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SUMMARY

Diesel engine propulsion consumes over 25% of the U.S. transportation energy and
dominates the heavy-duty transport sector because of its low fuel consumption and high
reliability and durability. The application of new technology in cost-effective, evolutionary
steps has increased fuel economy of diesel engines by over 25% in the past ten years.

The overall objective of the Advanced Diesel Engine Component Development (ADECD)
Program is to develop and demonstrate critical technology needed to advance the
heavy-duty low heat rejection (LHR) engine concept. The advanced diesel engine has
potential for improved thermal efficiency, lighter weight, simpler design, and longer life.
Major development activities reported are the design, analysis and fabrication of monolithic
ceramic components, vapor phase and solid film lubrication, electro-hydraulic valve
actuation and high pressure common rail injection.

The ADECD has been a highly successful program at Detroit Diesel Corporation (DDC).
Evidence of this is provided by the fact that many of the advanced technologies developed
(structural ceramic components, design methodologies and high pressure injection systems
with electronic controls) were conceptually incorporated in production DDC Series 50 bus
and Series 60 truck, bus, genset, construction and industrial engines.

An advanced single cylinder test bed (SCTB) was fabricated by DDC. This test bed is a
laboratory tool in studying the many advanced technologies of the ADECD program, as
well as other technologies necessary to meet the overall Heavy Duty Transport Technology
(HDTT) program goals. The SCTB simulates the reciprocator for a system having no
cooling system, turbo compounding, Rankine bottoming cycle, variable area turbocharger,
common rail injection, and variable valve actuation to achieve fuel consumption of 160
g/kW-hr (.26 lb/hp-hr).

The advanced concepts were successfully integrated into the SCTB after proof of concept
demonstration in laboratory tests. The confidence gained in ceramic components through
these efforts led to the subsequent introduction of production ceramic components (cam
roller follower and turbocharger rotor) in DDC multi-cylinder engines. In addition,
emissions reduction was approached by the analysis and testing of engine components
known to have factors which influence the particulate/NOx emissions trade-off. Modified
components, including camshafts, injectors and ring packs, were designed, fabricated, and
tested on a DDC Series 60 to quantify their influence on emissions. As a result, 1994
emission level requirements were first demonstrated during the ADECD program with
production feasible hardware.

It should be noted that all ceramic components provided by suppliers met or exceeded their
strength and reliability requirements. The ADECD program included one cermet and
several monolithic ceramic components. A cermet piston ring was the lone monolithic
cermet component. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and



piston ring were made from silicon nitride. All components were subjected to preliminary
proof of concept testing, followed by successful integration into the SCTB.

Numerous breakthroughs were required to implement a "ceramic" engine. Some of these
are the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining
of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port
liners, implementation of vapor phase lubrication, and elimination of the engine coolant
system for LHR. In addition, design, analysis and proof-testing methodologies were
developed for implementation of ceramic engine components. Specific technology related
issues are discussed in this final report.

Silicon nitride valves were successfully developed, exceeding the design and durability
criteria and meeting several production abuse test requirements using a DDC Series 60
valve train test fixture. These were then incorporated into the SCTB along with a ceramic
valve guide and solid film lubrication. The ADECD cylinder head design also incorporated
four (two intake and two exhaust) cast-in-place ceramic port shields to increase insulating
effectiveness and exhaust energy recovery. The uncooled operating conditions of the
engine imposed high thermal loads on these port shields. Fabrication and testing of the
cylinder head ceramic components were major program successes.

The combustion chamber of the engine included the firedeck and piston cap, both of which
were fabricated from monolithic silicon nitride. The tribological challenge posed by top
piston ring reversal temperatures of 550°C was met through the development of vapor phase
lubrication. A special lubricant, tricresyl phosphate, was investigated on a tribology test
fixture and then applied to the critical ring-liner interface on the test engine. An electronic
in-cylinder lubricant injection system was developed to inject precise quantities of tricresyl
phosphate.

A solenoid-controlled, variable valve actuation system that eliminated the conventional
camshaft was demonstrated on the SCTB. This system has the potential to revolutionize
valve train design of heavy-duty engines, while improving fuel economy and emissions.
High pressure fuel injection via a common rail system was also successfully demonstrated.
The benefits of high injection pressures in reducing particulate emissions was verified on a
DDC multi-cylinder Series 60 engine. Electronic unit injectors that develop over 200 MPa
peak injection pressure are now in production at DDC.

A number of engineering design, analysis and test methodologies for ceramic components
and vapor phase lubrication are included in the report appendices for their interest to the
critical reader. Based on the test results, this report recommends future development
activities in the areas of advanced engine systems, advanced materials applications and
NOx emissions reduction for heavy-duty engines. Technology infusion into the diesel
industry is needed to improve fuel economy, reduce U.S. dependence on imported
petroleum, and in reducing emissions for a cleaner environment.
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SECTION I

INTRODUCTION

1.1 BACKGROUND

The Advanced Diesel Engine Component Development (ADECD) Program is a multi-year,
multi-phase effort to develop and demonstrate the critical technology needed to advance the
heavy-duty low heat rejection (LHR) engine concept for the long-haul, heavy-duty truck
market. The ADECD Program has been partitioned into two phases. The first phase,
Phase I, was completed in 1986, resulting in definition of the Advanced Diesel Reference
Engine (ADRE)l 1 l. The second phase, Phase II/III, examines the feasibility of the ADRE
concepts for application to the on-highway diesel engine. Phase II/III is currently underway.

This project is sponsored by the U.S. Department of Energy, Office of Transportation
Technologies. The work has been performed by the Detroit Diesel Corporation (DDC)
under Contract DEN3-329 with the NASA Lewis Research Center, who provide project
management and technical direction.

1.2 TECHNOLOGY OVERVIEW

An advanced diesel engine has the potential for improved thermal efficiency, lighter weight,
simpler design, and longer life. Significant structural, material, and tribological problems
must first be overcome to bring this technology to the marketplace.

This report summarizes program efforts in the 1986-92 time period. Specifically, the
following Phase II/III activities: fabrication of several advanced concepts, preliminary proof
of concept evaluation, and single cylinder engine testing will be reported. Major
development activities reported are the design, analysis, fabrication and testing of
monolithic ceramic components (Sections II and 111), tribology (Section IV), electro-
hydraulic valve actuation (EHVA, Section V) and high pressure common rail injection (CRI,
Section VI).

An advanced single cylinder test bed (SCTB) was fabricated for this investigation. This
laboratory test bed is based on a conventionally lubricated engine with special features such
as the extended piston incorporated to study vapor phase lubrication and ceramic
components in a high temperature environment. Each of the advanced concepts that are
reported in Sections II through VI was successfully integrated into the SCTB after proof of
concept demonstration in laboratory tests. See Figure 1 - ADECD SCTB Schematic. The
evaluation of the integrated advanced technology concepts is reported in Section VII in the
form of consecutive SCTB Build numbers 1 through 13. Section VIII covers developments
related to the reduction of particulate emissions including the development of very high
pressure fuel injectors. This concept has been successfully implemented by DDC in
production engines that meet 1994 emission standards.
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Significant progress was made during Phase II/III in the areas of conceptualization, analysis,
design, fabrication and testing of these advanced technologies. The SCTB accumulated over
275 hours under various operating conditions with these advanced technology concepts.

The ceramic components utilized in this program include: silicon nitride cast-in-place port
liners, firedeck, piston cap, piston ring, valves and valve guides. Both silicon nitride and
cermet piston rings were developed. In-cylinder component development (firedeck, piston
cap and piston ring) is covered in Section II and ceramic cylinder head components (valves,
valve guide and cast-in-place port liner) are reported in Section III.

Numerous breakthroughs were required to implement a "ceramic" engine. Some of these are
the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of
ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port
liners, implementation of vapor phase lubrication and elimination of the engine coolant
system. In addition, design, analysis and proof testing methodologies were developed for
implementation of ceramic engine components. The specific technology related issues are
discussed in Sections II through VI, and the SCTB results are given in Section VII.

While some of the aforementioned advanced technologies are still in their infancy, the
ADECD program, especially the SCTB operation, has produced some promising results.
The performance, emissions and critical tribological attributes of an advanced "ceramic"
engine have been quantified. Vapor phase and solid film lubrication concepts have been
investigated. A tribotester has been successfully used to link basic research laboratory
testing of the vapor phase concept to the advanced diesel engine ring-liner interface. Vapor
generation and delivery technology have been evaluated; demonstrating the viability of the
vapor phase concept. The integration of vapor phase lubrication into the hot section of the
research engine was done in conjunction with a separated ring belt piston advanced cylinder
kit concept. Additionally, the advanced vapor phase lubrication concept has been
successfully demonstrated on the SCTB at low load operation.

Increasing the power level to 50% or higher resulted in high engine blowby due to increased
susceptibility of the ring pack to frictional heat deformation. This resulted in additional
efforts to develop advanced tribological systems for improved lubrication at the higher
temperatures encountered in a ceramic engine. An electronically controlled inter-ring
lubricant injector was developed to directly lubricate the most critical cylinder kit area, the
ring pack, ,*.chile minimizing the volume into which the lubricant must be vaporized.
Blowby reduction in the SCTB was approached by modeling bore and ring distortion to
produce recommendations for the redesign of the piston ring pack.

The confidence gained in ceramic components through these efforts on the ADECD program
led to the subsequent introduction of production ceramic components in the DDC multi-
cylinder Series 60 engine. In addition, emissions characterization was approached by the
analysis and testing of engine components known to have factors which influence the
particulate/NOx emissions trade-off. Modified DDC Series 60 engine components,
including camshafts, injectors and ring packs, were designed, fabricated, and tested on a
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DDC Series 60 to quantify their influence on emissions As a result, 1994 emission level
requirements were demonstrated during the ADECD program with production-feasible
hardware under laboratory test conditions.

1.3 COMPONENT FABRICATION

All advanced concept hardware required to meet the ADECD program objectives was
fabricated or procured. Table 1 summarizes this activity along with the corresponding
suppliers and quantities procured. The ADECD program included several monolithic
ceramic components. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and
piston ring were made from silicon nitride. A second piston ring material, cermet (titanium
carbide/titanium nitride/nickel) was also selected. It should be noted that all monolithic
ceramic components received met or exceeded their as-published strengths and Weibull
characteristics. The ceramic components are denoted with an asterisk [*] and the cermet
with a double asterisk [**].

TABLE 1

ADECD ADVANCED CONCEPT HARDWARE

Component Supplier Qty.
Piston Cap * Kyocera 4
Head Land Piston Ring * * Kyocera 8
Head Land Piston Ring * GTE Lab. 2
Nitralloy Upper Liner DDC Shop 6
Firedeck * Kyocera 4
Port * Kyocera 16
Valve Guide * AC-GMC 12
Valve Guide * GTE Lab 6
Cylinder Head CFD-GMC 4
Valve * GTE Lab 8
Valve * Kyocera 8
Valve Actuator DDC Shop 4
Common Rail Injector DTC 3
Vapor Lubrication System DDC Shop 2

All components were subjected to preliminary proof of concept testing, thus demonstrating
their feasibility.

REFERENCES

1. Hakim, N.: "Adiabatic Diesel Engine Component Development Program - Phase 1
Interim Report, Reference Engine for On-Highway Applications", 1986
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SECTION II

ADVANCED IN-CYLINDER COMPONENTS

This section addresses the design, analysis, fabrication and test results associated with the
silicon nitride piston cap, the silicon nitride firedeck and the piston rings developed for the
ADECD program. Different materials, including silicon nitride and a cermet, were tested
for the piston ring. Ring pack modeling and modifications to address blow-by are discussed.

2.1 CERAMIC FIREDECK AND CYLINDER HEAD ASSEMBLY

Four silicon nitride firedecks were made by Kyocera (SN-220M) and mated directly to the
cylinder liner without a gasket. The gasketless design was analyzed extensively through
finite element modeling and experimentally validated. All four of these firedecks were
statically tested to 20.7 MPa without failure or leakage during the proof testing, thereby
meeting the design goal. Dynamically, these firedecks have sustained peak cylinder
pressures of 9.4 MPa without failure or leakage.

The firedeck, cylinder head, and liner temperatures were monitored throughout this test
work. Temperature distributions for these components at the 1600 r/min and 30 N-m brake
torque point are shown in Figures 2, 3 and 4 respectively. Steady-state top ring reversal
(TRR) temperatures, as measured 2.0 mm below the liner surface, varied between 340 and
4400C, depending on the engine load.

The cylinder head for the single cylinder ADECD engine incorporates many unique features.
Four identical ceramic port shields are cast directly into the cast iron head structure. The
port shields were made of sintered silicon nitride and were wrapped externally with a
compliant material to mechanically and thermally isolate them from the iron during the
casting process. Port shields without the compliant outer surface failed during the casting
process, proving the usefulness of the design feature. A monolithic silicon nitride firedeck
and valve guides are retained in the finished cylinder head by interference fits. Eight
equally spaced studs clamp the cylinder head onto the top of the liner flange with no
intervening head gasket. Effective sealing of the cornbustion gas pressure was achieved
through control of the geometry, clamp load and material properties of the cylinder liner and
ceramic firedeck. It should also be noted that the firedeck when shrunk fit into the cylinder
head was designed to operate with an air gap.

The combustion gas sealing capability of a gasketless cylinder liner-to-fire deck insert joint
was evaluated and optimized using finite element modeling. See Appendix A.

2.2 PISTON CAP

Four silicon nitride piston caps, each weighing 7.0 kg, were procured from Kyocera
(SN-220M). The four caps were thermally assembled into the piston with an interference
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fit. Two of the caps had a single ring groove and two were designed and fabricated with
dual groove geometry. The separated ring belt (SRB) piston, consisting of a ceramic cap
retained in an iron body by a shrink fit, was designed to separate the extremely hot upper
cylinder liner area from the conventionally lubricated crankcase and piston skirt area. The
SRB piston geometry was combined with a diametral shrink fit specification of .209 to .260
mm to result in a probability of survival of 0.99999 and a safety factor of between 3.0 and
5.6 under assembly and steady peak torque loading conditions. During the program, it was
discovered that a thin copper coating was required on the OD of the piston cap bottom ledge
to uniformly distribute the load due to interference assembly.

Preliminary proof of concept demonstration was performed on the single cylinder test bed
with one of the piston caps. This piston accumulated 8.7 hours of successful engine
motoring, including 65 minutes at 2000 rpm without separation or incident. No problems
were encountered during firing operation or in subsequent engine testing (see Section VII).

2.3 PISTON RING

Both cermet and silicon nitride piston rings were fabricated and tested. Eight cermet piston
rings were procured from Kyocera (TC35). Five of five rings were successfully proof
tested. The proof test consisted of expanding the end gap 24.0 mm to 26.0 mm (nominal
end gap is 2.0 mm). These cermet rings were used in initial engine testing without incident.
Additionally, two silicon nitride rings were procured from GTE (hot isostatic pressed [HIP]
AY6). The proof testing of these rings consisted of installing the rings on the pistons and
removing the rings from the pistons numerous times without incident.

A post-test inspection of the Build #5 hardware (see Section VII) was conducted. Visual
inspection of the piston ring and liner surface revealed no scuffing or scoring. Wear debris
samples were collected from five locations: TRR of the liner, bottom ring reversal [BRR] of
the liner, the piston ring, the piston cap, and the piston body. These samples were sent to the
Pennsylvania State University for analysis. The electron dispersive X-ray analysis (EDAX)
for each of these samples are shown in Figures 5 through 9. This evaluation confirmed the
presence of Durad 125 and its reaction products in the upper section of the cylinder liner.
Additionally, the amounts of phosphorous and iron found in this analysis were similar to
those found in previous samples taken from the Cylinder Kit Tribology Test Fixture
(CKTTF) and Build #3 1 1 1.

2.4 PISTON RING WEAR

Upon disassembly of the SCTB following the Build #6 test sequence, no scuffing was
evident. The ring's weight, gap, thickness and profile were measured. The wear
measurements are shown in Figure 10. The two methods of measurement show good
agreement. The ring wear rate was very consistent, averaging 2.84 microns/hour.
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Even though the ring wear rate shown in Figure 10 (Build # 6, see Section 7.7 for build
description) is at least 10 times greater than the goal, the results were considered promising.
A TRR temperature of 340°C was sustained, and no attempt at optimizing in-cylinder
component materials, geometries, or lubricant delivery parameters had been made.

Upon disassembly of the SCTB following Build # 8, the cermet piston ring was found to be
broken. The failure occurred approximately 145° from the gap.

Upon completion of Part II of the Build 49 test sequence, the SCTB was disassembled for an
in-cylinder component inspection. During this inspection, the cermet piston ring was found
to be fractured and excessively worn. The piston ring fractured approximately 145° from
the gap, as shown in Figure 11. No other damage was evident. The ring and liner wear rates
from Build 49 were measured, converted to wear coefficients, and compared to Build #6
results. These results are summarized in Table 2.

TABLE 2

RING AND LINER WEAR COMPARISON

Wear Coefficient, K

Ring Liner

Build #6	 4.5 x 10-6 2.6 x 10-7

Build 99	 6.0 x 10-6 5.9 x 10-7

K = Wear Volume x Hardness
Avg. IMEP x Sliding Distance

See Sections 7.7 and 7.10 for build descriptions

As shown in Table 2, significantly more wear occurred in the no intentional lubrication run
(Build #9) than in the Build #6 run which was lubricated with 0.1 mole percent
concentration of vapor phase Durad 125 lubricant. The unlubricated Build #9 ring wore
33% more than the vapor phase lubricated ring. Similarly, the unlubricated Build #9 liner
wore 127% more than the vapor phase lubricated Build #6 liner. Based on these results, it is
concluded that vapor phase lubrication is superior to no intentionally delivered lubricant.
Section IV discusses further the development of vapor phase lubriction through testing on
the CKTTF and SCTB.
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Subsequently, a failure analysis of the Build #9 piston ring was conducted. As shown in
Figure 12, the fracture was determined to be a typical fatigue failure, initiating at the top OD
chamfered corner. Since the fractured surface was determined to be free of defects, it has
been concluded that the failure was simply due to exceeding the strength of the base material
while running in the unlubricated mode.

The cermet ring fracture was repeated in Build #10 when 50% power operation was
attempted. Disassembly revealed localized fractures in the ceramic piston cap on its thrust
and anti-thrust surfaces. The ceramic coating on the second compression ring was severely
chipped.

Build 411 initially achieved a stable blowby at 1800 r/min under motoring and low power
levels using a stainless steel ring. However, at higher power levels, blowby increased
radically after the operating point was held for a period of time. The blowby stability of the
stainless steel ring was better than the cermet ring, giving a longer time of blowby stability
at any given load point. A maximum of 28 N-m torque at 1800 r/min and a peak firing
pressure of 1 1.1 MPa was achieved, but a radical increase in blowby resulted in the test run
being terminated after 4.8 hours were accumulated, 0.7 of which were firing. See Figure 13
for temperature and blowby results of this test run.

2.5 DISTORTION MODELING OF IN-CYLINDER COMPONENTS

The approach used to determine possible causes of the excessive blowby included computer
modeling of the ADECD in-cylinder components and conditions to examine the influence of
factors related to bore and ring distortion on blowby. A finite element model of the SCTB
cylinder liner, block, and head was developed to assess the sensitivity of bore distortion to
axial and circumferential temperature variation and peak cylinder pressure.

Modeling of the symmetrical, single cylinder test bed liner showed bore distortion was
determined to be reasonable, albeit non-trivial, and its influence on blowby could be
controlled through ring design. Of various factors examined, the largest contribution to bore
distortion resulted from axial temperature variation. The modeling also indicated that the
bore distortion could not have caused the sudden increase in blowby observed in the engine
testing. The bore distortion would have been more gradual with time, resulting in a more
linear increase in blowby.
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Ring distortion modeling included an assessment of the sensitivity of the existing L-section
ring design to radial ring temperature gradients (a significant factor in ring distortion and
twist) and the conformability of the ring to the liner. The ring radial temperature gradient
factors examined were frictional heat input and temperature boundary conditions due to
combustion gases and heat fluxes through the piston and liner. Ring conformability
modeling assumed the worst case bore distortion and examined the influence of ring profiles
on ring distortion and twist and their influence on blowby.

The most sensitive factor affecting the radial temperature gradient was found to be frictional
heat input. Figure 14 shows results typical of the ring distortion modeling, demonstrating
the effect of ring temperature gradient and ring geometry on blowby. Three levels of
pressure balance (the ratio of ring face area to the ring rear area exposed to the cylinder
pressure) under different levels of radial ring temperature gradient are shown.

2.6 L-SECTION RING DESIGN

Using the above ring distortion blowby modeling, three ring design recommendations were
selected as possible solutions to the excessive blowby: a segmented ring design, a modified
L-section ring design, and an angled step-gap second ring design.

The segmented ring design, shown in Figure 15, is a set of L-section ring segments held
together with a wire spring expander. By segmenting the ring, better conformity of the ring
to the bore is achieved through the isolation of each ring segment from the thermal distortion
of the adjacent segments due to uneven ring heating. However, this design is difficult to
manufacture and durability of the wire spring expander exposed to the hot combustion gases
is a concern.

The modified L-section ring design, shown in Figure 16, is a modification of the L-section
cermet ring design used in the tenth and earlier builds. This design specifies a stainless steel
material for more flexibility than the cermet material used in the existing ring design. It has
a smaller radial width, reducing the effect of thermal ring twist. A smaller face width is also
provided to improve the pressure balance of the ring when subjected to thermal distortion.
This is accomplished by maintaining a seal surface between the ring and the liner at a higher
point on the ring face. The gas pressure balance between the front and rear of the ring is not
significantly different with this smaller face ; but the larger chamfer on the top edge
improves the uniformity of the gas induced load on the ring against the liner, helping to
reduce the frictional heat input to the ring.

Computer blowby modeling of this modified L-section ring, together with a conventional
design angled step-gap second ring was found to provide acceptable levels of blowby, based
on the worst case bore distortion and ring boundary conditions determined by the modeling.
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The resulting ring pack design consisted of an L-section top ring, modified in cross-section
from the cermet ring, and an angled step gap second ring. The modified rings were made of
tool steel, faced with a moly-chrome-cobalt wear coating and plated with a friction reducing
silver coating. The goal of this ring pack design was to reduce the blowby to the 35
liters/minute level considered acceptable for good lubricant injector performance.

The new ring pack was tested utilizing the lubricant injector cylinder kit hardware (liner
with injector port and piston with lubricant pocket). Engine performance, Table 3, was
generally consistent with earlier cermet ring pack runs, with comparable indicated power.
However, pumping losses, maximum cylinder pressure, frictional power losses and fueling
levels were reduced for the same generated torque. This indicates that the rings produced a
better seal and lower friction. Although blowby was much higher than the design target, it
was stable, which allowed single cylinder testing of the lubricant injector system to
continue. The issues pertaining to lubrication are discussed in more detail in Section IV
(Tribology). Details of the SCTB sequence of builds are described in Section VII.

TABLE 3

ENGINE PERFORMANCE COMPARISON OF RING PACK DESIGNS

1800 r/min 30 N•m
110/140 kPa Intake/Exhaust

Restriction
Baseline
Cermet

New Ring
Pack

Indicated Power kW 16.65 16.70

Pumping Loss kW -2.45 -2.35

Max. Cylinder
Pressure

MPa 11.1 10.4

ISFC g/kW-hr 190 182

Fuel Rate kg/min .0529 .0508

Blowby liters/ min 200+
Unstable

184

CONCLUSIONS

The SRB piston and gasketless firedeck-liner interface represented innovative
approaches for assembly of the ceramic components in an advanced diesel engine.
These concepts helped in the successful design, analysis and test of the silicon nitride
firedeck and piston cap on the SCTB.

2. Valuable design, analysis and test experience was gained with ceramic and cermet
piston rings. Further improvements in the top compression ring are required for
advanced engines.
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SECTION III

ADVANCED CYLINDER HEAD COMPONENTS

This section addresses the design, analysis, fabrication and significant test results for the
advanced cylinder head ceramic components - the intake and exhaust valves, the valve
guides and the port liners. These components were all fabricated from monolithic silicon
nitride.

3.1 CERAMIC VALVE DEVELOPMENT

This section describes the development of a silicon nitride valve from the initial design state
to actual engine testing. Supplier involvement, finite element analysis, and preliminary
proof of concept demonstration testing played a significant role in this project's success.

Benefits associated with the ceramic valve were identified that tended to offset the high risk
aspect of pursuing monolithic ceramic valves for heavy-duty diesel enginesM. Specifically,
a 40 to 60% reduction in valve mass lowers inertial forces, reduces fuel consumption, and
allows a means to increase power density. Further, surfaces at the valve's interfaces could
wear significantly less and have lower coefficient of friction 12,31.

The objective of this effort was to design and demonstrate operation of monolithic ceramic
valves in a heavy-duty diesel engine. In order to achieve this objective, successful operation
at 1800 r/min under extreme LHR conditions and without traditional liquid lubrication was
required. At this operating condition, it is felt that the ceramic valve should have at least a
99.9% probability of survival (POS) determined by probabilistic finite element modeling.
Also, it was felt that the relative transverse and rotational motion needed to be minimal, due
to the lack of traditional lubrication. Valve stems were coated with trithioxymolybdate, a
solid film lubricant.

The methodology used to demonstrate that monolithic ceramic valves can be successfully
operated in heavy-duty diesel engines consisted of three main activities. The first included
five interacting efforts: preliminary concept and design generation; ADECD Program
considerations; cylinder head compatibility; supplier input; and finite element and Weibull
based probabilistic life analyses. It should be noted that the potential suppliers' inputs and
finite element/life analyses were thought to be critically important in defining a 211 mm
long ceramic valve.

The second activity included material and supplier selection, design finalization, and
component fabrication. The third activity involved: proof of concept demonstration on a
laboratory rig and engine operation. Each of these activities is discussed in greater detail in
Appendix B.
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Based on the finite element analysis, the proof of concept testing and the engine evaluation
performed, the following conclusions can be made:

1. The monolithic silicon nitride valves specially designed for the ADECD program meet
the design objective, i.e. two hours of successful operation at 1800 r/min engine speed.

2. Seating velocities of 0.5 m/s can be tolerated by this valve design.

3. When extremely overstressed (running 3600 r/min equivalent engine speed), the silicon
nitride valves failed at the valve stem locking radius, as predicted by the finite element
model. After failure, the ceramic valve is retained by the locks, preventing secondary in-
cylinder damage.

Material expenditures were minimized by using as many off-the-shelf production
components as possible. It should be noted that spring caps were selected, rather than
rotators, to minimize the rotation between the valve tip-to-bridge counter-bore and the valve
stem-to-guide interfaces.

3.2 CERAMIC VALVE GUIDE

Eighteen silicon nitride valve guides were procured, twelve from AC Spark Plug (SN-90)
and six from GTE (HIPed AY6). All of these guides were thermally assembled via shrink
fit within sleeves for final installation into the cylinder head without incident. Depletion of
the solid film lubrication at the guide-to-valve interface during engine tests remains a
problem to be resolved in future work.

3.3 CERAMIC CAST-IN-PLACE PORT

The cylinder head included cast-in-place ceramic valve port shields to increase insulating
effectiveness. The shields are subject to loading from the shrinkage of the molten cylinder
head metal as it cools. In addition, the uncooled operating conditions of the ADECD engine
could be expected to impose high thermal loads on the exhaust port shields.

The ADECD cylinder head design shown in Figure 17 incorporates four (two exhaust and
two intake) identical cast-in-place ceramic port shields. The "two band design" port shield,
Figure 18, is wrapped in an insulating ceramic blanket except for two bands of wire mesh
(nominally 4.5 mm thick) located at each end of the port. During the casting process, only
the wire mesh comes in contact with the molten metal. The ceramic insulating blanket
protects the ceramic from thermal shock and forms a low conductivity annulus about the
shield for added insulating effectiveness during engine operation.
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Figure 17: ADECD Cylinder Head Design
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Viability of the ceramic cast-in-place port shield concept under casting shrink and thermal
loading was examined via finite element analysis. See Appendix C for details of the
analysis. The following is a summary of the FEA (Finite Element Analysis):

1. Compliant bands are critical to the viability of the cast-in-place concept. A low (42
MPa) elastic modulus wire mesh must be used for the load carrying bands surrounding
the ceramic port shield.

2. The ADECD silicon nitride cast-in-place port shield with a 4mm nominal wall and two
42 MPa modulus wire mesh bands was predicted to have a probability of survival of
nearly 1.000 when subjected to simulated casting shrink and peak torque thermal loads.

Two designs were proposed as a result of FEA. The first design was a silicon nitride port
covered with a compliant layer of alumina fiber, a single wire mesh band on both ends and a
1.0 mm thick alumina barrier coating. The second design was a silicon nitride port
completely covered with a compliant layer of wire mesh and a 1.0 mm thick alumina barrier
coating. Eight shields of each design were fabricated by Kyocera. Twelve of sixteen silicon
nitride ports were successfully cast into cast iron cylinder heads: four of the Design #1 type
and eight of the Design 92 type. See Appendix C, Figure 91.

Based on nondestructive CATSCAN X-ray of the four unsuccessfully cast ports, it was
determined that their cracking was due to molten iron penetration through the alumina
barrier. The most likely cause of penetration was improper handling of the ports, prior to
casting, which can generate cracking of the alumina barrier. Further, DDC concluded that
either design type is castable, as long as the alumina barrier is not penetrated.

CONCLUSIONS

1. Ceramic valves and guides met all design criteria and were successful in the SCTB tests.

2. The viability of cast-in-place ceramic port liners was established through successful
engine testing. A compliant layer is necessary for successful casting of silicon nitride
ports.

REFERENCES:

1. Saviwala, M.S. and Hakim, N.S., "Statistically Optimized Performance Predictions of
Low Heat Rejection Engines with Exhaust Energy Recovery," SAE Transaction 860315,
1986.

2. Updike, S.H. and Nagle, P.D., "Ceramic Valve Train Components," SAE Transaction
880441, 1988.

3. Asnani, M. and Kuonen, F.L., "Ceramic Valve and Seat Insert Performance in a Diesel
Engine," SAE Transaction 850358, 1985.
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SECTION IV

TRIBOLOGY

Accelerated wear at the piston ring-cylinder liner interface poses one of the greatest
challenges to LHR diesel engine technology. Advanced LHR diesel engines are predicted to
experience top piston ring reversal temperatures of up to 550°C. This is beyond the
operating temperature range for conventional liquid lubrication.

Residency time at such high temperature interfaces promotes the formation of excess
amounts of deposits resulting from lubricant decomposition and oxidation. These deposits
trap debris, accelerate wear, and cause ring sticking. The resulting increase in lubricant
consumption and blowby can cause premature engine overhaul or engine failure. The
solution of the high temperature ring-liner tribology problem appears to be a prerequisite for
further development of the commercial LHR engine.

The strategy for the tribological activity called for parallel pursuit of two advanced
lubrication concepts for the hot section of the cylinder liner: vapor phase [VP] and solid
film [SF] lubrication. These concepts have been investigated. Liquid lubricants were used
for the lower section of the cylinder liner.

4.1 SOLID FILM LUBRICATION

The SF lubrication technology was evaluated through basic laboratory testing and
development. The testing matrix for the development of SF lubrication included: three ring
materials (cermet, sialon, and silicon nitride), three liner materials (nitralloy, Clevite, and
divitrium), and three SF lubricants (intercalated graphite, metal fluorides, and cesium
trithioxymolybdate) at three temperature levels (25, 300, and 650°C). Both friction and wear
were measured and compared to the unlubricated condition. The results from the nitralloy
and silicon nitride pairs with cesium trioxymolybdate are shown in Figure 19. Due to the
poor quality of the sialon test samples, this ring material was eliminated from the test matrix.

The best results were obtained when a SF coating of cesium trithioxymolybdate was used
with the nitralloy and silicon nitride pair, where the nitralloy plate simulates the liner and the
silicon nitride ball simulates the piston ring. This combination was subsequently
recommended as the backup to vapor phase lubrication of a cermet ring and nitralloy liner.

The results from the silicon nitride on silicon nitride testing at 316°C are shown in
Figure 20. Based on these results, a SF coating of cesium trithioxymolybdate was
recommended for the valve-guide interface.
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4.2 VAPOR PHASE LUBRICATION

A promising approach for lubrication of the ring-liner interface in the LHR engine is the VP
lubrication concept. Vapor delivered lubricant at the piston ring-cylinder liner interface
promises expanded operating range and other potential advantages. Vaporized phosphate
esters in small concentrations have been used to lubricate diesel engine piston rings in a
cylinder kit tribology simulator at 350°C. Ring wear coefficients and surface topography for
several vaporized lubricants and concentrations were measured. The lubrication chemistry
correlates well with that observed in vapor lubricated four-ball wear tests.

VP lubrication refers to the deposition of lubricating films directly from an atmosphere of
vaporized lubricant. The vaporized lubricant is delivered in a carrier gas to the hot bearing
surface where it reacts chemically to form an easily sheared surface layer or a lubricant film.
A key advantage of the concept over conventional liquid lubrication, including drop or mist
applications, is that it provides a method for continuously delivering only the amount of
lubricant necessary for effective lubrication. Thus the degradation of excess lubricant and
the buildup of wear accelerating deposits can be reduced. VP lubrication can utilize
relatively inexpensive lubricants such as phosphate esters, unlike current high temperature
liquid lubricants which are exotic and expensive. Another potential advantage of VP
lubrication is in the area of particulate emissions. By delivering a metered amount of vapor,
the lubricant consumption of heavy duty diesel engines could be dramatically reduced.
Hence, the contribution of engine oil to the particulate emissions can be minimized.

VP lubrication was evaluated in cooperation with Pennsylvania State University. Various
concentration levels of three lubricants - tricresyl phosphate [TCP], tributyl phosphate
[TBP], and Durad 220 B (diphenyl ditertibutyl phenyl phosphate [DDPP]) - were evaluated.

The formation of vapor deposited lubricant films has been extensively investigated in
laboratory testsl l l. Four-ball wear data using vaporized TCP to lubricate M50 tool steel
balls at 370°C has shown that the VP concept can provide the same level of wear as that
obtained from fully flooded liquid lubrication using a formulated API/SF IOW-30
automotive lubricant. These studies indicate that the deposition rate, and the resulting
effectiveness of the VP deposited lubricant film, can be controlled by varying the lubricant
concentration in the carrier gas or the elemental composition of the bearing surfaces.
Laboratory friction measurements of VP lubricated interfaces[^1 have shown that friction
coefficients of about 0.15 can be expected. Based on laboratory data, the VP lubrication
concept was proposed for the hot section of uncooled LHR diesel engines[3].

The objective of this study was to extend the VP concept to the lubrication of diesel engine
piston rings and cylinder liners. Vapor lubricated ring wear was investigated on a cylinder
kit simulation rig using ceramic coated piston rings and hardened cast iron liners operating
at 350°C. The performance of three phosphate ester lubricants, supplied at concentrations
between 0.0 and 0.17 mole percent in the vapor was evaluated. The morphology and
chemical composition of wear debris taken from the simulation rig tests were also examined.
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4.3 FIXTURE TESTING OF VAPOR PHASE LUBRICATION

The initial investigations of the VP lubrication concepts of diesel engine components were
conducted on a cylinder kit simulation rig. The tests utilized a Cylinder Kit Tribology Test
Fixture (CKTTF). This fixture is designed to investigate wear and friction of diesel engine
piston rings and cylinder liners under controlled and measurable conditions. The
configuration of one of the CKTFF test chambers and its internal details is displayed in
Figure 21. The fixture is a dual test chamber, opposed piston arrangement (note that
Figure 21 only shows one-half of the CKTTF - the second half is a mirror image of the first
half) which reciprocates piston rings on shortened sections of actual cylinder liners. The
stroke of the CKTTF is l0mm which allows simulation of the critical low speed, boundary
lubricated, ring reversal conditions encountered in an engine. Each test chamber contains
dual piston rings for more efficient data generation. Piston ring normal force can be
controlled by mechanical ring expanders or gas actuation. Heaters on the O.D. of the liner
and I.D. of the piston allow testing at engine temperatures.

To accommodate VP lubrication, a vapor generator was added to the CKTTF (Figure 22).
The vapor generator consists of a carrier gas heater, a hypodermic needle for lubricant
introduction, and a quartz vaporization chamber packed with glass rings. In operation, a
nitrogen carrier gas is heated to 260°C in a heater. The lubricant is supplied by a syringe
pump and delivered to the packed bed of glass rings where it vaporizes. The vapor is carried
to the CKTTF test chamber by the continuous flow of the nitrogen carrier and is introduced
into the space between the piston rings. The nitrogen and vapor is forced around the rings,
through the ring gap, and exhausts to a water trap where any surplus lubricant is recovered.

Two sets of VP lubrication tests were conducted on the CKTTF. The details of these tests
(hardware, procedure, wear results) and resulting analysis of ring profiles and wear debris
from the CKTTF are discussed in Appendix D. The VP lubrication evaluation on the
Tribotester can be summarized as follows:

• Chemical deposits taken from the Tribotester match those taken from Penn State's
Laboratory testing.

• TCP provided the most robust ring lubrication for concentrations between 0.06 and 0.17
mole percent and was selected for subsequent engine development.

• TBP increased ring wear at comparative concentration levels. The condition most
adversely affecting the TBP lubrication process is elevated temperature (above 350°C).

• Durad 220 B appears to offer excellent lubrication at 0.1 mole percent and warrants
further investigation.
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4.4 ENGINE VAPOR PHASE DELIVERY SYSTEMS

The successful preliminary proof of concept testing of the VP lubrication concept was
followed by integrating the system into the hot section of a SCTB cylinder liner in
conjunction with the SRB concept. Initial SCTB activities were accomplished with the
vapor phase lubrication [VPL] system shown in Figure 23. With this system, a lubricant is
vaporized and delivered into a separated ring belt [SRB] piston cavity by means of a carrier
gas, nitrogen. Although complex, this system served to demonstrate the ability to lubricate
the critical in-cylinder components with VPL.

The piston ring was lubricated with 0.1 mole percent TCP for 45 hours. TRR temperatures
exceeded 475°C. Real time, in situ wear measurements, via surface layer activation [SLA]
were used to monitor the progression of this ongoing activity. These SLA results compared
very well to the post-test ring wear measurements. Average ring wear rate varied between
1.29 and 2.01 microns/hr. A typical piston ring profile trace is shown in Figure 24. Post-
test inspection also revealed no scuffing or seizure of the VP lubricated SCTB cylinder kit.

Chemical deposits taken from the cylinder liner matched those taken from the CKTTF.
This supported use of the tribotester to simulate engine operation toward developing the VP
lubrication concept for subsequent LHR application at the critical ring-liner interface.
Alternate methods were considered for delivering VPL to the in-cylinder components using
electronic control to achieve optimal performance and reduce lubrication contribution to
emissions. Five metered lubricant delivery methods were identified and assessed.

• Crankcase Lubrication
• Intake Port Injection
• Lubricant/Fuel Mixture Injection
• Between-the-ring Injection (from within the piston)
• Between-the-ring Injection (from within the cylinder wall)

A crankcase metering approach presents electronic control problems and would require
significant improvement over today's oil control technology to meet future emission goals.
Even if this could be overcome, lubricant concentration and residency time at top ring
reversal [TRR] would be sacrificed, resulting in reduced in-cylinder lubrication and
component life. Hence this approach was eliminated from further consideration.

Intake port injection of vaporized and/or liquid lubricant into the cylinder can be
electronically controlled and the lubricant's residency time at TRR would seem sufficient.
However, the large amount of lubricant required and consumed to maintain the desired
concentration level, due to large air flow rates, makes this approach impractical.
Additionally, with this approach, the lubricant would be exposed to the combustion process,
increasing the likelihood of exhausted emissions. Hence this approach was eliminated from
further consideration.
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A lubricant/fuel injection mixture system can be electronically controlled and integrated into
an engine that already has a unit fuel injector, but the amount of lubricant required and
consumed to maintain the desired concentration level would be too large and the potential
for durability problems of the injector increases, due to its added complexity. As with the
intake port injection system, this approach would expose the lubricant to the combustion
process, increasing the likelihood of exhausted emissions. Hence this approach was
eliminated from further consideration.

Between-the-ring lubricant delivery through the piston would eliminate the need for a
lubricant injector, but it would require a very complex and expensive passageway for
lubricant to travel to the desired location of injection. Additionally, the heat of the piston
could decompose the lubricant and clog the passageway.

To avoid these problems lubricant routing previously referred to as the between-the-ring
(through the liner) approach was chosen for further consideration for the following reasons:

•	 The ring cavity would facilitate delivery of lubricant to the ring/cylinder interface
on a continuous basis.

• The amount of lubricant consumed and exhausted can be controlled, since less
lubricant will be required to maintain the necessary volumetric concentration of
lubricant within the small between-the-ring cavity.

•	 The lubricant will not be exposed to the combustion process, avoiding unnecessary
exhaust emissions.

•	 The lubricant parameters can be optimized through electronic control utilization.

•	 The system is adaptable to engines fitted with electronic engine control.

Consequently, the method of in-cylinder vapor phase lubrication was significantly
simplified, as compared to the initial system which required delivery of a vaporized
lubricant into a SRB design approach. The simplified system makes it easily adaptable to
electronically controlled diesel engines, as well as being directly integrable into the SCTB.
An electronically controlled unit injector was designed, fabricated, and calibrated to deliver
minute quantities of liquid lubricant directly into the ring/liner interface. Since delivery of
the lubricant can be achieved with a conventional fuel injector, high reliability would result.

Calculations were completed to determine the magnitude of lubricant required for this
system, as well as how it compares to the current and anticipated state-of-the-art
consumption levels. A similar calculation was performed on the previous recirculating SRB
system. As shown in Figure 25, the initial recirculating SRB system was expected to match
the anticipated state-of-the-art goal of 32 ml/hr. With the alternate delivery system, more
than two orders of magnitude reduction in lubricant consumption could be achieved as
compared to the anticipated levels.
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4.5 IN-CYLINDER LUBRICANT INJECTION SYSTEM DESIGN

In order to take advantage of the previously mentioned benefits, the in-cylinder lubricant
injector shown in Figure 26 was designed. As shown in Figure 26, the proposed in-cylinder
lubricant injector consists of 14 pieces and is very similar to an electronic fuel injector.
Some of the components in this lubricant injector design are also used in DDC's production
fuel injectors.

To assist in the VPL process, an inter-ring insert was designed to increase surface area while
filling 20% of the cavity's volume. This insert had been determined to provide the optimal
surface area to facilitate vaporization in previous laboratory testing1 1 , 21. A nickel-based
material was selected for this insert because of its high temperature characteristics and low
propensity to attract phosphate. Manufacturing considerations, space available within the
current ceramic piston caps, and finite element analysis determined the final geometry. The
ability of this insert to minimize the lubricant purge effect of blowby was recognized.

The DDC electronic engine control (DDEC) system was selected to control the in-cylinder
lubricant delivery parameters. In addition to controlling the timing and duration of liquid
lubricant injection, the DDEC software can be programmed to select regular lubricant
injection or a skip cycle option. Use of skipped cycles would tend to increase life and
reliability of the in-cylinder lubricant injector beyond the already acceptable level of
electronically controlled production fuel injectors. Applicability of this system to
production engines is illustrated by the proposed in-cylinder lubricant injection system
integration into a DDC Series 60 production engine shown in Figure 27.

Two in-cylinder lubricant injectors were assembled for evaluation in a special rig designed
and fabricated for parametric studies (Figure 28). The rig was used to quantify injection
parameters such as the starting point and duration of lubricant injection for various engine
speeds, inter-ring cavity pressures, and blowby levels. The data collected and summarized
in Figures 29 and 30 helped establish the injection parameters necessary to maintain the
desired concentration of lubricant in the inter-ring cavity at 0.1 mole percent. Figure 29
shows the volumetric amount of lubricant which needs to be injected for a particular
operating condition, as a function of the inter-ring pressure and temperature. Figure 30
shows the number of skipped cycles required to maintain the desired level for the
predetermined amount of lubricant (from Figure 29) and the amount of blowby. This
information on injection parameters necessary to maintain 0.1 mole percent lubricant for
various engine operating conditions was programmed into the DDEC control system.

This design, with DDEC and solenoid control, allows for precision control of lubricant
quantity, timing, rate and frequency of injection. The injector was installed through the
engine block and cylinder liner at bottom ring reversal to minimize combustion gas back-
pressures on the injector. Lubricant was injected into a pocket between the top and second
compression ring containing a wound wire spring insert. This spring acts to hold the
lubricant, while increasing the pocket surface area, thereby promoting vaporization of the
lubricant over a greater portion of the four stroke cycle. The injected volume of lubrication
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Figure 26: Electronically Controlled In-cylinder Lubricant Injector
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was metered to insure proper concentration in the inter-ring pocket. Since the volume of the
inter-ring pocket is small, only minute quantities of lubricant are necessary to provide the
necessary lubricant concentration.

On the SCTB, the injector was located on the intake side at bottom ring reversal and injected
at the beginning of the compression stroke. Lubricant was supplied at variable pressures to
the injector by an external pressure source. Locating the injector at bottom ring reversal
reduces the amount of heat flux into the injector, thus reducing the potential for tip plugging
and the need for additional cooling of the injector. Injection of the lubricant just before the
compression stroke and at bottom ring reversal permits lower injection pressures via reduced
back pressures and provides a fresh charge of lubricant during the high cylinder pressure
compression and expansion portion of the four-stroke cycle. Locating the injector on the
intake side insures that the lubricant is delivered on the cooler side of the cylinder, allowing
lubricant to vaporize over a greater portion of the cycle.

4.6 PERFORMANCE COMPARISON OF LUBRICATION SYSTEMS

A back-to-back comparison test of the lubricant injector and baseline carrier gas lubrication
systems was conducted (Build # 12 and 13). The SCTB was run first using the baseline
carrier gas method and most of the lubricant injector system engine hardware: a block and
liner with the lubricant injector port, the three groove piston, with the center groove
containing the inter-ring pocket insert and the two ring cylinder kit consisting of a modified
L-section top ring and angled step gap second ring (Section 2.7). This configuration
allowed for a direct comparison of engine emissions and lubrication performance of the two
lubrication systems. It also permitted the determination of inter-ring pocket pressures and
temperatures, necessary for the specification of the lubricant injector electronic control
parameters. Both tests were conducted with a lubricant consisting of a 6% TCP solution in
white mineral oil.

Testing of the lubrication systems was conducted primarily at a 25% power level to
minimize blowby purging of lubricant from the inter-ring pocket. The baseline carrier gas
engine test was conducted in three phases, for a total of six hours of engine testing. During
the first phase, the engine was operated at a 50% power level in an unsuccessful attempt to
achieve reasonable blowby levels. Section 7.13 presents typical blowby and top ring
reversal liner and head temperatures at 25% power. The separation of the exhaust and intake
top ring reversal liner temperatures at points where blowby fluctuates indicated that this
engine was susceptible to ring pack frictional heat deformation related to marginal
lubrication causing the effectiveness of the ring seal to vary. Engine performance during the
first and second phases was consistent with previous test runsl2,3 1, with comparable
indicated power, pumping losses, and frictional power losses. In the third phase of testing,
blowby was 50% higher than the previous two phases, and engine performance had
degraded. After a total of six hours of engine operation, the engine was torn down to reveal
a major piston failure (see Section 7.13).
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The ceramic piston dome was found to be fractured in the top outer rim for about 270
degrees of its circumference, extending into the ring grooves in some areas. Scuff marks on
the piston rings and liner indicate that the most likely cause of this failure was due to
scuffing of the ring, causing momentary seizure, resulting in an excessive load to ring lands.
This was a result of high ring wear permitting metal to metal contact between the ring
substrate material and the cylinder liner. Seizure is further supported by the top
compression ring deformation in the area where the ceramic fractured. There was no
evidence on the ring gap indicating ring butting. As a result of this failure, ceramic debris
was introduced between the rings and liner, confounding wear measurements for the
baseline carrier gas run.

The engine was rebuilt with a new head, piston, liner, ring pack and the lubricant injector for
the lubricant injector test run. Section 7.14 presents typical blowby, and top ring reversal
liner temperatures and head temperatures. See Figures 57 (page 97) and 58 (page 99). Note
the difference in temperature separation of the exhaust and intake sides from the baseline
run. This greater separation is most likely due to better lubrication on the lubricant injector
side (intake) of the cylinder, permitting the piston rings to seal better. This resulted in better
contact of the piston ring to the liner, thus permitting more heat flux into the intake side of
the cylinder. The blowby was significantly lower than the baseline, carrier gas test run. The
fueling rate, however, was slightly higher than the baseline.

During the tear down inspection of this test run, it was again found that the ceramic piston
dome had fractured, although not to the extent of the baseline carrier gas run. The ceramic
wear debris was contained and did not appear to affect the ring wear. The tear down
inspection also revealed lubricant coating the combustion chamber surfaces, with significant
amounts of carbon residue on the fire deck, sides of the piston, and in the oil ring groove,
causing the oil rings to stick. The condition of both ring faces was similar to the baseline
carrier gas test run, with scuffing occurring 360 degrees around the outside diameter.

Engine performance and emissions data for the two test runs are presented in Table 4. The
increase of motoring torque, indicated power, and fueling rate exhibited for the lubricant
injector test run indicate an increase in friction. The ISFC is about the same, indicating the
combustion process has not changed. Valve event performance was also noted not to have
changed, indicating that pumping losses were also most likely the same. Increases in Bosch
Smoke, NOx and the carbon balance error indicate that some of the injected lubricant was
consumed in combustion. Note also that the average blowby decreased despite the increase
in ring gap from the carrier gas to the lubricant injector run. Overall, with the lubricant
injector, engine performance is mixed in comparison to the carrier gas VPL baseline run.

To compare ring wear between use of the carrier gas and lubrication injector, wear data from
the ring pack design test run, noted above, was used. This run, other than a shorter test time,
was functionally not different than the baseline carrier gas run, and will be considered here
as the baseline run for purposes of wear analysis because of the ceramic piston failure.
During all test runs, ring wear was extremely high. Radial wear measurements of the top
and second rings indicate that wear was greater than the print specified face coating
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thickness of 0. 15 mm for the carrier gas run, and approximately the same as the thickness for
the lubricant injector run. Since the wear was high for both test runs, it is not felt that the
silver friction reduction coating on the lubricant injector run rings was a significant factor in
the wear analysis comparison of the lubrication methods.

TABLE 4

LUBRICATION SYSTEM ENGINE PERFORMANCE COMPARISON

(1800 r/min 30 N•m 110/140 kPa*)

Carrier
Gas VPL

Lubricant
Injector

Motoring Torque
1800 rpm

Nm -67 -69

Indicated Power kW 16.7 17.6 (est.)
Pumping Loss kW -2.35
Max. Cylinder Pressure MPa 10.4 9.0 (?)
ISFC g/kW-hr 180 181
Fuel Mass kg/min .050 .053
Bosch Smoke 0.9 1.2
NOx ppm 433 473
Carbon Balance Error —+1% +8%
Blowby liters/min 110 90
Ring Gap mm 1.7 2.0

* 110/140 kPa intake/exhaust restriction respectively

Figures 31 and 32 present the wear rates of the top and second rings for the two lubrication
methods. The injector was better at lubricating the top ring than the carrier gas. This is a
result of the high blowby and the second ring blocking the top ring from lubricant in the
carrier gas run. It is likely that no significant quantity of lubricant was deposited on the top
ring or liner walls near its top ring reversal, the most critical area, nor was any significant
quantity of lubricant carried up the liner into top ring reversal zone. This is supported by the
similar wear rate of the second ring, indicating similar levels of lubrication for both
methods. The larger difference in the second ring radial thickness wear is explained by the
varying level of lubrication around the cylinder in the lubricant injector run.

The lower radial wear rate for the lubricant injector run implies that better lubrication is
supplied to the second ring despite any potential problems with lubricant migrating about
the ring zone. This decrease in ring wear rate for the lubricant injector run also occurred
despite a lower than targeted level of lubrication in the inter-ring pocket.
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The low lubricant concentration gives some insight into the higher friction phenomenon
observed in the lubricant injector run. Levels of lubricant concentration on the order of 0.01
to 0.03 mol% have been seen to cause increased wear in CKTTF testing. Figures 33 and 34
presents ring and liner wear data from the CKTTF testing for several levels of vapor phase
lubrication concentrations. Note the higher rate of wear for lubricant concentrations at 0.01
to 0.05 mol%., even higher than no intentional lubrication. It has been theorized that very
low levels of VPL lubrication do not act effectively as lubricant shear layers. Rather wear
debris is trapped, promoting increased wear and friction.

The lower blowby and ring wear rates of the lubricant injector run indicate that the optimal
concentrations of lubrication may be lower than that for the carrier gas method. An
examination of liner wear confirms that the quality of lubrication varied around the cylinder
for both the lubricant injector and carrier gas test runs, as indicated by the second ring-top
ring reversal liner wear step (Figure 35). Liner wear is lowest on the intake side of the
cylinder where the lubricant injector was mounted. Two factors account for the difference in
liner wear around the cylinder. First, the single injection port and the purge effect of the
blowby do not permit the lubricant to effectively migrate around the cylinder. Second, the
exhaust side of the liner is hotter, promoting wear and, as a result of the thermal distortion of
the ring, a greater level of purging blowby. The higher liner wear for the lubricant injector
test run is probably due to the lubricant concentration starvation conditions noted above.
The top ring reversal wear step, Figure 36, indicates that both the carrier gas and lubricant
injector runs had lubricant starvation conditions, as seen by the equivalent liner wear. The
higher ring wear at the lubricant injector (intake side) is most likely the result of a low
lubricant concentration, a condition worse than no intentional lubrication.

System Comparison Conclusions

Overall, the SCTB tests show that the lubricant injector is promising. Both lubrication
methods encountered very high ring and liner wear, as compared to previous SCTB testing
and conventional ring wear experience. However, this is due, in part, to the new ring pack
design that was installed prior to this testing. This high tension ring pack, designed for
blowby control, was not optimized for minimal ring wear in a low heat rejection engine.
Nor did this ring pack entirely achieve the intended blowby control target. Second, the
lubricant injector inter-ring lubricant concentration is very sensitive to blowby purge. While
lubrication and blowby are interlinked -- better lubrication results in lower blowby -- it is
important that blowby be controlled to ensure that good lubrication is achieved. Therefore,
in order to implement the lubricant injector concept, it is absolutely necessary to control
blowby.

These tests provide evidence that perhaps two lubricant injectors or injector ports are
necessary for each cylinder. Data from the two test configurations indicate the inter-ring
lubricant injector run produced lower blowby and lower ring wear. The injector run also
produced higher liner wear and friction. It should be kept in mind that if the lubricant
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concentration in the inter-ring pocket had been at the intended level, the same as the carrier
gas test, these observations may have been different. Finally, some of the injected lubricant
may be burned in-cylinder, as exhibited by the higher smoke, and carbon balance error. If
this is the case, one of the intended strengths of this system, lower emissions through lower
lubrication consumption, is lost. However, further testing of the lubricant injector on a more
stable test platform is warranted before the emissions issue can be fully understood.

CONCLUSIONS

Within the context of the limited data generated in the comparison testing of the baseline
carrier gas versus the lubricant injector delivery system, the following conclusions are made:

1. The lubricant injector shows potential as a practical vapor phase lubrication delivery
system for low heat rejection engines, yielding lower blowby and ring wear in
comparison to the carrier gas VP lubrication method.

2. Both the lubricant injector and carrier gas lubrication methods exhibited very high ring
and liner wear compared to previous SCTB testing and with conventional engine test
experience. However, the new ring pack implemented for blowby control during this
testing is believed to be a significant factor in this higher wear.

3. The lubricant injector inter-ring lubricant concentration is very sensitive to blowby
purge, resulting in lower than desired lubricant concentrations. In SCTB testing,
uneven circumferential liner wear was demonstrated. Testing of the lubricant injector
was conducted under non-ideal, high blowby conditions. It is unclear if reasonable
blowby levels would have permitted adequate lubricant migration or whether additional
injector locations are needed.

4. The lubricant injector delivery system produced higher liner wear and friction compared
to the baseline carrier gas lubrication system. This observation is confounded by the
poor lubricant concentration in the inter-ring pocket.

5. Some of the injected lubricant may be burned in-cylinder, resulting in higher emissions
and carbon balance error over the carrier gas delivery system test.
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SECTION V

ADVANCED ENGINE VALVE ACTUATION SYSTEM

Phase I of the ADECD program[ I 1 concluded that electro-hydraulic valve actuators would be
developed for the single cylinder engine in Phase II/III.

5.1 VARIABLE VALVE ACTUATION

Variable valve actuation was undertaken for two basic reasons:

Elimination of conventional overhead and lube system because of high cylinder head
temperatures. This approach also eliminates valve side loads for the valve stems.

2. Demonstration of advanced engine concepts for performance and operational
improvements:

a. Improved fuel economy throughout the speed-load range and idle by valve overlap
control and disabling valves for cylinder cutout

b. Improved startability by increased compression ratio & expansion ratio, cylinder
heating by high residuals, and cylinder cutout for higher cranking speed

c. Cold smoke control by the same items listed for startability plus reduced fuel input

d. Engine compression braking (Jacob's Brake) with higher capacity by use of two
cycle valve scheduling

e. Transient engine response and smoke control improvement by early exhaust valve
opening to minimize turbo lag.

DDC designed a workable version of an electro-hydraulic valve actuation system by
application of electronic fuel injection technology. The design goal was approximation of
DDC Series 60 engine valve lift profiles throughout the engine's speed range and retention
of acceptable valve seating velocity. Analytical studies[^1 had indicated that these schedules
were almost the optimum for the ADECD SCTB. However, the study indicated that more
rapid valve opening and closing along with appropriate timings would provide some
increase in volumetric efficiency. Therefore, more rapid valve motion and totally flexible
timing are the design goals of the mature system.
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5.2 METHOD OF OPERATION

The electro -hydraulic valve actuator system is made up of three components, the actuator,
pump and controls.

The actuator (see Figure 37) uses a solenoid-controlled spool valve to supply high pressure
fuel to a piston which actuates the engine valves. One actuator for the two exhaust valves
and one for the two intake valves are mounted on the engine head. Each drives a valve pair
by a valve bridge. The valves use DDC S60 valve springs for closure because the actuators
were single acting.

The pump used was a S60 electronic unit injector (EUI) modified with a check valve. It
operated as a variable displacement pump to minimize power requirements. Each pump
supplied its actuator with high pressure fuel (35 MPa) through separate tubing and an
accumulator. The pumps were mounted off the engine in a cam box which was synchronous
belt driven (2:1 reduction) by the engine.

Finally, the electronics that control the actuator and pump were two modified Detroit Diesel
Electronic Control (DDEC) Electronic Control Modules (ECM) - one to run the actuators
and one to run the pumps. These ECMs control when valve lift or pumping occurs by
creating properly timed solenoid drive currents. The events are from look-up tables for
beginning of event (BOE) and pulse width (PW) as functions of engine speed and throttle
position. Also, the ECM uses feedback to sense solenoid valve end of stroke and modifies
the start of current for proper BOE of subsequent cycles.

The actuator itself is comprised of four sections - solenoid, solenoid valve assembly, check
valve assembly, and piston assembly that work as follows:

Lift

At BOE, the solenoid is turned on by the ECM which supplies a high pull-in current to move
the solenoid valve. At the end of the spool valve stroke, the current is reduced by pulse
width modulation (PWM) to hold the solenoid valve up until the end of the event.

When the solenoid valve is lifted by the solenoid, the vent cavity is closed off and the high
pressure cavity is opened to allow fuel flow through the check valve assembly. The left
check valve opens for fuel passage to the piston assembly; the right check valve closes. The
piston is pressurized through its T-passage and moves in the desired direction.

Max. Lift Dwell

When the piston reaches maximum lift, it closes off the left lower fill port. This and the
closed right check valve prevents further pressurization of the piston. This gives a positive
limit on valve extension which is 12.3 mm (full closure of fill port to full closure of spill
port). This prevents excess lift, which would cause longer duration of closure and possible
piston contact.
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End of Lift

At end of PW, the solenoid current is shut off and the solenoid valve spring pushes the spool
valve down. This closes the high pressure source and opens the vent. The engine valve
springs force the piston to push the fuel through the upper right spill port. The right check
valve opens and the left one closes.

Unlike the fill port, the spill port is small and has a rectangular shape. As the piston
approaches the end of its stroke, this port is closed by the top of the piston to provide a
variable area restriction which damps valve seating velocity. The amount of damping is
controlled by the position of the actuator relative to the valve stem which changes port area
at end of lift. Thus the ports and check valves provide for fast fill during lift and seating
velocity control at the end of lift.

5.3 FIXTURE DEVELOPMENT

All development of the actuator was done on the Valve Actuator, Injector Fixture (VAIF)
which is shown in Figure 38. The setup of the actuator system was similar to that on the
engine. This fixture uses an electric motor to drive the pump. The adjustable pressure
regulator is not used for normal operation of the system, only as an over-pressure safety.

Unless otherwise specified, all fixture data presented in this report simulates SCTB valve
system inertia and spring loads. Aluminum valves were used to duplicate the ceramic valve
mass. Actuator piston protrusion is 4.6 mm for a valve seating velocity of .5 m/s. Gas loads
for the exhaust schedules are not simulated on the VAIF, but it was recognized that these
could significantly retard exhaust beginning of lift.

Measurements of valve motion were made with an Optron electro-optical tracking system
which was attached to a Norland 3001 programmable oscilloscope for data acquisition. The
oscilloscope also monitored solenoid drive voltages and supply pressures. The computer
was hooked to the two ECM's for monitoring and table editing using standard DDEC PC
software.

The only fixture development problem was high pressure line cracking due to vibration.
These lines are a special pump and nozzle type (140 MPa capacity) which use a variety of
commercial high pressure fittings for interconnection. Few leakage problems occurred with
the fittings themselves. Proper support of the line and a special vibration-proof line collar
eliminated the line failure problem.
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VAIF plots from the Norland oscilloscope showed the pump drive voltage, the actuator
supply pressure (approximately .3 m away), the actuator drive voltage and the resulting lift
of one of the valves versus engine crank angle. The pump drive voltage trace indicates
when the pumping took place. The BOE and PW for the pump's solenoid valve and the
actuator solenoid valve were tracked.

Valve Actuator Development and Operation

As can be seen from Figure 39, close agreement was achieved between the lift on the fixture
and on the SCTB. The S60 lift profile goal can also be seen. The particular lift schedule
shown here was not intended to approximate the S60 lift profile goal. A "Safe-X" schedule
was used to keep the valves 30 degrees crank angle away from piston top for initial engine
development tests.

Some of the differences between the SCTB and fixture lift were attributed to the
measurement method used on the engine, where a proximity probe sensed a ramp machined
in the side of the valve bridge. This method is somewhat inaccurate, since valve side-to-side
motion, which changes proximity probe gap, affects lift measurement.

The exhaust and intake valves operated throughout the engine speed range from 1900 r/min
down to 500 r/min. The maximum lift at high speed is reduced when there is inadequate
supply pressure or excessive fill passage restriction. This results in insufficient time for the
valve to achieve full lift before end of event (EOE). At mid-speeds, there is adequate
pressure for maximum lift to be limited by fill port closure. For this data, the maximum
possible lift was 11.4 mm (not 12.3 mm) due to adjustment for seating velocity control. At
low speeds, actuator leakage became significant and reduced supply pressure. Since
maximum lift is determined by force equilibrium with the valve springs, fill port closure
may not be achieved with reduced supply pressure.

For mid-speeds, the theoretical pressure necessary for 11.4 mm of lift was 30.4 MPa based
on measured spring rate, preload, and piston diameter. This pressure occurs just as the
pressure port is closed and max. lift dwell occurs. The associated piston displaced now for
this lift is 900 mm 3 . Measured total flow is about 1225 mm 3 with a leakage flow through
the actuator of 325 mm3.

For low speed, the max. lift of 10 mm occurred at a pressure of about 27 MPa with total
flow of 1280 mm 3/cycle. The theoretical pressure is 27.9 MPa and piston displaced flow is
780 mm3/cycle. Leakage flow is 500 mm3 , which caused the lower supply pressure.
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Generally, the intake actuator operated at higher pressure than the exhaust. This was due to
the timing of the lift event relative to the pumping event and not actuator variation. The
"Safe-Y" schedule resulted in the pumping event leading the intake actuator event by 42
degrees crank angle and the exhaust event by 26 degrees crank angle.

For this design, fill restriction is determined by the solenoid valve curtain area of 5.5 mm2;
all other passages have a minimum area of 7 mm 2 . The spill port through which all spill
must flow has an area of only 0.9 mm 2 . The spill port was perfectly matched for low speed,
but was too restrictive for high speed.

Initially, it was thought[ 3 ] the monolithic ceramic valves would be stress limited to a seating
velocity of 0.05 m/s. However, tests on these valves showed that they were equivalent to
metallic valves and a maximum velocity of 0.5 m/s was demonstrated (Section 33) on the
ceramic valves. This was the goal for actuator adjustment. Valve seating velocity control
was also optimized for a maximum ceramic valve thermal growth of 0.28 mm. However,
unlike a standard cam drive setup, the ECM's valve schedules can be used to compensate for
this effect.

Possible failure modes associated with this design were considered. If the spill check valve
leaks, duration is increased, and possible piston contact occurs. Excessive lift due to this
leakage was not seen while running the actuator during static tests for maximum lift, since
force balance with the valve springs served to limit the travel, not fill port closure. Further,
if the fill check valve was to fail, valve seating velocity could be exceeded. Possible loss of
lift control and valve seating velocity variation associated with thermal growth led to the
recommended design improvement presented later in this report.

Hardware Development

Areas of development for the actuator were early distress of the check valve end plates,
solenoid valve retainer and valve to housing matching.

After initial running of the actuator, check valve end plate wear was observed due to check
valve impact. This led to a T-passage design which gave more load bearing area for the
impact loads that occur during valve opening. No further deterioration of check valve seal
surfaces was seen.

Comparisons of actuator valve measurements with and without the solenoid applying force
to lift the valve showed the solenoid valve retainer plate was deflecting excessively. Soon
thereafter, a plate failure occurred. The plate thickness was increased from 1 to 2.5 mm and
no subsequent problems were noted with this improved design.

Initial tests indicated that the actuator would rapidly open the valves but had slow valve
closure. Inspection of the actuator showed cavitation erosion of the valve and bore. An
airflow apparatus was built to statically measure solenoid valve flow vs. position. The
problem was that the valve housings were not to print. The vent cavities were too low by
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.25 -.55 mm. To correct this, each valve was matched to each housing to lower the vent
edge. This did not affect other parameters such as seal lengths, stroke, etc. and gave a quick
rework of the existing hardware.

Steady- state measurement summary for actuators #2 & #3 covered in this report is shown in
Table 5.

TABLE 5 VALVE ACTUATOR RESPONSE DATA

Act Pump
Act Sol Vlv Loc Leakage at Leakdown

Per Airflow Fixture 35 MPa 35-30 MPa
Press on

Gap Stroke Vent off Press on Vent on 1800
MM mm mm mm mm3 /CVC r/min sec

#2 .63 .48 .18 .24 140 150 7

#3	 1 .58 .50 .21 .24 350 130 6

Pump Characteristics

At high speed, maximum pump output required shorter PW than at low speed. The
transition appeared around 1500 r/min. The rail pressure increases 5 MPa by increasing
pump BOE & PW 28 degrees CA so that the entire cam lift was utilized.

A pump working into fixed back pressure of 35 MPa was developed. This pressure was
maintained by the pressure regulator without an actuator. The start of significant output
reduction was due to pump PW reduction or BOE retard. The start of pressure rise occurs at
the same location on all the plots even though the pump valve events are changing. The
pressure damping effect of the accumulator and low pressure drop between the pump and
actuator at maximum flow was established.

Electrical System Development

The DDEC ECM created precisely timed pulses to drive the solenoids based on crank
position and speed derived from a magnetic Timing Reference Sensor (TRS) on the
crankshaft. The timing pickup is mechanically adjusted to lead the Top Center/Bottom
Center event by a known crank angle. This reference was set to allow enough time for the
ECM to determine the electrical pulse and clock down to the most advanced beginning of
event at the highest speeds.
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The system used two ECM's; one for the engine and one for the pumps which share the TRS
and throttle inputs. Channels 1,2 and 3 are the injector, exhaust and intake, respectively for
each box with two TRS signals per engine revolution driving them. The software was
modified for each channel to have its own look-up table. These tables were rescaled to
handle much larger values for the valve events. Further, the TRS reference was increased to
155 oCA BTC to allow for the exhaust valve's advanced BOE.

Two of the channels in the engine ECM were modified to supply higher than normal pull-in
current (17 A/12 V) to move the solenoid valve through its long stroke (.5 mm).

Transient Characteristics

With the engine running at a steady speed, all events are accurately controlled. However,
during a change of engine speed, timing and duration errors surfaced at low speed.
Assuming a fixed acceleration power stroke during the first engine cycle, BOE lagged by as
much as 10 degree CA (Int) and the EOE by 20 degree CA (Exh). Although this could be
compensated for by the software, use of a multi-tooth wheel and counting teeth to initiate
events instead of a timer is recommended.

New Design

A proposed new design eliminates the check valve assembly and alignment pin problems.
This design incorporates a fill/spill (FS) port (left) and a ramp (R) port (right). The FS port
handles the fill and the majority of the spill event. There is a flow transition from the FS
port to the R port near the beginning/end of motion, i.e., the FS port opens/closes as the R
closes/opens. The R port's size and location are chosen so that a smooth transition occurs in
the flow area.

At BOL, this design uses the R port for initial fill until the FS port starts opening since the
previous design showed that the spill port didn't have to be completely closed to achieve
adequate damping. The valve opening rate is initially slower, providing more overlap near
piston TC. During valve closure, the greater spill area overcomes the slow closure noted
earlier. At the R port, an adjustable restriction is provided to eliminate damping variation
due to valve thermal growth.

5.4 ELECTRO-HYDRAULIC VALVE ACTUATION

The ceramic valves were actuated by an electro-hydraulic actuator. Each actuator operates a
pair of valves through a floating bridge. Two actuator assemblies were used on a test rig to
evaluate flexibility and demonstrate preliminary proof of concept operation, prior to
installation into the engine. The valve actuation system successfully demonstrated
flexibility on both a bench rig and on the SCTB for speeds between 500 and 1800 r/min. A
typical valve event produced with the electro-hydraulic valve actuator system is shown in
Figure 40.
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Figure 40: A Typical Valve Event Produced by the Electro-hydraulic Valve Actuator
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The beginning and end of event and event duration were directly controlled by a modified
version of Detroit Diesel's Electronic Control [DDEC-II] Software. Valve seating was
dampened by an internal square orifice to avoid exceeding the 0.5 m/s design limit selected
for the ceramic valve. This system demonstrated the ability to change the beginning of
event, dwell, end of event, and maximum valve lift during engine operation.

During initial engine testing, inadvertent contact between the valves and the piston was
avoided by using a SAFE valve schedule (Figure 40). Later, to increase the performance
and power level of the engine, the valve schedules were altered to more nearly represent cam
driven valve profiles. During this phase, logic errors in the modified DDEC-II software
apparently occurred, negating a system pressure relief valve setting and allowing contact
between valves and piston.

A detailed analysis of transient timing and investigative tests using the engine and the test
fixture established the following:

• Cycle skipping was caused by a software problem. Specifically, multiples of a very
narrow range of actuator pulse widths with a fixed response time, 32.5 ms +/- 32 µs,
would start the actuation sequence properly, but would halt it prematurely.

• Each skipped cycle raised the rail pressure approximately 3 MPa over the 20 MPa
nominal value. With the existing exhaust actuator hardware, approximately six cycles
would have to be missed at 20 MPa before the SCTB's relief valve, set at 40 MPa, would
limit the pressure from increasing even further. Within the pressure range, 20 to
40 MPa, the valve lift would increase from 73 to 11.8 mm. Also, opening and closing
rates would be effected. For the exhaust position: the opening would be earlier and the
closing would be later.

• It was found that a malfunctioning electro-hydraulic valve actuator forced the two
ceramic exhaust valves into the piston at approximately 820 r/min, causing the failure.

• The software was modified to eliminate the malfunction. The engine's actuator system
relief valve setting was reduced from 40 to 25 MPa, whereby adding a fail safe to the
actuation system.

CONCLUSIONS

1. The EHVA system can actuate S60 type ceramic and metal valves from 500 r/min to
1900 r/min with very little cycle-to-cycle variability of the valve lift profile. Minor
timing flexibility was demonstrated.

2. Lift profiles did not duplicate production engine valve events. The test hardware was
limited to 10 mm lift (80% of S60 exhaust lift goal) and an 1800 r/min opening duration
of 80 degree CA; closing, 95 degree CA. The test actuator pump had to be run at its
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maximum capacity to achieve this. Excessive vent restriction prevented faster valve
closure at high speed using production S60 valve springs.

3. Leakage of the pump check valve and actuator solenoid valve and fill passage
restriction need to be minimized to reduce pump requirements.

4. Acceptable valve seating velocities were achieved. The seating velocity is adjustable,
but is restricted by the maximum lift capability of the actuator. Further, valve thermal
growth affects end of lift timing and seating velocity in the existing test configuration.

5. Design changes were necessary to adapt the check valves and solenoid valve retainer of
the original actuator design. All other hardware worked without problems.

6. Significant valve event retard occurred during accelerations at low speeds using
existing DDEC algorithms.

7. Design changes for a simpler, smaller actuator that reduces engine valve opening and
closing duration with minimized valve thermal growth are required.
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SECTION VI

ADVANCED ENGINE INJECTION SYSTEM

An advanced fuel injection system was developed for the camless single cylinder test
engine. This common rail fuel injection system generated high injection pressures for
reduced particulate emissions.

6.1 COMMON RAIL INJECTION SYSTEM BENEFITS

Mechanically actuated unit injection fuel systems, widely used in heavy-duty diesel engines,
require stiff and heavy drive trains to carry the high loads produced by the injection pressure
acting on the plunger, and do not provide control of the injection pressure. A common rail
fuel system was selected for the ADECD program for the following three reasons: (1) it
allows control of injection pressure, (2) it allows the pumping element to operate without
external lubrication, and (3) it has a higher overall efficiency.

Injection Pressure Control

The fuel injection pressure in a unit injector is controlled by the area of the nozzle and the
plunger pumping rate, which is a function of engine speed. Once these parameters are
selected, the injection pressure is a fixed function of engine speed and fueling. In practice,
this means the injection system is sized to give a tolerable peak pressure at rated power
conditions, and at lower speeds and loads the pressure may be less than optimum for
particulate and smoke control.

Lubrication Systemtem

The SCTB was designed to operate with a vapor phase lubrication system and an electro-
hydraulic valve actuator; thus the engine did not have a conventional lubrication system to
lubricate the cam roller and camshaft required for a unit injection system. Therefore the
high pressure fuel injection pump had to be a self-contained unit.

Injection System Efficiency

A third reason to select the common rail system was its higher overall efficiency. Although
there was some high pressure fuel loss due to leakage and the control system, less fuel was
compressed and spilled than in a unit injector. Thus common rail systems offer reduced
power consumption.

Although the common rail fuel system has important advantages, there are concerns with its
operation. Some of these are:
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I . Fuel output variability. It can be challenging to obtain good injector-to-injector control
during the manufacturing process, especially over a long period of time.

2. The turndown ratio (maximum output / minimum output) can be poor, especially at
high speeds. This is because it is difficult to open and close the needle fast enough to
inject small quantities of fuel.

3. A simple common rail system has a nearly square rate of injection because of the
constant fuel injection pressure.

4. The substantial volume of high pressure fuel creates a safety hazard if a fuel line or
nozzle fails.

6.2 COMMON RAIL INJECTION SYSTEM RESULTS

Fuel injection via a high pressure common rail system was chosen. Three injector
assemblies were procured from Diesel Technology Corporation. Proof of concept testing on
a bench rig resulted in delivering between 20 and 335 mm 3 of fuel/cycle independent of
engine speed and achieved 125 MPa peak injection pressure. The design goals with respect
to full fuel rate, beginning of injection and duration targets were met (see Table 6).

The rate of injection when delivering 167 mm 3 of fuel at 1800 r/min is shown in Figure 41.
The system is capable of providing the same amount of fuel in shorter durations by raising
the rail pressure. Besides, this injection system can maintain near uniform injection pressure
at the desired pressure level under all load and speed conditions.

TABLE 6

COMPARISON OF ACTUAL COMMON RAIL INJECTION PARAMETERS
VS. TARGET VALUES

TARGET ACTUAL

Speed 1200 r/min 1200 r/min
Fuel/cycle 207.4 mm 208.3 mm

Beginning of Injection -14.0 deg. -14.1 deg.
Duration of Injection 25.0 deg. 23.9 deg.

Speed 1500 r/min 1500 r/min
Fuel/cycle 191.7 mm 190.5 mm

Beginning of Injection -16.0 deg. -16.0 deg.
Duration of Injection 28.0 deg. 27.7 deg.

Speed 1800 r/min 1800 r/min
Fuel/cycle 167.0 mm 166.7 mm

Beginning of Injection -17.9 deg. -16.8 deg.
Duration of Injection 29.0 deg. 31.8 deg.
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This system was integrated into the SCTB during Build # 4 and 5 (Section 7) and
demonstrated the ability to vary the fueling rate and pressure during engine operation. End
of event response time with this system was significantly reduced by optimizing the air gap
and solenoid travel.

The rail pressure of the injection system was increased from 41.4 MPa to 68.9 MPa (Section
7.6) and engine testing continued without any other hardware changes. The 68.9 MPa rail
pressure of the injection system greatly reduced the smoke level. During operation at 1800
r/min and 20 N-m brake torque, a Bosch smoke number of 0.7 was measured. This is an
84% improvement over the 4.4 level (Build #4) with a 41.4 MPa rail pressure.

The cylinder liner temperatures were reduced, as well, with the higher injection rail pressure
(Section 7.6). The maximum liner temperature on the exhaust side at top ring reversal
decreased from 470°C to 355°C and the circumferential temperature gradient from the
exhaust to intake side was reduced by approximately 50% with the higher rail pressure.
These improvements are attributed to better combustion.

The reduced circumferential temperature variation on the cylinder liner for the higher rail
pressure case (Build #5) resulted in improved piston ring to liner sealing and less blowby as
shown in Figure 42. For comparison, the lower rail pressure data is also shown. The
reduced blowby is most likely due to less thermal distortion of the liner. Specifically, the
higher rail pressure condition resulted in a relatively constant level of blowby, 40 1/min,
compared to the lower rail pressure case, where the blowby rapidly increased to over
85 1/min (limit) after 20 minutes of operation.

In an effort to boost engine power to 50% (Section 7.11, Build #10), the high pressure fuel
for the common rail injection system was increased by about 20 percent over previous
levels. The Build 410 injection event, as developed on the VAIF, is shown in Figure 43.
For comparison, the previous injection event is also shown in Figure 45. As with previous
valve and injection event changes, the Build #10 valve and injection events were verified on
the VAIF, prior to installation into the SCTB.

The testing effort concentrated on establishing a reliable operating condition for the vapor
phase lubrication study. A maximum power level of 14.8 BkW, 80 N-m brake torque at
1800 r/min, was generated during this effort. In total, over 200 hours were accumulated on
the common rail injector.

CONCLUSIONS

1. The common rail fuel injection system hardware was fabricated and successfully
demonstrated on the SCTB. Design goals with respect to fuel rates and events were met.

2. Benefits of reduced particulate emissions with increasing injection pressure and control
of injection pressures independent of engine speed and load were successfully
demonstrated.
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Blowby vs. Time
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Figure 42: Blowby Comparison, Build #5 vs. Build #4
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SECTION VII

SINGLE CYLINDER TEST BED

7.1 SINGLE CYLINDER ENGINE & TESTING

During Phase II/III of the program, each of the advanced concepts successfully passed
preliminary proof of concept testing as described in Sections II through VI. This was
followed by the integration of concepts into the single cylinder test bed [SCTt3] fabricated
during 1987. This test bed is a vital laboratory tool in studying the many advanced
technologies of the ADECD Program, as well as other advanced LHR technologies
necessary to meet the overall Heavy Duty Transport Technology (HDTT) Program Goals.
The SCTB simulates the reciprocator for a system having no cooling system, turbo
compounding, Rankine bottoming cycle, variable area turbocharger, common rail injection,
and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr).

The integration of all advanced concepts (Sections II-VI) was done in a step-wise manner.
These efforts are summarized in Table 7.

TABLE 7

INTEGRATION OF CONCEPTS INTO SCTB

Concept Integration

Separated Ring Belt (SRB) Piston Feb., 1988
Gasketless Seal (Firedeck/Liner) Mar., 1988
Cast-in-Place Ceramic Ports Mar., 1988
Electro-hyd. Valve Actuation Apr., 1988
Common Rail Injection Apr., 1988
Ceramic Piston Ring May, 1988
Vapor Phase Lubrication June, 1988
Ceramic Valves June, 1988

In total, 13 SCTB builds were made. This section will describe each of the builds. A
summary of this effort is shown in Table 8.

7.2 BUILD 91

The SCTB was used to evaluate the effect of inertia loads on one SRB piston assembly via
motoring operation. Verification of the piston assembly integrity (ceramic piston cap to
piston dome joint and the carrier wrist pin connection) under inertial loading was conducted.
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TABLE 8

ADECD SCTB ACTIVITY

BUILD
NUMBER

OBJECTIVE OPERATION HOURS
ACCUM.

1 SRB Proof of Concept
(POC) Feasibility

600 - 2000 r/min, no load 13.0

2 EHVA & Common Rail
Injection POC

500 - 1800 r/min, 7.5 kW 11.5

3 Vapor Phase Lubrication
POC

500 - 1800 r/min, 	 0 kW 7.3

4 Fully Configured
Operation, 8% of Rated
Power

500 - 1820 r/min, 5.7 kW *5.7

5 16% of Rated Power 500 - 1800 r/min, 14.8 kW 17.1

6 Baseline ring wear rate
with 0.1 mole % TCP

500 - 1800 r/min, 7.5 kW 12.2

7 Evaluate Reduced Ring
Gap

500 - 1800 r/min, 	 0 kW 2.8

8 50% of Rated Power *0.1

9 Same as 6, except no
intentional lubrication

500 - 1800 r/min, 7.5 kW 20.0

10 50% of Rated Power 1800 r/min, 23.8 kW 63.8

11 75% of Rated Power 1800 r/min 4.8

12 Piston ring redesign,
baseline carrier gas

500-1800 r/min 45.7

13 Lubricant injector test 500-1800 r/min 11.3

(*) Misactuation of exhaust valves resulted in valve and piston contact
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To avoid unnecessary risk to the cylinder head, a 25.0 mm thick steel plate with a 75.0 mm
hole to relieve cylinder compression was used. Tests were run at engine speeds up to 2000
r/min, approximately 10% over speed. During the motoring tests, torque, oil control
between the lower cylinder liner and oil control ring and piston motion near TDC were
determined. The dynamic piston to cylinder head clearance at TDC was measured with a
proximity sensor.

The initial static piston to cylinder head clearance of 0.6 mm decreased to 0.47 mm at
600 r/min and 0.18 mm at 2000 r/min. The change in dynamic piston to head clearance was
due to a combination of bearing clearances, distortions, and stretch of the cylinder kit
components.

A total of 676,000 cycles (8.75 hours) were accumulated on the SRB piston without
incident, including sixty-five minutes at 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000
r/min. This test indicates slightly more than 10% margin is available, as compared to the
1800 r/min engine operational speed goal. The modified hardware significantly improved
the oil control between the ring to lower liner interface. The motoring friction was
considered normal.

7.3 BUILD #2

The electro-hydraulic valve actuators and common rail injection systems were integrated
into the SCTB. A valve actuation schedule associated with 183 mm 3/stroke fueling was run
with the head removed using a production S60 piston. The friction measured is shown in
Figure 44. A second run was made with valves and injector inoperative. The power
measured is also shown. The difference between these two power curves shows that the
power to operate the valve and injection systems when delivering 183 mm 3/stroke fuel was
determined to be 2.8 kW at 1800 r/min.

Intake and exhaust valve travel were also measured. Excellent agreement between the
engine and fixture valve motion was seen throughout the speed range. Motoring P-t data
was also taken with the valve actuators and injector inoperative. Peak cylinder pressure
decreased as speed increased, producing a minimum peak cylinder pressure of 4352 kPa at
1800 r/min and a maximum peak cylinder pressure of 4835 kPa at 1200 r/min. It should be
noted that for a compression ratio of 18:1 and a specific heat ratio of 1.33, the theoretical
polytropic pressure is 4675 kPa. Pressure gages used to monitor valve leakage confirmed
absence of any leakage, further validating the good agreement seen between the measured
cylinder pressures and the theoretical polytropic compression.

Visual post-test inspection of the cylinder kit, cylinder head assembly, ceramic firedeck,
metallic valves, ceramic guides, electro-hydraulic valve actuators and the injector showed no
distress. In total, 11.5 hours were accumulated achieving a maximum operational speed of
1800 r/min without component distress. During this operation, a maximum brake torque of
75 N-m and a maximum brake power of 7.5 kW at 900 r/min was generated.
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7.4 BUILD #3

During this build, the advanced VP lubrication system and ceramic valves were added to the
SCTB. It was at this point that all advanced concepts were integrated as shown in Section 1.
In total, 7.3 hours were accumulated during this build under low load operation. Specific
efforts included i) refinement of the vapor delivery system and ii) development of a
procedure to adjust the delivery of lubricant based on blowby dilution and carrier gas rate to
maintain an effective 0.1 mole percent concentration of TCP in the cavity behind the cermet
compression ring.

Axial cylinder liner temperature profiles were measured 2.0 mm below the surface at both
intake and exhaust sides. The intake and exhaust temperature profiles obtained during
1500 rlmin operation are shown in Figure 45. The P-t data and valve events for this
condition are shown in Figure 46.

The temperature exceeded 400°C near TRR and there was a 50°C circumferential
temperature gradient between the exhaust and intake sides (near TRR). It was at this
condition, after operating 17 minutes with very high Bosch smoke numbers, 6.4, that the
blowby began to rise rapidly and the engine was shut down for inspection.

Teardown and post-test inspection revealed no structural failures. Measurements indicated
that the liner was still within original print limits. While the ring was experiencing
significant wear (0.0336 gram weight loss), no scuffing or destruction of the running surface
was observed. Samples of carbon deposits were forwarded to Penn State University for
chemical analysis. The analysis showed that the TCP was reaching the upper liner running
surface and that the deposit formation was similar to the deposits seen during laboratory and
Tribotester evaluation.

A major accomplishment for Build #3 was the successful integration of all advanced
concepts, followed by the accumulation of 7.3 hours of low load operation, including
surviving 400°C TRR temperatures with VP lubrication.

7.5 BUILD 44

An irradiated cermet ring was placed into the SCTB for quantification of in-situ ring wear
during ongoing VP lubrication development. Higher power levels and better combustion
were attempted. The changes made to increase the power levels included changing the valve
event schedule from SAFE to SAFEX (see Figure 47) and increasing the injection rail
pressure. The SAFEX schedule moved the exhaust event 20 crank degrees closer to the
piston, keeping the same beginning of event and adding 20 crank degrees of dwell.
Similarly, the intake event was moved 10 crank degrees closer to the piston TDC, by starting
the beginning of event 10 crank degrees sooner and adding 10 crank degrees to the duration.

76



Liner Temperature vs. Location
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The engine was operated at various conditions, including 1820 r/min, 64 kPa boost, and 53
mm3/cycle of fuel, 33% of full fuel rating. As a result, 20 Nm brake torque, and a brake
power of 3.73 BkW, was generated. High cylinder temperatures and a Bosch smoke number
of 4.4 continued to indicate poor combustion. Blowby levels for various conditions are
shown in Figure 48. The cylinder liner temperatures for 1820 r/min, 64 kPa boost, and 53
mm 3/cycle fuel are shown in Figure 49 and the cylinder head temperatures at various
locations are shown in Figure 50. The temperatures of the back surface of the firedeck and
the temperatures of the iron behind the firedeck, across the air gap, were also measured.

Another significant event was in-situ ring wear measurement via SLA. A total of ten
measurements were made on the piston ring. These measurements were made slightly
below top dead center [TDC] and slightly above bottom dead center [BDC] on both the
intake and exhaust strokes. Table 9 shows the calculated wear of the ring based on these
measurements.

TABLE 9

IN SITU RING WEAR MEASUREMENTS, BUILD #4

Ring Wear, microns

Exhaust Side Intake Side
TDC BDC TDC BDC

Meas.1 12.8 4.9 11.2 -7.3
Meas.2 11.6 0.0 9.3 -13.5
Meas.3 8.9 - 8.6 -

Mean 11.1 2.4 9.7 -10.4
Std. Dev. 1.3 3.5 2.0 4.4

The mean of all TDC measurements was 10.4 microns with a standard deviation of 1.7
microns. The mean of all BDC measurements is -4.0 microns with a standard deviation of
8.1 microns. Based on these results, it is believed that activated ring wear debris was
collecting at the bottom of the cylinder with the intake side collecting most of the debris.
The blowby gases, the scraping action of the ring, or a combination of the two could be the
reason why the debris collected at the bottom of the cylinder. Furthermore, it is speculated
that the vent for the vapor lube system promotes the concentration of the wear debris on the
intake side of the engine.

The TRR measurements provided very repeatable measurements with a standard deviation
of 1.7 microns and a wear rate of approximately 2.1 microns per hour. Unfortunately, the
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Blowby vs. Time
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Figure 48: Build #4 Blowby Levels
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Liner Temperature vs. Location
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Figure 49: Build #4 Liner Temperatures
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Cylinder Head Temperature vs. Location
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engine suffered a failure prior to a second set of measurements. No post-test measurements
were made since it was not possible to recover all the pieces of the broken ring. The lack of
a second set of data prevented determination of wear or deposit trends. Due to the severity
of damage, all hardware was replaced (see Build #5). Approximately 5.7 additional hours
were accumulated during this engine build on the advanced concepts prior to encountering
the catastrophic failure.

7.6 BUILD 45

This build had four objectives: (1) determine and resolve the cause of the Build 44 failure,
(2) increase the power output, (3) improve the combustion process, and (4) establish power
point operation for subsequent VP lubrication development.

In total, 7.9 hours were accumulated at various operating conditions in an attempt to identify
the cause of the Build #4 failure. It was determined that skipped actuation cycles due to
incorrect software logic increased the valve actuator rail pressure. As the rail pressure
increased, the valve lift increased, resulting in the actuator forcing the exhaust valves into
the piston. Hence a protection against misactuation was put into effect. The protection was
a pressure relief valve that did not allow the pressure to build up beyond 25 MPa.

The rail pressure of the injection system was increased from 41.4 MPa to 68.9 MPa and
engine testing continued without any other changes. The testing effort concentrated on
establishing a reliable operating condition for the development of VP lubrication. A
maximum power level of 14.8 kW, 80 N-m brake torque at 1800 r/min was generated. In
total, 9.2 additional hours were accumulated on the Build #5 hardware. Based on this effort,
the 1800 r/min, 20 N-m brake torque operating condition was selected for VP developmental
testing. Data taken at this operating condition was summarized and is shown in Table 10.

The 68.9 MPa rail pressure greatly reduced the smoke level over previous levels. During
operation at 1800 r/min and 20 N-m brake torque, a Bosch smoke number of 0.7 was
measured. This is an 84% improvement over the 4.4 level (Build #4) with a 41.4 MPa rail
pressure.

The higher injection rail pressures also reduced the cylinder liner temperatures. The liner
temperatures for the two rail pressures are plotted in Figure 51. Specifically, the maximum
liner temperature (exhaust side at TRR) decreased 115°C from 470°C to 355°C, and the
circumferential temperature gradient from the exhaust to intake side was reduced by
approximately 50% with the higher rail pressure. These improvements are attributed to
better combustion.
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TABLE 10
ADECD SCTB BUILD 45 RESULTS

(Indicated Basis)

SPEED 1800 r/min
TORQUE 59 N-m
POWER 11.2 kW

PEAK CYL.
PRESSURE

9393 kPaa

IMEP 404 kPa
ISFC 174 g/kW-hr

NO 910	 PPM	 or
16.2 g/kW-hr

CO 69 PPM	 or
0.6 g/kW-hr

HC 102	 PPM or
0.5 g/kW-hr

The reduced circumferential temperature variation on the cylinder liner for the higher rail
pressure case resulted in improved piston ring to liner sealing and lower blowby. The
blowby comparisons are shown in Figure 42 (Section 6, page 70). The reduced blowby was
most likely due to less thermal distortion of the liner. Specifically, the higher rail pressure
condition resulted in a relatively constant level of blowby, 40 1/min, compared to the lower
rail pressure case, where the blowby rapidly increased to over 85 1/min after 20 minutes of
operation.

A post-test inspection of the Build #5 hardware was conducted. Visual inspection of the
piston ring and liner surface revealed no scuffing or scoring. The piston ring and groove
area was free of deposits. Wear debris samples were collected from five locations and sent
to the Pennsylvania State University for evaluation. Results are discussed in Section 2.4.
This evaluation confirmed the presence of TCP and its reaction products in the upper section
of the cylinder liner. In summary, a maximum power level of 14.8 BkW, 80 N-m brake
torque at 1800 r/min was generated during this build through improvement of the
combustion process. In total, 17.1 hours were accumulated. Based on this effort, the 1800
r/min, 20 N-m brake torque operating condition was selected for vapor phase lubrication
development. The cause of Build 44 failure was corrected.
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7.7 BUILD #6

The objective of this build was to quantify the piston ring wear rate under low load
operating conditions. Based on CKTTF results, 0.1 mole percent of vaporized TCP
lubricant was selected for the cermet piston ring/nitralloy liner evaluation. In total, 12.2
hours were successfully accumulated during this test without scuffing or seizure. And, 10.7
hours were accumulated at 1600 r/min and 30 N-m brake torque and the remainder was
accumulated at 1800 r/min and 30 N-m brake torque (7.5 BkW).

The cermet piston ring weight, gap, thickness and profile were measured before installation
into the SCTB. During the testing, the radioactivity level of the ring was monitored and
recorded using SLA technique. This effort included the transformation of in situ activity
readings into equivalent ring wear depths. Approximately 2 minutes of this operation were
without delivery of lubricant, due to high blowby levels stalling the pump.

The firedeck, cylinder head, and liner temperature distributions were monitored throughout
this test work. These temperature distributions for the 1600 r/min and 30 N-m brake torque
point are discussed in Section 2.2. Steady-state TRR temperatures measured 2.0 mm below
the liner surface varied between 340 and 440 0C, depending on the load point.

Since steady-state TRR temperatures of 340 to 440 0 C were tolerated without scuffing or
seizure, it was demonstrated that the vapor phase lubrication technology could be a feasible
lubrication solution to extreme LHR operating conditions.

7.8 BUILD 97

The objective of this build was to evaluate the effect of a reduced ring end gap on blowby
level. Specifically, this test was to compare the blowby level of a silicon nitride ring with a
0.3 mm end gap to the blowby level of a cermet ring with a 1.1 mm ring gap. No other
parameters were changed.

Since no difference in blowby level could be detected, the test was suspended after
12.2 hours of operation at 1600 r/min and 0 N-m brake torque. It should be noted that 0.1
mole percent vaporized TCP lubricant was delivered to the ring/liner interface, as it was in
previous engine builds. Upon disassembly, no ring or upper liner scoring or scuffing was
found. However, the lower liner, which is lubricated with SDL1 was scored.

7.9 BUILD #8

The objective of this build was to quantify the performance and emission levels at 50%
power. During start-up, prior to achieving the 50% power level, a failure was encountered.
From inspection of the hardware and electronic controls, it was determined that the failure
occurred because the intake valves were opened 50° before intended, resulting in
valve/piston contact. Substantial secondary damage also occurred. The objective of this
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build could not be met because replacement hardware was not available. Upon disassembly
of the SCTB, the cermet piston ring was found to be failed. The failure occurred
approximately 145° from the gap. As a result of this effort, the start-up procedure was
modified to include a check of valve events.

7.10 BUILD #9

The objective of this test was to quantify the ring wear rate with no intentional delivery of
lubricant and to compare these results with those obtained during Build #6 that had 0.1 mole
percent of vaporized TCP lubricant delivered.

In total, 20.0 hours were accumulated during the Build #9 test sequence. The test sequence
consisted of two parts and is shown in Table 11.

TABLE 11

BUILD #9 TEST SEQUENCE

Part I

43 hours at 500 r/min (motoring, no load)
2.9 hours at 1800 r/min (motoring, no load)
1.5 hours at 1800 r/min ( 0 N-m, low load)
0.5 hours at 1800 r/min (30 N-m, low load )

9.2 hours of motoring & low load operation

Part II

1.6 hours at 500 r/min (motoring, no load)
0.5 hours at 1800 r/min (motoring, no load)
0.5 hours at 1800 r/min ( 0 N-m, low load)
1.0 hours at 1800 r/min (20 N-m, low load)
0.8 hours at 1800 r/min (30 N-m, low load )
1.6 hours at 1600 r/min ( 0 N-m, low load)
0.5 hours at 1600 r/min (30 N-m, low load)
0.8 hours at 500 r/min (motoring, no load)
3.5 hours at 1800 r/min ( 0 N-m, low load )

10.8 hours of motoring & low load operation

Upon completion of Part I, the cylinder head was removed from the SCTB and the
in-cylinder components were inspected. The components appeared to be in good condition.
The cylinder liner, however, had shallow vertical scuff marks all around the circumference.

87



Upon reassembly, Part II of the test sequence was run. The cylinder liner temperatures and
blowby levels from this effort were monitored. The cylinder liner temperature distributions
from 1600 r/min, 30 N-m and 1800 r/min, 30 N-m and are shown in Figures 52 and 53,
respectively. The blowby levels from 1600 r/min, 30 N-m and 1800 r/min, 30 N-m are
shown in Figure 54.

The performance and emissions data taken during this effort have been reduced. The
cylinder pressure vs. time for the five 1800 r/min load cases were monitored. First case was
the motoring case (-43 brake N-m) and this was followed by 0, 23, 31, and 32 brake N-m
load cases. The maximum cylinder pressure recorded for each of these cases were 5852,
8145, 7896, 8396, and 7780 kPaa, respectively.

The compression coefficients were calculated for the five Build #9 cases by performing best
fit analyses between initial valve closing and BOI. The compression coefficients were:
1.33, 1.29, 1.30, 1.32, and 1.31. Similarly, the expansion coefficients for the five cases were
calculated. For these calculations, best fit analyses were performed between the end of
combustion [EOC] and exhaust valve open [EVO]. The resulting expansion coefficients
were: 1.33, 1.28, 1.26, 1.24, and 1.25.

A difference between the actual and 'best fit' cylinder pressure exists. It is hypothesized that
leakage past the piston ring was responsible. If this is true, on a mass basis the leakage
could be as high as 9%, if all the pressure loss were due to leakage. If the theoretical
polytropic coefficient, 1.32, was used in place of the best fit values, the actual data would
begin to diverge from the theoretical cylinder pressure line sooner, at approximately 35
degrees before top center.

The specific indicated and brake fuel economy levels and performance data at three
1800 r/min load cases were calculated (0, 23, and 31 brake N-m loads). The fuel economy
levels were excellent and highlight the merit and promise of the EHVA and common rail
injection systems.

The indicated and brake emissions data for the 0, 23, and 31  brake N-m load cases were also
calculated. The NOx emission was high, the HC emission is within the standard limit, and
the CO is much lower than the standard limit (typical of diesel engines). Tables 12 and 13
give representative performance and emissions.

Upon completion of Part II of the Build #9 test sequence, the SCTB was disassembled for an
in-cylinder component inspection. During this inspection, the cermet piston ring was found
to be fractured and excessively worn. See Section 2.5. The ring and liner wear rates from
Build #9 were measured, converted to wear coefficients, and compared to Build #6 results.
These results are discussed in Section 2.5.
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Liner Temperature vs. Location
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Figure 52 - Build #9 vs. #6 Liner Temperatures, 1600 r/min and 30 N-m
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TABLE 12

SCTB BUILD 49 PERFORMANCE DATA
1800 R/MIN, 23 BRAKE N-M, -15 DEGREE BOI

Speed
Peak Cylinder Pressure

1800 r/min
7896 kPa

Brake Basis Indicated Basis

TORQUE 23 N-m 66 N-m
POWER 4.3 kW 11.5 kW

MEP 157 kPa 416 kPa
SFC 440 g/kW-lir 166 g/kW-hr

TABLE 13

SCTB BUILD #9 EMISSIONS DATA
1800 R/MIN, 23 BRAKE N-M, -15 DEGREE BOI

Emission Indicated Basis Brake Basis

NOx 15.0 g/kW-hr 40.1 g/kW-hr
CO 1.1 g/kW-hr 2.9 g/kW-hr
HC 0.9 g/kW-hr 2.4 g/kW-hr

Failure analysis of the Build #9 piston ring revealed a fatigue failure initiating at the top
chamfered corner. Since the fractured surface was determined to be free of defects, it was
concluded that the failure was simply due to exceeding the strength of the base material
while running in the unlubricated mode. Based on these results, it was concluded that vapor
phase lubrication is superior to no intentionally delivered lubricant and that no intentionally
delivered lubricant is unacceptable.
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7.1 1 BUILD # 10

The objective of this test was to operate at a 50% power level and to quantify the piston ring
wear rate and the performance and emissions levels. In order to operate at a 50% power
level, the following two items were identified as needing to be accomplished:

• modify the valve event
• increase the injection rail pressure

As stated earlier, previous valve events were purposely kept away from the piston in order to
avoid a catastrophic situation. However, with several reliable demonstrations of the EHVA
system and the need to operate at 50% power, it was decided that the valve events had to
occur closer to top center. Specifically, the exhaust and intake valve events would be placed
within 10 degrees of the piston motion, similar to mechanically driven valve events utilized
in today's diesel engines.

As shown in Figure 55, the valve event for Build #10 was moved to within 10 degrees of the
piston motion, as desired. For comparison, the previous intake and exhaust valve events are
also shown. In a similar effort, the high pressure fuel for the common rail injection system
was increased by about 20 percent over previous levels. The Build #10 injection event, as
developed on the VAIF, is discussed in Section 6.

In total 63.8 hours were accumulated using the Build #10 valve and injection events. Most
of this time was used to identify and stop the lower cylinder liner's liquid lubrication from
leaking into the hotter upper cylinder area. As a result of this effort, a second compression
ring was added to the piston configuration. Upon resolution of the lower cylinder liner's oil
leakage problem, 50% power operation was achieved.

The cylinder pressure vs. time data taken at this moderate power level is shown in Figure 56.
As shown in Figure 56, the peak cylinder pressure reached 12.2 MPa. The performance and
emissions data taken at this moderate power level is shown in Table 14.

The excessively high amount of blowby, 233 liters per minute, prohibited stable SCTB
operation at this power point. Consequently, ring wear rate data were not obtained. At this
point, the SCTB was disassembled so each component could be inspected. Upon
disassembly, the top (cermet) piston ring was found to be fractured, about 175° from the
gap, as discussed in Section 2.4. Further disassembly revealed localized fractures in the
ceramic piston cap on its thrust and anti-thrust surfaces, see Section 2.4. The ceramic
coating on the second compression ring was severely chipped. No cracks were detected
after dye penetrant checking of the ceramic valves, firedeck, and ports.
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TABLE 14

SCTB- BUILD 910, PERFORMANCE AND
EMISSIONS DATA AT 50% POWER POINT

Valve Event SAFE-Y

Injector Tip, holes 9
Injection Pressure, MPa 77
Speed, r/min 1800
Power, kW 22.5

Peak Firing Press., MPa 12.2
Mean Eff. Press., kPa 813
Top Ring Reversal, °C 320
Blowby, 1/min 233

Specific Fuel Consumption 197
g/kW-hr

NOx, g/kW-hr 9.3
CO, g/kW-hr 2.3
HC, g/kW-hr 1.2

Based on an extensive failure analysis, it was determined that the primary cause of failure
was due to butting the second compression ring, which resulted when the ring's thermal
expansion exceeded the gap allowance. This produced a bending stress at the root of the
piston cap groove, which exceeded the cap's strength level and locally fractured the cap. All
other damage, including the extensive chipping of the second compression ring's ceramic
coating, was determined to be secondary.

7.12 BUILD 411

The SCTB was configured with the same components as Build #10 with the exception of a
ceramic-faced stainless steel top ring replacing the prime path monolithic cermet version. It
was reasoned that the stainless steel ring, with a stiffness 50 percent lower than the cermet
ring, would improve the ring-to-liner conformability and reduce the blowby.

Equipped with the stainless steel ring, Build 411 initially achieved a stable blowby at 1800
rev/min under motoring and low power levels. However, at higher power levels, blowby
increased radically after the operating point was held for a period of time. The blowby
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stability of the stainless steel ring was improved over cermet ring, giving a longer time of
blowby stability at any given load point. A maximum of 28 N-m torque at 1800 rev/min and
a peak firing pressure of 11.1 MPa was achieved, but a radical increase in blowby resulted in
the test run being terminated after 4.8 hours were accumulated on the SCTB, only 0.7 of
which were firing. The 75 percent power point was not achieved.

Section 2.4 discusses some temperature and blowby results of this test run. There was a
sudden, large increase in the blowby, and it appeared to be related to the in-cylinder
temperatures. This is supported by the observation that the blowby returned to its initial
level as the engine cooled down.

Due to the time/temperature nature of this radical increase in blowby, it was surmised that
either thermally or mechanically induced ring or bore distortion was involved. The next
objective for the SCTB work was to increase understanding of the excessive blowby through
computer modeling, thus enabling modifications of the SCTB configuration to reduce the
blowby to an acceptable level so that additional component and higher power level testing
could continue.

7.13 BUILD #12

The SCTB was rebuilt with a redesigned L-section top ring and an angled step-gap second
ring. See Sections 2.5 and 2.6 for modeling and design details. The SCTB was run using
the baseline carrier gas method and most of the lubricant injector system engine hardware.
Closed cylinder motoring and test firing of the SCTB was done for a total of 33.1 hours to
verify injector and valve operation at the 25% power point. The tests were conducted with a
lubricant consisting of a 6% TCP solution in white mineral oil. In the baseline carrier gas
test, the lubricant concentration was 0.1 mol%, adjusted for blowby.

Testing of the lubrication systems was conducted primarily at a 25% power level to
minimize blowby purging of lubricant from the inter-ring pocket. The baseline carrier gas
engine test was conducted over a period of three days. During the first day, time was spent
running the engine at a 50% power level in an unsuccessful attempt to achieve reasonable
blowby levels. Figure 57 presents typical blowby and top ring reversal liner and head
temperatures at 25% power. Note the separation of the exhaust and intake top ring reversal
liner temperatures at points where blowby fluctuates. Since the ring pack redesign effort
(Sections 2.5 and 2.6) indicated that this engine was susceptible to ring pack frictional heat
deformation, this temperature separation may be related to marginal lubrication causing the
effectiveness of the ring seal to vary. Engine performance during the first and second days
was consistent with previous test runs with comparable indicated power, pumping losses,
and frictional power losses. On the third day of testing, blowby was 50% higher than the
previous two days, and engine performance had degraded. After a total of 12.6 hours of
engine operation, the engine was torn down to reveal a major piston failure.
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The ceramic piston dome was found to be fractured in the top outer rim for about 270
degrees of its circumference, extending into the ring grooves in some areas. Scuff marks on
the piston rings and liner indicate that the likely cause of this failure was due to scuffing of
the ring, causing momentary seizure, resulting in an excessive load to ring lands. This was a
result of high ring wear permitting metal to metal contact between the ring substrate material
and the cylinder liner. Seizure is further supported by the top compression ring being bent
into the area where the ceramic fractured. There was no evidence on the ring gap indicating
that ring butting occurred. As a result of this failure, ceramic debris was introduced between
the rings and liner, confounding wear measurements for the baseline carrier gas run.

7.14 BUILD #13

The engine was rebuilt with a new head, piston, liner, ring pack, and the lubricant injector
for the lubricant injector test run. Ring pack components differed from the baseline test run
in that they were coated with an anti-friction silver coating, intended to reduce the blowby
via reduced thermal ring distortions. Testing of the lubricant injector was conducted over
two days for a total of eight hours of engine run. Figure 58 presents typical blowby and top
ring reversal liner temperatures and head temperatures. Note the difference in temperature
separation of the exhaust and intake sides from the baseline run. This greater separation is
most likely due to better lubrication on the lubricant injector side (intake) of the cylinder,
permitting the piston rings to seal better. This resulted in better contact of the piston ring to
the liner, thus permitting more heat flux into the intake side of the cylinder. The blowby
was significantly lower than the baseline, carrier gas test run. The fueling rate, however,
was slightly higher than the baseline.

During the teardown inspection of this test run, it was again found that the ceramic piston
dome had fractured, although not to the extent of the baseline carrier gas run. This failure
occurred in the piston ring lands and inter-ring lubricant pocket on the lubricant injector
side, and 180 degrees to the lubricant injector. The piston damage, on the lubricant injector
side, appears to be from thermal shock of the ceramic from the relatively cool injected liquid
lubricant, and opposite to the lubricant injector, from lubrication starvation. The ceramic
wear debris was contained and did not appear to affect the ring wear. The teardown
inspection also revealed lubricant coating the combustion chamber surfaces, with significant
amounts of carbon residue on the fire deck, sides of the piston, and in the oil ring groove,
causing the oil rings to stick. The high blowby, as expected, caused the lubricant to purge
from the inter-ring pocket. The condition of both ring faces was similar to the baseline
carrier gas test run, with scuffing occurring 360 degrees around the outside diameter.

CONCLUSIONS

1. The design of major ceramic components (piston cap, firedeck, ports, valves and valve
guides) was successfully validated in the SCTB under varying engine speeds and loads.

2. Revolutionary engine systems such as common rail injection, electro-hydraulic valve
actuation and vapor phase lubrication were successfully integrated into the SCTB to
demonstrate potential for improved fuel economy and reduced emissions.
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SECTION VIII

ADVANCED EMISSIONS PARAMETRIC STUDIES

The primary concern of current production heavy-duty diesel engines is to meet the
regulated levels of nitrogen oxides (NOx) and particulate emissions. Unfortunately engine
design changes which reduce NOx emissions frequently increase particulates or visa versa.
In developing near term emissions reduction technology, it is therefore necessary to
characterize engine component contributions and trade-offs to the emission equation.

Through extensive analytical and laboratory experience in reducing emissions in production
engines, it was determined that the most promising engine components for emissions
characterization were injector cam lobe profiles, injectors and injector tips, and piston ring
packs. Analysis of these components suggested four areas warranted specific investigation;
1) camshaft generation of very high injection pressures, 2) Injector component parameters,
3) Ring pack design for oil control, and 4) injector and camshaft related injection rate
shaping. Components were designed, fabricated, and then tested on a DDC Series 60 engine
under transient and steady-state operating conditions.

8.1 VERY HIGH INJECTION PRESSURES

Experience has provided ample evidence that smoke and particulates are generally reduced
by increasing injection pressures. However, the magnitude of the reduction and/or the NOx
trade-off had not been fully characterized in a low-emission engine. Of the available design
strategies to increase injection pressures, the approach with the most flexibility and least
impact on the injection drive train was to increase the lift velocity of the injection camshaft.
By increasing cam lift-velocity, greater pressure is applied to the fuel in the injector, thereby
resulting in higher injection pressures.

Two camshaft lobe profiles with higher values of constant lift-velocities were analyzed and
designed to produce higher levels of injection pressure relative to a production baseline
lift-velocity. Table 15 summarizes the cam lift-velocities and their corresponding higher
injection pressures. Figure 59 plots the Brake Specific NOx (BSNOx) versus the Brake
Specific Particulates (BSP) produced during the EPA transient emission test cycle for the
three cam designs. In order to make an objective comparison of the particulate/NOx
trade-off for different camshaft velocities, it was necessary to adjust the injection timing to
give a similar NOx level. Note that the NOx level selected corresponds to the requirement
necessary to meet 1994 regulated levels. As can be seen, both experimental cams confirmed
that higher cam lift-velocities produce a significant emissions improvement relative to the
baseline.
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TABLE 15

CAM LIFT-VELOCITY AND INJECTION PRESSURE

Cam Lift - Velocity	 Injection Pressure
(mm/degree)	 (MPa)

	

0.30	 151	 (Baseline)

	

0.34	 170

	

0.38	 194

To improve understanding of the transient test results, steady-state emissions measurements
were also made at low and high power operation. Figure 60 shows the BSNOx versus BSP
trade-off for the three camshaft velocities at low power as fuel injection timing is retarded to
reduce the NOx. As cam lift-velocity is increased, particulate emissions decrease.
However, as Figure 61 indicates, at high power steady-state conditions, as cam lift-velocity
is increased, particulate emissions increase when injection timing is retarded to reduc;, NOx
levels. This is significant finding in view of the fact that higher power operation is the
major contributor to emissions in the EPA transient emissions test cycle. It also tends to
explain why the 0.34 mm/degree camshaft performs slightly better than the 0.38 mm/degree
camshaft in transient operation (Figure 59).

In summary, with NOx emissions equalized through injection timing, transient particulates
were reduced approximately 20% with the higher velocity camshaft relative to the baseline
production camshaft. Finally, as cam lift-velocity (injection pressure) is increased under
steady-state engine operation at higher power levels, particulates increase at low NOx levels.
At lower power levels, particulates decrease as cam lift-velocity is increased.

8.2 INJECTOR COMPONENT PARAMETERS

Four injector design parameters were selected for study as likely candidates to reduce
particulate emissions. They were: 1. Injector Valve Opening Pressure, 2. Tip Spray Hole
Location, 3. Low Sac versus Valve Covered Orifice Spray Tip Style, and 4. Spray Tip Hole
Length. Selection of injector component parameters was based on injector supplier input and
previous emissions test experience. The Valve Covered Orifice (VCO) production spray tip
style was used as the baseline.
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Table 16 presents the BSNOx, BSP, and brake specific fuel consumption (BSFC) resulting
from this injector parameter study. The measurements are generated by operating an engine
on the EPA Transient Emissions Cycle with the injection timing adjusted as necessary to
produce an approximately equivalent BSNOx that is below the 1994 regulated level. This
normalized BSNOx permits an objective comparison of the injector parameter's influence on
particulate emissions. Each different parameter set was tested at different times, and in
some cases, on different engines. As such, the results should be considered developmental
and conclusions should be based on relative emission levels.

TABLE 16

INJECTION COMPONENT PARAMETERS - TRANSIENT EMISSIONS

Injector BSNOx BSP BSFC BSP
Component Parameter g/bhp-hr g/bhp-hr lbs/bhp-hr Change

Valve Opening	 32.4 MPa 4.89 0.149 0.370 -3%
Pressure	 41.1 MPa 4.87 0.142 0.365

VCO (Baseline) 4.56 0.170 0.365 -12%
Low Sac (Retarded) 4.57 0.131 0.372

VCO (Baseline) 4.16 0.197 0.383 -25%
Lowered Holes 4.26 0.173 0.377

Baseline Hole Length 4.83 0.169 0.388 +17%
Shortened Holes 4.66 0.198 0.389

Injector Valve Opening Pressure

When diesel particulate emission regulations were first instituted, it was found that a reliable
method of reducing particulates was to increase the injector valve opening pressure (VOP).
This strategy was not used in the development of the low-emission Series 60, thus making it
a viable candidate for study. Testing found that an increase of 9 MPa in VOP did not
produce any meaningful difference in emissions.

Low Sac versus Valve Covered Orifice Spray Tip Style

There are two general classes of spray tip designs as illustrated in Figure 62. The VCO
spray tip style has a needle valve which seats such that it covers the spray holes. The low
sac spray tip style has spray holes which enter into a small cavity (the sac) below the needle
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valve. The VCO design minimizes the sac volume, and may directly impact the spray plume
shape during opening and closing of the valve. Naturally, both the sac volume and the spray
plume shape can influence the NOx and particulate emissions.

When the VCO tip and the low sac tip emissions are compared, a 23% decrease in the BSP
is found after the injection timing was retarded to reduce the BSNOx to a comparable level.
The BSP was insensitive to this injection timing adjustment to reduce NOx. However, the
BSFC increased by a significant amount of 1.9%.

Tip Spray Hole Location

The VCO style spray tip was the subject of the spray hole location parameter test. The spray
hole location was varied by moving the hole lower on the valve sealing surface than the
baseline production spray hole location. This modification produced a 12% decrease in BSP
with a 1.5% decrease in BSFC. The BSNOx also increased by a nominal 2% which is
consistent with the fuel consumption improvement.

Spray Tip Hole Length

The spray tip hole length was varied by changing the thickness of the spray tip wall. The
spray hole length was shorted by 0.18 mm changing the length to diameter ratio (L/D) from
7.9 to 6.9. This modification produced a 17% increase in BSP with no significant change in
fuel consumption. Since this produced an increase in the particulates, no attempt was made
to retard the injection timing to normalize BSNOx, as this would also increase the
particulates.

In summary, lowered valve covered orifice spray tip holes and low sac style spray tips can
improve particulate emissions. However, a fuel consumption penalty occurred with the low
sac style spray tips.

8.3 RING PACK DESIGN

Since fuel and oil volatiles can contribute a significant proportion of the total particulate
filter weight from a transient emissions test, effective means of oil control in the ring pack
area are an important strategy towards meeting regulated particulate emission levels. As oil
control and cylinder kit tribology continue to evolve, hardware testing remains the critical
step in the evaluation process. For this program, ring pack suppliers were asked to take a
clean sheet approach towards the design of a ring pack for the Series 60 with the objective of
reducing the lubricant oil contribution to particulate emissions.
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Two clean sheet designs were produced and tested:

Design 1

• Plasma coated top ring with front contact and without twist
• Unplated second ring
• Higher tension oil ring

Design 2

• Plasma coated top ring with rear contact and positive twist
• Unplated second ring
• More conformable oil ring design

Table 17 presents the BSNOx and BSP results of the EPA Transient Emissions Test Cycle,
including the baseline production ring pack. As expected, there is no significant difference
in the BSNOx measurements for the three ring packs. However, significant increases in
particulate emissions were observed with the clean sheet designs. The constant level of
volatile contribution to particulates for all three ring packs suggests that some of the oil is
being converted into soot. A post-test analysis of the wear patterns on one of the ring packs
indicated a great sensitivity of the ring groove to ring geometry, which may have been
influential in the oil consumption.

TABLE 17

RING PACK DESIGN FOR OIL CONTROL - TRANSIENT EMISSIONS

BSNO BSP % BSP
Ring Pack g/bhp-hr g/bhp-hr Volatiles Change

Baseline (Production) 4.87 0.103 20% ---

Design 1 4.81 0.123 22% +19%

Design 2 4.74 0.155 19% +51%

In summary, no improvement was demonstrated with the clean sheet ring pack designs.
However, more investigation of these designs may yield significantly better understanding
of the oil control mechanics in the DDC Series 60.
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8.4 INJECTION RATE SHAPING

Control of fuel delivery rate into the cylinder, or injection rate shaping, can greatly influence
emissions generation. Injection parameters such as spray plume shape and injection
pressure are directly impacted. Through supplier input and DDC emission test experience,
three injection rate shaping methods were determined to be feasible: 1) a Dual Velocity
Camshaft, 2) a Pressure Limiting Injector, and 3) a Dual Spring Needle Valve Injector.

Table 18 presents BSNOx, BSP, and BSFC measured for the injection rate shaping methods
studied. The emission measurements were made from an engine operating on the EPA
Transient Emissions Test Cycle. Because particulate emissions are sensitive to injector
hardware details, in each case, only the pressure-limiting and dual-spring sub-components of
the injector were removed and replaced with production hardware when producing the
baseline emission measurements.

TABLE 18

INJECTION RATE SHAPING - TRANSIENT EMISSIONS

BSNOx BSP BSFC % BSP
Rate Shaping Method g/bhp-hr g/bhp-hr lbs/bhp-hr Change

Production Cam (Baseline) 4.84 0.109 0.354 -12%
Dual Lift-Velocity Cam 4.84 0.096 0.355

Baseline 4.77 0.130 0.371 +25%
Pressure Relief Injectors 4.69 0.163 0.380

Baseline 4.77 0.160 0.369 +22%
Dual-spring Injectors 4.65 0.195 0.384

Dual Lift-Velocity Camshaft

As the very high injection pressure emission test results revealed earlier, there are
advantages in having different cam lift-velocities at different engine loads. From those
encouraging results, it was determined that a dual lift-velocity cam should be tested.
Figure 63 presents a comparison of the 0.34 mm/cam degree constant lift-velocity cam and a
0.30 mm/cam degree increasing to 0.38 mm/cam degree dual lift-velocity cam. Figure 64
plots the BSP versus BSNOx generated at different injection timings for the dual
lift-velocity camshaft and a production camshaft. As can be seen, there is a significant
emissions improvement with the dual velocity camshaft relative to the production camshaft.
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The 1994 regulated emissions levels were also achieved in this test, although not with
sufficient margin to meet production variability requirements.

Pressure Limiting Injector

The pressure limiting injector is designed to increase the average injection pressure while
limiting the peak injection pressure. A smaller spray tip is matched with the pressure relief
valve to reduce the amount of fuel injected early in the injection event. As the results show,
the particulate increased by 25%, while BSNOx declined a nominal 2%, and BSFC
increased 2%. Assuming there were no mechanical problems with the injectors, such as
leaking relief valves reducing the average injection pressure, these results support the earlier
very high injection pressure conclusions. It appears that by limiting the peak injection
pressure, very high injection pressures are not reached at the higher engine speeds and loads,
and thus reduced particulate emissions are not observed.

Dual Spring Needle Valve Injector

The dual spring needle valve injector is designed to reduce the initial injection rate and
provide an increased needle closure rate. As shown in Table 18, particulates increased by
22%, while NOx declined by a nominal 3%, and BSFC increased by 4%. With dual spring
injectors, needle valve lift is limited during the initial part of the injection, due to a preload
on the second spring. This limited lift may result in excessive fuel throttling at low speeds
and light loads, thereby reducing injection pressures and increasing particulates.
Furthermore, the greater mass of the additional components may have induced delays in
needle closure near the end of the injection.

CONCLUSIONS

1 Injection rate shaping through cam profile modifications provides a significant
improvement in particulate emissions.

2 The stringent 1994 particulate emission levels were demonstrated with production
feasible hardware in the laboratory.

3 Rate shaping of injectors and novel piston ring designs were evaluated but did not
provide the desired emission improvements in limited testing.

112



SECTION IX

RECOMMENDATIONS FOR FUTURE WORK

The ADECD program developed a variety of advanced technologies and demonstrated their
viability on a single cylinder engine that served as the test bed. Further refinements to these
technologies are needed in order to demonstrate their commercial viability. Such an effort
would require demonstration of these technologies on multi-cylinder engines, as well as a
critical examination of the scale-up and manufacturing issues. In addition, customer benefits
in the areas of fuel economy, durability and emissions reduction need to be determined. The
following are some suggestions for future work in the areas of emissions reduction,
advanced materials and advanced engine systems.

9.1 EMISSION REDUCTION

Further work on diesel injection and combustion systems is needed to meet the more
stringent NOx and particulate standards anticipated in the future. This could include
injection system details and variability, combustion chamber shape, in-cylinder mixture
motion, and control of lubricating oil. Analytical and experimental investigations
should be coordinated to maximize the cost effectiveness of this effort.

2. There are increasing regulatory requirements towards lower emissions of NOx. Diesel
engines have limited capability to reduce this emission without seriously increasing
fuel consumption. In addition, reduced heat rejection and increased engine efficiency
results in higher NOx as observed in this program. Consequently, NOx aftertreatment
has become more attractive. Concepts that have the potential to significantly reduce
NOx (e.g. lean-NOx catalysts, exhaust gas recirculation, etc.) with reasonable cost and
fuel consumption penalties need to be explored.

9.2 ADVANCED MATERIALS

The top compression ring wear is a serious concern on engines with low heat rejection,
high output, and high cylinder pressure. Concepts and designs that have promise need
to be studied in order to permit production of advanced engine designs.

2. The silicon nitride valves operated successfully on the single-cylinder test bed. The
issue now is to find the best application for ceramic valves and develop a design that
would be cost effective for production. A likely platform for introduction of ceramic
valves is high output two-stroke engines, since expensive metallic valves would be
replaced.
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3. Insulated ceramic exhaust and intake port liners were demonstrated on the single-
cylinder test bed. Their design needs modification to be cost effective for production
engines. Two-stroke and high output marine engines appear to be attractive
applications for this technology.

9.3 ADVANCED ENGINE SYSTEMS

1. The high pressure injection system on the single-cylinder test bed demonstrated the
feasibility of the common rail injection concept. However, design modifications and
considerable optimization will be necessary to make this concept practical for
production engines.

2. The vapor phase lubricant injection concept was able to deliver lubricant to the piston
rings. Further work on a more mature engine platform with exceptionally good oil
control is needed to evaluate the ability of the lubricant injector to reduce ring wear.
Injection rates of several lubricants should be correlated with the wear at various
engine operating conditions. As part of the lubricant injector control system, real time
measurement of injected lubricant should be conducted to insure that the inter-ring
pocket lubrication concentration is achieved. The injector may need redesign to resist
injector tip plugging and to prevent engine failure due to insufficient lubrication.

3. The electro-hydraulic valve actuation system was successfully demonstrated on the
single-cylinder test bed. Additional development is needed to improve the efficiency
of the system and to demonstrate its applicability to engine compression braking,
where the exhaust valves are opened near the end of the compression stroke.

114



APPENDIX A

ADECD GASKETLESS COMBUSTION SEAL STUDY

Analvsis

At the outset of the program, the cylinder head configuration had yet to be determined.
Therefore, a finite element model of the cylinder head was generated that would allow some
flexibility in modifying the basic structure. To do this, a three-dimensional model of the
cylinder head was generated that was basically a "cube" which could be modified by
removing elements. Additionally, since the sealing capability portion of the design study
did not include thermal effects and since the design concept was for a geometrically
symmetric cylinder head, a one-fourth section finite element model was generated for each
component.

Figure 65 shows the three components modeled for the gasketless combustion seal study.
The cylinder head represents the final configuration that was evaluated. Table 19 indicates
the material properties used for each component in the finite element analysis.

After modeling was completed, cylinder head bolt loads were applied to the components at
positions that simulated either a four bolt or eight bolt cylinder head configuration. Also,
the magnitudes of the bolt loads were varied to study the effects of higher grade or larger
diameter cylinder head bolts.

The eight cylinder head bolt per cylinder bore (six effective bolts per bore) was determined
to be the best configuration to develop for the ADECD Advanced Engine. Figures 66 and
67 show the large variation in sealing pressure obtained with the four bolt cylinder head
configuration. In fact, when combustion pressure is applied, the inside diameter of the
sealing surface is no longer in contact (i.e., sigma z = 0), allowing combustion gas leakage.

As Figures 68 and 69 indicate, with the eight bolt cylinder head configuration, the joint
sealing stresses are somewhat less cyclic due to the better distribution of cylinder head bolt
load. When combustion pressure is applied for the eight bolt configuration the liner-to-deck
surfaces remain in contact with a minimum sealing pressure of 67 MPa.

The cylinder head bolt was sized based on the desire for a compact engine and to ensure
adequate sealing pressure and fatigue resistance. The 14mm cylinder head bolts provide a
clamping force per cylinder bore exceeding the combustion force by 3.7 times. Standard
industry practice is to provide a joint clamping force exceeding the separation force by at
least three (3) times. To ensure adequate fatigue resistance, an estimate of the safety factor
of the cylinder head bolt was made based on bolt fatigue test data available in the literature.
Critical to the fatigue safety factor calculation is an estimate of the joint. For this estimate, a
typical "hard" joint was analyzed and it was determined that the bolt carried 11.3% of the
cyclic load. This estimate of the cyclic (separation) force carried by the bolt was used in the
calculation of the ADECD cylinder head bolt fatigue safety factor.
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Cylinder Liner

Figure 65: ADECD Gasketless Combustion Seal Study
Finite Element Model Geometries
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TABLE 19

ADECD GASKETLESS COMBUSTION SEAL STUDY
FINITE ELEMENT MODEL COMPONENT PROPERTIES

Cylinder Head and Liner

Material:	 Gray Cast Iron
Modulus of Elasticity:	 1.034E+05 MPa
Poissons Ratio:	 0.26
Density:	 7.20E-09 Mg/mm3

Firedeck Insert

Material:	 Silicon Nitride
Modulus of Elasticity:	 3.00E+05 MPa
Poissons Ratio:	 0.279
Density:	 3.20E-09 Mg/mm3
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The cylinder head bolts should be 14mm diameter Grade 10.9 bolts which will have a
fatigue safety factor of 4.6 for the worst cyclic load condition. The compressive sealing
stress (joint pressure) for the 8 bolt per bore configuration varies from a maximum of 306
MPa to a minimum of 67 MPa at a design combustion pressure of 16.2 MPa (2350 lb/in2).

Figures 70 and 71 show the effects of increasing the bolt loads at the shared bolt positions.
While the head bolt clamp loads were increased significantly by upgrading bolt material or
bolt size, the sealing pressure was increased slightly. This indicates that the limiting factor
to increased joint sealing pressure is the bending stiffness of the cylinder head. Table 20 is a
summary of the cylinder head to fire deck insert joint sealing stress information presented in
Figures 66 through 71.

Experimental Investigation of Cylinder Head

The purpose of this test was to experimentally evaluate three aspects of the ADECD cylinder
head. These are: (1) Sealing of the gasketless cylinder head to liner joint. (2) Measurement
of strains in critical locations of the cylinder head under clamp and statically simulated
combustion pressure loads. (3) Proof load test of the monolithic ceramic firedecks.

The cylinder head for the single cylinder ADECD engine incorporates many unique features.
Four identical ceramic ports shields are cast directly into the cast iron head structure. The
port shields are made of sintered silicon nitride and are wrapped externally with a compliant
material

TABLE 20

ADECD LINER/HEAD JOINT SEALING STRESS SUMMARY

Sealing Stress (MPa)
Maximum MinimumConfiguration

4 Bolt Cyl Head, 14mm (GR 10.9) Bolts 320 53
Bolt Up Only

4 Bolt Cyl Head, 14mm (GR 10.9) Bolts 266 0

Bolt Up and 16.2 MPa Comb Pressure

8 Bolt Cyl Head, 14mm (GR 10.9) Bolts 358 155

Bolt Up Only

8 Bolt Cyl Head, 14mm (GR 10.9) Bolts 306 67

Bolt Up and 16.2 MPa Comb Pressure

8 Bolt Cyl Head, 14mm (GR 12.9) Shared Bolts 319 69

Bolt Up and 16.2 MPa Comb Pressure

8 Bolt Cyl Head, 16mm (GR 10.9) Shared Bolts 335 72

Bolt Up and 16.2 MPa Comb Pressure
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to mechanically and thermally isolate them from the iron during the casting process. A
monolithic silicon nitride firedeck and valve guides are retained in the finished cylinder head
by interference fits. Eight equally spaced studs clamp the cylinder head onto the top of the
liner flange with no intervening head gasket. Effective sealing of the combustion gas
pressure was achieved through control of the geometry, clamp load and material properties
of the cylinder liner and ceramic firedeck. A top view and partial section of the head are
shown in Figures 72 and 73 respectively.

One major purpose of this test program was to experimentally evaluate the ability of the
gasketless head to liner joint to seal combustion gas pressures. This was done in a fixture
test by mapping the boundary between leaking and sealing at various levels of cylinder head
clamp load and simulated combustion gas pressures. One firedeck design and three liner
flange designs were evaluated as part of the sealing test. The other major purpose of this test
was to take strain gage measurements in selected locations on the head so that stresses due to
stud clamp load and combustion pressures could be calculated. The strain gage data was
recorded during the sealing test. The data from the two tests were used to recommend
minimum and maximum stud clamp loads based on sealing capability and stress levels in the
head. Further, the static proof test of the ceramic firedecks with head bolt and simulated gas
pressure loading was accomplished.

The test fixture is shown in Figure 74 and consists of the upper portion of a cylinder liner
sandwiched between a cylinder head assembly and a metal plate. The fixture is fastened
together with studs. The head assembly includes a partially machined ADECD cylinder
head which was cast without port shields, a ceramic firedeck, four ceramic valve guides and
four reworked metallic Series 60 exhaust valves. A bolt and a copper washer were used to
plug the injector hole in the firedeck. A hydraulic pressure source was connected to the
inside of the cylinder liner to statically simulate combustion gas pressure loading on the
cylinder head and firedeck.

Sealing of the statically simulated combustion pressures occurred as long as the clamping
force due to the cylinder head studs exceeded the pressure force applied to the firedeck. Fine
features on the cylinder liner flange (circular grooves) and variations in liner hardness (hard
vs. soft) did not have any effect on sealing. The 17.2 MPa peak cylinder pressure planned
for the ADECD engine was duplicated without leakage at about 35.6 kN per stud clamp
load.

Strains were measured on two stiffening ribs on the upper surface of the head and on two
head bolt (stud) bosses, at various levels of clamp load and statically simulated combustion
gas pressure. The strains were found to be predominantly due to static stud clamp loads. At
the most severe test condition; 75.6 kN per stud clamp load and 20.7 MPa cylinder pressure,
a maximum principle stress of 87.0 MPa (tensile) occurred on the upper surface of one of the
stiffening ribs which connect the stud bosses. The corresponding minimum principle stress
of -190.6 MPa (compressive) occurred on the boss undercut by the two intake/exhaust ports.

125



5 DEG. STRAIN
SAGE ROSETTES ON
)TIFFENING RIBS

INGLE STRAIN
AGE AXIAL TO
DLT BOSS

V GAGE ROSETTE
)N BOLT BOSS

Figure 72: Cylinder Head - Top View, Strain Gage Locations Also Shown

126



CAST-IN-PLACE
PORT SHIELE

INTERFERENCE

GASKETLESS HEAD
TO LINER JOINT

CYLINDER LINER

VIPLIANT SEAL

-ICON NITRIDE
NER LINER

VIREMESH BAND

SILICON NITRIDE
FIREDECK

THERMAL[

Figure 73: Cylinder Head - Section Thru Port

127



CYLINDER HEAD

ERAMIC FIREDECK I

CYLINDER LINER
SECTION

PLATE

NOTE: SERIES 60 VALVES
AND RUBBER GASKETS USED
TO PLUG VALVE OPENINGS
IN FIREDECK ARE NOT SHOWN

STUDS

Figure 74: Fixture Assembly

128



The purpose of the leakage test was to investigate the sealing capability of the gasketless
cylinder head to liner joint planned for the ADECD single cylinder test bed. Test variables
included cylinder pressure, stud clamp load and several liner flange variations.

The fixture studs were designed so that yield would occur in the studs prior to failure of the
cylinder head as predicted by FEA. Force versus elongation calibration data for these studs
was generated so an ultrasonic extensometer could be used to precisely control the clamping
force to the desired levels. The fixture was initially assembled with clamp load set at 25% of
the studs' yield strength. Hydraulic pressure was applied and incrementally increased until
some indication of leakage became apparent. The pressure was then reset to zero, clamp
load increased by 15%, and hydraulic pressure again applied incrementally until leakage
occurred. This procedure was repeated, as shown in Figure 75, to check joint seal integrity
up to 85% of the yield point of the studs. Upon completion of the test, the fixture was
disassembled and the ceramic firedeck checked for cracks.

After the completion of the prescribed test cycle for a specific build configuration, the
fixture was reassembled with a different cylinder liner flange and the test repeated. Three
liner flange variations were evaluated: (1) A hard liner with a smooth sealing face.
Simulating the hardened Nitralloy upper liner procured for the single cylinder engine, (2) A
soft liner with a smooth sealing face to promote sealing by locally conforming and
distributing the load more evenly, (3) A soft liner with a circumferentially grooved sealing
face, expected to conform better than the plain soft liner because of a higher unit load at the
sealing/contact area. The grooves were expected to function similar to a labyrinth seal (see
Table 21).

Four locations identified as areas of interest during the modeling of the cylinder head were
instrumented with strain gages as shown in Figure 72. Two locations on stiffening ribs on
the top of the head were instrumented with 45 degree rosettes. The stresses on these ribs
were predicted to be due to the stud clamp load trying to "pull down" the unsupported
perimeter of the cylinder head and "arch" it over the top of the cylinder liner. The other two
strain gage locations were intended to document compressive stresses on head bolt (stud)
bosses. Of concern were the two bosses between the intake/exhaust port pairs which are
undercut by the ports and weakened. One boss of this type was strain gauged with a 45
degree rosette at the minimum cross section location from the inside of the port. Another,
non-undercut boss, was instrumented with a single gage axial to the boss to provide a
reference for comparison.

The strain gage data was evaluated at the highest stud clamp load, 75.6 kN, used during the
second fixture test both with and without the 20.7 MPa simulated gas pressure. After
resolving the measured strains into principle stresses, safety factors were calculated for both
the static and fatigue cases. For the static case, the Coulomb-Mohr criteria, which takes into
account the differing tensile and compressive strengths of cast iron, was applied (Figure 76).
For the fatigue case, the stress differential between the clamped and clamped plus cylinder
pressure conditions was assumed to be the amplitude of the alternating stress resulting in the
Goodman diagram shown in Figure 77.
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TABLE 21

CLAMP LOAD VS. LEAKAGE

PER STUD
CLAMP LOAD (kN)

PRESSURE (MPa)

LEAK ONSET	 LEAK STOP

0.0 0.0 0.0

13.3 5.5 5.2

22.2 10.2 9.0

28.9 14.0 13.4

35.6 18.0 17.2

42.3 20.5 20.1

48.9 * 20.7

62.3 * 20.7

75.6 * 20.7

* No leakage could be generated at these levels of clamp.

A summary of the stresses and safety factors calculated follows in Table 22. Selecting a
minimum safety factor of 2.0 to account for the impracticality of locating the strain gage at
the exact location of maximum stress, and proportioning to the calculated static stress safety
factor a maximum clamp load of to 87.0 kN per stud was found acceptable in terms of
cylinder head stress levels.

The test procedure consisted of assembling a ceramic firedeck into the fixture and applying
the maximum stud clamp load and simulated combustion gas pressure. Then the fixture was
disassembled, the firedeck inspected for cracks using the dye check technique and the test
repeated with another firedeck.

It should be noted that based on Finite Element Analysis of the cylinder head, no significant
tensile stresses or failures were expected during this test. No damage of any kind was noted
on any of the firedecks.
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TABLE 22

ADECD CYLINDER HEAD
CALCULATED STRESS LEVELS AND SAFETY FACTORS

UNDER CLAMP AND CLAMP PLUS PRESSURE LOAD

STRESSES DUE TO STUD CLAMP LOAD ONLY* (MPa)

Radial
Rib

Circ.
Rib

Port
Bolt Boss Bolt Boss

S Max 51.5 84.2 45.7 0.0

S Min 2.2 -17.2 -189.1 -17.1

Tmax 24.6 50.7 117.4 8.6

STRESSES DUE TO STUD CLAMP LOAD PLUS GAS PRESSURE** (MPa)

Radial
Rib

Circ.
Rib

Port
Bolt Boss Bolt Boss

S Max 599 87.0 47.1 0.0

S Min 2.1 -15.0 -190.6 -9.0

Tmax 28.9 51.0 118.8 4.5

MEAN +/- ALTERNATING STRESS (MPa)

Radial
Rib

Circ.
Rib

Port
Bolt Boss Bolt Boss

S Max 55.7+/-4.2 85.6+/-1.4 46.4+/-0.7 0.0

S Min 2.1 +/-0 -16.1 +/-1.1 -189.8 +/-0.8 -13.1 +/-4.1
Tmax 26.8+/-2.1 50.8 +/-0.1 118.1 +/-0.7 6.5+/-2.0

STRESS SAFETY FACTORS

Radial
Rib

Circ.
Rib

Port
Bolt Boss Bolt Boss

STATIC 3.6 2.3 2.4 43.0
FATIGUE 1	 2.7 2.4 1	 4.9 4.6

*	 75.6 kN per stud clamp
* * 75.6 kN per stud clamp, 20.7 MPa cylinder pressure
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Figure 76: Coulomb-Mohr Static Failure Criteria and Resulting Safety Factors
ADECD Cylinder Head
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APPENDIX B

CERAMIC VALVE DEVELOPMENT

Initial Valve Geometry

Consideration of a single, common valve configuration suitable for the two intake and two
exhaust positions, and compatibility with as many off-the-shelf, state-of-the-art, production
components as possible resulted in the "starting point" design. A 39.5 mm valve head
diameter was selected to provide the maximum amount of air flow area into and out of the
cylinder without contacting the cylinder liner wall. The valve lock geometry and valve stem
diameter were sized to reflect the Series 60 lock geometry. The height of the lock groove
was positioned to insure adequate spring preload. The backside of the valve head was
radiused for added strength requirements.

Supplier Input

Seven potential suppliers were contacted relative to obtaining input and recommendations on
a ceramic valve design; their input included tolerancing, processing and material selection.
Their inputs have been condensed and were as follows:

• Six of the seven suppliers were interested in supplying the monolithic ceramic valves.

• Two suppliers offered design recommendations, based on their experience with
operation in small gasoline engines. Both suggestions involved the lock areas: a
shallow angled locking radius with a radius bead lock and a wide grooved rectangular
lock area with a clamp type lock were suggested.

• Each supplier offered their strongest ceramic material: silicon nitride or Sialon. Some
suppliers recommended hot isostatic pressing for further strength. No supplier had any
relative experience to support assured success with their particular material
recommendation.

• All six suppliers claimed that they could make a ceramic valve and achieve any tolerance
specified.

• The lead times and estimated costs varied significantly.

Material Selection

Because of the anticipated thermal and mechanical stresses, silicon nitride and Sialon were
the initially considered material candidates. After reviewing the silicon nitride and Sialon
material properties and assessing the preliminary feedback from the potential suppliers, the
silicon nitride material properties were selected for use in the subsequent analysis efforts.
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Analvsis

By combining the suppliers' inputs with DDC's valve design technology, several
modifications were made to the proposed "starting point" design. An axisymmetric finite
element model of the valve using eight node elements was used in an iterative process to
choose a ceramic valve design capable of LHR engine operation.

Four load cases were applied to the axisymmetric valve model:

(1) Thermal loading due to the extreme thermal conditions generated in an LHR engine. A
heat transfer analysis, using the thermal boundary conditions shown in Figure 78, was
conducted to estimate the thermal loading of various valve head and stem locations.

(2) Mechanical loading, due to a 16.2 MPa peak cylinder firing pressure was considered.

(3) The combined in-cylinder thermal and mechanical loads of (1) and (2) were used.

(4) The dynamic loading due to the impact of seating forces associated with closing the
valve were considered.

The finalized silicon nitride valve resulting from this effort is shown in Figure 79, along
with the "starting point" design.

The maximum principal stress in the valve, due to the thermal loading, Case 1, was 474
MPa, located on the fillet portion of the valve. The maximum stress in the valve, due to the
thermal loading, Case 2, was 52 MPa, located on the outer surface of the valve's head
diameter. The maximum stress of the in-cylinder combined loading, Case 3, was 448 MPa,
located on the fillet radius of the valve's head, as shown in Figure 80. The seating load, Case
4, was equivalent to a 1741 N tensile load based on the system mass and a closing velocity
limitation of 0.5 m/s. This resulted in a maximum stress of 198 MPa, located at the
minimum diameter of the valve's locking groove, as shown in Figure 81.

The POS of this silicon nitride valve was calculated, based on Weibull analysis. The POS
for each of the load cases is as follows: Case 1 POS - .99980; Case 2 POS = 1.00000; Case
3 POS =.99998; and Case 4 POS = 1.00000.

The iterative finite element modeling led to reduction of the ceramic valve weight by 50% as
compared to the conservative "starting point" design, while achieving a POS equal to
.99980.
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Supplier Selection and Procurement

Based on the supplier's input, an assessment value was assigned to each supplier. The
assigned values ranged from 0 to 8, where 10 was the most favorable and highest possible.
Both Kyocera and GTE Laboratories received an 8. Based on these favorable assessments,
both suppliers were selected.

Eight valves each were ordered from Kyocera (SN-220M) and GTE Laboratories (HIPed
AY6). The Kyocera valves were received in four months and the GTE valves in six months.
All valves were dimensionally to print and either met or exceeded the suppliers' published
material properties. All valves (four from each supplier) passed the preliminary proof of
concept testing criteria shown in Table 23.

The mean flexural strength of the Kyocera valves at room temperature was 744.6 MPa with
a Weibull Modulus of 15.2. The mean flexural strength of the GTE valves at room
temperature was 938.4 MPa with a Weibull Modulus of 14.5. At 800°C, the mean flexural
strength of the GTE valves was 836.1 MPa with a Weibull Modulus of 20.2. The bend bars
used were made from valves selected from the purchased lots.

Proof of Concept Testing

Failure of a ceramic valve due to high seating loads would normally be expected to occur
through the minimum cross section at the lock diameter. However, possibility of hidden
material imperfections in this case justified the requirement of strict microfocus X-ray
inspection. A valve failure of this type could result in dropping the valve into the cylinder.

Failure of the valve due to concentrated seat loading was also a concern. In this case, the
bending moment and corresponding stress level can increase to the point where a head-to-
stem fracture occurs. Out-of-round geometries, thermal distortion, and eccentric positioning
can contribute to concentrated, nonuniform loading conditions. Established data on the
effect of out-of-round and eccentric geometries on valve stresses were used to define and
limit the ADECD valve, firedeck, and guide dimensions.

Failure of the valve due to high cylinder pressure would normally be catastrophic. The finite
element analysis predicted a probability of survival equal to 1.000 under these conditions.
Thus, a proof test for equivalent cylinder pressure loading was not necessary. Additionally,
imperfections that were not detected in the microfocus X-ray evaluation could contribute to
a catastrophic failure; for example, the imperfection is too small to be detected but large
enough to drastically reduce the strength.

As shown in the valve screening, Table 23, and proof of concept testing matrix, Figure 82,
each valve was subjected to a dynamic bench rig test up to the design load condition (.5 m/s
seating velocity at 1800 r/min). This was accomplished using the DDC Series 60 Valve
Train Fixture, VT-1, which provided the camshaft lobe profile action representing the
ADECD
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Figure 82: Proof of Concept Testing Matrix for ADECD Ceramic Valve
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TABLE 23

TEST CYCLE TO DEMONSTRATE DESIGN CRITERIA

Ceramic Valve Testing Criteria

30 minutes at 600 r/min with -0.2645 mm lash
30 minutes at 600 r/min with 0.0000 mm lash
30 minutes at 600 r/min with 0.1270 mm lash
30 minutes at 600 r/min with 0.2540 mm lash
30 minutes at 1000 r/min with 0.2540 mm lash
30 minutes at 1400 r/min with 0.2540 mm lash
30 minutes at 1800 r/min with 0.2540 mm lash
30 minutes at 1800 r/min with 0.4060 mm lash

electrohydraulic valve actuation dynamics. All eight valves, four from each supplier, passed
the entire test. After successfully completing the proof of concept testing, four of the eight
valves, two from each supplier, were subjected to an over speed test designed to produce
failure (see Table 24). An additional million cycles of severe loading conditions were
accumulated on each of the four ceramic valves during the first six steps of over speed test
prior to failure. However, sometime during the final 2 hour step at 3600 r/min, all four
valves failed.

TABLE 24

TEST CYCLE TO ESTABLISH THE CERAMIC VALVE DURABILITY

Ceramic Valve Test To Failure Sequence

90 minutes at 1800 r/min with 0.4060 mm lash
180 minutes at 2100 r/min with 0.4060 mm lash
180 minutes at 2400 r/min with 0.4060 mm lash
180 minutes at 2700 r/min with 0.4060 mm lash
180 minutes at 3000 r/min with 0.4060 mm lash
180 minutes at 3300 r/min with 0.4060 mm lash
180 minutes at 3600 r/min with 0.4060 mm lash
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The point of failure on all four valves was at the exact predicted location - through the
minimum diameter of the locking radius. However, the failed valves were retained by their
locks, keeping them from dropping into the cylinder.

Engine Testing

As stated in the SF tribology section, the valve stems were coated with cesium
trithioxymolybdate by Pennwalt for operation in an otherwise unlubricated environment.
These valves were integrated into the single cylinder test bed. Initial operation showed the
coating to be functional, but not optimal. No structural problems were encountered during
initial engine testing.

Since the ADECD valve-to-guide interface was not to be supplied with lube oil, a solid
lubricant was applied to several valves slated for engine operation. During an accumulation
of 275 hours of engine operation under various speed and load conditions (Section VII), no
primary valve failures occurred.
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APPENDIX C

FINITE ELEMENT ANALYSIS OF PORT SHIELD

The finite element model was used for the ceramic cast-in-place port shield analysis is
shown in Figure 83. The model consisted of about 640 nodes and 470 elements. Due to
symmetry, half of the port was modeled. The ceramic structure was modeled with four
noded shell elements and the wire mesh bands were modeled with eight noded solids. Shells
were selected due to the nature of the port structure and the ability to easily change the
thickness of the shield. The wire mesh elements were jointed to the shell structure through
constraint equations. This constraint method assumed no slip at the mesh-ceramic interface.
Silicon nitride was selected for the ceramic material based on high temperature strength and
manufacturing considerations. Material properties for a generic silicon nitride and several
different wire mesh materials used in the analyses are summarized in Table 25. The analysis
was conducted with DDA's STRATA finite element program using PATRAN as the pre and
post processor.

TABLE 25

ADECD EXHAUST PORT SHIELD
MATERIAL PROPERTIES

SILICON NITRIDE
Temperature	 Elastic	 Thermal Expansion Coeff.

( O C)	 Modulus (MPa)	 (1 /OC)

25	 300000	 3.0E-06
800	 300000	 4.0E-06

Temperature	 Thermal Conductivity 	 Poissons Ratio
(OC)	 (W/mm-0C)

25	 0.03	 0.27
200	 0.026
400	 0.021
600	 0.018
800	 0.017

MESH BANDS
Type	 Elastic	 Thermal Conductivity

Modulus (MPa)	 (W/mm -0C)

Solid S.S.	 206850
Metex Unsintered	 19
Kyocera (5 mm)	 42	 0.004
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Figure 83: ADECD Port Shield Finite Element Model
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Two load conditions were considered during the analysis. The first case consisted of the
casting shrink loading. The loads due to the shrinkage of the cylinder head metal were
approximated by imposing a deflection at each of the nodes on the outer diameter of the wire
mesh bands based on their x, y, and z coordinate values times an assumed shrinkage rate. A
shrinkage rate of .008 mm/mm was used as an approximate value for cooling iron.
Figure 84 further describes the mechanical boundary conditions for the casting shrink load.
This method of loading the port shield assumes a uniform shrinkage of the entire head
casting, but was considered the best approximation available.

The second load case was the combination of casting shrink and peak torque thermal loads
for the exhaust port shield. In addition to the imposed displacements described above, the
port shield was subjected to the predicted peak torque temperature field. The boundary
conditions used in the thermal analysis are shown in Figure 85. The time averaged gas
temperature was obtained from ITI IRIS performance simulation. The time averaged heat
transfer coefficient on the interior of the port was calculated with the DDA port shield heat
transfer program. For thermal modeling purposes the port was considered at four connecting
channels. Temperatures on the outer diameter of the wire mesh bands were taken from heat
transfer results for the full cylinder head model. Although the temperature distribution in
the exhaust port is not expected to be exactly symmetric, the asymmetry was not predicted to
be large enough to warrant a full port shield model.

A probability of survival (POS) calculation was performed on the ceramic for each loading
condition. The NASA written SCARE program, Ref 1, was used to predict the reliability of
the port shield. Available test bar data for Kyocera SN230 silicon nitride at 25 and 800°C
was used. The Batdorf shear sensitive model with penny shaped cracks and strain energy
release rate fracture criteria was employed. This is judged to be the most conservative
failure theory for POS calculations. The stress results for the shell elements, inner and outer
fibers, were changed to the solid element format in order to be compatible with DDA's
SCARE input routines.

An initial investigation of the sensitivity of the two-bank wire mesh cast-in-place port shield
to mesh stiffness was conducted for the originally proposed 3mm thick port. The results for
the casting shrink loading are shown in Table 26. If solid steel is used in place of the mesh
bands, the maximum principle stress, sigma 1, far exceeds the strength of the port and the
probability of surviving the casting process is 0.000. On the other hand, if a low elastic
modulus wire mesh such as the Metex or Kyocera types is employed, stress levels are very
low and the POS is nearly 100%. These findings illustrate the importance of using
compliant mesh material to transfer the casting shrink load to the silicon nitride port shield.

Eight shields each of these two design types were made by Kyocera. The two designs are
shown in Figure 91.
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Figure 84: ADECD Port Shield Analysis - Casting Shrink Load Boundary Conditions
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Figure 85: ADECD Port Shield Analysis - Thermal Boundary Conditions
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TABLE 26

ADECD SILICON NITRIDE PORT SHIELD ANALYSIS
EFFECT OF MESH STIFFNESS ON PORT STRESS-CASTING SHRINK LOAD

(3MM WALL)

Mesh Configuration Sigmal 
(MPA)

(max) P.O.S.

Solid Stainless Steel 2232 0.0000

Metex Unsintered 12 1.0000

Kyocera (41 MPa) 28 1.0000

The results of the casting shrink analysis for the proposed 4mm wall silicon nitride port
shield with two Kyocera 42 MPa mesh bands are shown in Table 27. The stress contour
results for both the outer (Fiberl) and inner (Fiber2) surfaces of the shield were determined
by FEA. Table 26 indicates that the principle stresses generated by this loading are low.
For example, the maximum tensile stress occurs on Fiber2 at the top of the valve guide boss
with a magnitude of only 36.5 MPa. The analysis predicts a probability of survival of 1.000
under the approximated casting shrink load.

TABLE 27

ADECD SILICON NITRIDE PORT SHIELD ANALYSIS
(4MM WALL-TWO BAND DESIGN-42 MPA MESH)

Load Case Sigmal (max)
(MPa)

Sigma3 (min)
(MPa)

P.O.S.

Casting Shrink 36.5 -45.4 1.0000

Casting Shrink + Thermal 53.3 -62.9 1.0000

(Peak Torque)

The results of the casting shrink plus the peak torque thermal load analysis for the 4 mm
thick, two bank design are shown in Table 27 and Figures 86 thru 90. The calculated
temperature distribution for the port shield is shown in Figure 86. The insulating effect of
the ceramic blanket allows the valve boss area of the shield to reach 690°C, while the mesh
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Figure 86: Silicon Nitride Port Shield Temperature Distribution
(4mm Wall - Two Band Design - 42 MPa Mesh)
Peak Torque Conditions (oC)
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Figure 87: Silicon Nitride Port Shield Temperature Distribution
(4mm Wall - Two Band Design _ 42 MPa Mesh)
Casting Shrink + Thermal Load - Max Principle Stress
Outer Surface
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Figure 88: Silicon Nitride Port Shield Temperature Distribution
(4mm Wall - Two Band Design - 42 MPa Mesh)
Casting Shrink + Thermal Load - Max Principle Stress
Inner Surface
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Figure 89: Silicon Nitride Port Shield Temperature Distribution
(4mm Wall - Two Band Design - 42 MPa Mesh)
Casting Shrink + Thermal Load - Min Principle Stress
Outer Surface
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Figure 90: Silicon Nitride Port Shield Temperature Distribution
(4mm Wall - Two Band Design - 42 MPa Mesh)
Casting Shrink + Thermal Load - Min Principle Stress
Inner Surface
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bands cool the ends of the port. The combined thermal and casting shrink stress
distributions, Figures 87 thru 90, are very similar to the shrink only case with the exception
of the stress magnitudes. The addition of the thermal loading increases the maximum
principal stress (sigmal) to 53.3 MPa. As shown in Figure 88, the location of the maximum
tensile stress remains in the valve boss on the inside of the port. In spite of the increase due
to thermal loading the POS remains very high at 1.000.

In summary, the success of the ADECD ceramic port shield depended greatly on the use of a
very compliant material for the load carrying wire mesh bands. Under simulated casting
shrink and peak torque thermal loads the 4 mm silicon nitride shield with two 42 MPa wire
mesh bands is predicted to experience very low tensile stresses and a very high probability
of survival. Although the analysis does not account for uneven shrinkage of the casting or
thermal shock of the ceramic by molten metal, the proposed silicon nitride two bank port
shield design appears to be viable for use in the ADECD cylinder head.

Recommendations

1. The 4 mm wall silicon nitride port shield with low modulus wire bands should be
incorporated in the ADECD cylinder head.

2. The exhaust port shields on the ADECD demonstration engine should be instrumented in
order to obtain temperature data for analysis validation. If scrap cylinder heads are
available, experimental stress analysis should be performed on the port to verify casting
shrink loads.
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APPENDIX D

CYLINDER KIT TRIBOLOGY TEST FIXTURE RESULTS

Testing on the CKTTF was conducted to evaluate the potential of a ceramic piston ring and
vapor phase lubrication. The design of this simulation fixture is discussed in Section 4.3.

The first set of tests, the Phase I investigation, utilized low ring loads and production
cylinder liners. This pair was lubricated with vaporized TCP at concentrations between 0.0
and 0.11 mole percent. The second set of tests, Phase 2, incorporated elevated ring loading
and finer finish ground cylinder liners. TCP and two additional phosphate ester lubricants
with a mole concentration range of 0.0 to 0.17 percent were evaluated. The test conditions
and test specimen descriptions are summarized in Tables 28 and 29. The average liner
temperatures of approximately 350°C were limited by fixture shaft seal considerations. A
ceramic ring coating and ferrous liner combination were selected to simulate the proposed
LHR engine hardware. Ring wear was evaluated through weight loss measurements.
Qualitative ring and liner performance was investigated with pre- and post-test surface
topography.

Test Results

The Phase 1 piston ring wear results for the TCP lubricated tests are shown in Figure 92,
expressed as a nondimensional wear coefficient, k, is given as:

VH
k=—

XL

where V = worn volume, H = hardness, X = distance slid and L = normal load. The results
given in Figure 92 indicate that ring wear varies with TCP vapor concentration. When the
concentration is less than approximately 0.05 mole percent lubricant deposition is apparently
insufficient and wear increases. However, when the TCP concentration exceeds 0.1 mole
percent, wear also begins to accelerate. This phenomenon is thought to result from excess
lubricant deposition which results in the entrapment of wear debris at the rubbing surface
and the generation of three body wear. The trend observed in Figure 92, wear passing
through a minima with increasing vapor concentration, is similar to the results of four-ball
wear tests on TCP lubricated surfaces.
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TABLE 28

TEST HARDWARE

PHASE 1 PHASE 2

Ring

• Running Surface Plasma Sprayed Plasma Sprayed
Alumina-Titania Alumina-Titania
(Lapped) (Lapped)

• Base Mat'1 Iron Iron

Liner
• Mat'1 Iron, Rc = 40 Iron Rc = 40

• Finish Production Cross Ground
Hatch Hone 0.15 pm Ra
(1.0 µm Ra max)

TABLE 29

TEST CONDITIONS

PHASE 1 PHASE 2

Ring Load 220 N 1210 N
(Total)

Average Liner 334°C 356°C
Temperature

Lubricant(s) TCP 0.0 - 0.11% TCP 0.0 - 0.17%
TBP0.0-0.10%

DDPP 0.0 - 0.10%

Carrier Gas Nitrogen Nitrogen
@ 9.3 1/min @ 9.3 1/min

Test Duration 45,000 Cycles 450,000 Cycles

Average Sliding 600 mm/sec 600 mm/sec
Speed
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Figure 92: Vapor Phase Lubrication CKTTF Phase 1 Ring Wear Results
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The wear data shown in Figure 92 for the 0.0 percent concentration level is not as high as
expected. This effect is attributed to a small amount of oil film that is smeared past the
fixture shaft seals and into the hot test chamber. This oil film would itself be vaporized and
contribute to ring lubrication. Therefore, the 0.0 percent conditions in the fixture tests
would be considered a "no intentional lubrication" (NIL) case, and not as an unlubricated or
completely dry interface. The amount of oil transported past the fixture seals is believed to
be constant for all tests, thus the NIL tests serve as an effective baseline.

The Phase 1 piston ring surface topography and ring face profiles were measured for both
pre-test and post-test conditions. The 0.0 percent case showed severe surface damage and
scuff, while the vapor lubricated rings exhibited only a smoothing of the ring surface. The
vapor lubricated ring profiles resembled typical examples of a conventionally lubricated
engine piston ring. This lends qualitative support to the effectiveness of vapor lubrication at
the piston ring-cylinder liner interface.

Chemical analysis of wear debris collected from the CKTTF cylinder liner was performed to
investigate the lubrication chemistry of the vapor lubricated ring-liner system. A
micrograph taken with a Scanning Electron Microscope (SEM) of the wear debris taken
from the CKTTF was compared to a similar TCP vapor lubricated four-ball wear test. The
general morphology of both sets of debris was similar, consisting of agglomerated particles
less than one micron in size. EDAX analysis of the CKTTF debris showed primarily iron
and phosphorous from the lubrication chemistry with traces of ceramic debris from the ring
face. Further investigation with the Transmission Electron Microscope (TEM) and Selected
Area Diffraction (SAD) showed the presence of crystalline iron phosphate in the CKTTF
debris. These results showed that the morphology and the chemical analysis of the wear
debris from the CKTTF and the four-ball wear test using steel on ceramic were essentially
the same.

Based on Phase 1 of concept test results, the rig test program was extended to include
vaporized tri-butyl phosphate (TBP) and diphenyl ditertibutyl phenyl phosphate (DDPP) in
addition to TCP. During these tests the ring loading was increased, and the ring geometry
shown in Phase 2 of Table 28 was employed. In these tests the apparent unit loading of the
piston ring was maintained at a pressure of 1.48 MPa, which was close to the BMEP of a
high output diesel engine. In addition, the cylinder liner surface finish was changed to a
ground (0.15 µm) finish on the premise that the production honed liner surface was
optimized for liquid lubrication, and that a smoother surface would give better performance
for the VP lubrication conditions.

Ring wear results for the elevated load ring tests using three different phosphate ester
lubricants are shown in Figure 93. For these tests the TCP rings show wear coefficients
below the 0.0 percent lubrication levels with little sensitivity to concentrations up to 0.17
mole percent. TBP at similar concentrations, resulted in high rates of lubricant deposition,
the formation of sludge, and an average ring wear coefficient which was 10 times greater
than the TCP tests at 0.1 mole percent.
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Figure 93: CKTTF Vapor Phase Lubrication Ring Wear Summary
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Laboratory observation of TBP vs. TCP vapor lubricant deposition rates (1) shows TBP
deposition to be an order of magnitude greater than TCP for a ferrous substrate at 650°C.
Therefore, while the TBP performance was inferior to TCP at 0.02 and 0.1 mole percent,
concentrations below 0.02 may provide rig wear levels comparable to the higher TCP
concentrations while avoiding the sludge formation observed in the current tests.

The third lubricant, DDPP, produced an excellent ring wear rate at 0.1 mole percent, but
showed an increase in ring wear at 0.05 mole percent compared to the 0.0 mole percent
lubrication tests. This trend needs further validation before an explanation is postulated.

The Phase 2 ring results indicate that vapor lubricated ring wear rates are sensitive to
hardware configuration. Although the Phase 2 test rings were subjected to bulk ring loads of
an order of magnitude higher than the proof of concept rings, the average TCP wear
coefficients near .065 - .10 mole percent were actually seven to eight times lower.
Therefore, the net result of an increase in ring loads, a design (component geometry) change,
and the application of vaporized TCP lubricant shows lubrication of the high temperature
surfaces was maintained and, in fact, actually improved as reflected in the wear coefficients.
Separate quantification of the contribution of each factor to ring wear is required for
optimum application of vapor lubrication to an actual engine.

With the exception of the .10 mole percent TBP data, liner wear was found to be
undetectable with the available conventional measurement techniques during the VP rig
tests. Representative axial profile traces of the vapor lubricated liner surface which ran from
the untouched surface through the visible wear band were obtained. In the case of the TBP
0.10 mole percent test where deposits were excessive, severe liner surface damage is
observed within an obvious wear band. However, the remaining tests showed almost no
difference between the worn and unworn surface.

The ring wear rates of this investigation are summarized in Figure 94.

Conclusions

Several conclusions can be drawn from the rig test data. First, although the number of tests
run limits the statistical confidence, vapor lubrication was found to reduce the wear of actual
diesel engine components at elevated temperatures compared to no intentional lubrication
conditions. Additionally, the ring surface topography of the vapor lubricated piston rings
resembles the topography of conventional well lubricated engine rings. Different lubricants
exhibit different optimal vapor concentrations. Therefore, the vapor concentration used in
the VP lubrication of an actual engine must be controlled to obtain the optimum ring wear
rate. The lubrication chemistry found in the VP lubricated ring tests appears to be the same
as laboratory four-ball wear tests. Thus, the same lubricating mechanisms and relative
performance can be expected for a VP lubricated engine cylinder kit as those observed in
basic laboratory wear tests.
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