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Abstract

A general class of exact solutions is presented for a time evolving bubble in a two-

dimensional slow viscous flow in the presence of surface tension. These solutions can describe

a bubble in a linear shear flow as well as an expanding or contracting bubble in an otherwise

quiescent flow. In the case of expanding bubbles, the solutions have a simple behavior in the

sense that for essentially arbitrary initial shapes the bubble will asymptote an expanding

circle. Contracting bubbles, on the other hand, can develop narrow structures ('near-cusps')

on the interface and may undergo 'break up' before all the bubble-fluid is completely re-

moved. The mathematical structure underlying the existence of these exact solutions is also

investigated.

1Research was supported in part by the National Aeronautics and Space Administration under NASA
Contrac_ No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1. Introduction

The study of the deformation and breakup of drops and bubbles in a slow viscous flow

is of practical significance to many physical processes such as the rheology of emulsions and

the mixing in multiphase viscous systems. Following the pioneering work by G. I. Taylor

(1932, 1934), there has been a great deal of both theoretical and experimental research on

the subject. The reviews by Acrivos (1983) and Rallison (1984) summarize the state of

affairs in the early eighties. In many of these early studies the term 'drop breakup' usually

does not refer to the fragmentation of a drop, but to the non-existence of a steady solution

when the applied shear strength exceeds some critical value. In the past decade, however,

there have been a number of mainly experimental and computational investigations of the

actual dynamics leading to breakup. These have recently been reviewed by Stone (1994).

Analytical solutions for the time evolution of a general three-dimensional drop or bubble

in a slow viscous flow do not appear amenable to currently known techniques. The simplified

case of two-dimensional bubble flows, on the other hand, is analytically tractable through

complex variable methods; and their study might shed some light on important qualitative

aspects of axisymmetric 3D flows. In this vein, Richarson (1968) has obtained exact solutions

for an inviscid 2D bubble in a linear shear flow, while Buckmaster & Flaherty (1973) has

found approximate solutions for a drop with the same viscosity as the ambient fluid.

There have also been recent investigations of 2D Stokes flows with time-dependent free

boundaries. In a series of papers, Hopper (1990, 1991, 1992, 1993) has found several analytic

solutions for the motion of a blob of viscous fluid driven by surface tension. Among these

are solutions describing the coalescence of two cylinders (Hopper 1990) and the coalescence

of a cylinder with a half-plane (Hopper 1992)--two problems of interest in viscous sinter-

ing. Richardson (1992) has recently reviewed the mathematical structure of these solutions.

Howison and Richardson (1993) have also obtained exact solutions for the case of a 2D

viscous blob with n-th fold symmetry (i.e., invariance under rotation by 2re�n, for n > 1)

in the presence of suction. In the absence of surface tension their solutions develop cusp

singularities on the interface (and hence cease to be physically meaningful) before the fluid

is completely removed. A nonzero surface tension, however, allows for total removal of fluid.

The main aim of the present paper is to reporta general class of exact solutions for a

time-evolving bubble in a 2D Stokes flow. Our solutions include, for instance, the motion of

a bubble of essentially arbitrary initial shape in a linear flow or an expanding/contracting

bubble in an otherwise quiescent flow. In the former case, one is able to follow the transient

motion of the bubble as it approaches the steady state. In an earlier paper (Tanveer _z

Vascon_:elos 1994a), we briefly discussed the case of specific solutions that show a contracting

bubble developing topological singularities ('breakup') before the bubble shrinks to zero



size. Other solutionsshow that cuspcan form in the presenceof certain symmetrieswhen

surfacetension is neglected--in the presenceof surfacetension, however,cusp formation is

inhibited until all the bubble-fluid ('air') is extracted. It wasalso pointed out that contrary

to the expectationsfrom a HeM-Shawflow analogyrecently madein the literature (Howison

and Richardson 1993), a circular bubble expandingin a 2D Stokesflow is stable, while a
contracting one is not. Here in this paper, we report a more completeset of suchsolutions

for expanding/contracting bubbles, present detailed analysisof the 'regularization' effects

provided by surface tension, and discussthe mathematical structure that, among other

properties, guaranteesthe existenceof exact solutions for a rather general classof initial
conditions.

The paper is organizedas follows: in §2 the problem is mathematically formulated in

terms of a conformal mappingfrom the interior of a unit circle to the flow domain. It should

be noted here that the formulation of the problemof a bubble in a 2D Stokesflow parallels

that of a 2D viscousdrop, as presentedby Hopper (1990)and Richardson(1992). In fact,

a shorter presentation in §2 could have been achievedby quoting someof their formulas.
However,sincethe two problemsdiffer in a numberof aspectsand sincethereare differences

in the derivations,we felt that a completeformulation waswarrantedhere. In §3wediscuss
certain global properties of the conformal mapping that underlie the existenceof exact

solutions for the problem. Many of the argumentspresentedin this discussiontranscends

the specific details of the problem in questionand havebeenfound to apply to other 2D

free-boundaryproblemsaswell (Tanveer1993). Accordingly, this sectionis likely to appeal

to researchersinterestedin finding exact solutions to free-boundaryproblems that can be

conveniently cast in terms of conformal mapping. For those more interested in the concrete

results for a 2D Stokes bubble, however, it can be skipped without any loss of continuity. In

§4 a general class of exact solutions of polynomial type is presented, while the following two

sections give details for two specific cases. First, in §5 the problem of a bubble placed in a

linear flow is considered for two particular flow arrangements of relevance to experiments:

§5.1 describes a bubble in a pure straining flow, whereas §5.2 focuses on a simple shear flow.

The case of expanding/contracting bubbles in an otherwise quiescent flow is then addressed

in §6. Our conclusions and main results are summarized in §7.

2. Mathematical Formulation

Vve consider the problem of a bubble placed in a two-dimensional slow viscous flow. The

fluid inside the bubble has a negligible viscosity and is at a constant pressure, which is

chosen to be zero without loss of generality. The fluid outside the bubble has a viscosity

and ['s incompressible. Under the assumption of no inertial effects, gravitational or other
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body forces, the fluid motion is governed by the Stokes equation and the incompressibility

condition:

pV2u = -Vp (1)

V.u = 0, (2)

where u(x, y) is the fluid velocity and p the pressure.

On the bubble boundary we must ensure continuity of the shear stress and satisfy the

requirement that the jump in the normal stress across the interface equals the product of the

surface tension o. and the curvature n. These two stress boundary conditions can be written

as

-- p nj + 212 ejknk = a_ nj, (3)

where the indexes j and k take on values 1 and 2 (the Einstein summation convention is

used in the above), and nl and n2 are the x and y component of the outward normal unit

vector. Here ejk are the components of the rate of strain tensor and are given by

1 (Ouj Ouk'_
eik = -2 \Oxk + Oxj ]" (4)

In addition, we must also satisfy the usual kinematic condition that the normal velocity Vn

of a point on the bubble surface is equal to the normal component of fluid velocity at that

point, that is,

u. n = I_. (5)

To completely specify the problem we need to prescribe appropriate boundary conditions

at infinity. We suppose in general that the bubble is placed in a linear flow and its area is

changing at a prescribed rate m, which in general can be a time dependent function. More

specifically, we require that far away from the bubble the fluid velocity behaves as

u _ r.x + 2zr Ix[ + O(1/[x[2)' for Ix[ _ oo, (6)

where

1(oor = _ _o+_0 -a0 "

Here _0 is the vorticity of the external flow, while a0 and _0 characterize its strain.

It should also be noted at this stage that the problem stated above can be recast in terms

of nondimensional quantities if we rescale velocities by o./I-h pressure by o./R, and the length

and time scales by R and Rl.l/o', where _-R 2 is the bubble initial area. In these units, the

dimensionless parameters characterizing the problem are

r'- #R F and m'- II (s)
a o.R

3



We prefer howeverto usedimensionfulquantities throughout the rest of the paper, except

where noted otherwise. This is becausea different nondimensionalizationis appropriate
when _r= 0.

As is well known (Lamb 1945),the problemof two-dimensionalStokesflow can be con-

veniently formulated in terms of a streamfunction ¢(x, y), defined as

0¢ 0¢
ul = O--yy' u2 = Ox' (9)

so that ¢ relates to the fluid vorticity _o through

and obeys the biharmonic equation

= (lO)

v4¢ = 0. (11)

Alternatively, one can formulate this problem in terms of a stress function ¢(x,y) (Muskhe-

lishvili 1963), defined via

V2¢ = P--, (12)
P

so that ¢ also obeys the biharmonic equation. Here the time dependence of ¢ and ¢ has

been omitted for notational convenience.

Next we introduce the quantity W(z,"2) = ¢(x, y)+i_,(x, y), where z = x+iy and the bar

denotes complex conjugation. Then according to the Goursat representation for biharmonic

functions (Carrier, Krook, and Pearson 1966), W(z,-2) can be written as

W(z,-2) = -2f(z) + g(z), (13)

where f(z) and g(z) are analytic functions in the fluid region. All the physically relevant

quantities can now be expressed in terms of the functions f(z) and g(z). After a little

algebra, one can easily establish the following identities:

P i_ = 4f'(z) (14)
#

u, + iu2 = -f(z) + z]'(=_) +y(_), (1.5)

ell -1- ie,2 -- z?"(_') -t-- O"(_'). (16)

where prime indicates derivative and f denotes the conjugate function: f(z) = f(2) (and

similarly for 0). The functions f(z) and g'(z) must also satisfy appropriate boundary condi-

tions, as described below.

First consider the boundary conditions at infinity. From (14) it follows that

liP,(t) iwo]z+C(t)+ O(1/z), as ,z,.-',oo, (17)f(z) ,- i
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where the functions p_(t) [the pressure at oc] and C(t) are to be determined later. Now

using (6), (15), and (17), one finds

1 m

g'(z) ,,_ -_ (ao - it3o) z + C(t) + _z + O(1/z2)' as Izl--, _ (18)

Note that according to (14) and (15) the choice of C(t) does not affect the velocity and

pressure fields--a specific choice however will be made below for convenience.

If we now define

N = nl + in2 = i(x, + iy,) = iz, = ie ie, (19)

where s is the arclength traversed in the clockwise direction and 0 is the angle between the

tangent and the real positive x axis, then the two stress conditions given in (3) can be written

as one complex equation:

-- pN + 2/t(e11 + ie12)N = axN. (20)

Using (14), (16), (19), and the fact that x = -0,, we find after a straightforward calculation

that (20) is equivalent to

OH(z,5) OH(z,5) .r

z_ Oz + 5, 02 = -z_z,,, (21)

where r = o'//t and

H(z, 5) = f(z) + zf'(5) + _'(5). (22)

Equation (21) can then be integrated once, yielding the following condition on the bubble

surface:

f(z) + zf'(5) + _'(5) = -i r (23)
-2 ZS"

Here, without loss of generality, the constant of integration has been set to zero. [This

corresponds to a specific choice of C(t).] From (15) and (23), it also follows that on the

bubble surface:
T

u, + iu2 = -i-_z,- 2f(z). (24)

Next, we consider the conformal mapping z(_, t) that maps the interior of the unit circle

in the ¢" plane to the fluid region (i.e., the exterior of the bubble) in the z plane, such that

the _ = 0 corresponds to the point z = cxz. We thus write

a(t)
= _ + h((,t), (25)

where a(t) can be chosen real and negative in view of the additional freedom of the Riemann

mapping theorem. Here h(_,t)is assumed analyt, ic in I¢1 < 1 and such that z¢ -fi 0 in [([ _< 1

at least for some period of time.



Now recall that the kinematic condition (5) canbe written in complexnotation as

Im {[Z, - (ul + iu2)] Z,,} = 0, (26)

where Z(u,t) =_ z(ei",t). Note also that

i_z¢
on I¢1= 1, (27)

z,- fz¢['

Inserting (24) and (27) into (26) and using the fact that Z_ - i_z¢ on _ = e i_, we obtain the

following condition on [_[ = 1:

Re [z, + 2F(_,t)] r¢z¢ - 2Iz¢1' (28)

where r = _/# and

F(_,t) = f(z(_,t),t). (29)

For later use, we note that that in view of (25) the asymptotic condition (17) implies that

F(¢, t),--,a (p_/_ - i_o)
4_ + C(t) + O(¢), as Izl ---,o. (30)

We then notice that the quantity within square brackets in (28) is an analytic function of

_" for I_l -< 1. [Note that the simple poles at _ = 0 in both the numerator and denominator

cancel out.] From Poisson formula (Carrier, Krook, and Pearson 1966), it follows that for

Ic,'l< 1:
z, + 2F(¢, t) = ¢[I(_, t) + iK] z¢,

where K is a real constant and

(31)

r _¢ d_' [_"+_] 1 (32)!(_,t)- 4_ri q=l ¢-- ¢'-¢J Iz¢(¢',t)l

By examining the behavior of (31) as ¢"+ 0, we readily obtain

1

K = _0, (33)

p_o(t) = -2#[I(0, t)+_], (34)

where the dot denotes time derivative. Equation (31) can thus be thought of as an evolution

equation for the mapping function z(_',t). Indeed, in the next section we shall use this

equation to derive several general properties concerning the motion of the singularities of

z(_,t) For practical purposes, however, it is more convenient to view (31) as determining

F(_, t) [and hence the pressure and vorticity fields] in terms of the conformal mapping.

ill | I



Now if we define

a(¢, t) = j(z(¢,t),_), (35)

then the function G(_, t) can also be expressed in terms of z(£, t) as follows. Inserting (27)

into (23), taking the complex conjugate, and using the fact that ( = 1/_ on {_[ = 1, we then

find

-1/2//_-1 t)
G(_,_)-- __ff_(_-I _:)__ _(_--1 t_F_(_, t) r z_ _ , (36)

' ' ' zd¢,t) + 2 _z_/_(¢,t)'

which is originally valid on ](] = 1 and therefore elsewhere by analytic continuation. Using

(31) to eliminate F((, t) from the equation above, we obtain after some simplification

c(¢, t) = 1 _ _"z_,((,t_) [ _z_¢(£,__t)] iK]}-_(_- ,t) Ch(¢,t) - 1+ [I(¢,t) +I z_(¢,t) _(¢,t) ]
2';(_-', t) 1 1

+ 2( [I(_', t) + iK] + -_2,(_- ,t). (37)

[In deriving this, we have made use of the relation

T

I(¢,t) + l(_ -_ t) = ,/_,. (3s)
' z¢ [_,,t)_/2(_-l,t) '

which follows from the fact that ReI((,t)-- r/2[z¢((,t)[ on [_[- 1.]

We point out at this stage that (37) not only gives G(¢', t) in terms of z(¢', t) but it also

determines the evolution of the mapping function itself. In fact, the requirement that the

right hand side of (37) is analytic in ]¢1 < 1, except for a known pole at _"= 0, can be used to

determine the time evolution of the parameters in our solutions, as we will see in §4. Before

doing that, however, we would like to describe in the next section the general mathematical

properties that underlie the existence of a rather broad class of exact solutions.

3. General Properties of Singularities

In this section we shall derive several global properties of the mapping function z(_', t) for

arbitrary initial data z((,0) analytic in ICI_<_ (except for a simple pole at { = 0) and with

z{(_.',0) ¢ 0 in 1(1 <- 1 as well. In particular, we shall be interested in the behavior of the

singularities of z(_, t) in [({ > 1. We begin by analytically continuing (31) into the exterior

of the { unit circle. Through a standard procedure of contour deformation, one finds that

for I([ > 1:

Cz_l'(¢,t)
z, + 2F((,t) = ¢[/((,t) + iK]z_ + r _/2(__1 t ), (39)

Now on taking the complex conjugate of (36) on the unit ( circle, it follows that

&(¢-',t) , Cz_/_(¢,t)
G(Ua,t) =-F(C,t)-z(4, t) _--7-z__,-_ + (40)

2 -1/2,.
z_ l_-I,t)'



on [_[ = 1 and elsewhere by analytic continuation. In view of (40), it is clear that (39) can

be written as

zt = qlz_ + q3z + q_, (41)

where

ql(_, t) = _ [-/r(_,t) -_iK], (42)

q3((,t) = 2'f'¢((-''t) (43)
_(¢-1, t) '

q2(_,t) = 2G(_-1,t). (44)

Note from the definitions (32) and (42)-(44) that as long as a solution z((, t) exists for

which z¢((, t) is nonzero and analytic in I¢'1 -< 1 each of (-aql, q_ and q3 will remain analytic

in [(1 >_ 1. This implies that the corresponding Laurent series on ICl= 1 will contain only

nonpositive powers of (. For instance, one has that on the unit circle

0

q2(e'_,t) = _ q_,_(t) e -''_'. (45)

Similar Fourier series representations exist for q3(e i_, t) and e-i_ql(ei_, t).

In order to further elucidate the properties of the evolution equation (41) in [(I -> 1, it is

convenient to introduce the following projection operator PN acting on the class of functions

v(u) with a convergent Fourier representation

v(,) =

where PN for N _> 0 is defined by

[_,_v](_) =

v,e _"_, (46)
'r/,--_ -- (X)

__, vne i'_'. (47)
n=N+l

On applying the operator PN to (4t), it follows that the projection H(u, t) = T'N z(e _', t)

satisfies the following evolution

: Pu [-ie-i"qx(ei",t)H,] + 791v [q3(e'",t)H] • (48)H_

It follows from (48) that if H(u, 0) = 0, then H(u, t) = 0 for all times. This fact implies in

turn that if z((_, 0) has no singularities in [_] >_ 1, except for a "pole" of order N at infinity,

i.e., z(ff, 0) ,,_ Constant. _ as ¢ _ 0% then z(ff, t) will have the same property for t > 0.

Since z(£', t) is a conformal map with only one possible singularity in [¢'] < 1 at _ = 0, it

follows that if we start with an initial condition of the form

z(_,0) = a(0__.._))+ h(_,0), (49)
¢
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with h(_', O) a N-th order polynomial, then for later time we will have

z(¢,t)- a(t)
- T + h(¢,0, (50)

where h(_, t) will remain a polynomial of the same order. Thus analyticity properties of _-1ql,

q2 and q3 in the extended complex plane [c,"I >_ 1 guarantee the existence of polynomial-type

exact solutions.

Now, consider more general initial conditions of the form

z((_,0) = _ Ej(_,0)(_ - _'j(0)) -'y_ + M(_,0), (51)
j=l

with 7j either > 0, or < 0 but not an integer. Then, it is clear that for later times, we will

h ave

z(¢,t) = _ Ej(¢,/)(¢- ¢i(t))-_,+ M(¢, t), (52)
j=l

provided M(_,t) and Ej(¢,t) are required to satisfy

Mt = qaM¢ + q3M + q2 (53)

.y_Ej
Ej, = q, E& + q3Ej + - _3C------_[q'(_'t) - ql(_J(t)'t)] , (54)

while the location of the singularities ¢'j (t) is determined from

= -ql(¢j(t), t). (55)

Using the projection operator 7:'At on (53), it can be shown with an argument similar to that

following (48) that if M(_, t) is initially analytic in [C] -> 1 with a N-th order "pole" at oc,

then it will remain so for later times. Similar property can also be shown to hold for each

Ej(C., t). The analyticity properties of Ej(_, t) and M(¢, t) thus imply that the form of an

initial singularity of z(_,i) in I_1 -> 1 (including that at c¢) is preserved in time.

Moreover, from Plemelj formula applied to (32), it follows that Re I(_,t) = -2_1 in the

limit ICI _ 1+. And since Re I(_,t) defines a harmonic function everywhere in ICI > 1, the

maximum principle for harmonic functions implies that Re I(_,t) < 0 in I_] > 1. Using

this fact and (42) into (55) it follows that

Re [_]=-ReI((j,t)>O. (56)

This corresponds to the statement that the singularities _j move outwards away from the

unit circle. This property in fact transcends the restriction implicit in the decomposition

(52); it actually holds for all singularities. To see this, note that since ql, q2 and q3 are

9



known to be analytic a priori it follows from the general theory of first order linear partial

differential equations with analytic coefficients that any singularity of z((, t) must propagate

according to (55). The fact that singularities (if present) move away from the unit circle

implies that for a bubble with a smooth initial boundary, no finite-angled corners can form;

the only possibility that remains open is for a zero of z¢ to impinge on [([ = 1 in finite time

causing a zero-angled cusp on the interface. The solutions discussed in subsequent sections

suggest that this is not possible when surface tension is present. However, we could not

completely rule out this possibility for more general initial conditions.

Now suppose that all the 7/s in (51) are integers, so that z((, 0) has only a finite collection

of poles in [_'[ > 1 in addition to the simple pole at _" = 0, i.e., the conformal mapping is

initially a rational function. Then it is clear from the discussion above that as long as

the solution exists, z((,t) will remain a rational function analytic in [([ < I. In other

words, the problem admits exact solutions where h(_', t) in (50) is a rational function. [We

remark parenthetically, however, that closed form solutions for arbitrary nonintegral 7j are

not possible, because z((, t) is not analytic at ( = 1/(j(t) inside the unit circle on secondary

Riemann sheets.]

The theoretical discussion in this section thus shows the close connection between the

existence of exact solutions and the analyticity of ql, q2 and q3 outside the unit circle. It

is interesting to note that the equations for the interfacial displacement in a Hele-Shaw cell

can also be cast in a form similar to (40) when surface tension is neglected (Tanveer 1993).

In this case, the equations also admit exact solutions in terms of polynomials or rational

functions (see, e.g., Howison 1992 for a review). The difference, however, is that in the

Hele-Shaw problem, when a less viscous fluid is injected into a more viscous fluid, all initial

singularities in 1(] > 1 (except that at infinity) travel towards I_] = 1 (Tanveer 1993). On

the other hand, when the more viscous fluid displaces the less viscous one, all singularities

move outward. In our case, the outward motion of singularities in the ( plane (away from

the physical interface) is not affected by suction (m < 0) or injection of bubble fluid (rn > 0)

and is found to be the same for a drop (Tanveer and Vasconcelos 1994b) as for a bubble. In

this sense, the dynamics here is very different from that of a Hele-Shaw cell.

4. Polynomial Exact Solutions: General Results

In this section we present a general class of exact solutions for the case in which the

function h(_, O) is a polynomial of degree N. Such initial conditions form a dense set on the

class of smooth initial shapes, so that any given smooth initial condition can be approximated

by such h(£, O) to any desired accuracy. The arguments of the previous section guarantee

that h(C , t) will remain a polynomial of the same order N. Because of the outward motion

10



of complex singularities for more general initial conditions, it may be expected that the
polynomial classof solutionsh((, t) will be dense in the class of all analytic solutions. Hence if

we start with a polynomial approximation h((, 0) to the true initial shape, the corresponding

polynomial h((, t) is expected to remain a good approximation to the actual interface for

later times. Thus, the solutions presented below are expected to describe the evolution for

essentially any smooth initial bubble shape.

Accordingly, we seek solutions of the form:

z(¢,t) = a(t) N
-T- + Z b_(t)¢,, (57)

j----1

where the bj's are complex coefficients [and recall a(t) < 0]. The problem now consists in

finding a set of evolution equations for the coefficients a(t) and bj(t). To this end, we first

multiply both sides of (37) by 2z¢((, t) to obtain:

2z_(¢,t)a(¢,t) = zd(,t) {_,(¢-',t)

71- _.((-1,t){z_t((,t )

- [zd¢,t) + ¢z¢¢(¢,

According to (18) and (25), as ¢" approaches zero

of (58) is given by

2z¢(_,t)G((,t) ._ a2(a°- i/3o) 2aC'(t)
¢3 . ¢2

Next consider the Taylor series expansion of I((, t):

oo

I(£,t) = Io + Y_ ]j(t)( j,
j=l

where the coefficients I0 and i 5 are given by [see (32)]

T /2,_ duIo = _ I_de",t)l'

T /27r e-ikuh = 2--; Izde%t)l d.,

_ _-a [I(_, t)+ iK]2i((-1,t)}

-¢I_(_,t)zd¢,t)

t)][I((,t) + iK]} (58)

the singular behavior of the left hand side

+ 0((), as _ --,, 0. (59)
m

_-¢

(60)

(61)

k _> 1. (62)

To simplify the notation we define Io = Io + iK. Now let R(£, t) denote the right hand side

of (58). Inserting (57) and (60) into (58), and after performing a tedious but straightforward

algebra [made easier with the help of a symbolic-computation software such as Maple], we

find that the singular behavior of R(_, t) as (,"approaches zero is given by

N+2

R((,t) = _ r3(t)(-J + O((), as ( ---, 0, (63)
j=l

11



with the coefficientsrk of the form

N+2-k

Tk=--2k--(k--1) E
j----O

IjXk+j , 1 <k<N+2, (64)

where the quantities Xk are given by

Xx+2 = ab*x

XN+I = ab*N_1

Xk = ab*k_2

N-1

N+I -k

__, jbjb_+j-1,
j=l

X2 = - _ jbjbj+l

(65)

(66)

3 < k < N (67)

(68)
j=l

N

:r, = a_- _2jlb? _. (69)
j=l

Here star stands for complex conjugation.

Comparing (63) with (59) and matching the terms corresponding to the double pole at

( = 0, one obtains the function C(t) in terms of the coefficients a(t) and bk(t):

¢(t) : _ £ + E ijxj+_ . (70)
j=O

Similarly, by matching the remaining singular terms we obtain the following system of ordi-

nary differential equations (ODE's) •

21 - rn (71)
7r

N+2-k

2_ = -(k-l) E ]jXk+j+a2(a--i,3o)CSk3, 3<k<N+2. (72)
j=0

Note that since the area A enclosed by the curve obtained as the image of the unit circle under

the mapping (57) is given by A = rrX1, it follows that (71) simply recovers the condition

= m. Equations (71) and (72) in general give a system of 2N + 10DE's from which one

can compute the 2N + 1 parameters of the conformaI mapping for specified initial data and

external flow. In the rest of the paper we will discuss several particular cases of interest.

5. Bubble in a linear flow

Throughout this section we assume that the bubble has a constant volume so that we set

rn-= 0. The simplest scenario is obtained when there is no imposed external flow, in which

12



caseall initial shapesrelax to a circle. Herehoweverweshall considerthe more interesting

casein which the bubble is placedin a linear flow. Although the generalsolutionsdescribed

in §4 can handle a large classof initial shapes,for simplicity we shall focus here on the

casewherethe bubble possessesan initial circular shape.Below we presentexact solutions

describing the subsequentbubble evolution (deformation) for two specific flows: (i) pure

straining flow and (ii) simpleshearflow.

5.1 Pure straining flow

Here we imagine that the bubble is placed in a pure straining flow: u0 = (Qx,-Qy),

where Q is the rate of shear. In view of (7), we thus set ao - 2Q and/30 = w0 = 0. Under

the assumption that the initial shape is a circle of radius R, one can easily verify from the

general solutions presented above that for later times the interface will be described by a

a(t)
z(¢,t) = T +

conformal mapping of the form

(73)

where b(t) is real. From (71) and (72) one finds that the time evolution of the coefficients a

and b will be governed by the following ODE

d

d-t (ab) = -2Ioab + Qa 2, (74)

with a(0) = R and b(0) = 0, together with the area condition

a2-b2-R2. (75)

Here the quantity Io reads [see (61)]

Io= ]o {a2+ - 2abcos.}'/2"
(76)

In Fig. 1 we have integrated (74) in nondimensional units for the case Q' = RQ/r = 0.75.

We thus see that (starting from a circle) the bubbles will evolve through a series of elliptical

shapes towards a steady solution, whose parameters a0 and bo are given by the solutions to

the equation

Qa - 2Iob = 0, (77)

subject to the condition (75). This steady solution was first found by Richardson (1968)

through a direct steady-state calculation.

5.2 Simple shear flow

Now we consider the case of a bubble placed in a simple shear flow: uo = (I'y, 0), where

[' is the shear strength. Accordingly, we set s0 = 0 and fl0 = -wo = F. If the initial shape

13



is a circle we then have,as before, that the subsequentshapesare given by the conformal

mapping (73), but wherenow b(t) is a complex coefficient. According to (72), the time

evolution is given by the following ODE

plus the area condition

d (ab)--- (2Io + ir)ab + ira _ (78)
dt

a_-tbl _ = n_. (79)

Here Io reads
r r=_ dv

I0 = g J0 {a,+ Ibls- 2abRcos.+ 2ablsin,}1/_'
(80)

where bn and bl are the real and imaginary parts of b, respectively.

Now defining X = abn and Y = abi, one readily sees that (78) yields the following system

of ODE's:

._ = -(2IoX + FY)

= -(2XoY + rx) + ra _.

(81)

(82)

The steady solution in this case is thus clearly given by the solution to the equations

2Iobn+Fbx = 0 (83)

2[obt + Fbn- Fa - O, (84)

subject to the constraint (79). [This steady solution, in a somewhat different notation, was

also first obtained by Richardson (1968).] In Fig. 2 we show the evolution of interface towards

the steady solution for the case F t = RP/r = 1.

6. Contracting/expanding bubbles in a quiescent flow

In this section, we suppose that the bubble is placed in an otherwise quiescent flow, i.e.,

we set ao = f3o = w0 = 0. For simplicity, the expansion or contraction rate m will be taken

to be a constant throughout this section. We also assume that the bubble is symmetrical

with respect to the x axis so that the coefficients bj's are all real. In this case, (72) in general

gives a system of N ODE's, which together with the area condition (71) determine the N + 1

coefficients of the conformal mapping. Before discussing the general case, however, we will

first consider the simpler case in which the initial shape has either elliptical or n-th fold

symmetry.

14
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6.1. 'Symmetrical' bubbles

Here we seek solutions of the form

z(¢,t) = a(t)
T + bN(t)¢N' (85)

where bg(t) is real and assumed for definiteness to be negative. Thus, for N = 1 the bubble

is an ellipse, whereas for N > 1 it posses (N + 1)-th fold symmetry. We also note that in

this case _fk vanishes identically for 1 < k _< N + I. Using this fact on (72), it then follows

that if the bk's are initially zero for k = 1,..., N - 1, they will remain so for later times,

thus guaranteeing that a mapping of the form (85) does indeed give an exact solution. [We

remark parenthetically however that this is not case, for example, when the bubble is placed

in an external flow.] The evolution equation in this case is [see (72)]

d

d-t (abN)=-(N + 1)IoabN, (86)

while the area condition (71) after integration reads

A(t) = 7r [a 2 - Nb2y] = [A(0)+ mt], (87)

where A(0) is the initial bubble area. Here I0 can be written as

T ]o- d. (88)I0 = {a2+ N2b2N_2Nabgcosv}l/2.

as one can easily verify by inserting (85) into (61) and performing a trivial change of variables.

Note also that a linear stability analysis of (86) readily shows that an expanding circle

is stable whereas a contracting one is not. To analyze the behavior of the solutions above

in more details, it is convenient to study the motion of the critical points of the conformal

mapping, i.e., the points at which zi((, t) vanishes. Denoting such points by _ok, k = 0, ..., N,

we clearly have: £0k = [flci2_rk] 1/(N+I), where p = a/NbN. Using (86) and (87), we find that

the quantity p evolves according to the following equation

P- _-_p2_t_i (N+I)Io+A-- _ •

We also note, for later use, that in terms of p and A(t) the coefficients a and bN read

(89)

a s A(t)

b2N- N2p 2 - N(Np 2- 1)" (90)

In the case of an expanding bubble (m > 0), we immediately see from (89) that p

increases monotonically with time, so that the zeros _'0k move away from the unit circle
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(Ill = 1). Hencethe bubble hasa tendencyto become'smoother' with time and asymptotes
an expandingcircle as t _ oc. An example of such a case is presented in Fig. 3 where we

show a sequence of interface shapes for N = 1 (elliptical bubbles) and m' = 1 [see (8)]. It

should also be noted that the results discussed in this paragraph are true in general, that

is, for any given initial shape [described by a polynomial h(¢, 0)] the bubble will approach

an expanding circle as t _ c_. [Note, in particular, that this is true even in the absence of

surface tension.]

Consider now the case of a contracting bubble, i.e., m < 0. Here, of course, solutions

can exist at most up to the time t I = A(O)/Iml, at which the bubble-fluid ('air') would be

completely removed from the liquid. We will see below that in the absence of surface tension

(T = 0), the solutions will in general breakdown before this time, due to the formation of

cusp-singularities on the bubble surface. For r # 0, however, the solutions will always exist

all the way up to the final time t I.

We first consider the zero surface tension case. Setting Io = 0 in (89) and integrating the

resulting equation, one finds

1
p(t) = 7t + --_/1 + N272[ 2, (91)

where t = tl - t and
/72

> 0. (92)
"_= 2rcNa(O)bN(O)

Here a(0) and bN(0) are the prescribed initial data. Thus, in this case the zeros will hit the

unit circle at a time tc = if - rr(N- 1)/2N% since p(tc) = 1. For N - 1 (elliptical bubbles),

we then see that the zeros hit the unit circle at precisely the time when the bubble area goes

to zero. Note that since a(t]) = b(tl) _ 0 [see (90)] the final stage of the bubble in this

case is a slit of extension 2]a(tf) I = 2_/a(0)bl(0). On the other hand, for N > 1 the zeros

impinge on the unit circle at t = tc < t], leading to the formation of cusps on the interface

and hence the breakdown of the solutions before the air is completely removed.

A non-zero surface tension is expected, on general grounds, to prevent the development

of actual cusp by providing a 'regularization' mechanism. Indeed, one of the advantages of

the solutions above is that the), are simple enough to allow a detailed analytical investigation

of the regularizing effects of surface tension. For example, recalling that I0 diverges if a zero

of z¢(_.t)lies on the _ unit circle (1¢1 = 1), we immediately see from (89) that the zeros

must approach 1_1 = 1 in the limit that the area vanishes, but they cannot hit the unit circle

while the area remains finite. Furthermore, here it is also possible to carry out an asymptotic

analysis of the final stages of the bubble evolution, as indicated below. [A similar study has

been recently performed by Howison and Richardson (1994) for the case of blob of viscous

fluid with suction, where exact solutions with an analogous structure have also been found.]
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We begin our analysisby noting [seethe Appendix] that the leading-orderasymptotics
of I0 in the limit p _ 1+ is given by

r [Np 2-1]112Io _ -2-7 [ N-A(/) _ ln(p - 1) + O(1). (93)

Inserting this into (89) and writing A(t) = -m_, one finds that as p ---, 1

,_ p(Np=-I) {r(N+I) Np=--I] 1/2 1}- Np 2 + 1 2re -Nrn{ ] ln(p- 1) + . (94)

The asymptotic behavior of p(t) for t + 0 can now be calculated by balancing the most

singular terms in (94). Here there are two distinct cases to consider: (i) N -- 1 and (ii)

N>I.

For N = 1 (elliptical bubbles), the contribution arising from surface tension effects [i.e.,

the first term in the right hand side of (94)] is small compared to the other terms, so that

effectively the time evolution of the solutions is described by

fi"_ (p2_ 1) 1
2 i' as t ---, 0, (95)

which upon integrating yields

p,_l+at, as t---_0, (96)

for some positive 5. Now according to (90), a linear behavior in p(t) as p _ 1 implies that

a(tf) = b(tf) _ O, so that elliptical bubbles will shrink to a slit even when r ¢ 0. Here the

effect of surface tension is simply to reduce the size of such a slit. In other words, the larger

the surface tension, the smaller the extension of the final slit.

For N > 1, as the zeros approach the unit circle, surface tension effects tend to slow down

their motion, so that 'narrow structures' (near-cusps) are formed on the bubble surface. An

example of this process is given in Fig. 4, where we show a sequence of interface shapes

for N = 3 and rn' = -1, up to the formation of near-cusps. The ensuing 'slow' dynamics

of the zeros, as the bubble continues to contract, can be estimated by balancing the two

leading-order terms in the right hand side of (94), that is,

r(N+l)[ N-l] 1/_ 1 (97)2_r - ArgO ln(p - 1) ,- _.

Solving this for p yields

p_l+e -6/_, as i_0, (98)

where

27r a/2
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Note that, asa consistencycheck,one cannow use(98) to verify that the left hand side of

(94) is indeed small compared to the leading-order terms on the right hand side, as initially

assumed in the argument above.

To obtain a qualitative description of the asymptotic shapes as t -+ 0, let us denote

by R,_, and Rmin the maximum and minimum radial distance of a point on the interface

(relative to the bubble center). From (85), one readily finds that R,,_x = [a + b] and

Rmi,_ = la - bl. Defining the deformation D = R_i,_/R_x, we then have

Np- 1 (100)
D- Np+l

Since the deformation D goes to a constant in the limit p -+ 1, it follows that during the late

stages the bubble will shrink to a point through a succession of geometrically similar shapes.

[An analogous phenomenon has also been observed by Howison and Richardson (1994) for

the case of a blob of viscous fluid with suction.] Here the main effect of surface tension is

to determine the time scale for when the 'near-cusps' first appear, that is, the greater the

surface tension, the later the near-cusp will develop.

6.2. 'Asymmetrical' bubbles

We have seen above that in the case that the initial shape can be described by a conformal

mapping of the type given in (57), surface tension effects guarantee that the solutions will

always exist up to t = tf, by which time the air will have been completely removed from the

liquid. The situation changes considerably, however, when the bubble initially has neither

elliptical nor n-th fold symmetry, that is, when not only bN(0) # 0 (for N > 1) but also

bk(0) # 0 for some k < N. In such cases, the bubble will invariably develop a 'thin neck'

whose width will go to zero at a time t = tb < t I, after which the solutions cease to make

physical sense. We thus refer to this process as bubble 'breakup'. In Fig. 5 we show a

sequence of interfaces shapes leading to the breakup of the contracting bubble into three

smaller ones. In the case shown in this figure, the coefficients bl, ba and bs were all initially

nonzero and m' = -1. We also found a similar breakup when we take ra to be proportional to

the bubble perimeter instead of a constant, as appropriate for modeling a dissolving bubble

gas.

Since our solutions breakdown at the time when the two sides of the interface 'touch'

each other, we are unable to follow the dynamics of the 'newborn' bubbles. We emphasize,

however, that no physical quantity blows up as the bubble approaches breakup. Here the

breakdown of the solutions is caused simply by the loss of univalence of the conformal

mapping for t > tb (Tanveer & Vasconcelos 1994a).
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7. Conclusions

We have presented exact solutions for a bubble with essentially arbitrary initial shape

evolving in a two-dimensional Stokes flow in the presence of surface tension. Our solutions,

which are given in terms of a polynomial-type mapping function, include bubbles in a linear

flow as well as an expanding or contracting bubble in an otherwise quiescent flow. It has

been noted that the expanding bubble approaches a growing circle for later times, while a

contracting circular bubble is unstable to disturbances and can lead to the formation of near-

cusps or cause breakup before all the bubble-fluid is removed. The mathematical structure

underlying the existence of a broad class of exact solutions has also been discussed in detail.

As is well known, an inviscid bubble does not breakup under the action of a shear flow.

Our results show however that breakup does occur (at least in plane flows) when another

driving mechanism, e.g., suction of bubble-fluid, is present. While this general tendency to

breakup is likely to be present in 3D axisymmetric flow as well, it not clear at this point

that different parts of the interface will actually touch or merely tend to each other. Also,

in our solutions the flow inside the bubble has been neglected since the viscosity of the inner

fluid has been assumed to be negligible. Nonetheless, this flow is likely to be important near

bubble breakup. The effect of a nonzero viscosity ratio thus needs to be examined in the

future.

One of the authors (GLV) would like to acknowledge financial support from The Ohio State University

Postdoctoral Fellowship. This research was supported in part by DOE contract DE-FG02-92ER14270.
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Appendix

The asymptotic behavior of the quantity I0 given in (88) in the limit p ---+ 1 can be

computed in the following way. First we use (90) to rewrite (88) in terms of p:

I°= _ [ NA(t) J /0(p), (I01)

where

fo _ dO[0(P) = {1 + p2_ 2pcos(O)}'/2"

We now separate this last integral into two contributions:

(lo2)

fo _ dO ff dO
_(P) = {(p- 1) 2 + 211 - cos(0)]} a/2 + {(p_ 1)2 + 4psin2(O)} '/2

(103)

where p- 1 << e << 1. Here we have rewritten the integrand in both integrals above

in a form suitable for the next step in the calculation. Accordingly, in the first integrals

the leading-order asymptotics can be found by approximating cos 9 by 1 - ½92 and then

performing a change of variable 9 = (p - 1)v. Similarly, in the second integral the leading-

order asymptotics is obtained by simply setting p = 1. Within these approximations, one

then has

g(p) fo • du _ du (104)'_' 1
[(P _ 1) 2 + u2],/2 -t- 2 sin _u

ln[p__ t e2 ] 1= + 1+ (p_ 1) 2- -lntan_-e. (105)

In the leading-order the e dependence drops out from the above, thus giving

g(p) _ - ln(p - 1) + 0(1). (106)

Finally, inserting this into Eq. (101) yields formula (93).
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FIGURE CAPTIONS

Fig. 1. Circular bubble placedin a pure straining flow with Q' = 0.75.

Fig. 2. Circular bubble placed in a simple shear flow with F' = 1.

Fig. 3. Expanding bubble with m' = 1.

Fig. 4. The evolution of a four-fold symmetric bubble for m' = -1. Note the formation of

'near-cusps' on the innermost interface.

Fig. 5. The evolution of an 'asymmetric' bubble leading to bubble breakup for m' = -1.
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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