
hL /<_> .A :: < • L 7:1: :A !< :]!</::ii i •:::•ii i!fili:L:i! _ i_,i]:i{.:i<ii•:: ::ii(_ :,.Ch7_'::<7.5 ::2.:1%:<:i<:::::!:<:.:::..i:<:.:k:2<: ::A<+.::<: : ::::+n_•+.:::•A:<<<: :+><:::: _:5+: :<::_:.<:._._:<::::>.;<<_<:_<_:+:+_+:_:+_+:+:_;+:+:+:+_+_+_+_.<._+_.:.:.:+:.:+:+:+:+:+:+:+:+:';¸.'.'.'¸¸_¸.',¸''¸'¸';'_'_'_

i!f{ 5 N95- 17580

A General Mission Independent Simulator (GMIS)
and Simulator Control Program (SCP)

Paul L. Baker (GST Inc.)
J. Michael Moore (NASA/GSFC)

John Rosenberger (CTA Inc.)

.....J"Y
!:!!: :i::

.......... :_ !_ _.:!

The Purpose of GMIS and SCP

GMIS is a general-purpose simulator for testing ground system software. GMIS can be adapted to
any mission to simulate changes in the data state maintained by the mission's computers. GMIS
was developed in Code 522 NASA Goddard Space Flight Center, The acronym GMIS stands for
GOTT Mission Independent Simulator, where GOTT is the Ground Operations Technology
Testbed. Within GOTT, GMIS is used to provide simulated data to an installation of TPOCC - the
Transportable Payload Operations Control Center. TPOCC was developed by Code 510 as a
reusable control center. GOTT uses GMIS and TPOCC to test new technology and new operator
procedures.

Ideally, mission operations staff should have a variety of simulators to serve several purposes:

• Prediction - compute the future state of a system

- Evaluate the effects of a proposed operational step, i.e., to answer "what if" questions.

- Verify that the planned steps will cause operations that lie within safety and other

operational constraints.

• Test - supply a time-variable system state to exercise subsystems.

° Training - create a realistic environment for training staff.

In practice, missions that use TPOCC have one or more simulators. Consequently, GMIS was not
developed to fill a void; rather, it was developed to offer an alternative with certain advantages:

1) Convenience - GMIS is easy to setup and use.

2) Extensible - it is easy to add more simulation functions.

3) Speed - eventually, we expect GMIS to run very quickly.

In the present version, we have not achieved these goals in equal measure. The convenience factor
is high, but the speed seems modest. The features that make GMIS extensible are useful, but there
is room for improvement. In this report, we will relate some feedback from current GMIS users
and indicate how we plan to improve the simulator in these three areas.

The GMIS manages the timing and external data links for optional simulation modules. It accepts
any number of compiled or interpreted modules. Compiled modules are written in C or C++. The
interpreted modules are written as procedures in TSTOL - T_POCC _vstem Test and Qperations
_Language. This language is familiar to flight operations team members, but it is not especially
easy to use. In fact, programmers often find it difficult to use because it looks familiar but has a
different syntax compared to programming languages. For this reason, the project developed the
SCP as a convenience feature.

The SCP is a graphical, syntax-aware editor for TSTOL. Although SCP is really a simulation
script editor, its name stands for Simulator Control Program, for historical reasons. SCP helps
you write a correct TSTOL procedure and then lets you run it with a click of a button. SCP has an
embedded copy of the TSTOL interpreter so that it can detect and report syntax errors locally.
Finally, SCP reads and displays all the variable names in the data server's database. That feature
helps the user find the correct spelling for system variable names.

1093

PAGE BL_,NK. N_T FILMED

-li__. GOTTScriptBuilder(VI.3)

IF_e Cmmandi

Script Name: plb2

FORi=ITO3DO II

let tpex_sli1=i _n
wait2 In

END IH
wait nl

endproc j_

N

Figure h SCP Main Panel

SCP and GMIS Interaction Panels

Simple and easy to use Motif control panels are
responsible for much of the convenience of
GMIS/SCP. The panels strive for the same look-and-
feel as the panels that are used in the TPOCC control
centers.

The SCP has a main panel, called the Script Builder,
that is used to edit TSTOL scripts. Figure 1 shows a
copy of the panel at a point where the user has
completed a simple script.

This script will loop three times with two seconds per

loop, and it will set the value of the loop index, 2, in

the system variable, tpex_s i i i.

The script appears within a Motif Text Widget. All of
the Widget's editing commands are available. The File
Menu has the usual options for saving and retrieving
copies of the script. The Command Menu has only one

option: Execute. When the user selects that option, the script runs and sends data values to GMIS.
From GMIS, the updated values find their way to the data server.

GMIS always shows the updates to values when it receives them from SCP. The GMIS panel is
shown in Figure 2 just after the SCP has executed the script in Figure 1. Compiled simulation
modules are usually designed for a higher throughput and could swamp the display with output.
Consequently, GMIS does not automatically show updates for such modules. However, compiled
simulation modules can write progress messages to the display, if they wish.

The SCP has two panels that help a user write TSTOL. Suppose we want to add another statement
to the procedure. We only need to click the mouse at the point where we want the new statement to

-b GMISVI,3

FileSimulatorI]isplau

Mlsslon Name: tpocc

Slmulator Status: Started

Most Recent Changes:

0 ilSimulationStarted

40TPOCC_DECOHTPEX_SLIIi In
42TPOCC_ECOHTPEX_SLII2]n

appear. Then, we can go to the Statement Builder
panel and pull down the Scri.pA menu. That menu
shows the basic statements of the TSTOL language
as illustrated in Figure 3.

Many of the TSTOL constructs in the menu require
multiple lines. For example, all the block
structures have a starting and ending statement. In
those cases, the statement builder will insert

multiple lines and the user simply clicks within the
block to add the statements that belong there.
Moreover, some of the TSTOL constructs require
parameters. That is indicated in the menu by a
series of periods after the name. The Statement

Builder helps with two of those: Leg and For.
When the user selects one of these constructs, the

main area of the Statement Builder changes to
display a fill-in form with the required parameters.

Figure 2: GMIS Main Panel

1094

L

]:i_i!_._i_

?il}:

L

/:

• ,:H,,

i •,::i_

,'ii

!;s

Contmue

_o-enddo

For .+÷ L,_

goto

Let ._.

Return

_ait

_ait-until

While-do
_tatementMenu

S_P-MON#TPOCC__ECON

SWP-HON-#TPOCC_])ECOB

S_P-SUP-#TPOCC_DECOH

TI-CAL#TPOCC__ECSM

Ti-_ETA#TPOCC__ECOM

TI-DETB#TPOCC_]]ECON
ITI-NOISE#TPOCC__ECOH

TI-TEHP#TPOCC_I]ECOH 1

i

Figure 4: SCP Data Points Panel

When the script needs a TPOCC system variable name
as a parameter, the user can type the name or click on
the name in the Data Points panel. The Data Points
panel lists all the current data server variables. For

example, the user has just clicked SWP-SUP in
Figure 4. Just before the name was selected, we
started a Let statement in the Statement Builder

window. When the name is selected, SCP copies it into
the first entry field of the r,et statement shown in
Figure 5.

The statement that you construct in this window will be copied into the script when you click on
the Apply option. In this case, we made an error - £oobar is not a symbol TSTOL will

recogmze. We inserted this statement anyhow to produce error messages intentionally. When we
execute a script, SCP brings up another window to show the dialog with the TSTOL process.
Figure 6 shows the dialog for this script and the TSTOL error messages.

LET =

Figure 5: SCP Statement Builder - Parameter Form for "Let" Directive

?

L 1095

< .

iii<

i

5<:i(i

!,_i!/!i/<"

ill,i!<!/i
<j/ A, '

<_'i<ii

<i !< i<: •- :

115 :'!i_ _(

ii<i_!i_!iil/<i

/ • H/ •

_<i ,i

iii!_,ilili_i_

/ :i

i ¸ , .

•'!:¸

• iI •i̧

_i _ _ ,

< ,

L <

_b GOTT TSTOL Command Panel: plb2

[PO]lOB9ProcedureGENERICcompleted.
[00]TPOCCTSTOLServerinitializationcomplete.
[PO]1089ProcedureTPOCC_SERVERcompleted.
[00]1002TPOCCSTOL (TPOCC)processor,TPOCC_TSTOL_25830,activated
[OI]STARTtstolaaaa22205

[PO]1080Warnin9procname(TSTOLAAAA22205)doesnotmatchnameinPROC
[PO]1070ProcedureTSTOLAAAA22205started.

[PI]TSTOLAAAA2220512:FOR i : I TO 200 DO
[PI]TSTOLAAAA22205/3:lettpex_slil:i
[PI]TSTOLAAAA22205/4:LET SWP-SUP#TPOCC_DECON: foobar
[00]1011syntaxerror,line4 in "/mako2/tpocc/TPOCCli_HP/procs/tstolaa.
[00]1012 in "LETS_P-[SUP#TPOCC_DECOM: _oobar]"

[00]I038Error- stoppedat line5:
[AS]Enter"GO"to continue...

L
l

Figure 6: SCP - TSTOL

GMIS Software Design

Script Execution Panel

The design for GMIS has several distinguishing features that are illustrated in Figure 7. A major
design decision was to provide and maintain two copies of the system variables. The simulator
modules read from one copy and write to a second. At the end of the time step, any variable that
has changed is forwarded to the data server. At the same time, the first copy is updated from the
second. The point of this feature is that it allows multiple modules to contribute to the next system
state. The full state is written out at once after all the simulation modules have taken a turn.

The current version allows any number of internal, compiled simulation modules. In addition, the
SCP can interpret TSTOL procedures and send new data values to the GMIS. The SCP is running
asynchronously with the GMIS, but the internal modules are synchronized to a strict clock. The
internal timing is maintained by examining the system clock, computing the amount of idle time
between cycles, and then programming the Xt System software for the required delay. The basic
timing cycle is illustrated in Figure 8.

The current version has the feature - or the implementation restriction, depending upon your
viewpoint - that it is single threaded. Thus, the software cannot receive from the SCP when it is
running a model, nor will it start its scheduled time step while a read operation is in progress. In
future versions, we would like to be able overlap the data server communication with the other
operations by providing two or more separate threads.

1096

_i_i_ii{iii_:_i_i!i,

i'Iii_::_i:i_

!ii::iii::
,, .. •

i:__ !/i:_ :/

i! :il •

!%ii

iii_:_iiii

i i_i:

GMIS

current system variables

.... j.J

Figure 7 - The Data Flow in GMIS

A programmer who wants to extend GMIS with compiled modules must use C++ in the current
version of GMIS. C++ classes provide most of the routine simulator functions such as timing and
data communications. The functions are inherited by the simulator modules in the following way.
To write a new module, the programmer defines it first as a class that inherits from the
ModeIEnginelnterface class. Then the programmer makes a single instance of the class, which is
the actual simulator module. When the instance is constructed, it will connect itself with the GMIS

infrastructure automatically.

Receive

from SCP

(asynchronous)

I

I

!

Xt Run Send to

Mainloop Models Data Server

Figure

I I

I I

I I

I

8

f adjust this

delay to

keep cycle

synchronized
with wall clock

__k_

- GMIS Timing Diagram

i_ :_: 1097

:- : i_̧¸

:i i i:/_

i:.i!}i_/_'
:/ :}?

ScheduledObject

l is_a

ModelEnginelnterface

l is_a

Your Model Class

STvar

sa

Figure 9: The Major Class
Relationships in GMIS

Tvar

The ModelEnginelnterface class inherits its timing
properties from a utility class, called
ScheduledObject, and it acquires access to the
system variables by a composition operation. In
simple terms, it contains a pointer to a list of
system variables. There is a full set of utility
functions that come with the list as part of a class
called Tvar. The GMIS effort borrowed the Tvar's

from another project. Because theTvar's didn't do
everything we needed, we made Tvar a subclass of
a new class STvar that added the new functions.

This programming trick avoided any modifications
to Tvar, initially anyhow. We will discuss
software maintenance experiences later. The class
relationships are summarized in the Figure 9.

Features Provided, Features Used

The GMIS simulator has been in operation for about 18 months. It has been used in experiments
in the GOTT and by three other projects. The feedback has been surprising because the features
that are used the most were not the most important during the development. Also, some of the
most important features during development are used little, or tend to be in the way of use.
Finally, we had to add features for two projects because there was a reasonable need that was not
satisfied by the baseline version. As a result, there is currently a baseline version and two
variations. The feature sets of these versions are summarized in the Table 1.

As we expected, the built-in connection to the data server has made GMIS a valued tool for testing
TPOCC related software. The interpreted TSTOL modules have proven more valuable than
expected. On the other hand, the class libraries have fared poorly in practice. The classes are not
simple enough to encourage reuse, although a lack of familiarity with C++ may also be a factor.

Moreover, the C++ class for data server access, Tvar, has proven very hard to maintain. Also,

the Tvar class only handles asynchronous data and it proved impossible to extend it for
synchronous data. Consequently, we had to write a special version of GMIS for a project that
requires synchronous data simulation. Our conclusion is that it may not be a good idea to wrap a

C++ class around a C library that is not well understood. This is certainly the case with Tvar and
the TPOCC data services library.

A surprising requirement has been the need for simulations in which the simulation calculation is
performed off-line and written to tape. The GMIS must then read the tape and supply the data at a
steady pace controlled by the simulation clock. In principle, there is no reason that an off-line
calculation could not be performed on-line. Indeed, one could keep the simulation software
wherever it is developed and provide simulated data over a network on demand. In practice,
software does not move freely and networks are not always connected to each other. For now,
this requirement is a real one for NASA and it required a special version of GMIS.

i : ;

1098

Table 1: Summary of GMIS Features and Their Extent of Use

Feature Version Version
1.0 1 .X

1. Asynchronous Data to Data Server O

2. Synchronous Data to Data Server O
• _i,9

!i

i!_>i_i;:

• , 5

'5 i̧i!

2

;i

1:5 :_::

i!_i_ •

3. Local Copies of System Variables

0

0

4. Compiled Simulation Modules, Static Binding •

5. Compiled Sim. Modules, Dynamic Binding C)

6. Reusable C++ Classes ®

7. TPOCC Data Server Classes •

8. Interpreted TSTOL Simulation Modules O

9. Simulation Tape Playback O O

Key:

Note:

The

O feature not supported

• feature supported but not used

O feature supported and used extensively

Version 1.0 is the baseline version; Version 1.X is a notation

for the several specialized variants.

Future of GMIS/SCP

As the preceding summary shows, there are valuable features in GMIS that complement other
simulation facilities. However, there is still room for improvement in the three qualities we deem
important: convenience, extendibility, and speed.

In the area of convenience, it has long been our goal to have fast, compiled, simulation modules
that we can start on demand while GMIS is running. These dynamically loaded modules would

• /

gxve the experimenters in the GOTT laboratory more flexlbdlty m their tests. This feature should
appear in the next version. The overall architecture of GMIS will then realize the design shown in
Figure 10. Presently, all the compiled modules are linked statically, but that will change to
dynamic loading in the next version.

In principle, the module that connects GMIS and SCP is just another producer module. Similarly,
the module that connects to the data server is just another data consumer• In practice, it may be
difficult to build a dynamically linked module without revising the extensive body of TPOCC code
that is reused in these modules. Consequently, these modules will always be statically linked, but
compilation options will determine whether the modules are present or not.

The extendibility of the current version is based on C++ classes that offer a variety of scheduling
features as well as an encapsulated access to TPOCC data services. Only the simplest scheduling
features are used, however, and the encapsulated access is often more of an obstacle than an
advantage. For this reason, the next version of may be written in C, without classes.

The speed of GMIS should be improved considerably if we could overlap simulation calculations
with system variable output. We plan to explore this possibility as Dt2E - Distributed Computing

1099

• :/

• H):

: /

,5 / :

Environment - is phased in. DCE has a built-in capability for multiple threads that should support
simultaneous network communication and computation.

For the future, the GOTT laboratory is not limited to TPOCC control center software. In the past,
the laboratory has hosted OASIS software and we are currently experimenting with software from
Storm Technology, Inc. For this reason, the GMIS should be independent from a particular
control center.

Producer

Modules

(Dynamic)

f >
I >

f rom SCP I

Timing n_
and

Coordinat io

Module [_

I
I i

Opt i on al

Stat ically Linked
Modules

Consumer

Modules

(Dynamic)

to Data Server

Figure 10:

Contact Information

Paul L. Baker

Global Science and Technology, Inc.
6411 Ivy Lane, Suite 610
Greenbelt, MD 20770

John Rosenberger
CTA Incorporated
6116 Executive Blvd.

Rockville, MD 20852

Overall Architecture for GMIS

J. Michael Moore

Software Automation Systems Branch
Code 522

NASA Goddard Space Flight Center
Greenbelt MD 20771

Point of Contact

Paul L. Baker

Email: pbaker @ gst.gsfc.nasa.gov
Tel. (301) 474-9696

1100

