
• :ii i̧ _:

/

_:_i_

•,_i _,i

RE-ENGINEERING THE MULTIMISSION COMMAND SYSTEM
AT THE JET PROPULSION LABORATORY

SCOTT ALEXANDER
JEFF BIESIADECKI

NAGIN COX
SUSAN MURPHY

TIM REEVE

Operation Engineering Lab
Jet Propulsion Laboratory

California Institute of Technology
MS 301-345

Pasadena, California 91109-8099
{salex, jeffb, nagin, sooz, timr@devvax.jpl.nasa.gov}

N95. 17583

•i• :

C

ABSTRACT

The Operations Engineering Lab (OEL) at
JPL has developed the multimission
command system as part of JPL's Advanced
Multimission Operations System. The
command system provides an advanced
multimission environment for secure,
concurrent commanding of multiple
spacecraft. The command functions include
real-time command generation, command
translation and radiation, status reporting,
some remote control of Deep Space Network
antenna functions, and command file

management. The mission-independent
architecture has allowed easy adaptation to
new flight projects and the system currently
supports all JPL planetary missions
(Voyager, Galileo, Magellan, Ulysses, Mars
Pathfinder, and CASSINI).

This paper will discuss the design and
implementation of the command software,
especially trade-offs and lessons learned from
practical operational use.

The lessons learned have resulted in a re-

engineering of the command system,
especially in its user interface and new
automation capabilities. The redesign has
allowed streamlining of command operations
with significant improvements in productivity
and ease of use. In addition, the new system
has provided a command capability that
works equally well for real-time operations

1123

PAG_ !_/I_NK f_T FILME_D

and within a spacecraft testbed. This paper
will also discuss new development work
including a multimission command database
toolkit, a universal command translator for
sequencing and real-time commands, and
incorporation of telecommand capabilities for
new missions.

INTRODUCTION

The Jet Propulsion Laboratory has a long
history of building multimission ground data
systems that are designed to be easily
adaptable to new projects. The mainframe-
based systems of the 1970s have been
replaced by distributed, workstation-based
systems as part of JPL's advanced
Multimission Ground Data System (MGDS).
The new MGDS provides flexible, extensible
components that are easily adapted for new
missions, but more importantly, can also
support multiple missions concurrently.
However, as these ground systems have
evolved, it has become apparent that
providing advanced tools that help simplify
and automate the old way of doing business
is not enough to support the small, low-cost
missions of the future. In particular, the
uplink process has been very labor intensive
for planetary missions and it must be re-
engineered to provide the simple command
capabilities that will be needed for missions
with cheaper, more autonomous spacecraft
and for operators wanting remote telescience
capabilities.

!•

iki!_iii_
i} :: :i_ '

/

lily
i _

ii

ii_iI ._
• }

The Operations Engineering Lab (OEL) has
developed and refined the MGDS Command
Subsystem to be an adaptable, low-cost,
multimission component of the overall uplink
process. As part of our development work,
the OEL is working with the sequencing
teams and developers at JPL to re-engineer
the uplink process so it can provide seamless,
easy-to-use capabilities for spacecraft
commanding. The goal is to provide an off-
the-shelf command package that can support
large to small missions that need to command
through the Deep Space Network (DSN).

MGDS COMMAND
SYSTEM DESCRIPTION

The MGDS Command functions include real-

time command generation, command
translation and radiation, status reporting,
remote control of DSN antenna functions,
and command file management. A
distributed, network-based, graphical
interface is provided to give real-time
command radiation status to users at remote

sites. This interface was implemented in
X/Motif. The Command System provides
security functions including authentication for
two user privilege levels, internal security
checks, a central node for controlling all
command radiation processing, a
configuration control environment for
command files, and a mode for non-
interactive Command viewing.

The primary control function of the
Command system is to permit real-time
transmission of command files and memory
loads from the ground to a spacecraft. The
Command Control Graphical User Interface
(GUI) (Figure 1) provides real-time,
interactive control of the command

transmission and radiation to the spacecraft.
The connection between Command and the

DSN is a secure process controlled by the
Data System Operations Team at JPL. These
operators allocate the connection resources to
a project mission control team after ensuring
a clean commanding interface.

Command files are first transmitted to the

DSN and held at the receiving end until the
completeness and integrity of the file transfer

can be verified. Once there, the user is free to
put the files in the queue of the Command
Processor Assembly for radiation to the
spacecraft either at that moment or some later
specified command window. The user also
uses the Command GUI to remotely control
the configuration of the antenna in terms of
when actual radiation of commands.

Any time the user is connected to a DSN
station, the station returns monitor data which
is displayed in the Command GUI for
inspection by the operator. Monitor data
contains information about the current

antenna configuration, acknowledgments of
command file radiation, and constant status
information including alarms, files at the
CPA, and receipt of command blocks.

Command files are generated prior to
transmission using• the Command system or
the Sequence software system. Both
processes are similar. A spacecraft command
sequence is formulated and constraint-
checked and then the actual commands are

entered as command mnemonics, encoded
abbreviations (with parameters) that tell the
spacecraft what commands to perform. The
command mnemonics are translated into a

spacecraft-ready file that contains binary
translations of the mnemonics, spacecraft
identification information, start and
acquisition codes, and file integrity and error-
detection information. Once the command

files are prepared, they are stored and made
available to the Command system through a
secure database that checks command formats

and user permissions. Before transmission,
the command files are reformatted for

recognition and radiation by the DSN (Figure
2).

LESSONS LEARNED

When the MGDS Command System was
completed, existing projects were required to
transition from the mainframe MCCC

Command System. Voyager was chosen as
the first project to transition since it had
entered its interstellar cruise phase. Their
experience provided multiple lessons learned
about simplifying the user interface and
reducing the number of steps in the uplink
tasks.

1124

i!_' i_!i__

• i!_

<

When the Mars Observer (MO) Project came
on line as a new project, they had no prior
system for comparison. Their experience was
different since they had a much higher
command rate than the Voyager mission.
They had also decided not to implement the
real-time command translation capability in
the MGDS Command System as a cost-
cutting measure. This meant that all of their
command files, even those with only a single
non-interactive command, had to be prepared
off-line using the more complex Sequence
software. As a result, the project was having
difficulty keeping up with its command rate,
even in the early cruise phase. When the
spacecraft went into emergency mode,
commanding became a 24-hour activity with
many engineers required in the process.

There were two lessons learned from the MO

use of the command system. First,
eliminating the real-time translator during the
mission planning phase resulted in increased
costs in the mission operations phase.
Second, the number of steps needed to
prepare commands had to be reduced. In
particular, the use of the security-controlled
Command GUI had to be re-evaluated. The

GUI was required to perform even simple file
reformatting functions, with no options for a
command-line interface or batch-mode. This

reliance on a graphical interface prevented
automating some steps with simple scripts
because a user had to be sitting at the
computer, pushing each button in turn. It
became apparent that we had to provide an
off-line command generation capability that
was based on non-graphical, less restricted,
command-line interfaces. The secure GUI
was still essential for transmission and

radiation of commands. With this re-design,
DSN resources are only required for the final
transmission and radiation of the Command

files to the spacecraft. The impact of this off-
line capability on required network resources
is significant.

separate, stand-alone programs. The
translation program translates text mnemonic
commands into an intermediate SpaceCraft
Message Format (SCMF) file containing
binary commands expected by the spacecraft.
The reformat program packages the binary
commands into the form expected by the
DSN. These programs can be started up by
the user on the UNIX command line or

script, as well as by the central command
system, The off-line capabilities have also
allowed script automation to reduce the
number of manual, interactive steps involved
in the generation of command files. A
graphical interface shell was built using the
JPL-developed PERL scripting language and
OELSHELL interface building tool.

This off-line translation toolkit also found

extensive use in spacecraft flight testbed
facilities where no connection to the DSN

was allowed. Testbeds provide an
environment for testing and validating
commands on a mock spacecraft. The testbed
command system sends commands directly to
the ground support equipment.

Another lesson learned was the need to

streamline and simplify the end-to-end uplink
process. The uplink process involves
multiple operations and development teams.
This creates a system with multiple tools and
interfaces, forcing the user to learn how to
operate across several different boundaries.
From a project perspective, there should only
be a single interface to the uplink process that
would allow a single user to perform all
functions including spacecraft sequence
generation and translation, ground sequence
of events schedule generation, real-time
command preparation, mnemonic translation,
and command transmission and verification.

The OEL has worked closely with the Mars
Surveyor Project to implement an integrated,
graphical interface tool that allows a single
user to seamlessly perform end-to-end
functions in the uplink process.

Thus, the Command system interface was
redesigned to allow users to generate
command files in an off-line environment

without requiring a connection to the
command control GUI. First, the translation
and reformat functions were developed into

The successful experience of the early
projects using the MGDS Command system
eased the transition of the remaining projects.
All of the JPL planetary missions have now
transitioned successfully to the MGDS
Command System and the mainframe-based

1125

>: <i

i•

,=i:,!,i: ::

!i i _
• ,u

!i!_ • ?
: i _ii_ _

i:

iI _,

</, •

:_, i!/

;_ C: _

• i _

Command system was decommissioned a
year earlier than originally planned.

RE-ENGINEERING
COMMAND TRANSLATION

Since both the Sequence and Command
software provided capabilities for a user to
generate command files, there were common
translation capabilities duplicated in both
systems. The OEL has worked closely with
Sequence developers to re-engineer the
translation process and develop a universal
command translator that can be used by both
subsystems. The redesigned system includes
the use of advanced graphics and object-
oriented techniques.

The translation functions in the Sequence
system were based on manually building
mnemonic-to-bit translation information in

each project's unique command macro
language. These project-specific adaptations
were time-consuming and error-prone. The
command translation process in the
Command software was based on a

multimission Command Definition Language
(CDL) that can be used to specify command
mnemonic-to-bit definitions and constraints.

The CDL file is compiled into a project's
Command Database. A command database is

built for each project, but the language
compiler, database interpreter, and translator
software is multimission. In the re-designed
uplink process, the command database
interpreter and translator software was re-
built as generic, universal libraries that could
be called by both Command and Sequence
software. This multimission, common
approach will significantly reduce uplink
costs.

An illustrative example of CDL code follows:

! define a memory load message

MESSAGE: memload-msg(buf: 200)
FIELDS

data: 160 ! 160 bit local variable

END FIELDS

! declare the kinds of arguments that will

! be entered by the user
LOOKUP ARGUMENT: name

! lookup value below in hex

CONVERSION: HEX
LENGTH: 8

'MEMLOAD' = 'A9'

END LOOKUP ARGUMENT
NUMERIC ARGUMENT: address

! user to enter number in hex
CONVERSION: HEX
LENGTH: 16

! acceptable range
'00FF' TO 'FFFF'

END NUMERIC ARGUMENT
NUMERIC ARGUMENT: aword

! user to enter number in hex
CONVERSION: HEX

LENGTH: 16
END NUMERIC ARGUMENT

! read mnemonics from user input
READ ARGUMENT name
READ ARGUMENT address

REPEAT 1 TO 10 TIMES

(COUNTING WITH nwords)
READ ARGUMENT aword
data := data // aword

END REPEAT

! combine converted input into a message
! counters like "nwords" are 16 bits
buf := name // address // nwords // data

END MESSAGE

It defines a memory load message that can
load up to ten words, sixteen bits each, into a
certain area of memory. If the user's
mnemonic input was, for example,

MEMLOAD; 0A48; 1; 22; 333
the resulting hex output would be:

A9 0A 48 00 03 00 01 00 22 03 33

where the first byte is an op code that
signifies a memory load instruction, the next
two bytes are the address to load the data
into, the next two bytes are the number of
words in the data, and the remaining six
bytes are the data itself.

Since CDL files can become very complex, a
command generation toolkit is being
developed to facilitate their creation and
browsing. The CDL toolkit will include a
graphical CDL editor, a CDL parser and
compiler, and various report generators. In
the future, some text based on-line reference

tools and a smart editor to help a user create
mnemonics are planned.

1126

i : i: ¸¸

/}iil ¸ _ ,,

_ii!_i!'_:}

i_! :i:

ii__ i

The first step taken in the development of the
toolkit was to determine the data structures

for holding the information contained in a
CDL file. These structures are accessed

through a library that is used by all tools in
the toolkit. Here, an object-oriented approach
was used. For example, CDL has several
types of processing routines. So, one of the
classes was for that of a general processing
routine. A subclass of the general routine is a
message routine. Arguments are also objects,
with lookup arguments and numeric
arguments derived from a common, more
general, argument class. For the CDL code
above, there is one instance of a message
routine, memload-msg. There are instances
of both kinds of argument objects: name,
address, and aword.

H

,_ i_

:i _ ,,

i:'; '

When an object is created, a parent object is
specified. Whenever an object is destroyed,
all of its children are automatically destroyed
as well. For the example above, name,
address, and aword are children of
memload-msg. So if the user of the
graphical editor chooses to delete the
memload-msg routine, the code for the
editor is simply one call to destroy the
appropriate parent object and all of the child
objects (which are not useful by themselves)
are automatically cleaned up.

CDL objects can refer to each other. For an
easy example, the READ ARGUMENT
address statement is itself an object (in this
case, of class input processing statement and
child of memioad-msg). It contains a
reference to the object corresponding to the
argument to be read. Thus, if the CDL editor
user changed the name of the address
argument, when the CDL code was saved the
READ ARGUMENT address statement

would automatically be written with the new
name. Note that for this example, the editor
will not allow the address argument to be
destroyed until the reference to it in the
READ ARGUMENT address statement

is changed or the statement removed
altogether. It is easy to get a list of references
to any object. There are many constructs in
CDL not shown in the example that lead to a
single object being referred to in several
places.

The CDL language was designed years ago
as part of the old mainframe-based command
system. It is missing some important
functionality such as arithmetic and
comparison operators. CDL was also written
before the Telecommand standard, so some
of its constructs are outdated and intended for

tasks such as embedding error polynomials
into the binary commands. In the new
Command system, any functionality not
present in the CDL language must be added
as hard-coded 'user hooks' to the command

translation software, creating additional
expense for development and testing. Thus,
as part of our re-engineering efforts, we are
incorporating important enhancements and
simplifications to the CDL language. For
some of these enhancements, we are
investigating the use of other process control
languages such as Spacecraft Control
Language (SCL) in the uplink process. With
the object-oriented approach taken and the
goal of reducing class-specific code, we
expect it to be easier to make changes to the
language.

We are also investigating extending CDL to
include information that would typically be
found in a command dictionary such as
telemetry verification points and flight rule
constraints. The graphical CDL toolkit is also
being enhanced to provide a complete
command definition and dictionary toolkit
with hypertext references to other mission
documentation.

Other recent development work includes
porting our code to multiple UNIX hardware
platforms, ANSI-C, and XPG-4 open
standards. In addition, we are incorporating
the 1987 Consultative Committee for Space
Data Systems (CCSDS) "Telecommand"
standards into the MGDS Command System.
All future JPL missions will comply with this
standard.

TELECOMMAND IMPLEMENTATION

The Telecommand service model is a layered
model which more or less parallels the ISO
Open Systems Interconnect model. The
highest two layers of this model, the
Application Process layer and the System
Management layer, have not yet been

1127

specified in detail. It is still up to the
individual project to defineproceduresand
datastructuresin theselayers.The layers
belowthis,however,have been specified in
detail. Our response to the standard addresses
the Packetization, Segmentation, Transfer,
Coding, and Physical Layers

In the Command subsystem, the
Telecommand (TC)standard is being
implemented as a generic, batch-mode
'wrapping service." Clients of the service
supply the data to be wrapped in ASCII
formatted files called Command Packet

(CMD_PKT) files. The service takes
multiple, one or more, CMD_PKT files as
input, wrapping the data from each file record
and time-order merging the results into an
SCMF file.

CMD PKT file format

The format of the CMD_PKT file follows the
CCSDS Standard Formatted Data Unit

(SFDU) standard. The I-data (user) section
of the file is organized as a header section
followed by a series of data sections. The
section boundaries are defined with special
markers, and the information within these
sections is organized in a "keyword = value"
format. An example of a header section
follows:

$$MPF COMMAND PACKET FILE

_CMDPKT SEQTRAN.CMDPKT/JOB 001

_OPERATOR Frank Zappa

_PROGRAM SEQTRAN - MARS

PATHFINDER V19.0 APR29, 1994

*CREATION JPL 94-131/09:58:59

*BEGIN ***** NO DATA

*CUTOFF ***** NO DATA

*TITLE ***** NO DATA

*ZERO ***** NO DATA

*CMDFIL ***** NO DATA

*FILSIZ 6

*SISVER 04/27/94

*FRMVER 1

*CDUACQLEN 22

*CDUACQ 55

*CLTUSSQLEN 2

*CLTUSSQ EB 90

*CLTUTSQLEN 8

*CLTUTSQ 55

*CLTUDLY ENDSTART/BITS/0

*FRMPERCLTU 1 $$EOS

The header section contains global file
information. For example, the value of the
'FILESIZ' keyword tells you the number of
data sections which follow. 'CDUACQLEN'
and 'CDUACQ' together form a specification
of the acquisition sequence to be used for this
file. 'CDUACQLEN' is the number of octets
in the acquisition sequence and 'CDUACQ'
is the smallest repeat pattern. Using the above
record, the Telecommand wrapping service
would generate 22 octets of 55 hex.

Each data section contains ASCII

hexadecimal data to be wrapped, along with
enough information to fill in the
Telecommand headers. Here is an example:

$PKT SCGNLD
PKTVER 1

SEQFLGS FIRST
CHECKSUM 947D
VC 1
LENGTH 12
APPID 0
OPENWIN 82-080/11:40:00.000
CLOSEWIN 82-080/12:00:00.000

FRMSEQ 0
FEC EACSUM55AA
CTRLCMD NO
BYPASS YES
PACKETIZE N
FRAMING YES
SEGMENTING NO
DATA

0A01 0000 0200 0001 0002 0003
0004 0005 0006 0007 0008 0009

$EOP

Following the DATA keyword is a sequence
of ASCII hexadecimal words. This

represents the binary data to be wrapped. The
format and structure of this data is known to

the higher layers of the CCSDS
Telecommand service model (system
management and application layers). The
values of other keywords enable the
wrapping service to fill in the TC headers.
For example, the value of the VC keyword
tells the wrapping service what to put into the
6-bit 'virtual channel ID' field of the TC
transfer frame header.

1128

ii!,_:_

i:i'_ _!i!

i__ i'i

:i:_ i•__
, __!i!:: i̧ _j

ili_i!i_i_iiii_
_ii!_iii__iil'_

The creator of this file also has control over

which layers of wrapping are applied to the
data. The wrapping service concerns itself
with the following layers:

• TC packetization layer (TC packets)
• TC segmentation layer (TC segments)
• TC transfer layer (TC transfer frames)
• TC coding layer (Command Link

Transmission Units (CLTUs),
consisting of TC codeblocks)

Each data record contains a timestamp as
well. This may be specified as either a
window (OPENWIN, CLOSEWIN) or an
execution time (EXECTIME). Times are
expressed in GMT relative to the spacecraft
(SpaceCraft Event Time, or SCET). For a
given data record, this means that the data in
that record will be at the spacecraft, ready to
be processed, at the given (EXECTIME), or
within the given window (OPENWIN,
CLOSEWIN).

i ¸ .

ii

For example, consider the keywords
PACKETIZE, SEGMENTING, and
FRAMING. PACKETIZE and
SEGMENTING are both set to NO, while
FRAMING is set to YES. This means that

the TC wrapping service will consider the
data to be the contents of a TC frame, and
will only prepend a TC frame header (and
may also append a Frame Error Control
word, if the FEC keyword is set to a value
other than NONE), before creating a CLTU.
If PACKETIZE were set to YES, the

wrapping service would consider the data to
be the contents of a TC packet, and would
apply a TC packet header. Then, if
SEGMENTING and FRAMING were both

set to YES, the TC packet would be broken
into TC segments, and then each TC segment
would be wrapped as a TC frame, before
creating a CLTU. Currently, all eight
permutations of (PACKETIZE,
SEGMENTING, FRAMING) are allowed by
the wrapping service, though only three may
be legal: (NO, NO, YES), (YES, NO, YES),
and (YES, YES, YES). This flexibility
makes the name 'CMD_PKT' something of a
misnomer; perhaps 'CMD TC' would have
been a better choice.

Currently, each data section of this file will
result in one or more CLTUs. Normally,
only one CLTU will be created per data
section; the only thing which can affect this is
the setting of the FRMSPERCLTU keyword
in the CMD_PKT header section. If this is set
to a value N, where N > 0, then no CLTU
may contain more than N TC frames. So, if
the amount of data in the data section is large
enough that when it is segmented, more than
N TC frames are created, more than one
CLTU will result.

TC Wrapping Service

This service is implemented as a single
process which consumes one or more
CMD_PKT files and produces a single
SCMF (SpaceCraft Message Format) file.
Each data record of the SCMF file contains a

single 'spacecraft message', which in this
case is a CLTU.

Each CLTU within a record may be preceded
by an acquisition sequence, depending upon
the PLOP (Physical Layer Operation
Procedure) in use by the project. Currently
two PLOPs are defined in the TC standard.

In PLOP 1, CLTUs are individually radiated,
meaning that the physical telecommand
channel is deactivated after each transmitted

CLTU. In this case every CLTU in the
SCMF file must have an acquisition sequence
prepended. In PLOP 2, the physical channel
is not deactivated until the last CLTU in an

'upload' has been transmitted. For our
purposes, this means that only the first
CLTU of the SCMF file will be preceded by
the acquisition sequence.

The TC wrapping service places the resultant
CLTUs in ascending time order within the
SCMF. Further, the timestamp in each record
of the SCMF is the time of radiation of the
first bit in the record. This means that in

going from execution time in CMD_PKT
file(s) to an SCMF, all times have to be
backed off by the number of bits in the record
(multiplied by the time of one bit at the
current uplink rate), plus any inherent
spacecraft delay time, plus the appropriate
one-way light time. All of this is a fairly
complex operation, since we are merging
multiple CMD_PKT files, each of which can

1129

..... • <_i•<< i i̧_i<<_i<<!;i_;__i,__i_,ii:i!!i%i<<i<ilil_<_!_iii_<_ii_i_i_i_i!iii_i_ii_iii_i_iiiii_iiiiiiii_iiiii_i_i_iiiiiiiiiiiiiiiii_i_i_i_i!ii_ii_i_iiii_

haveamixtureof windowandexecutiontime
records.

TC Wrapping Service Design

A modular approach was taken in the design
of the wrapping service. It is decomposed
into five primary modules, as follows:

1. CMD_PKT file I/O module.
2. SCMF file I/O module.

3. Light time module.
4. Telecommand module.
5. Main module.

The first four modules are implemented as
libraries. The main module calls functions in

these libraries. The CMD_PKT file module
depends upon the Telecommand module as
well, mainly for validation of TC header field
values.

The CMD_PKT file I/O module isolates all of
the knowledge of the format and structure of
CMD_PKT files. Its set of exported
functions allow record-oriented I/O (both
reading and writing) of CMD_PKT files.

The SCMF file I/O module is directly
analogous to the above, for SCMF files.

The Light time module contains functions
which perform conversion between ground
transmission times (TRM) and spacecraft
event times (SCET). This module reads a
LIGHTTIME files in order to perform its
function.

The Telecommand module isolates all of the

knowledge of the TC data structures. It
contains a set of functions for validating all of
the TC header fields values, as well as a set

of functions for performing TC wrapping.
This module also maintains a table of project-
dependent Telecommanding data. Items such
as default acquisition, start, and tail
sequences, virtual circuit and application id
mnemonics, TC codeblock size, and PLOP
are included in this table. The main module is

responsible for the overall control of the
wrapping process, and deals directly with the
time-ordering issue.

CONCLUSION

The Operations Engineering Lab has
developed the JPL multimission command
system to provide low-cost, adaptable,
extensible uplink capabilities to new and
existing flight projects. The goal in the
ongoing re-engineering of the command
subsystem is to create a set of independent
tools to allow more flexibility for the user and
to make any necessary customization faster
and easier for future, low-cost missions.

ACKNOWLEDGMENTS

This work was done at the Jet Propulsion
Laboratory, California Institute of
Technology, under a contract from the
National Aeronautics and Space
Administration. Thanks to the technical staff

in the OEL, the early MGDS development
teams, and the JPL Mission Operations
Teams for their enthusiasm and support.

1130

Data Flow for Commanding Process

Command

Sequence
GeneTatlon

Command XLT

Database

Spececr'_a_ I Va(idate / Reformat

MessageI _ J
o!Packet 1_ (Telecommand Wrap)

Universal Message
Command or Packet

Transtator / Fill---IBm- Database
Librades)

Command
Mnemonfcs

File

Light Time Rle
S/C Clock Time Rles

Mnemonic

Command

Real-Time
Translator

Command Cont¢o_

Transmission/

DSN interface

(CMD)

GCF

B ockss

] ---"-] Interface

Monitor I _ I

Command GU!

1131 OF P',30_ _JAL:WY

