditional

deliverables of that phase. Whilst less detail

could have been documented during the SR and

AD phases, the nature of the approach stimulates

an analysis philosophy that repeatedly drops

down into detail and back up again. It would be

inefficient to ignore or document this
information in another fashion.

Whilst SCOS 1I has produced documentation for

review, such as the SRD, it has always been

clear that the level of detail contained in these

documents has generally been higher than the

traditional documents. This reflects the lifecycle

comparison diagram in Figure 5. This is also

discussed in ref. [4].

II

Tlmo

[Key: I

-. I _ TRADITIONAL }

"-.......".. _R,ENT_DJ

Figure 5 : Comparison of Traditional vs. Obiect
Oriented Lifecycle Phases

Figure 5 shows some interesting comparisons

between the traditional lifecycle and the object

oriented lifecycle. In particular it demonstrates

the OO approach reaching the same level of

detail overall, but dropping down much sooner.

Similarly, the corresponding amount of effort for

an object oriented approach seems to occur

rather earlier in the development cycle with the

maintenance level is expected to be less.

SCOS 11 was able to take advantage of the

possibility of overlapping phases. Thus whilst

the UR/SR/AD/DD phases have overlapped this

has not appeared to hinder development at all.

This is something of a two edged sword; on the

one hand it allows rapid progress towards an

initial version/prototype, while on the other it

does make the project management more

complex.

1020

,/ :i_ _

Key Features

To summarise, the key features of SCOS

which have made it a success include:

®

II

Prototyping - This helped considerably to

elicit requirements, define interfaces and to

demonstrate progress to the users.

The iterative approach - Allowing frequent

tangible results during both the analysis and

design phases.

0 High level (Analysis and Design) -

Manifested through successive

refinement of the analysis model and

refined user requirements.

0 Low level (Coding and Delivery)

Allowing successive deliveries

provide increased functionality.

Object Orientation

0

to

User interaction / co-operation (Through

the Analysis Model) - Providing

increased visibility of the design

process, for the users and increased

visibility of the problem domain for the

developers.

0 Software Modularity the

implementation of the building block

concept providing clean mechanisms for

mission specific control systems.

Management approach

0 3 groups (client and two teams from

industry) - Allowing diverse skills to be

brought to bear on a challenging, state of

the art project.

0 split into technical and applications

areas - Allowing clearly defined

responsibilities

0 one infrastructure (bottom up) - Starting

from the available technology and

providing services for the applications.

0 one requirements (top down) - Starting

from the requirements and implementing

using the provided infrastructure
services.

1021

CONCLUSION

SCOS II is now well on the way to completion.

It is a suitable opportunity to take a look back

over the past couple of years and with the benefit

of hindsight, draw some conclusions from the

route that we have travelled.

The project may cost some 50% less than its

predecessor infrastructure (SCOS I and MSSS)It

is clear that the approach, technology and tools

used have led to greater productivity in many

ways.

The extent to which the benefits of ease of

maintenance and later re-use will be realised,

remains to be seen in client project applications.

Based on the experience of flexibility to change

and extent of re-use throughout the development

phase, we have considerable confidence that this

will be achieved

In retrospect it would have been immensely

useful to have been able to develop a small pilot

project. This would have enabled a number of

management, analysis, design, implementation
and standards issues to be resolved before SCOS

II commenced. As it was these had to be

addressed as part of the ongoing project work

and sometimes distracted and indeed disrupted

progress. To tackle a project of this nature and

complexity where little appropriate expertise

was available, and to add an increased level of

complexity by making the SCOS II goal a

generic system, is a high risk strategy. That this

strategy is starting to pay off is a remarkable

tribute to the skills and dedication of the people

involved in the project.

< _ • :: :<,:<•::+::::_:_::_:_:_<<_• <_ _:: _ :......... _ _ • _•__ _< <<'_: _:::• ,<::<___::::•i: <_ <_<•ii:i_:<::<:< i:i:i::!_i:ii:i•_::<ii_i!i¸!iii?!_i__ii_ii_L!_i_ii_i_!<iiiii_i_ii_i_iii_iii_iii_i_iiiiiii_i_!ii_i_!_ii_i_iiiiii_iiii_]iii_iiii_iiii_iii_i_iiiii_iiiiii_iiii_iiiii_i_i_iiiii

'< d,!i_

< :< •

i _iI_:__

:_ , •i ¸

/</: • i

ii<%!i_i!_!i
/•<<%•

i_i'!

• : I_,

i!ii_!i!

<ii<....
/iii_ •

REFERENCES

[1] SCOS 11 User Requirements Document,

ESOC DOPS-SYS-URD-001-AMD, Issue 3,

February 1994.

[2] SCOS II Software Requirements Document,

ESOC SCOS 11-SYS-SRD, Issue 0.6, June

1994.

[3] Object Oriented Modelling and Design,

Rumbaugh et. A1, Prentice Hall 1991.

[4] Object Oriented Design with Applications,

Grady Booch, Benjamin Cummings 1991.

[5] Object Oriented Analysis, Peter

Coad/Edward Yourdon, Prentice Hall 1990.

[6] Object Oriented Design, Peter Coad/Edward

Yourdon, Prentice Hall 1991.

[7] Object Oriented Programming, Peter

Coad/Jill Nicola, Prentice Hall 1993.

[8] Modelling the World in States, Sally

Schlaer/Stephen J. Mellor, Prentice Hall
1992.

[9] ESA Software Engineering Standards - Issue

2, ESA PSS-05-0 Issue 2, ESA Publications

Division, February 1991

[10]SCOS 11: ESA's New Generation of Mission

Control Systems - The User's Perspective, P

Kaufeler, M Pecchioli, I Shurmer, ESOC -

these proceedings.

[11]A New Communication Protocol Family for

a Distributed Spacecraft Control System, A

Baldi, M Pace, ESOC - these proceedings.

[12]SCOS II: ESA's New Generation of Control

Systems, M Jones, N Head, K Keyte, P

Howard, S Lynenskjold - these proceedings.

[13]SCOS II OL: A Dedicated Language for

Mission Operations, A Baldi, Dennis

Elgaard, S Lynenskjold, M Pecchioli - these

proceedings.

1022

i:_i::_i_i:__i::_:_::i_:_ii_ii_:i:i_:i:!:i_?i;ii_iii__ii!iiiii_!_::ii_!i_i!iiiiiiiiiii!iiili_iiiii:iiiiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iii'

4. Modeling Page 1023

SD.4.a

SD.4.b

SD.4.c

SD.4.d

SD.4.e

SD.4.f

SD.4.g

SD.4.h

Evaluating Modeling Tools for the EDOS

Gordon Knoble, Frederick McCaleb, Tanweer Aslam,

Paul Nester

Solar and Heliospheric Observatory (SOHO) Experimenters'

Operations Facility (EOF)

Eliane Larduinat, William Potter

Galileo Spacecraft Modeling for Orbital Operations

Bruce A. McLaughlin, Erik N. Nilsen

The Advanced Orbiting Systems Testbed Program: Results to

Date

John F. Otranto, Penny A. Newsome

NCCDS Performance Model

Eric Richmond, Antonio Vallone

Evaluation of NASA's End-to-End Data Systems Using DSDS+

Christopher Rouff, William Davenport, Philip Message

Analysis of Space Network Loading

Mark Simons, Gus Larrson

Modeling ESA's TT&C Systems

Enrico Vassallo

1025-1030 _"i_:',_-

1031-1038

1039-1044' ":_

1045-1054ii!}_i:'!i;_::!;:

1055-1062 _ :_:?_:!!!I_.....

} f' ...'

1063-1069?_:_:::_:_

) ._ .i:..::'i!! i

1071-1077_iy::_:_

1079-1090

* Presented in Poster Session

1023

