
iiii i_::'::i!:
ii _ !:j

::i

iili_iii_II_II::i:

ili!(i_iiiiii!i:

i) _

: :iii!i:•

4 _

i'

i • : ,

• ,' :,

N95-17589

CONFIGURABLE TECHNOLOGY DEVELOPMENT FOR REUSABLE CONTROL AND= t!_ii__

MONITOR GROUND SYSTEMS

David R. Uhrlaub

McDonnell Douglas Space and Defense Systems

Dept. F166, PO Box 21233

Kennedy Space Center, Florida 32815

Internet: dru@grumpy.ksc.nasa.gov

ABSTRACT

The control monitor unit (CMU) uses

configurable software technology for real-time

mission command and control, telemetry

processing, simulation, data acquisition, data

archiving, and ground operations automation.

The base technology is Currently planned for the

following control and monitor systems: portable

Space Station checkout systems; ecological life

support system; Space Station logistics carrier

system; and the ground system of the Delta

Clipper (SX-2) in the Single-Stage Rocket

Technology program.

The CMU makes extensive use of commercial

technology to increase capability and reduce

development and life-cycle costs. The concepts

and technology are being developed by

McDonnell Douglas Space and Defense Systems

for the Real-Time Systems Laboratory at NASA's

Kennedy Space Center under the Payload Ground

Operations Contract. A second function of the

Real'Time Systems Laboratory is development

and utilization of advanced software development

practices;

INTRODUCTION

The control monitor unit (CMU) automates a

wide variety of ground operations at moderate

cost utilizing standard software components and

appropriate hardware. Users can further

automate and customize the CMU through

programming languages such as C, UNIX shell

scripts, defining measurement triggered logic,

defining derived measurements, and creating

custom graphical displays. The system can be

further customized and extended by using the

CMU kernel programming interface (_I) and
C.

CMU technology can operate on UNIX-based

notebook computers, desktop computers, single-

board VME computers, symmetric

multiprocessor systems, and distributed systems

using real-time shared memory networks,

ethernet, or FDDI-based networks. Fault tolerant

configurations are possible with minor software

enhancements. Configuring CMU system-level

software is similar to configuring operating

systems by editing text files. Multiple

configurations are defined for a multipurpose

system or a single configuration for a special

purpose system.

CMU software technology is being developed •on

Digital Equipment's Alpha AXP computers

running OSF/1 that conforms to IEEE POSIX

standard and real-time:i•application programming

interfaces 1003.1 and 1003.4, The OSF/1 user

interface supports the X/Motif standard.

Application-specific displays are created with

SL-GMS, an X windows-based graphical display

editor that provides dy!aamic real-time graphics

driven by measurement :.values. Mission and test

data definitions are stgred in an Oracle database

that supports real_time additions and
modifications of measurement definitions.

All data is archived and may be retrieved and

analyzed in real-time:a_!ng DADiSP, a graphical

spreadsheet for scientific data analysis. All

operation and userliguide •information is

1177

17iii_

i

!iii _

! ,

maintained in an integrated on-line

documentation system with graphics and

hypertext facilities provided by the Interleaf
Worldview environment.

Performance testing of CMU shows that

configurations supporting 10,000 to several

million measurements per second (mps) are

practical. A two processor DEC Alpha AXP

2100/500 has benchmarked at 170,000 mps.

Data acquisition interfaces planned include MIL-

STD-1553B, PCM telemetry, IEEE-488, analog,

discrete, and serial I/O.

SYSTEM CONFIGURATIONS

A CMU system may be configured in a variety

of ways. Two main types of configurations are
off-line and real-time. The off-line

configurations are ' standard office-based

computers that can define a database, simulate

data acquisition, retrieve, display, and analyze

data and print it. Simulated data acquisition

substitutes for actual hardware data acquisition to

provide an environment for developing custom

software without utilizing actual end-item

hardware. An off-line configuration is a DEC

Alpha AXP notebook or desktop workstation, as

shown in Figure 1.

Kernel

Utility Software

Software Component

Componentc)o_)(_ @_/0_)

0®®0
0@®0
O000

"x
Notebook/Desktop

Computer

Figure 1. Off-line Configuration

Real-time configurations support data

acquisition, end-item commands, and data

processing. These configurations may be as

small as a single-board computer or portable or

desktop computers supporting only a few

telemetry or MIL-STD- 1553B interfaces. Larger

configurations with symmetric multiprocessors

and large archive storage devices are configured

for handling significant amounts of data for

extended periods of time from multiple data

acquisition interfaces. Commercial equipment is

used to configure fault-tolerant systems. An

embedded system using single-board computer

technology is another possible configuration, as

shown in Figure 2. For large systems where data

input and output must be physically distributed,

the CMU is configured with ethernet, FDDI, or

shared memory networks, as shown in Figure 3.

Other configurations currently being developed

include portable and mobile weather-proof

systems for field use. System configuration is

accomplished by modifying one or more ASCII

files. Changes to the hardware configuration

does not require corresponding software changes.

Utility

Software

Component

End-

Item

RAM

Disk

Drive

a

"()l
00
O®
O®

&

J I

J

l :

SCSI

/ Bus

Kernel

Software

"Component

Single

Board

Computer

VME or PCI

Bus

Data

1 Acquisition

Interface

Figure 2. Embedded Configuration

1178

+

Y':(4

!:_:: !511ili::i:. :X

> _)_i _ , ki_ i _

S i _

jf-

/h'iki'(

&J

i

]ii!_

i_

i _ i

ii _

i,__ •

:<.:::: 4, ,>. :+ >::,:r,.:. ,_ >.. : • >• • , : :>: •: . _: •_:- . ,->< : x :: ::•:•.:_, : 4::<;.r --',.'=-- •':--.:'•,:.:';+X'X'U:_rOXO:':+ X''.•'.%'.:.XX•:+:4.•:•:-:+:•> OX'+:>:+:_<,+>:•_.'.••:.X.:•.'>:.•." X•>X+X+:+:+:+:'X':<':+>:+>:'.W.X+:+:C.:+:':':':+:4+:':+:+:':::::::::::::::

Utility Kernel
Software Software

Component Corn Donent
\ /

Single-
Board----

Computer

End-[__

Item ____

/
VME/PCI

Bus

Interface

VME

Bus

Data

Acquisition

/ Interface

Symmetric

Multiprocessor

System

0000
®®
0®
OQ

0000

I
I

Fiber Optic !

Shared Memory
Network

0000

0®
0000

TCP/IP Network

X Terminals

--]

Figure 3. Large Distributed Configuration

1179

i_ _iill_

/:_ L: i +

;i:Q:i:ii•i:
• _i_:?_:i_

¢ _?_ i_ _ •
/< ,H ,

ii i_i_/''_:

i _

:i _

SOFTWARE CONFIGURATION

The CMU software architecture has four main

elements: the kernel, utilities, kernel

programming interface (KPI), and channels as

shown in Figure 4. The kernel contains most of

the common system-independent functions,

while utility software components are more

system-specific. The kernel is composed of

several UNIX processes. Utilities are generally a

single UNIX process. Hardware utilities are

unique hardware data acquisition interfaces; user

interface utilities provide common and custom

graphical displays; and data processing utilities

interface to external systems and custom

processing functions. The KPI is a high-level

interface for developing utilities that

communicate with the kernel. All

communication between the kernel and utilities

External

Data Processing Utilities

e

• i i

• i ¸

Hardware Interface Utilities

S

Calls

Kernel Programming

Interface

User Interface Utilities

Kernel

POSIX Compliant
Real-Time

Operating System

Figure 4. Software Architecture

1180

k _ • _ii!!i

ii)ii?:;IIII!_

/!_ii _

> k • •

_h

i': _i_ii'

i?" •

occur through channels. The four CMU

architectural elements combine to provide

software functional, architectural, and

performance configuration capability.

Shared

Memory
Network KPI

o,d_o
o o

©
©

©'® ®:©
o:® e2o
q c -o\o

Channel

Utility Kernel

Software Software

Component Component

_ X Terminals

TCP/IP Network

Figure 5. Distributed Kernel

FUNCTIONAL CONFIGURATION

Functional configuration incorporates only the

required functionality, conserving system

resources and reducing complexity. A system is

composed of only the kernel and utility

components needed to accomplish a specific

task. A system that requires frequent changes in

use and measurement definitions is configured to

include a commercial relational database system

such as Oracle, whereas an embedded system

used in static environments where changes in

measurements are rare omits the database system

and uses a simple ASCII table for storing

measurement definitions. An off-line

configuration for data analysis such as a

notebook computer could omit the commercial

database and eliminate the memory and storage

requirements. A system used only for monitor

and display would not require the CMU archival,

retrieval, command, and control components.

ARCHITECTURAL CONFIGURATION

Channels are the primary mechanism for

supporting a wide range of hardware and

software architectures. Channels provide three

key benefits: (1) hardware configurations do not

affect the software, (2) a single portable software

application programming interface is used for all

channel types, and (3) data transfers have very

little operating system or application overhead.

Each channel is a connection between two or

more software components. A configuration file

is used during system startup to configure

channels for a specific hardware implementation.

Current channel implementations completed or

planned are: shared virtual memory, VME bus

physical memory, and shared memory

networks/reflective memory. Channel support

for TCP/IP networks is a simple extension.

Kernel components communicate among

themselves via channels. Figure 5 illustrates

kernel components distributed across two

separate computers.

Channels follow the UNIX

open/close/read/write/ioctl model. Functions

included are: CClose0, CCntl0, Clnit0,

COpen0, CRead0, CWrapup0, and CWrite0.

Benchmarks of a channel configured for shared

memory exceeded 2 million mps transfer rates,

which would normally consume 120 MB/second,

or about 75% of a 160 MB/second system bus

bandwidth. Channels have been ported from a

32-bit UNIX System V-based operating system
to DEC's 64-bit OSF/1 with minor modifications.

1181

' 5¸ '

_ ii!!ii_i!_¸!
ii!:i!i! I_!

i,!ilif:/!i :!i:ii__
i:::Z. _ ?,:

i?.

: ill
: _ _i•

i!ii?)i!!
i__ ii/

:iH

Ji-

iii _ ,;

?

i_ • _ / _

:_ ii I ,

iiilli_i_

PERFORMANCE CONFIGURATION

A primary design philosophy of CMU software

is support for single processor and

multiprocessor computers. Multiple computers

are combined for higher performance levels.

Kernel and utility software components are

configured to provide the required performance

by taking advantage of additional CPUs. Figure

6 shows actual measured data processing rates

for four different CPU configurations and

projections for two additional configurations.

These configurations use commercial symmetric

multiprocessor (SMP) computers. Performance
increases of 70% and 100% have been

benchmarked for two different CMU software

configurations. These increases occur when

utilizing a second CPU on a DEC Alpha AXP

2100/500 system. Two 400 MHz 2100/500

computers with four CPUs each connected by

shared memory networks alone would support

almost 1.4 million mps of data processing.

Higher rate systems are configured by using

additional SMP and single-board computers

linked by shared memory networks and I/O
buses.

4@400 MHz 697

4@ 190 MHz

2@ 190 MHz*

1@200 MHz*

1@ 190 MHz*

1@ 150 MHz*

340

_170

m70
I I I I

200 400 600 800

Measurements/sec (1,000s)

Figure 6. Data Processing Rates

* Actual Measured Rates

Archival and retrieval rates are scaled to match

system requirements by combinations of

magnetic, optical, and tape devices. RAID

arrays of storage devices are used to achieve the

required storage capacity and data rates. All data

are time stamped to the nearest microsecond.

Nominal automated control delays are on the

order of a millisecond. Specialized

configurations using multiple single-board

computers in addition to the host computer can

support automated control delays in the tens and
hundreds of microseconds.

REUSABILITY

The CMU promotes reuse in several ways.

Portable software based on POSIX application

programming interfaces supports code reuse.

The kernel/utility/channel software architecture

provides the ability to configure widely varying

systems from a single set of software.

Reconfigurability allows reuse of CMU software

at the component level.

In addition to software reuse, CMU is defining

reuse techniques for all products created during

development. This would allow custom high-

performance real-time systems to be developed

quickly and reliably at low cost. Reusability has

been extended to modular testing software

developed and maintained with the production

software for all levels of testing. Methods for

reuse of requirements, requirements traceability,

and on-line user documentation are also being

developed and implemented. Analysis and

design models from Cadre Teamwork/Ensemble

CASE tools are structured to promote maximum

reusability across systems. Hardware design
and documentation follow this same reuse

philosophy.

SOFTWARE DEVELOPMENT

An evolutionary life-cycle is being used to

rapidly improve products and processes in

support of McDonnell Douglas' and NASA's

TQM initiatives. Process-based methods such as

the Software Engineering Institute's (SEI)

Capability Maturity Model have been used over

the past two years for software process

improvement. With development cycles being

reduced to four months between requirements

and final verification testing, the opportunity for

1182

:ii_:!I(I _
i i_ iI_ •

::i:iiiJ:!:%_i•

!:i!iii!iii_i!_

 !iii!ill

_:i_i!iii!ii:i

_ i__....

_ii!i_i_i,_

i •

process analysis and improvement is much

greater than that of a conventional two or three-

year development cycle of a large real-time

system. As with financial investments, the

compounding interest effect is already producing

significant benefits in cost and quality in CMU

software development. Early evaluation by users

has already resulted in several improvements

over the original requirements. These

improvements can be incorporated with little or

no impact on cost and schedule since they were

identified early in development.

Development techniques incorporated include

formal inspections of requirements, system

designs, detail designs, code, test plans, test

code, and user documentation. Other practices

implemented are process and product metrics,

nearly 100% path coverage during software

unit/component testing, 100% automated testing

from unit through system verification, and

extensive use of CASE tools. The first two alpha

releases of CMU software, A0.1 and A0.3, have

had a delivered defect density of 0.06 defects per

1,000 source lines of code (KSLOC). This is

compared to industry results [SEI, 1993] in

Figure 7.

Best

Example

Industry
Best

0.01

0.20

CMU A0.3

CMU A0. I

0.06

0.06

I i I I I

0.00 0.05 0.10 0.15 0.20 0.25

Defect Density (Defects/KSLOC)

Figure 7. Delivered Defect Density

Only light operational usage via demonstrations

and evaluation by the developers and users has

been experienced since this is pre-delivery

software. The current software is operational

two years before its first delivery date, so

significant random use and testing naturally

occurs during development. This provides

further opportunity for defect removal before

final delivery to the customer.

Testing was found to remove 3% of all defects

detected while inspections removed 97%. On a

per defect basis, inspections are 40 times more

effective than testing although the testing effort

is significantly higher than the inspection effort.

Inspections and testing combined for a total

defect removal efficiency of 99.87%.

Figure 8 shows the detected and remaining

defect densities during each phase of software

release A0.3. At the conclusion of code

inspections, the remaining defect density was

1.53. The remaining defects were removed

during component and integration testing,

resulting in a delivered defect density of 0.06.

The total potential defect density was 49.9. The

detected defect severity during inspection phases

averaged 4, or trivial. Average defect severity

during testing phases was 3, or minor. Only 2%

of all defects detected were of severity 1 or 2,

critical or major defects.

Net project software development productivity

improved 60% compared to initial releases of

earlier projects and is much greater than

published for similar projects [Jones, 1991].

Software size is estimated using feature points

and bottom-up detailed estimates. Software

product quantity average within 10% of the

estimates. Software development schedule

compliance has improved in the first two releases

from 14% to 6% without using overtime. Release

A0.3 slipped one week during a six month

development schedule.

i_ _i
1183

Operations
VerificationTest

IntegrationTest

ComponentTest
Unit Test

Unit Imp.

DetailDesign

SystemDesign

Requirements

0.00

[] Detected

[] Remaining

I
[] I

.... _ , . . _ _ _ j

5.00 10.00 15.00 20.00 25.00

Defect Density (defects/KSLOC)

Figure 8. Development Defect Densities

CONCLUSIONS

Configurable software and hardware technology

for demanding ground control and monitor

systems has been demonstrated. The technology

is reusable across small and large systems.

Evolutionary development combined with

continuous process improvement is an effective

approach for developing real-time systems

within budget and schedule constraints.

Comprehensive inspection and testing contribute

to world-class quality levels for software

development.

REFERENCES

Jones, Capers (1991). Applied Software
Measurement. New York, NY: McGraw Hill, Inc.

Gilb,Thomas (1988). Principles of Software

Engineering Management. New York, NY: Addison-

Wesley.

Software Engineering Institute (SEI) Camegie
Mellon University (1993). I993 Software

Engineering Symposium Conference Notes.

Pittsburgh, PA: Carnegie Mellon University.

Acknowledgments
The author would like to thank the CMU team

members for their invaluable contributions: Jeannine

Baker, Rick Bard, Sam Coniglio, Jim Gaines, Ray Ho,

Ho Pham, Lawrence Robinson, Bill Snoddy, and
Mafia Thomas.

1184

! i : !::: ; _i_:::_L:!¸ i:::%1:7;̧_:__i:_:_!!!_i:_:!_7!_!_!_i!_7!_%_ii%_iii_i%iiiiiiiiiiii_iiiiiiiii_iiiiiiiii_iiiiiiii{iiiii{_{_iiiiiiiiiii<: _::. _:,::_: ;_:::.::_:_:_.: ::,i :i:;_(: ::_i::_ i:: ¸¸ :: : L: WI=:::4iLM:_I!_;W._:;F_W::!:¸(;:?:i:L:i:iii:!i:i;_7!:i,i:;i:i:i:¸;¸::7_II¸:7¸I¸¸¸!:_¸¸_'ii}II:I:Ii i _ ii • i¸¸ i:•_! _ :ii i_ :i: : _ ::

v

: %¸i•¸ ¸`

SE.3.a

3. Standards

A New Communication Protocol Family for a Distributed

Page 1185

1187-1195+ <_

i Liii_:_iil

_i__ _; .

7

SE.3.b

SE.3.c

SE.3.d

SE.3.e

SE.3.f

SE.3.g

SE.3.h

SE.3.i

SE.3.j

SE.3.k

Spacecraft Control System

Andrea Baldi, Marco Pace

Standardizing the Information Architecture for Spacecraft

Operations

C. R. Easton

A Standard Satellite Control Reference Model

Constance Golden

Standard Protocol Stack for Mission Control

Adrian J. Hooke

The Space Communications Protocol Standards Program

Alan Jeffries, Adrian J. Hooke

The ESA Standard for Telemetry & Telecommand Packet
Utilisation P.U.S.

J.-F. Kaufeler

Packet Utilisation Definitions for the ESA XMM Mission

H. R. Nye

Use of Data Description Languages in the Interchange of Data

M. Pign_de, B. Real-Planells, S. R. Smith

Cross Support Overview and Operations Concept for Future

Space Missions

William Stallings, Jean-Francois Kaufeler

The CCSDS Return All Frames Space Link Extension Service

Hans Uhrig, John Pietras, Michael Stoloff

Proposal for Implementation of CCSDS Standards for Use With

Spacecraft Engineering/Housekeeping Data

Dave Welch

•::"_ii:_

1197-1204

1205-1212 - _':_

1213-1220_;_'_

1235-1242

1243-1251 _ .. _,::_--'.'

1253-1260

......£1

1261-1269#:i;.'-i:!,

1271-1276 -"7_

* Presented in Poster Session

1185

