
N95- 18169

1994 NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

JOHN F. KENNEDY SPACE CENTER

UNIVERSITY OF CENTRAL FLORIDA

AUTOMATED PATH PLANNING OF THE PAYLOAD

INSPECTION AND PROCESSING SYSTEM

-37

/ // ;z

PREPARED BY:

ACADEMIC RANK:

UNIVERSITY AND DEPARTMENT:

NASA/KSC

DIVISION:

BRANCH:

NASA COLLEAGUE:

DATE:

CONTRACT NUMBER:

Dr. Robert M. Byers

Assistant Professor

University of Central Florida

Department of Mechanical and

Aerospace Engineering

Advanced Systems

Automation Group

Eduardo Lopez
Gabor Tamasi

August 12, 1994

University of Central Florida

NASA-NGT-60002 Supplement: 17

61

l:

V

Automated Path Planning of the Payload Inspection and

Processing System

R.M. Byers

University of Central Florida, Orlando, FL

Abstract

The Payload Changeout Room Inspection and Processing System (PIPS) is a highly redun-
dant manipulator intended for performing tasks in the crowded and sensitive environment of

the Space Shuttle Orbiter payload bay. Its dexterity will be exploited to maneuver the end

effector in a workspace populated with obstacles. A method is described by which the end

effector of a highly redundant manipulator is directed toward a target via a Lyapunov stability

function. A cost function is constructed which represents the distance from the manipulator

links to obstacles. Obstacles are avoided by causing the the vector of joint parameters to move

orthogonally to the gradient of the workspace cost function. A C language program implements

the algorithm to generate a joint history. The resulting motion is graphically displayed using

the Interactive Graphical Robot Instruction Program (IGRIP) produced by Deneb Robotics.

The graphical simulation has the potential to be a useful tool in path planning for the PIPS in
the Shuttle Payload Bay environment.

62

\

CONTENTS

Contents

1 Introduction

2 Manipulator Kinematics

3 Lyapunov Stability Approach to Manipulator Control

4 Joint Motion Weighting

5 Obstacle Avoidance

6 Graphical Representation with the IGRIP software

7 The Payload Inspection and Processing System

8 Algorithm Implementation

9 Conclusions and Recommendation

A Appendix: Collision Avoidance Path Planner Source Code Listing

List of Figures

1

2

3

4

5

6
7

3

4

7

8

8

10

10

11

11

13

General Transform of a Vector 5

Denavitt-Hartenberg Coordinate Transform Convention 5
Obstacle Cost Functions 9

Foster Miller Serpentine Truss 11
Notional PIPS 27

CAPP Program Flow 28
Simulated PIPS Maneuver 29

J

63

I INTRODUCTION 3

1 Introduction

The range of motion achievable by a robot manipulator's end effector is a function of the number

and type of joints or degrees of freedom it possesses. Any dcgrees of freedom in excess of the

minimum number required to reach an arbitrary end effector position and orientation within the

reachable workspace are considered "redundant". Commercial manipulators typically possess six or
fewer DOF for primarily "anthropomorphic" tasks such as industrial assembly and are therefore not
redundant.

There are some tasks for which such standard manipulators are not well suited, such as those

requiring an extended reach in a confined workspace. For that reason, so-called "serpentine _ ma-

nipulators have attracted interest. Their designation and appearance suggest the long reach and

dexterity associated with snakes or tentacles. They achieve this snake-like ability by possessing a
high degree of redundancy. This redundancy allows them, theoretically, to "wriggle" an end effector

into a confined or difficult to reach point while allowing the robot arm to be configured in such a
way as to not contact the surrounding environment.

The Payload Processing and Inspection System seeks to exploit the dexterity of the serpentine

truss to service space shuttle orbiter payloads in the Payload Changeout Room (PCR). Because of
the dimensions of the PCR and tile sensitivity of shuttle payloads, there are specific tasks which are
difficult , costly or hazardous to perform by humans due to lack of access. These tasks include:

• photographic inspections.

* visual inspections

, spot cleaning
• cover installation and removal

• line replaceable unit (LRU) installation and removal
• connector installation and removal.

References [2] and [1] discuss the requirements for inspection and processing of space related
payloads and the feasibility for employing a manipulator to perform such tasks.

Several approaches for achieving collision avoidance with redundant manipulators have been

suggested. Maciejewski and Klein [3], Nakamura [4], and Wegerif, et al [5] make use of the Moore-

Penrose pseudo-inverse [6] to generate the joint rates to move the end effector and null motion to

avoid obstacles. The pseudo-inverse solution is hampered by the existence of singularities for which

the pseudo-inverse is undefined. Under these circumstances, no motion in the specified direction is

possible. Sciavicco, and Siciliano [7] make use of a Lyapunov stability function to track a prescribed

trajectory and augment the configuration space to a accommodate obstacle avoidance constraints.
An alternative approach is used by Pasch [2] and Asano [8]. They prescribe an obstacle free end

effector path and cause each joint to adhere to that path in a t'follow the leader" mode. All of these

methods require that at least the end effector's trajcctory and velocity be prescribed. This presumes

that a suitable velocity function for the end effector is readily determined. Only Wegerif [5], who

makes use of sensors to detect obstacle proximity, allows for the end effector to deviate from the

prescribed path as an emergency measure.

There are several limitations inherent in these approaches. The pseudo inverse kinematic solu-

tion may result in singular configurations for which some small motions of the end effector require
excessive and physically unrealizable joint speeds. Although redundant degrees of freedom seem to

offer some potential for singularity avoidance, Baker and Wampler [9] show that singularity free tra-

jectories cannot be guaranteed. The requirement to specify the end effector trajectory and velocity

64

L:

2 MANIPULATOR KINEMATICS 4

presumes that a suitable trajectory is easily determined. Such a tr£jectory nmst not only itself be
obstacle and singularity free, but nmst allow for the permissible motion of the entrained links. Null
motion may not be sufficient to cause the entrained links to avoid obstacles because such motion is

constrained by the end effector trajectory requirements. Furthcrnlore, as discussed by Doty, et al,

[10] the pseudoinverse solution to robot manipulator kinematics can lead to inconsistent results (i.e.
results that are not invariant with respect to changes in tile reference frame and/or changes in tile
dimensional units used to express the problem).

In Ref. [11] the principal investigator presented an alternative method for determining an accept-
able robot trajectory which allows the end effector's path, as well as the entrained link's to be free

to move around obstacles. The control algorithm uses a Lyapunov stability approach to generate a
family of joint rates which will move the end effector toward a desired target. The relative motion

of the joints can be weighted to meet operational requirements such as rate or deflection limits.

Because the end effector path is not specified, there are no requirements for inverse solutions, and
singular joint configurations are only encountered at the reachable workspace boundaries.

Obstacles are avoided by determining the distance from each link to the surface of each obstacle

in the workspace. An obstacle gradient vector, indicates the direction, in the joints space toward
the obstacle array. By selecting only joint motion which is orthogonal to this direction, collisions
with obstacles are avoided.

In the current work, the collision avoidance algorithm is applied to a notional PIPS based on the

Foster-Miller serpentine truss [2] with sixteen degrees of freedom. Both the end effector's desired

final position and orientation may be specified. The algorithm is coded in the C programming
language and graphically displayed using the IGRIP software.

\ :

2 Manipulator Kinematics

Typically, robot motion is sufficiently slow so that it is adequately controlled by commanding joint

velocities in response to the robot kinematics. Serpentine motion and the requirements for collision
avoidance are especially complex. It is sufficient to describe the motion in terms of the end effector

position and velocity.

The end effector position is a function of the vector of generalized joint displacements q.

= t) • (t)

Figure 1 illustrates that the location of a point in space given by the 3 x lvector r_can be expressed

in terms of an inertial frame by its position in an intermediate frame, r_o, the location of the origin

of the intermediate frame, r__aand the orientation of that frame with respect to the inertial frame,

given by the 3 x 3 direction cosine matrix R_.

r_= Rgr o + r A (2)

It is appealing to express the transformation in the form

r_ = TArB (3)

65

2 MANIPULATOR KINEMATICS

YA

za

Figure 1: General Transform of a Vector

This is accomplished by defining tile 4 x 4 transformation matrix relationship

= { (4)
o o o {

The well known Denavi_t-Hartenberg convention [13], is a convenient convention for describing

the transformation between link coordinate frames and is shown in Fig. 2. The length ai is the

Joint i

Z"

y" Join¢ i+ 1
; /

H --x'

1.........yi-, /

Xi. I

Figure 2: Denavitt-Hartenberg Coordinate Transform Convention

length of the common normal between the frames. For a revolute joint this is link length. The

length dl is the distance between the origin Oi_land the point Hi. In a prismatic joint, this is

the variable component.The angle c_i is the rotation of the joint axis i and the zi axis. about the
common normal; the %wist" of the link. The angle 01 is the rotation angle between the xi-1 nods

and the common normal HiOi measured about the zi-I axis in the right-hand sense. In a revolute

joint, this is the variable parameter. In the D-H convention, the 4 x 4 transformation between li'nk

66

2 MANIPULATOR KINEMATICS

frames is given by

COti01 - sin Oicos c_i Sill Oi sin c_i ai COS Oi]

i si _i COS Oi COS C_i -- COS _i Sill O_i al sin Oi
Ti-1 = sin c_i cos o_i di

0 0 1

(5)

For a manipulator consisting of n links, tile position and orientation of tile end effector (frame
n) with respect to an inertial frame (frame 0), is expressed in terms of the link transformations

To"
n

= T i
H i-I

i=1

[o- ']I:lfarget
"_0 I r-..$arget

o o [

The vectors r n_, r_,_, and r.,a are unit column vectors of the direction cosine matrix which relates
the end effector's orientation to the inertial frame. The vector r,, gives the end effectors location
with respect to t!m origin of the base frame.

The velocity of the end effector is given by

dr Or dq
-= = --=-= = JO (7)
dt Oq dt -

where J is the Jacobian matrix. For all end effector trajectory specified by £ the required joint rates

are given by

q" = J*r_" (8)

where

j. = jT (jjT) -1 (9)

is the pseudo-inverse for n > 3. Equation (8) gives the minimum norm joint rates which satisfy the

end effector trajectory r'. When IJJTI = 0 the pseudo inverse is undefined and infinite joint rates

are required to satisfy the specified end effector velocity. Obviously, even when the manipulator is

in a singular configuration, it is still possible to move the end effector in directions other than the

singular direction.

There are several limitations to the pseudo inverse velocity kinematics solution of robot motion.

As with all pseudo inverse kinematic solutions, the end effector's trajectory must be specified and

takes priority over obstacle avoidance. Choosing an acceptable end effector path can be a difficult

task in a complex workspace and it sometimes occurs that the specified path precludes obstacle
avoidance. To further complicate matters, null motion for obstacle avoidance may be incompatible

with the task of singularity avoidance, Finally, Doty, et al [10] notes that noninvariant results may

be obtained from the pseudo-inverse solution.

67

3 LYAPUNOV STABILITY APPROACH TO MANIPULATOR CONTROL

3 Lyapunov Stability Approach to Manipulator Control

As an alternative to the operator prescribing the end effector path, the end effector may be driven

to its target by use of a Lyapunov stability function. The desired end effector position may be

represented by a target transformation

Totarge t [1_ta,'get] _target

o o o11

= 0 0 1 (10)

where r_T,, i = 1,2,3, are the unit column vectors of r_t°rget and_o rT4 = rto,9_t. Tile difference
between the manipulator's actual configuration and the desired configuration is given by the array
of vectors

= _-r,- _-., (11)

The scalar Lyapunov function is chosen

' I r (12)v = _ _, _
i=l

V may be viewed as the "energy" of the system and is always positive. To drive V to zero, and
hence the end effector to the target position and orientation, it is sufficient that V < 0 for every

subinterval of time on to <_ t < t /.

Taking the time derivative of V gives

where

4

i=l

4

= -
(--X

4

i=1

Ji = Orn._.£ i = 1,... 4
02

It is obvious that V < 0 is guaranteed by choosing the joint rate vector

- ,=, \ IIJ_r-_,ll) -

where M is a n x n positive definite scaling matrix, Eq. (13) becomes

e_TJiM jr e_i
= - W-"

z_.,_=,IIJ[__,ll

(13)

(14)

(15)

(16)

68

4 JOINT MOTION WEIGHTING 8

which is always negative. Substituting Eq. (15) into Eq. (7) gives

4

= E JiM_, (17)
i=!

No matrix inversion is required, and therefore the control is not sensitive to singularities. In contrast

to Eq. (8) which gives joint rate to satisfy a desired trajectory, Eq. (17) moves the end effector in

response to a family of joint rates which depend on the relative priority of joint motion caused by
the matrix M. In addition, this matrix enforces appropriate unit transformations.

4 Joint Motion Weighting

Generally, the boundary conditions and obstacle avoidance requirements can be satisfied by an

infinite number of joint trajectories by modification of the M matrix. The composition of the M

matrix is determined by the various requirements on the hardware or end effector task.

In addition to avoiding obstacles, manipulator arms are frequently limited by the manipulator
architecture in the magnitude of the joint deflections and joint rates which call be achieved. The M

matrix may be selected to enforce joint rate and joint displacement limits.

It is useful to think of tile M matrix as tile non-linear stiffness matrix. Tile deflection of tlle ith

joint is bounded by qi,,,, < ql < qi,,_. Defining

r'i -'_ qi,,,°,, + qi,_,,,

2ql -- r'i
/_ =

Ai

_/i = sign(el)

ki <_ 2

The elements of M are given by

ki(1 - Yi/i) i = j (18)mii = 0 i _ j

Equation (18) causes the ith joint rate toward the joint limit to approach zero near the limit and

the rate to be near the maximum if away from the limit.

5 Obstacle Avoidance

With the end effector motion no longer prescribed, much greater latitude is allowed in obstacle avoid-
ance. Joint motion which moves the manipulator away from obstructions is no longer subordinated

the end effector path.

Obstacle avoidance requires that tile distance to obstacles v vis-a-vis the manipulator links be

known. In a realistic environment, devices in the workspace may be numerous and complexly shaped.

CAD models of high complexity, such as exist in the Payload Changeout Room may be imported

to IGRIP. The MIN._DISTANCE function in the GSL language returns the minimum designated

69

5 OBSTACLE AVOIDANCE 9

links and devices in the CAD environment. IGRIP can be set to disregard any devices outside of a
selected radius.

The cost function Cij is the minimum distance between the ith link and the jth obstacle (Fig.

3). Contact of tile ith link with the jth obstacle is indicatcd by Cii = O. 2.

_Link i-I _Link

c U

C(i-_)j / C(i+l) j " i+1

Figure 3: Obstacle Cost Functions

The potential function

(19)
i=1 j 1

where nl is the numbcr of links and no is the number of obstacles. P _ oo upon contact with an

obstacle. The gradient of the potential function with respect to the joint space vector is given by

c_P

The time rate of change of P can thus be expressed

(20)

dP

-Z = ate- (21)

Assuming that a trajectory exists which allows the end effector to reach the target without

penetrating any :obstacles, then if/_ _< 0 throughout the maneuver, the collision avoidance points

will not encounter the obstacle surfaces. The component of __, which is orthogonal to _ is found via
the Gram-Schmidt orthogonalization method.

(22)

where/2 is a unit vector in the direction/£. Equation (22) may be written

where

(24)

7O

|: !

V

6 GRAPHICAL REPRESENTATION WITH THE IGRIP SOFTWARE 10

.Qr is tile obstacle avoidance metric. This matrix is positive semi-definite. The fact that this matrix

possess a zero eigenvalue becomes evident when # is parallel to q_'. In this circumstance, it is
impossible for the end effector to move closer to tTte target. The most obvious case occurs when

the target is unreachable or the manipulator has entered a dead-end path. The operator may take

some steps to avoid the manipulator from entering a dead-end by designating intermediate targets,
or waypoints.

As an alternative to measuring distances from the links to devices in the workspace, obstacles

may be modelled as primitive solids. In this approach, the centroid of the jth object is located at

_oj = [xj yj zj IT and has the dimensions 2aj, 2bj, 2cj, along its principal axes. The orientation of
the solid with respect to the inertial frame is give** by a direction cosine matrix, Obstacle avoidance

points Pl, i = 1,..., np are designated along the manipulator arm. In the simulation model, these

points are the joints and the link midpoints.The location of the jth obstacle vis-a-vis the ith obstacle
avoidance point is approximated by the super-elllpsoid function

/ + ,, cj / (25)

The the desired shape of the jth obstacle is approximated by selecting appropriate values for k_, k_t,

and k_ greater than or equal to one. For k_, = k_ = k_ = 1 the surface is an octahedron. Setting
k z. -- kv -- k:. = 8 approximates a rectangular parallelopiped. Contact with the surface of the-J'-- "'J -- -3
jth obstacle by the ith collision avoidance point is approximated by Cj(pl) = 1. The workspace

potential function is defined by
11 o I'ip

P = [cj(p,)- 11-'
j i

where np is the number of collision avoidance points. The gradient vector t_ is generated by a finite
difference method as described above.

6 Graphical Representation with the IGRIP software

The Interactive Graphical Robot Instructional Program is a product of Deneb Robotics Inc. [12]

It is a computer graphics based package for workcell layout, simulation and offiine programming

which permits the graphical simulation of virtually any robotic device. Devices used in the workcells

may be added by modelling them with any of several CAD systems. A device has both geometric

and non-geomentric information stored with it. Non-geometric information including kinematics,
dynamics, velocities, etc., can be entered through interactive menus.

IGRIP allows robot programming via the Graphical Simulation Language (GSL), which in turn,
can communicate with programs written in C programming language. This capability will eventually

be exploited to imbed the robot control algorithm into the IGIZIP simulation.

7 The Payload Inspection and Processing System

The Payload Inspection and Processing System (PIPS) is conceived as a highly redundant manipula-
tor with a serpentine truss configuration. It is based on the Foster-Miller Serpentine Truss currently

under development at the Kennedy Space Center. The truss shown in Fig. 4 can accomodate up to

twelve degrees of freedom.

For the purposes of exanfing the efficacy of control algorithms, a notional PIPS, shown in Fig 5

has been designed. The illustration was generated in IGRIP. The Foster Miller Truss, with twelve

71

7 THE PAYLOAD INSPECTION AND PROCESSING SYSTEM 11

END EFFECTOR

_ EUECTmC LINEAR

IllI;IH / =,°_,o. NtF/
III IL I N / =mA.ou_nMVOT]f/_ #

till
Ill I' I-_u_ A=ruA_o. '-- .4_2T_u_u"AL

i.Jel A MEMBER

Figure 4: Foster Miller Serpentine Truss

Figure 5; Notional PIPS

72

8 ALGORITHM IMPLEMENTATION 12

degrees of freedom, is mounted to a pedastal with two revolute joints and three telescoping prismatic

joints. At the end of the truss, a revolute wrist is mounted, giving the complete system eighteen
joints and sixteen independent degrees of freedom. The table of the Denavitt-Hartenberg parameters
for the nominal "home" position, is shown in Table 1.

Table 1: Denevitt-Hartenberg Parameters for Notional PIPS

i ai(deg)
1 90.O

2 90.0
3

4
0.0

0.0

5 -90.0

6 90.0

7 -90.0

8 90.0

9 -90.0

10 90.0

11 -90.0
12 90.0

Oi(deg)
90.0

0.0

0.0

-45.0
L.....

ai (in)
0.0

0.0

-2.593

0.0

di (in)
22.0

0.0

20.0

1.0

joint type
revolute

revolute

prismatic

prismatic

90.0 0.0 0.0 prismatic
0.0 20.0 0.0 revolute

0.0 1.25 0.0 revolute

0.0 20.0 0.0 revolute

0.0 16.003 0.0 revolute

0.0 16.004 0.0 revolute

0.0 1.188 0.0 revolute

0.0 16.004 0.0 revolute

0.0

13 -90.0 0.0 12.006 0.0 revolute

14 90.0 0.0 12.004 0.0 revolute

15 -90.0 0.0 .813 0.0 revolute

16 90.0 12.004 0.0 revolute

90.0-90.017 -.833

1.79318
.833

45.0 0.00.0
revolute

revolute

8 Algorithm Implementation

The algorithm described above is executed in the C language program, Collision Avoidance Path

Planner (CAPP.c). The program flow is shown in Fig.6(a). In order to make use of utilities imbedded

in IGRIP, CAPP will itself become a library utility which can be accessed by a program written in

a GSL program which directly controls the graphical simulation and shown in Fig. 6(b).
The CAPP program has demonstrated the ability to generate obstacle free trajectories for the

PIPS model. In Fig7 the PIPS is shown manevering in a simple representation of the PCR/Shuttle

Payload Bay environment. In the simulation, it is desired to view a point, to the aft of the large
cylindrical payload from a distance of six inches.

9 Conclusions and Recommendation

An algorithm has been presented which will move tile end effector of a redundant manipulator toward

a target state while avoiding collisions of the arm with obstacles in the workspace. Allowing the end

effector path to be free avoids the problem of singularities found ill the pseudo-inverse solution of

the robot kinematics. In addtion, it simplifies the operator's workload and allows greather latitude

for obstacle avoidance. Tile algorithm is straightforward and requires only modest computing power.

73

t:

9 CONCLUSIONS AND RECOMMENDATION 13

_ ¢dmta_

_m_ta

t_t Io_t v_tor.

t_t rrmt_

1

1

I

r

Jlop

@-.!'.

.o

(a) (b)

Figure 6: CAPP Program Flow

(a) Current Flow, (b) IGRIP Imbedded Flow

74

-.,._.i 9 CONCLUSIONS AND RECOMMENDATION 14

l

Figure 7: Sinmlated PIPS Maneuver

75

\

9 CONCLUSIONS AND RECOMMENDATION 15

Although it is applied here to a highly redundant manipulator, redundancy is not explicitly required
for its implementation.

Serpentine manipulators such as the PIPs are envisioned for employment in complex and costly

environments. This method provides a tool for path planning by which specific maneuvers may be

simulated without risk. A nominal joint history may be generated which is subsequently used as an
open loop trajectory to be tracked by a robot with distributed control.

Offiine processing of the robot trajectory, while sufficient to demonstrate the efficacy of the CAPP

algorithm, is cu/nbersome and has severe shortcomings. Equation (25) has only limited utility to

model a complex environment, such as exists in the shuttle payload bay. Processing time increases

dramatically as the number and complexity of obstacles increases beyond a few simple shapes.

For that reason, it is recommended that future research be directed at various methods of interac-

tively linking the GSL and C languages in IGRIP. This will allow the algorithm to interrogate IGRIP

for distance information given by the MIN_DISTANCE utility. This should allow very complex and

realisitic CAD models to be exploited and greatly reduced execution time.

There are several unresolved problems with automated path planning. In its current incarnation,

the manipulator path is influenced to a great degree by its initial configuration with respect to the

workspace. Heretofore, the "home" configuration has been chosen arbitrarily. It would be useful to

the operator to have specific rules by which to chose an optimal configuration. The weighting of
the joint motion is also somewhat arbitrary, currently only inforcing joint rate limits. The scaling

between revolute and prismatic joints requires a more rigorous basis.

Currently, the operator may designate way-points which assist the algorithm in finding a collision
free path. However, heuristics should be developed which help the manipulator avoid dead--ends and

to choose between multiple paths around an obstacle.

76

E 2

16

A Appendix: Collision Avoidance Path Planner Source Code Listing

/**

* COLLISION AVOIDANCE PATH PLANNER

* Dr. Robert M. Byers, Unversity of Central Florida

* 8/4/94

* Robot end effector directed to a point in space with

* a desired orientation .

* Obstacles are modelled by hyperellipsoids

* and may be oriented via 1-2-3 euler angles

* Robot parameters contained in 'input.dat"

* joint angles written to 'joints.dat'

**

#include <stdio.h>

#include <math.h>

* function prototypes

void matrix_mult(float**matrixl,float**matrix2);

void end_effector(int n, float*q_p, float target_p[3] [4],float error_p[3] [4],float err_magi4]);

void integrate(int n, float *varl, float *vat2, float err, float err_dot, float step_s);

void joints__Drint(int n, float *var, FILE *file);

void **obstacle_transformation(int n, float **obst, float vector_n[3]);

float **IdentityMatrix(int n);

float ***JacobianMatrix(int n_dof, int n_obs, float *q_.p, float *Sob);

float **transformation_matrix(int n, float *vat);

float *joint_rates(int n, float *metric._D, float error_.p[3] [4],

float***jb, float step_s);

float *mem_alloc_l(int n);

float **mem_alloc_2(int nrows, int ncols);

float target_.p[3][4],

main ()

(

* local variables *

int i, j,k, num_dof, hum_obstacles, num_waypoints, waypoint_counter;

float ***jacobian;

float *rate,*q;

float *metric;

float **obstacle;

float **waypoint;

float target[3][4], error[3][4];

float rate_mag, tolerance, move_dist;

float error_mag[4],step_size, error_mag_old,error_.prod, error_prod_old,error_prod_dist;

float error_step=-l.0;

FILE *data;

FILE *joints;

joints=fopen('joints.dat','w');

if((data=fopen('input.dat', "r'))==NULL)

{

printf('input file could not be opened\n');

exit(-l);

)

/* *************************

* input data

77

fscanf(data,'%d', &num_dof);

alpha=mem_alloc_l(num_dof);

theta=mem_alloc_l(numdof);

a=mem_alloc_l(num_dof);

d=mem_alloc_l(num_dof);

metric=mem_alloc_l(num_dof);

q=mem_alloc_l(num_dof);

if((flag=(int*)malloc(sizeof(int)*num_dof)) == (int

{

fprintf(stderr, "Error mallocing flag\n');

exit(-l);

)

*) NULL)

17

for (i=0;i<nu__dof;i++)

{

fscanf(data.'%f

&metric[i],&flag[i]);

%f %f %f %f

if (flag[i] ==i)

q[i]=theta[i];

else

q[i]=d[i];

)

* read in target information

* and way points

waypoint_counter=0;

fscanf(data,'%f %f %d', &step_size, &tolerance,

waypoint=mem_alloc_2(3,num_waypoints);

%d\n', &alpha[i], &theta[i],

& num_waypoints);

&a[i] , &d[i],

for(i=0;i<num_waypoints;i++)

for(j=0;j<3;j++)

fscanf(data, "%f ", &waypoint[j][i]);

for(i=0;i<3;i++)

target[i][3]=waypoint[i][0];

for(i=0;i<3;i÷÷)

for (j=0;j<3;j_+)

fscanf(data,'%f ",&target[i][j]);

* read obstacle array

fscanf(data, "%d', &hum_obstacles);

obstacle=mem_alloc_2(12,num_obstacles);

for(i=0;i<num obstacles;i÷÷)

for(j=0;j<12;j_+)

fscanf(data, -%f., &obstacle[j] [i]) ;

fclose(data);

78

L:

- =

joints_print(num_dof,q, joints);

* for loop until all waypoints passed

while (waypoint_counter<num_waypoints)

(

* determine end effector position

end_effector(ntun_dof, q, target,error,error_mag);

for(j:O;j<4;j++)

printf('%f ",error_mag[j]);

printf('\n');

error mag_old=error_mag[3];

move_dist=error_mag_old;

err_r--pr_d=sqrt(err_r-mag[_]*err_r-mag[_]+err_r-mag[_]*err_r-mag[_]_err_r-mag[2]*err_r--mag[2]);

error__prod_old=error_prod;

/* **

* while loop until error within tolerance

while (error_mag[3]>tolerancellerror_.prod>.4)

(

* form the jacobian matrix

jacobian=JacobianMatrix(num_dof,num_obstacles, q, obstacle);

**

* determine joint rate vector toward target

rate=joint_rates(num_dof,metric, error, target,jacobian, step_size);

* integrate joint rates to update joint parameters

integrate(num_dof, rate, q,error_mag[3],error_step, step_size);

**

* recompute position vector and error vector

end_effector(num_dof, q, target,error, error_mag);

for(j=O;j<4;j++)

printf('%f ",error_mag[j]);

printf('\n');

error_step=error_mag[3]-error_mag_old;

error_mag_old=error_mag[3];

err_r--pr_d=sqrt(err_r-mag[_]*err_r-mag[0]+err_r-mag[_]*err_r--mag[_]_err_r-mag[2]*err_r-mag[2]);

error_prod_old=error_prod;

**

* print joint angles to "joints.dat"

if(fabs(move_dist-error_mag[3])>l.O IIfabs(error_prod__dist-error_prod)>.l)

{
move_dist=error_mag[3];

error__Drod_dist=error_prod;

joints_print(num_dof,q,joints);

18

79

) /* end error tolerance while*/

if(waypoint_counter==numwaypolnts-1)

printf('Target point reached\n');

else

printf('\n Waypoint %d reached\n ", waypoint_counter);

waypolnt_counter÷=l;

for(i=0;i<3;i÷+)

target[i][3]=waypoint[i][waypoint_counter];

) /*close way_oint counter while loop */

* print final joint angles to "joints.dat"

**

joints._print(num_dof,q,Joints);

fclose(joints};

free(alpha);

free(theta);

free(a)_

free(d);

free(metric);

free(flag);

free(q);

free(rate);

for(i=O;i<12;i+÷)

free(obstacle[i));

free(obstacle);

for(i=O;i<3;i++)

free(waypoint[i]);

free(waypoint);

for(i=O;i<3;i÷+}

(
for(j=O;j<num dof;j++)

free(jacobian[i][j]);

free(jacobian[i]);

free(jacobian);

)

* end of main program

*******************__***--**** ***********************

float **transformation_matrix(in£ n, float *vat)

{
static float **transform;

int i;

if(!(transform))(

transform=(float **)malloc(sizeof(float*)*4);

for(i=O;i<4;i+÷)

19

8O

if((transform[i]=(float

fprintf(stderr,

*)malloc(sizeof(float)*4)) == (float

"Error mallocing transform\n');

*) NULL)

2O

/*rotation matrix*/

if(flag[n]==l)

{

transform[0]

transform[0]

transform[0]

transform[0]

transform[l

transform[l

transform Ill

transform[l]

transform[2]

transform[2

transform[2]

transform[2]

transform[3

transform[3

transform[3

transform[3

}

else

{

transform[0]

transform[0]

transform[0]

transform[0]

transform[l]

transform[l]

transform[l]

transform[l]

transform[2]

transform[2]

transform[2]

transform[2]

transform[3]

transform[3]

transform[3]

transform[3]

I

[0]=cos(var[n]);

[l]=-cos(alpha[n])*sin(var[n]);

[2]=sin(alpha[n])*sin(var[n]);
[3]=a[n]*cos(var[n]);

][0]=sin(var[n]);

][1]=cos(alpha[n])*cos(var[n]);

[2]=-sin(alpha[n])*cos(var[n]);

[3]=a[n]*sin(var[n]);

[0]=0;

][l]=sin(alpha[n]);

[2]=cos(alpha[n]);
[3]=d[n];

][0]=0;

][i]=0;

][2]=0;

][3]=1;

[0]=cos(theta[n]);

[l]=-cos(alpha[n])*sin(theta[n]);

[2]=sin(alpha[n])*sin(theta[n]);

[3]=a[n]*cos(theta[n]);

[0]=sin(theta[n]);
[l]=cos(alpha[n])*cos(theta[n]);

[2]=-sin(alpha[n])*cos(theta[n]);
[3]=a[n]*sin(theta[n]);

[0]=0;

[l]=sin(alpha[n]);

[2]=cos(alpha[n]);
[3]=var[n];

[0]=0;

[i]=0;

[2]=0;

[3]=1;

return (transform) ;

********************** MULTIPLICATION**********************/

void matrix_mult(float**matrixl,float**matrix2)

(

float **matrix3=mem_alloc_2(4,4);

int i,j,k;

for(i=0;i<4;i++)

for (j=0;j<4;j++){

matrix3[i] [j]=0;

for (k=0;k<4;k÷+)

matrix3[i] [j]÷=matrixl[i][k]*matrix2[k] [j];)

for(i=0;i<4;i÷+)

{

81

|_

free(matrixi[i]);

matrix1[i]=matrix3[i];

)

21

*************************** *************************

float **IdentityMatrix(int n)

(

float **matrix=mem alloc_2(n.n);

int i,j;

for(i=0;i<n;i++)

for(j=0;j<n;j÷÷)

if(i==j)

matrlx[i][j]=l;

else

matrix[i] [j]=0;

return(matrix);

float

[

float

float

float

float

float

float

float

float

float

float

float

float

float

int i,

***JacobianMatrix(in£ rt_dof, int n_obs, float *q__D, float *rob)

***jacobian;

***tempi

**result_plus, **result_minus;

*q._plus=mem_alloc_l(n_dof);

*q_minus=mem_alloc_l(n_dof};

*gradient=mem_alloc_l(n_dof);

cost_minus;

cost_plus;

**mu_matrix=mem_alloc_2(n_dof,n_dof);

potential_plus, potential_.minus;

end__point_plus[3],end__point_minus[3];

mid_Doint__Dlus[3],mid_point_minus[3];

gradient_mag=0.0;

9, k,kk;

jacobian=(float***)malloc(sizeof(float**)*3);

for (i=O;i<3;i++)

jacobian[i]=(float**)malloc(sizeof(float*)*n_dof);

for(j=0;j<n_dof;j++)

jacobian[i][j]=(float*}malloc(sizeof(float)*4);

}
temp=(float***)malloc(sizeof(float'*)*3);

for (i=0;i<3;i+÷)

(
temp[i]=(float'*)malloc(sizeof(float*)*n_dof);

for(j=0;j<n__dof;j++)

temp[i][j]=(float*)malloc(sizeof(float)*4);

}

* virtual joint displacement loop

**

82

\ iJ

Ik._/

J

for(j:0;j<n_dof_j++) /* outer loop start*/

{

for (i:0;i<n_dof;i++)

if(i==j)

{

q_plus[i]=q_p[i]+.005;

q_minus[i]=q_/D[i]-.005;

]

else

(

q_plus [i] =q_9 [i] ;

q_minus [i] =q_p [i] ;

};

result_plus=IdentityMatrix(4);

result_minus=IdentityMatrix(4);

potential__plus=0.0;

potential_minus=0.0;

for(i=0;i<3;i++)

{

end_point_plus[i]=0.0;

end_point_minus[i]=0.0;

)

/*find change in r for a plus/minus permutation of q*/

for(i=0;i<n_dof;i÷+)

{

* cost function for joint locations

matrix_mult(result__Dlus, transformation_matrlx(i, q_plus));

matrix_mult(result_minus,transformation_matrix(i,q_minus));

for(kk=0;kk<3;kk++)

{

mid_point__plus[kk]=(result__Dlus[kk][3]÷end__Doint__plus[kk])/2.0;

mid_!ooint_minus[kk]=(result_mlnus[kk][3]+end_point_minus[kk])/2.0;

end__Doint_plus[kk]=result_plus[kk][3];

end_point_minus[kk]=result_minus[kk][3];

}

* link endpoint collsion avoidance cost function

for(k=0;k<n_obs;k+÷)

{

obstacle_transformation(k, ob, end__Doint_plus);

obstacle_transformation(k,ob,end_.Doint_minus);

obstacle_transformatlon(k, ob,mid_.point__Dlus);

obstacle_transformation(k,ob,mid_point_minus);

cost_plus= -i.0;

cost_minus= -i.0;

for(kk=0;kk<3;kk++)

(

22

cost_.plus+=pow((end_point__Dlus[kk]-ob[kk][k])/(ob[kk+3][k]+6.0),ob[kk+6][k]);

cost_minus÷=pow((end_point_minus[kk]-ob[kk][k])/(ob[kk+3][k]+6.0),ob[kk+6][k]);

)

potential_plus+=l.O/cost_plus;

potential_minus+=l.0/cost_minus;

83

23

* link midpoint collision avoidance cost function

cost_plus= -i.0;

cost_minus= -1.0;

for(kk=0;kk<3;kk++)

{

cost__Dlus÷=pow((mid_point__Dlus[kk]-ob[kk][k])/(ob[kk_3][k]+3.0),ob[kk+6][k]);

c_st-minus+=p_w__mid--p_int-minus[kk]-_b[kk][k]_/(_b[kk+3][k]_3._)__b[kk_6][k]);

}

potential_plus÷=l.O/cost_plus;

potential_minus÷=l.O/cost_minus;

)

)

* obstacle gradient vector

gradient[j]=(potential_Dlus-Dotential_minus)/.01;

gradient_mag+=gradient[j]*gradient[j];

* rate only jacobian

for(i=0;i<3;i++)

for(k=02k<4;k÷÷)

temp[i][j][k]=(result_plus[i][k]-result_minus[i][k])/.Ol;

} /* end virtual displacement looD */

* normalize gradient vector

gradient__ag=sqrt(gradient__ag);

for(i=0;i<n_dof;i++)

gradient_i]=gradient[i]/gradient_mag;

for(i=0;i<n_dof;i++)

for(j=O_j<n_dof;j÷+)

{

if(i==j)

mu_matrix[i][j]=l.O-gradient[i]*gradient[j];

else

mu_matrix[i][j]=-gradient[i]*gradient[j]_

)

* obstacle avoidance jacobian

for(k=0;k<4;k++)

{

for{i=0;i<3;i+÷)

for(j=0;j<n_dof;j÷÷)

{

jacobian[i][j][k]=0.0;

for(kk=0:kk<n_dof;kk++)

jacobian[i][j][k]+=mu_matrix[j][kk]'temp[i][kk][k];

}

)

84

24

for(i=0;&<4;&+÷)
{
free (result_plus[i]);
free (result_minus[i]);
)

free (result__plus);
free (result_minus);

for(i=0;&<3;&++)
{
for(j=0;j<n_dof;j++)
free(temp[i][j]] ;

free (temp[i]) ;

]

free(temp);

free (el_plus);

free (q_minus);

free (gradient);

return(jacob&an);

}

/***************************END EFFECTOR POSITION AND *RR*********************

void end_effector(int n, float*__p, float target_p[3][4],float error..p[3][4], float err_magi4])

(

int i,J;

float **result;

result=IdentityMatrix(4); **initialize transformation matrix**

for(i=0;i<n;i÷÷) /*carry out sequential matrix multiplication*/

matrix_mult(result,transformation__matrix(i, q--P));

printf('%.2f %.2f %.2f\n', result[0][5], result[l][5], result[2][3]):

determine end effector error

for(j=0;j<4;j++)

{

for(i=0;&<3;&++)

error_p [i] [j] =target_p [i] [j]-resu it [i] [j] ;

err_mag [j]=sqrt (error_/) [0] [j] *error_p [0] [j] +error__D [1] [j]*error_p [1] [j] ÷error_D [2] [j]*error_D [2] [j]) ;

)

for(i=0;&<4;&÷+)

free(result[i]);

free(result);

)

• *************************** **

float *joint_rates(int n, float *metric_p, float error_/_[3][4], float target_p[3][4],

float***jb, float step_s)

{

float rate_mag=0;

float *rate_.p,error_mag;

int i,j,k;

rate_p=mem_alloc_l(n);

error_mag=sqrt(error_p[0] [3]*error_p[0] [3]+error_p[l][3]*error_p[l][3]+error_p[2][3]*error-p[2][3]);

* target position apDroch rates

85

for(i=O;i<n;i++)

{

rate._p[i]=O;

for(j=O;j<3;j++)

rate._D[i]+=metric_P[i]*jb[j][i][3]*error_I2[j] [3]/error_mag;

rate__ag%=rate..p[i]*rate_p[i];

)

* tar@et orientation rates

for(i=O;i<n;i++)

{

for(j=O;j<3;j++)

for(k=0;k<3;k++)

rate_p[i]+=lO*jb[j][i][k]*target_p[j][k];

rate..mag+=rate_p[i]*rate_p[i];

)

rate__ag=sqrt(rate_mag);

* rate limit i0 degrees /sec

for(i=Ozi<n;i÷+)

(

rate_p[i]=rate..p[i]/rate_mag; _c_ c_
if (flag[i]==l && fabs{rate_.p[i])>.i75*step_s)

rate_p[i]=.175*step_s*rate_p[i]/sqrt(rate_p[i]*rate_p[i]);

)

return(rate_p);

)

***************************** INTEGRATION******************/

void integrate(int n, float *varl, float *var2, float err, float err_dot,

{

int i;

float step;

float step_s;

/* first order euler's method integration */

step_s=max__st_p;

if(err>lO*step_s)

(

if (err>fabs(err__dot))

step=step_s;

else

step=fabs(err/err_dot)*step_s;

}

else

step=.25*step_s;

printf('%.2f \n',step];

for(i=O;i<n; i++]

var2[i]+=varl[i]*step;

}

float max_step)

25

V

86

v

void joints__print(int n, float *vat,FILE *file)

(

int i;

for(i=0;i<n/2;i_÷)

fprintf(file, "%f ", vat[i]);

fprintf(file, "\n');

for(i=n/2;i<n;i++)

fprintf(file, "%f ", vat[i]);

fprintf(file, "\n');

)

****************************EM*** ALLOCATION ***4*****4****4******************4.4***

float *mem_alloc_l(int n)

[

float *vat;

if((var = (float *)malloc(sizeof(float)*n)) == (float 4) NULL)

{

fprintf(stderr, "mallocing error\n');

exit(-1);

)

return(var);

}

********************************* ALLOCATION ***************************************

float **mem_alloc_2(int nrows,int ncols)

{

float **vat;

int i_

if((var=(float **)malloc(sizeof(float*)*nrows)) == (float .4) NULL)

{

fprintf(stderr, • mallocing error\n');

exit(-l);

)

for(i=0;i<nrows;i++)

[

if((var[i]=(float*)malloc(sizeof(float)*ncols)) == (float 4) NULL)

{

fprintf(stderr, " mallocing errorkn');

exit(-l);

)

)

return (var)

)

*************************************** ORIENTATION TRANSFORMATION*********/

void **obstacle_transformation(int n, float **obst, float vector_n[3])

{

float pry[3][3];

float vector_r[3];

int i,j;

pry[0] [0]=cos(obst[ll] [n])*cos(obst[10][n]);

pry[0][l]=cos(obst[ll] [n])*sin(obst[10][n])*sin(obst[9] [n])-sin(obst[ll][n])*cos(obst[9] [n]);

pry[0][2]=cos(obst[ll] [n])*sin(obst[10][n])*cos(obst[9] [n])+sin(obst[ll][n])*sin(obst[9][n]);

pry[l][0]=sin(obst[ll][n])*cos(obst[10][n]);

pry[l][l]=sin(obst[ll][n])*sin(obst[10][n])*sin(obst[9] [n])+cos(obst[ll] [n])*cos(obst[9][n]);

pry[_][2]=sin(_bst[__][n])*sin(_bst[__][n])*c_s(_bst[9][n]_-c_s(_bst[__][n])*sin(_bst[9][n]);

26

87

pry[2][O]=-sin(obst[lO][n]);

pry[2][l]=cos(obst[lO][n])*sln(obst[9][n]}:

pry[2][2]=cos(obst[lO] [n])*cos(obst[9] [n]);

for(i=O;i<3;i+_)

(

vector_r[i]=O;

for(j=O;j<5;j++)

vector_r[i]+=pry[i][_]*vector_n[j];

)

for(i=O;i<3;i÷+)

vector_n[i]=vector_r[i]:

)

27

88

.i
REFERENCES 28

References

[1} Richardson, B., Sklar, M., and Fresa, M., "PCR Inspection and Processing Robot
Study, Final Report", McDonnell Douglas Space Systems - Kennedy Space Division,
Nov 5 1993

[2]

[3]

[4]

[5]

Io]

[81

[9]

Pasch, K., "Self-Contained Deployable Serpentine Truss for Prelaunch Access of the

Space Shuttle Orbiter Payloads", NAS -2659-FM-9106-387, Final Report, Contract

No. NAS 10-11659, NASA, Kennedy Space Center, FL Aug. 1990.

Maciejewski, A., and Klein, C., "Obstacle Avoidance for Kinematically Redundant
Manipulators in Dynamically Varying Environments", The International Journal for

Robotics Research, Vol. 4, No. 3, Fall 1985, pp. 109-117.

Nakamura, Y., Advanced Robotics, Redundancy and Optimization, Addison-Wesley
Publishing Co., Inc., Redwood City, C, 1991.

Wegerif, D., Rosinski, D., and Parton, W., "Results of Proximity Sensing Research
for Real-Time Collision Avoidance of Articulated Robots Working Near the Space

Shuttle", Proceedings of the 6th Annual Conference on Recent Advances in Robotics,
University of Florida, Gainesville, FL, 19-20 April 1993.

Penrose, R., "On the Best Approximate Solutions of Linear Matrix Equations", Pro-
ceedings, Cambridge Philosophy Society, 52:17-19.

Sciavicco, L., Siciliano, B., "A Solution Algorithm to the Inverse Kinematic Problem
for a Redundant Manipulator", IEEE Journal of Robotics and Automation, Vol. 4.,

No. 4, Aug. 1988, pp. 403-410.

Asano, K., et al, "Multi-Joint Inspection Robot", IEEE Transactions on Industrial

Electronics, Vol. IE-30, No. 3, August 1983, pp. 277-281.

Baker, D.K., and Wampler, C.W., "On the Inverse Kinematics of Redundant Manipu-

lators", The International Journal of Robotics Research, Vol. 7., No. 2., March/April
1988.

[10] Dory K., Melchiorri, C., and Bonivento, C., "A Theory of Generalized Inverses Ap-

:plied to Robotics", The International Journal of Robotics Research, Vol. 12, No. 1,

Feb. 1993, pp 1-19.

[1]] Byers, R., " Control of a Serpentine Manipulator with Collision Avoidance" Final

Report, 1993 NASA/ASEE Summer Faculty Fellowship Program, NASA CR-I94678,

Contract NGT 60002 Suppl. #11, Kennedy Space Center, FL.

[12] "IGRIP Users Reference Manual", Deneb Robotics, Inc. 1990.

[13] Denavit, J. and Hartenberg, R.S., "A Kinematic Notation for Lower-Pair

Mechanixms Based on Matrices," Journal of Applied Mechanics, pp. 215-221, June
1955.

[14] Khatib, O., and Le Maitre, J.-F., "Dynamic Control of Manipulators Operating in
a Complex Environment", 3rd Syrup. Theory and Practice of Robot Manipulators,

Elsevier, pp. 267-282.

89

29
REFERENCES

[15]Luenberger,D., Optimization by Vector Space Methods, John Wiley _z Sons, Inc.,

New York, 1969.

I161 Nakamura, Y., and Hanafusa, It., "Optimal Redundancy Control of Robot Manip-
ulators", International Journal o,f Robotics Research, vol. 6, No. 1., Spring 1987. pp

32-42.

V

V

90

_l: | i

