
H •.....: : H : : H::_ •........... '•::•: :: Hi .̧........:•_• H:• _ i::%::::: : ::: _:_H•_;i_;;_;ii_;_i_i_i_ii;_i_iii_ii_ii_i_i_iiiii_iiiiiiiii_iii_ii_

ii;i i7 N95- 17591

STANDARDIZING THE INFORMATION

ARCHITECTURE FOR SPACECRAFT OPERATIONS

C. R. Easton

McDonnell Douglas Aerospace
Space Station Division, MS 17-4

5301 Bolsa Avenue
Huntington Beach, CA 92647

ABSTRACT

This paper presents an information architecture
developed for the Space Station Freedom as a
model from which to derive an information

architecture standard for advanced spacecraft.

The information architecture provides a way of
making information available across a program,
and among programs, assuming that the
information will be in a variety of local formats,
structures and representations. It provides a
format that can be expanded to define all of the

physical and logical elements that make up a
program, add definitions as required, and import
definitions from prior programs to a new
program. It allows a spacecraft and its control
center to work in different representations and

formats, with the potential for supporting existing
spacecraft from new control centers. It supports a
common view of data and control of all
spacecraft, regardless of their own internal view
of their data and control characteristics, and of

their communications standards, protocols and
formats. This information architecture is central

to standardizing spacecraft operations, in that it
provides a basis for information transfer and

translation, such that diverse spacecraft can be
monitored and controlled in a common way.

ACKNOWLEDGMENT

The Space Station Freedom Program (SSFP)
funded the development of the information system
standard, "Data and Object Standards" (DAOS),
SSP 30552, which forms the basis of the
standard recommended for spacecraft control.

The SSFP adopted only the naming portion of the
standard. The remainder was under consideration

when SSFP transitioned to the International Space
Station Alpha (ISSA) Program.

The concepts presented in this paper are not part
of ISSA. Funding constraints and the newness of
the technology led to a more conventional

approach for initial operations. The concepts in

this paper may be appropriate for inclusion in a
program growth phase to simplify information
management and reduce operating costs.

Several people contributed to the development of
the SSFP DAOS standard. The author would like

to especially acknowledge Virgi[Enos (formerly
with McDonnell Douglas Aerospace in Houston,
Texas) and Lee Neitzel (with CTA in Houston,
Texas) for their leadership in developing and
prototyping the SSFP standard which forms the
basis for this recommended spacecraft standard.

The concepts from DAOS have been incorporated
into the Instrument Society of America, Fieldbus
Application Layer Specification as a draft
international standard.

INTRODUCTION

The operation and control of spacecraft requires
data exchange between the spacecraft and its
control center. Ground control centers must also

communicate with payload specialists and
technical support teams in off-site locations. With

an ever increasing number of spacecraft, and with
limited resources, multi-program control centers
are likely to become common. It will be essential

to standardize many aspects of the spacecraft and
their control centers. An integrated information

architecture standard will support this goal by
providing a common view and understanding of
data regardless of source.

The IEEE Standard Dictionary of Electrical and

Electronic Terms defines data as, "any
representation such as characters or analog
quantities to which meaning may be assigned."
An information architecture provides a formal

mechanism for assigning meaning, as well as
defining data in its various representations.

The purpose of an information architecture is to

provide a standardized way of identifying,
formatting, transporting and storing program
data. Ideally, an information architecture would

1197

i_i : i_i_

' _:iii!i;i
N

i_!;i:_!:_?Iiii

/

:i _

ili : ,

be in place at the beginning of a program, and
would encompass all program data in a
compatible format. But the reality of spacecraft
programs is that such an approach does not
happen. Designers develop data in various
formats in many different repositories. A
program approved information architecture is not
available at the start if the program. Even if it
were, it might not be compatible with all of the
Computer Aided Design (CAD) and Computer

Aided Software Engineering (CASE) tools to be
used. In addition, all of the program team would
have to be trained in the use of the architecture

from the beginning of the program. Finally, there
is a need for new, multi-program control centers
to be backward compatible with existing
spacecraft designs and data.

From the above, it becomes clear that an
information architecture must take into account the

practical realities of spacecraft programs. It must
permit local representations of data in local, user
defined data bases and spreadsheets. It must
support data exchange among local, user defined
representations. It must support data collection,
integration, and validation throughout the design,
development, test and evaluation (DDT&E)
phases of the program. It must support the
promotion of DDT&E data to the operations phase
of the program, its integration with operations
data and the eventual post-mission evaluation of
the program. It must support the operation of
multiple, dissimilar spacecraft from the same
control center, including the retrofit for operation
of existing spacecraft missions.

DESIRED FEATURES

A standardized information architecture would

provide for a basic set features which standardize
information formats, access to and exchange of
data. Among these features are the following:

A Common way of naming data - Data names
control the access to, transport of and utilization
of the data. No single naming standard will
suffice for all of these purposes. The standard
must define a common way of naming data which
allows for various short form names for various

purposes. Ideally, all of the short form names
would be related to the standard by definitive
rules and program specific data. All such names
need to be defined in a program dictionary. The

common way of naming data provides the user
with a way of locating the data in the dictionary.

A common way of accessing data - Data will tend
to reside in user def'med repositories. Access may
be locally controlled, and access procedures are
also user defined. To make data readily available,
the information architecture needs to include a

directory indicating where data are located and
how to access the data. Ideally, the architecture
should support access in the requester's local
representation. The dictionary/directory would
then also support conversion of local syntax,
format and storage between local representations.

A common way of transporting data betwee0
different local representations - Data accessible
over a network may be imported into other data
bases on demand or automatically imported via
linkages. When the local representations differ,
the import routines must be customized to make
the necessary conversions. With many different
local representations, conversion can become
unmanageable. The information architecture
should define a common transport representation
which allows each local representation to map to
and from a single, common representation for
data exchange.

A common way of viewing information - The
architecture must support user oriented views of
information. These views are normally organized
around the spacecraft design, subsystem function
and mission operations. The same data may be
important to all such views in differing contexts.

A common way of understanding information -

Human users and computers need to understand
the data. The understanding usually comes from
defined relationships. A human operator sees a
number displayed next to an icon labeled, "Pump
1 Inlet Temperature", and understands the data.
Behind the display, the computer "understands"
that a particular data item is the inlet temperature
attribute of Pump 1. Thus, humans and
computers have different needs for data and ways
of understanding data. Both must be supported
by the information architecture.

A common way of relating information - The
same data may be used in a variety of contexts.
For example, system architects are interested in
device connectivity to assure failure tolerance.
Hardware designers are interested in the same

information for wiring harness design. Software
developers need connectivity to relate I/O ports to
commands and data. Test personnel ne6d to
verify connectivity and I/O function. The

1198

] : , _,_ ;:! : :ilil]

_ili_i!:i_i:i!_i_

• _ , :if!ill_

ii:_ _ .ii_}i:.i

:!

i:!:_!_i!i

_ i:_i_ ,i

iii(_i?

ii :/_i _

i_:_i

• _ iz: •

information architecture must support these
various relations of information to context.

TOP LEVEL REQUIREMENTS

The information architecture must meet a set of

top level requirements in order to be able to
support a wide variety of spacecraft applications.
Some of these requirements are stated below as
mission goals.

Be robust enough to describe complex spacecraft
and sp_c_r_f_ constellations - There is a trend
toward designing simple spacecraft for limited
missions and using multiple spacecraft for more
complex missions. While this trend may make it
seem that the information architecture need only
deal with simple spacecraft, the architecture
should not preclude more complex spacecraft
which may be developed in the future.

Support a common view of all spacecraft and
payloads - The goal is to provide an operator
control interface such that all spacecraft can be
viewed in the same way. Note that this does not
mean that all spacecraft views are identical.
Rather, it means that the logical approach to
accessing and working with spacecraft capabilities
and functions is the same for all spacecraft.

Spacecraft will not be designed with the all of the
same capabilities and functions. Those which are
the same may be implemented differently. As a
result, the information architecture will take on a

portion of the responsibility for providing the
common view of the spacecraft and its operation.

Be transaction oriented to _upport remote
oPeration _tnd access - Spacecraft control is not
limited to working with data local to the control
center. It involves message exchange with the
spacecraft, with payload specialists at various
locations, and consultation with spacecraft
designers and other specialists. It may involve
access to remote data bases. The transaction

orientation separates the action of the operator (or
software) to access data from the process of
accessing the data.

Provide global definitions of information and
relationships - There are two aspects to this
requirement. First, a program will often develop
differing definitions of data to serve the design,
test and operations phases of the program.
Second, data and definitions will usually vary
from one program to another. The global
definitions serve to integrate data throughout the

phases of a program and to make common data
definitions available to new programs. Thus,
once "Control Moment Gyro", "Greenwich Mean
Time" and "CCSDS Packet" have been defined,
those definitions can integrate data across a
program. The definitions are portable from one
program to another.

Support a variety of local representations and
fo_ats - People develop local representations to
meet local needs. Some of the data in local

repositories need to be made available to outside
access. Most of the data can be readily converted
and transferred. But then the system has multiple
copies of the same data, with the attendant
configuration management problems. The
information architecture needs to support the
exchange of data among local representations.
This will not solve the configuration management
problems, but will make them more tractable.

Provide for definitions to be transferred with data
- Many information exchanges will be made with
the definitions of the information already known.
As systems become more open, there will be an
increasing need to transfer the definitions of the
data with the data. This will be especially
important in the sharing of payload and spacecraft
data with outside investigators. One major
limitation on the ability of investigators to access
such data is that the definitions are not available

and may be permanently lost. The information

architecture should support standardized
definitions and the ability to store and transfer the
definitions with the data.

Be well grounded in proven standards-
Grounding in existing standards is desirable for
two reasons. First, it is far more efficient to use

or modify an existing standard than it is to
develop a new standard. Second, the
development and consensus building that have
gone into forming an existing standard will make
it easier to form a consensus on an extension to a

new application of the standard.

H_v_ th_ p0t_nti_l to support growth and
lechnology up_ade - There are three reasons for

supporting growth and technology upgrade.
First, individual programs experience growth and
upgrade. Upgrade may come from on orbit
refurbishment, or from new generations of the
same satellite. Second, a control center may be
tasked to host controls for an entirely new

spacecraft or constellation. Third, both the types
of satellite technologies used and the technologies

1199

for hosting the information, itself, will change
overtime. Sincetheinformationarchitectureis to
grow from one program to another, it must
support the technology upgrade and growth.

OVERVIEW OF THE STANDARD

The Space Station Freedom Program developed
an information architecture standard having the
features and meeting the requirements noted
above. Subsequently, the Instrument Society of
America incorporated this standard into its Field
Bus standard. It is being considered as a draft
international standard for field buses. The same

standard is also under review by the Spacecraft
Control Working Group of the AIAA Space-
Based Observing Systems Committee on
Standards as its information architecture standard.

SSFP used the terminology, "Data and Object
Standards" (DAOS) to describe the information
standard. It includes standards for an integrated

Data Dictionary/Directory, Object Def'mition, Data
Modeling, and Message/Data Structure Definition.
This paper will continue to use the term "DAOS"
to refer to the several individual standards which

make up the information architecture standard.

Dictionary/Directory Standard

DAOS uses the term "Encyclopedia" to mean an
integrated Dictionary and Directory. The

encyclopedia provides for a single source for
definitions, contextual references and access
information.

The dictionary part of the encyclopedia is based
on the Information Resource Dictionary System
(IRDS), (ANSI X3.138 and FIPS PUB 156). It

defines classes of objects (or families of
spacecraft devices) as determined by the common
characteristics of real devices.

The directory portion of the encyclopedia is based
on the ISO/IEC Directory Standard (ISO 9594).
ISO/IEC provides rules for naming objects and

protocols for querying remote directories and
receiving replies. In the DAOS encyclopedia
standard, the directory provides information used
to locate object instances, This includes object
names, descriptions, and object specific attributes
(such as location).

The encyclopedia is fully integrated, in that all
information is organized about objects or devices,
their classes and their relationships. This way of

organizing information intermixes the dictionary
and directory within object descriptions.

The encyclopedia is comprised of four layers, as

shown in Figure 1 and recommended by IRDS.
The top layer defines the schema for the second
layer, and is not to be altered by the users.

E_ncy Defines components in

Layer 2

clopedia Schema Definition

EProvides object class/device

family definitions

ncyclopedia Schema

¢
Provides object instance/

device information

I Dictionary/Directory Databases

¢
Contansteaword/objects/devices

! World" Objects/Devices

Figure 1 Encyclopedia layering

This top layer specifies such how objects are to be
defined, how relationships are to be specified,

what data modeling is assumed, etc. Thus, the
top layer defines all of the tools to be used for
def'ming object classes/device families.

The top layer can be expanded as needs for new
definitions arise. Existing definitions will not
normally be modified. If modifications are
required, they will normally be included by
creating new definitions. The definitions are not
to be modified or extended by the users.

The second layer provides the object class/device
family definitions. While there are differences
between "object class" and "device family", there
are no differences which are important to this
paper. An encyclopedia may be developed using
either or both.

The directory part of Layer 2 contains rules for
naming data, syntax rules for storing and
transporting data, and attribute or data types for
common definitions of data.

1200

i_i!_ ? i_ii_ii

i_ : i! _

_: •:ii̧

_i ii _

ili_I

iliI' :ii_

Object classes will be discussed below. An object
instance or device exhibits the characteristics

specified for the object class or device family to
which it belongs. The information about the
object instances or devices is carried in layer three
of the encyclopedia.

Layer four holds the actual objects or devices. As
such, it is not directly a part of the encyclopedia,
but is a part of the model for the encyclopedia.
Layer 3 of the encyclopedia does contain the
description of these real world devices.

From the above, it can be seen that each layer of
the encyclopedia contains the information
necessary to understand the successive layer.

Object/Device Model

The standard is Object Oriented, in that all
information is categorized as either exchanged
between objects or describing an object. Objects
exchange actions, responses and other message
types. They are defined by attributes, functions,
events and behavior. The object class structure
standardizes information definitions.

An object is anything that is accessible and of
interest to a user. It may be a representation of a
physical device, a software function, a message,
or other. The generic model allows an object to
be tailored to include just those portions necessary
to describe it.

The object model for DAOS is shown in Figure 2.
Beginning with the upper left hand side, an object
communicates with other objects via messages.
(Note that devices are not necessarily constrained
to communicate by messages.)

Figure 2 Generic object model

An action is a specific message type which acts as
a command. Commands may result in responses

1201

such as the ability of the object to perform the
indicated action. Other messages may be defined
to provide more general information.

Messages require an interface syntax to define the
structure and content of the message.

Attributes are data about an object. For a pump,
the attributes might include its pressure, speed

and temperature. Attributes might also specify the
working fluid, capacity, manufacturer and serial
number. In general, attributes may be variable
data about a device, such as its present state,
status, use, location, etc. They may also be
invariant data about the device design or
construction, etc. Some of the invariant data is
the same for all devices of a class, and is carried
as object class data.

Objects will usually perform one or more
functions. The functions are described as though
the "real world" object were performing them.

Objects may exhibit one or more behaviors.
Behaviors may describe the way an object

performs its functions, such as a telescope
slewing in such a way as to avoid pointing at the

earth or sun. They may describe the response ._
detected failures. They may describe the'
characteristics of action processing and the
conditions for action responses.

Objects may contain sub-objects. A sub-object is
an object which is wholly contained within or
dedicated to another object. A coolant loop

contains a circulation pump. The pump contains a
bearing. The bearing has a temperature sensor.
Each is an object, and has its own class, function
attributes, etc.

Objects may also interface with other objects. For
example, software is configured with an operating

system. It may be configured with certain
application software. The same drive motor may
be configured with or without a brake.

An object may detect its own events, such as
failures and off-nominal conditions. But it is

more common for an object to be monitored by
another object to prevent a possibly failed device
from providing incorrect data about itself,
resulting in an inappropriate failure response.

Each object must have an object class which
defines the template for the object. The object
class identifies each attribute, describes the

functions and behaviors, defines the syntax and

!_i,:iI ii:

i_ C<

fornaat of messages, and identifies sub-object and
interfacing object classes.

Messages, attributes, actions, functions and

behaviors all have class definitions or types. The
type definitions allow for complex data types to
contain other data types. Thus a quaternion is
defined to contain a three component vector and a
scalar, each of which may defined by units, valid
ranges, precision, etc.

Data Model

The standard uses entity-relationship data
modeling. An entity is anything someone wants
to know something about. An entity may
represent an object or a spacecraft device.

Attributes describe an entity. In this context,
attributes include everything which describes an
entity in isolation from other entities. The
features of an object, other than its relationships,
are attributes in this modeling.

Relationships describe information about an

object as it is associated with other objects.
Relationships include information exchanged, or

messages, as well as many other types of
relationships. Some of the useful relationships
are shown in the figures that follow.

Figure 3 shows a "contains" relationship. In the
figure, an assembly can contain one or more
subassemblies. Hardware trees, indentured parts
lists, bills of materials and logistics data bases
will use this relationship.

contains

!
IAssemblyi

Figure 3 "Contains" relationship

Figure 4 shows the "connects to" relationship.
This relationship is used to describe such things
as wiring harnesses and assembly sequences.

Figure 5 shows the "communicates with"

relationship. This relationship can be used to
associate instrumentation with pin-outs on control
devices. It can also show logical processor
hierarchies and logical interfaces among software.

co cts to

JAssembiy I]

Figure 4 "Connects to" relationship

Figure 5 "C____es wiN" relationship

The similar "provides value for" relationship
connects the source of a data value with the

process that uses the data value. A temperature
sensor may provide the value for the bearing
temperature attribute of a pump device. A square
root library routine may provide an input to a
computation.

Figure 6 shows the logical decomposition of a
system. Requirements will also follow a logical
decomposition, and may be allocated to the

decomposition products of a system. In the
figure, the functional decomposition is carried out
to a point that allows functions to be allocated to
physical objects such as assemblies, components,
devices, software objects, etc.

[System]

conttains_ f has _s L contaln$ t

I_._Functional]allocated _l Physical I
/ object]-- to _ object j

Figure 6 Decomposition relationships

The above examples show just a few of the
relationships defined for spacecraft. The
encyclopedia allows additional relationships to be
defined as needed. The relationships may be
defined on line by the users, as can the object
classes, data types, and object instances.

1202

i•

: i_

Procedures for configuration management have
been defined for a single program, but have yet to
be defined for multiple programs.

Data Naming

The standard uses attribute based naming. A
name is comprised of a verb (if the name is that of
an action), an administrative name expression to

identify the "owner", and a technical name
expression to identify what is named.

No single construct of names appears to meet all
of a program's needs. Descriptive name forms
with logical, hierarchical structure are preferred
for browsing through a dictionary or directory.
The logical structure allows a user to locate items
i.n the encyclopedia without prior knowledge of
the actual name.

Descriptive names, by their nature, are long and
syntactically precise. Software developers and
data bases will not usually devote memory to
support full descriptive names. Various aliases
are not only required, but become the "official"
names for a program by virtue of their usage.

The alias names should be constructed to meet

two conditions. First, they need to be able to be
related to a descriptive name form. The
descriptive name form does not need to be
actually stored in an encyclopedia if it is derivable
from an alias name, the encyclopedia information
and a rules set. The encyclopedia can include
logic to permit user browsing without having the
descriptive name form actually present.

The second condition for an alias name form is

that it should be meaningful to the system users.

An object instance name should include all of the
parts of the attribute name, but may encode these
parts and allow portions to be understood from
the context. If the name is not meaningful to the
users, it will not be used.

The exact construction of names must also take
into account the fact that some names are inherited

from one program to another. This is true of
object class names, and the associated attribute,
action, function, and behavior names. These
names must not contain an administrative name

expression that limits them to a single program.
Program specific administrative name expressions
are proper for object instances, but may be
understood from the context of the object.

1203

The SSFP construct for names needs a significant
amount of work to be adapted to the more general
usage of spacecraft control across multiple
programs.

Data Format, Syntax and Semantics

The standard provides a means for defining the
format and syntax of messages, data stores and
data structures. Figure 7 illustrates the means for
defining messages, using entity-relationship
modeling. A message "contains" one or more
fields. Each field contains a single data item. The

data item is defined by its data type, as was
previously described in the data model.

Message]

_ contains

contains

Data Item i

is defined by

i Data Type i

Figure 7 Message definition

Similarly, a data base contains files, which
contain records, which contain fields, each of

which contains a data item which is defined by a
data type.

Data structures are data items which contain sub-

elements which are meaningful data items. A 16
bit integer might be constructed such that
individual bits represent the state of individual
switches in a power control box. Each bit is a
defined data item, and the integer may also be
defined as a field in a message, or in processing
to determine whether the measured switch state

matches the currently commanded switch state.
In this case, the integer would be defined as a data
item with it data type definition, and the type
definition would include that each bit is a state

variable. In general, data structures are defined
by their data types. The data type definitions
include parsing rules for the structure, similar to
those of a message. The data types for the

,: ii _

: i_

i _ • ,,

i: ii
i :x: _ 'i

j :ili]?! _i

:i:: i ,_

• :"i¸ • '

!_i!i_:iii_I

!i: !ii!iiiii

• i¸

/

individual data items in the structure are also

defined by the data structure data type.

The information standard provides data type
definitions for all of the program data. The data
type definitions are standardized across programs.
These type definitions provide the semantics
(meaning) of the data. Data types may be added
as needed.

DATA TRANSFER

Because there is a global set of data type
definitions, it becomes possible to automate data
transfers among different local representations.
Each local representation needs to map its data to
a common transfer syntax and format. Automatic
code generators can then be used to for export and
import conversions. The export conversion puts
local data into the transfer syntax and format. The
import conversion transforms the data from the
transfer syntax and format to the destination local
syntax and format. Thus, each local
representation need map only to the common

transfer representation to make data globally
available.

American National Standard for Information
Systems Information Resource Dictionary
System (IRDS). (ANSI X3.138). New York,
NY: American National Standards Institute, Inc,

Information Resource Dictionary System (IRDS).
(FIPS PUB 156). Gaithersburg, MD: National
Computer Systems Laboratory, National Institute
of Standards and Technology

Information Processing Systems - Open System
Interconnection - The Directory. (ISO/IEC 9594,
Parts 1-8, (CCITT X.500 0 X,521)). Geneva,

Switzerland: International Organization for
Standardization

(April 30, 1992). Fieldbus Application Layer
Specification. Instrument Society of America
Draft International Standard

CONCLUSIONS

Use of an information architecture standard will

help reduce the cost of developing and operating
spacecraft by providing a common view of all
information. T.his will allow reuse of displays
and controls and facilitate adapting control centers
to the control of multiple spacecraft.

The proposed information architecture allows
different spacecraft with different views of their
data to interface with a control center using either
a common view of the data for all spacecraft, or
separate views specialized to each spacecraft.

The proposed information architecture standard
also supports exchange of data between different
local representations. It does this by defining a
mapping between each individual local
representation and a common data transfer
representation. Only the common data transfer
representation needs to conform to the standard.

REFERENCES

(April 2, 1991). Flight Software Data and Object
Standards. (Report SSP 30552). Space Station
Freedom Program Office

1204

